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Abstract

In this paper, we compare several approaches for the problem of gas network
expansions using loops, that is, to build new pipelines in parallel to existing ones. We
present different model formulations for the problem of continuous loop expansions
as well as discrete loop expansions. We then analyze problem properties, such as the
structure and convexity of the underlying feasible regions. The paper concludes with
a computational study comparing the continuous and the discrete formulations.

1. Introduction

Gas transmission operators own and operate the pipeline network infrastructure. They
are faced with both increasing demand and the need to handle more diverse transport
situations. In order to keep up, they need to expand their network’s capacity. This
is known as Expansion Planning and can be modeled as a nonconvex Mixed-Integer
Nonlinear Program (MINLP), where discrete decisions correspond to the operation of
active network elements and nonlinear constraints are needed to model the flow-pressure
relationship in pipes. Building new pipes in parallel to existing ones, also called looping,
is a popular method to increase throughput in practice.
It is still an open research topic to choose the right expansion candidates, since a single

method like looping provides no guarantee for feasibility. Fügenschuh and Humpola
present a bottleneck analysis in [HF15] that helps to find out whether an infeasible flow
situation can be resolved with loop expansions. For an literature overview about different
expansion planning approaches, we refer the reader to [RMBS15], [BBB+15] or [BNV12].
In section 2, we present formulations for two different kind of loop expansion prob-

lems. At first we formalize the problem of dealing with continuous loop lengths, called
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split-pipe problem in the literature, as well as the appropriate choice of loop diameters
out of a discrete set. Since it is possible to determine the best looping diameters a priori,
we can efficiently reduce the problem size of the resulting MINLP. We also present the
problem of discrete loop expansions, that is to decide whether a pipe is looped over its
full length or not all.
In section 3, we compare the feasible regions of the split-pipe and discrete approach. In

section 4, we highlight problem properties, such as the nonconvexity of the split-pipe and
discrete formulation and give an example that the Braess’ paradox is also valid in the
context of loop expansions. We conclude with a computational study comparing the
split-pipe and discrete formulations.

2. Modeling Gas Network Loop Expansions

A gas network is represented by a directed graph G = (V,A), where the set of nodes
V consists of sources, sinks and intermediate nodes and the arc set A comprises pipes,
compressor stations, valves, control valves and resistors. In this paper, we only consider
passive gas networks, that is, all arcs are pipe segments. A nomination is given by
b ∈ R|V|, where bv > 0, bv < 0 denotes injection into and withdrawal from the network
at node v ∈ V, otherwise bv = 0. Since we work with stationary gas flow models, the
nominations are balanced and we have

∑
v∈V bv = 0. Flow mass balance is required at

every node: ∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv, ∀v ∈ V.

The physical state of the network is described by bounded pressure variables pv ∈
[p
v
, pv] ∀ v ∈ V and flow variables xa ∈ [xa, xa]∀ a ∈ A.
The transported amount of gas leads to a pressure loss in each arc a ∈ A along the

flow direction and is represented by the Weymouth equation:

p2
v − p2

w =
LaKa

D5
a

xa|xa| ∀a = (v, w) ∈ A, with (1)

Da diameter of pipe a
La length of pipe a
Ka physical constant of pipe a.

For more details about different approaches of modeling and solving gas network nomina-
tions, we refer the reader to chapter 6 - 9 in [KHPSe15] and for the approximation of the
underlying gas physics in pipes by the Weymouth equation to [Wey12]. We assume here
that all pipes are located on a flat surface with zero slope, that is, there is no influence of
gravity on the pressure drop. Since the pressure variables only appear in the quadratic
form of (1), we subsequently replace them by π = p2, with bounds π ∈ [p2, p̄2].
This model forms the base for the following approaches of modeling loop expansions.
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Da = 1 [m]

Di = 0.8 [m]

Dj = 0.6 [m]

D̂i = 1.2 [m]

Dj = 0.6 [m]

D̂i,j = 1.28 [m]

Figure 1: Example for the calculation of an equivalent diameter, where D̂i = eq(Da, Di)
and D̂i,j = eq(D̂i, Dj).
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Figure 2: Possible diameter allocation of a looped pipe.

2.1. Split Pipe Loop Expansions

We are given a finite set D = {D1, . . . , Dn} containing the diameter candidates for the
loops of a pipe. The diameters D are associated with costs, see figure 3. We allow a
single pipe to be looped up to r times with any possible combination of diameters of D.
We do this by calculating the equivalent diameters D̂ of the original diameter Da and
Di, i ∈ {1, ..., n} in the following:

D̂i := eq(Da, Di) =
(
D5/2
a +D

5/2
i

)2/5
∀i ∈ {1, ..., n}

D̂i1,...,ir := eq(D̂i1,...,ir−1 , Dir) ∀i1, . . . , ir ∈ {1, ..., n}.

Note that a derivation of the formula is given in the appendix A and B. An example for
the calculation of an equivalent diameter for an original pipe with two loops is provided
for normalized pipe length in figure 1. Since the equivalent diameter is commutative, it
follows that D̂i,j = D̂j,i.
Each equivalent diameter D̂ has a corresponding continuous variable l ∈ [0, 1] that

represents its partial loop length, that is, the relative length of the pipe segment using
this diameter. Figure 2 illustrates that a pipe can basically be looped with all possible
combinations of equivalent diameters. Thus, this model can be viewed as a relaxation to
approaches where a single diameter is chosen to be looped over the full pipe length, as
done in [Hum14].
We then apply a model reduction following [FD87]. We restrict the number of equiva-

lent diameters to a small set, while being able to represent the capacity of the neglected
ones. To this end, we consider the cost factor C over a power function of the equivalent
diameters, shown in Figure 4. This function of the diameter corresponds to the impact
that the diameter has on the pressure loss in equation (1).
Subsequently we calculate the lower part of the convex hull of these values, see the

red line segments in Figure 4. Optimal loop diameters then correspond to extreme
points of this lower part of the convex hull. For a proof, we refer to [FD87]. Hence,
we eliminate all equivalent diameters that are not extreme points. In the following
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Figure 3: Diameter candidates.
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Figure 4: “Lower part” of the convex hull.

we denote the set of equivalent diameters of a pipe a that corresponds to the extreme
points of the “lower part” of the convex hull in descending order {D̂a,0, ..., D̂a,ka} with
length variables la,0, ..., la,ka . Here, D̂a,0 typically corresponds to the (unlooped) diameter
Da of the existing pipe. A tuple (D̂a,i, la,i) indicates the proportion of how much the
“associated factor” (LaKa/D̂

5
a,i)la,i contributes to the overall pressure loss of the pipe,

see equation (2b). Since the cost factor C is a strictly convex function over the extreme
points, optimal solutions have the property that pipes are looped by at most two different
and adjacent diameters. That is, the la,i variables implicitly form a special ordered set
of type 2.
Our approach is similar to that of [ZZ96] for the optimal pipe dimensioning problem,

where they also use continuous variables to represent the relative length of segments using
different diameters. The difference is that we extend it by accounting for the impact of
equivalent diameters that represent multiple loops of diameters out of the candidate set.
With these insights we build the following formulation. The objective function is to

minimize the costs of the built loops (2a). Modeling loops is integrated in the nonconvex
and nonlinear equation (2b). The segments must cover the complete pipe length by (2c).

minimize
l,x,π

∑
a∈A

(
La

ka∑
i=0

la,iC(D̂a,i)

)
(2a)

subject to πv − πw = LaKa

(
ka∑
i=0

la,i

D̂5
a,i

)
xa|xa| ∀ a = (v, w) ∈ A (2b)

ka∑
i=0

la,i = 1 ∀ a ∈ A (2c)∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V (2d)

πv ≤ πv ≤ πv ∀ v ∈ V (2e)
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xa ≤ xa ≤ xa ∀ a ∈ A (2f)
la,i ∈ [0, 1] ∀ a ∈ A∀i ∈ [ka] (2g)

with

D̂a,0, ..., D̂a,ka equivalent diameters of pipe a
= extreme points of the “lower part” of the convex hull

la,i relative length of pipe segment with D̂a,i ∈ {D̂a,0, ..., D̂a,ka}

2.1.1. Alternative Formulation for Split Pipe Loop Expansions

In the previous section, we modeled the “lower part” of the convex hull (see figure 4)
using length variables li. Here, we present an alternative approach to formulate the
split-pipe model by imposing this “lower part” of the convex hull with linear constraints.
For that purpose, we introduce a variable ca,i that represents the costs of pipe a with
equivalent diameter D̂a,i and add linear constraints (3b) for all adjacent pairs of extreme
points that span the “lower part” of the convex hull, see figure 5b. These cuts can be
added globally or on the fly when ever an LP solution violates these cuts.

minimize
y,c,x,π

∑
a∈A

ca

subject to πv − πw = LaKaya xa|xa| ∀ a = (v, w) ∈ A (3a)∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V

ca ≥ sa,iya,i + ti ∀a ∈ A ∀i ∈ [ka − 1] (3b)
πv ≤ πv ≤ πv ∀ v ∈ V
xa ≤ xa ≤ xa ∀ a ∈ A
y
a
≤ ya ≤ ya ∀ a ∈ A

where (3b) is explicitly given by

sa,i :=
ci − ci+1

(D̂−5
a,i − D̂

−5
a,i+1)

ta,i := −sa,iD̂−5
a,i+1 + ci+1,

and y
a

:= D̂−5
a,ka

, ya := D̂−5
a,0. Note that (D̂−5

a,i , ca,i) correspond to the extreme points of
the “lower part” of the convex hull, as shown in figures 5a and 5b.
Both formulations 2.1 and 2.1.1 are equivalent in that they yield the same optimal

solutions. The only difference is in the constraints (2b), (2c) and respectively (3b). In
principle, the feasible region of these constraints is depicted in the gray shaded area of
figures 5a and 5b. But since the objective is to minimize the costs, the solution is forced
to be on the “lower part” of the convex hull for the li variables in formulation 2.1 as well
as for the y variables in formulation 2.1.1.
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(a) Feasible region of la,i-variables in formula-
tion (2).
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(b) Feasible region of ya-variables in formula-
tion (3).

Figure 5: Feasible regions.

2.2. Discrete Loop Expansions

Most approaches in the literature rely on the usage of binary variables to indicate if a
pipe is looped over the full pipe length with a certain diameter or not looped at all. Such
a discrete approach can be applied to the case of several loops for an existing arc, as
done in [Hum14]. Humpola defines an extended arc set AX ⊂ A×N≥0 and allows a pipe
to be looped up to n times with the original diameter. To this end, binary variables are
introduced for each arc (a, i) ∈ AX to model the decision that arc (a, i) is used, which
means that arc a is looped i times with its original diameter.
For comparison purposes between a split-pipe and discrete formulation of loop expan-

sions, we modify the formulation of [Hum14] by allowing a pipe to be fully looped up
to r times with any diameter combination out of the candidate set D = {D1, . . . , Dn}.
As described in section 2.1, we compute the same extreme points that correspond to
the “lower part” of the convex hull in descending order {D̂a,0, ..., D̂a,ka}. Due to equa-
tion (4e), exactly one binary variable za,i is selected that chooses one difference of squared
pressure variable ∆a,i in the big M-formulation (4d) to be non-zero and hence selects the
corresponding equivalent diameter in equation (4b).

minimize
z,x,∆,π

∑
a∈A

La

ka∑
i=0

C(D̂a,i)za,i (4a)

subject to xa|xa| −
ka∑
i=0

D̂5
a,i

LaKa
∆a,i = 0 ∀ a ∈ A, (4b)

ka∑
i=0

∆a,i − (πv − πw) = 0 ∀ a = (v, w) ∈ A, (4c)

−M za,i ≤ ∆a,i ≤M za,i ∀a ∈ A ∀i ∈ [ka], (4d)
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ka∑
i=0

za,i = 1 ∀ a ∈ A, (4e)∑
a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = bv ∀ v ∈ V, (4f)

πv ≤ πv ≤ πv ∀ v ∈ V, (4g)
xa ≤ xa ≤ xa ∀ a ∈ A, (4h)
za,i ∈ {0, 1} ∀a ∈ A ∀i ∈ [ka]. (4i)

with

D̂a,0, ..., D̂a,ka equivalent diameters of pipe a
= extreme points of the “lower part” of the convex hull

za,i decision to build pipe a with equivalent diameter D̂a,i

∆a,i squared pressure loss of pipe a with equivalent diameter D̂a,i

3. Comparison of the Feasible Regions

In the following, we denote the feasible region of the split-pipe or discrete model and
their relaxations or modifications, as:

• Xsp - feasible region of the split-pipe model (2)

• Xsp,bin - feasible region of the integral split-pipe model, i.e. setting all variables la,i
to be binary in model (2)

• Xdisc - feasible region of the discrete model (4)

• Xdisc,rel - feasible region of the continuous relaxation of model (4)

In this section, we show the three relations highlighted in figure 6. The other relations
Xsp,bin ⊆ Xsp and Xdisc ⊆ Xdisc,rel are evident, since they are the canonical continuous
relaxations of the integral variables.
Since the different model formulations do not share the same variables, the set inclusion

does not hold literally. Instead, we understand inclusion to mean that a suitable mapping
of feasible points exists.

Proposition 1. The continuous relaxation of the discrete model (4) is weaker than the
split-pipe model (2), i.e. Xsp ⊆ Xdisc,rel.

Proof. Given a solution of model (2), i.e. a solution vector
(
x̃a, π̃v, l̃a,i

)
a∈A,v∈V,i∈[ka]

∈
Xsp. We show, that it can be transformed to a point in Xdisc,rel. To this end, we set
for all pipes a ∈ A: xa := x̃a, πv := π̃v and za,i := l̃a,i ∀i ∈ [ka]. With this assumption,
equations (4e), (4f) hold as well as the variable bounds (4g)-(4h). Define

∆a,i := za,ixa|xa|
LaKa

D̂5
a,i

∀a ∈ A ∀i ∈ [ka] (5)
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Xdisc Xsp,bin

Xdisc,rel Xsp

=

⊇ ⊇

⊇

⊆

Figure 6: Relation of feasible regions.

⇒
ka∑
i=0

∆a,i
(5)
= xa|xa|

ka∑
i=0

za,i
LaKa

D̂5
a,i

(2b)
= πv − πw ∀a ∈ A, (6)

and thus the pressure loss constraint (4c) is satisfied. Setting M ≥ xa|xa|LaKa/D̂
5
a,0,

then the big M-formulation (4d) holds by construction. Equation (4b) also holds, since

(5)⇒ za,ixa|xa| =
D̂5
a,i

LaKa
∆a,i ∀a ∈ A ∀i ∈ [ka],

⇒
ka∑
i=0

za,ixa|xa| =
ka∑
i=0

D̂5
a,i

LaKa
∆a,i ∀a ∈ A,

(4e)⇒ xa|xa| =
ka∑
i=0

D̂5
a,i

LaKa
∆a,i ∀a ∈ A.

Note that the reverse is not true, i.e. Xdisc,rel 6⊆ Xsp. Instead of providing a counterex-
ample, we refer to the computational experiments shown in table 5 of the appendix. The
results illustrate that the optimal objective value is better for the continuous relaxation
of the discrete model than for the split-pipe model.
But formulations (2) and (4) are equivalent when restricting the continuous length

variables in (2) to be binary, as described in proposition 2.

Proposition 2. Restricting the continuous variables to be binary la,i ∈ {0, 1} for all
a ∈ A and for all i ∈ [ka] in the split-pipe model (2), results in a feasible region that
equals the one of the discrete model (4), that is, Xsp,bin = Xdisc.

Proof. ”Xsp,bin ⊆ Xdisc”:
Let

(
x̃a, π̃v, l̃a,i

)
a∈A,v∈V,i∈[ka]

∈ Xsp be a solution of formulation (2), that also fulfills

l̃a,i ∈ {0, 1}. Again, we set for all pipes a ∈ A and ∀i ∈ [ka] : xa := x̃a, πv := π̃v and
za,i := l̃a,i. Then equations (4f)-(4h) follow right away and equation (4e) holds because
of equation (2c). For pipe a let ǐa ∈ [ka] be such that l̃a,̌ia = 1. We define

∆a,i :=

0 ∀i ∈ [ka] \ ǐa
LaKa

D̂5
a,i

xa|xa| i = ǐa.
(7)
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Figure 7: Example of a graph with given pressure bounds, where the split-pipe model
has a solution (blue) and the discrete model is infeasible (red dashed lines).

Then equation (4b) follows by construction, equation (4c) equals equation (2b) and
equation (4d) holds by setting M ≥ ∆a,̌ia

.
”Xdisc ⊆ Xsp,bin”:

Let (xa, πv, za,i,∆a,i)a∈A,v∈V,i∈[ka] ∈ Xdisc be a solution of model (4). We set for all pipes
a ∈ A and ∀i ∈ [ka] : x̃a := xa, π̃v := πv and l̃a,i := za,i. Then equation (2c) holds
because of (4e) and equation (2b) follows from equations (4b) - (4d).

Proposition 3. The split-pipe model (2) is a relaxation of the discrete model (4), i.e.
Xdisc ⊆ Xsp.

Proof. It follows directly from proposition 2, since Xdisc = Xsp,bin and Xsp,bin ⊆ Xsp.

4. Problem Properties

4.1. Feasibility of Models

It is an interesting theoretical question, whether there are instances that are only feasi-
ble for the split-pipe model but infeasible for the discrete model. The following simple
example provides such a situation, which is induced by different pressure bounds at the
nodes.

Example Figure 7 shows a graph with three nodes v, w, z and two arcs (vw), (wz). The
squared pressure variable at node v is fixed to its upper bound and the squared pressure
intervals of nodes w and z are highlighted in green. Assume a certain demand situation
to be given. Both pipes can be laid out with one of the two diameter candidates D1 or
D2. While any diameter combination for the two pipes in the discrete case cannot meet
the squared pressure range at node z, the split-pipe model does so by an appropriate
convex combination of the diameters for both pipes.
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(a) Feasible network state, where the pressures
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(b) Looping pipe wz (black dashed line) turns
the network state infeasible. More gas flows
now in the direction of the blue dashed line.

Figure 8: Braess phenomenon in the context of looping gas networks.

4.2. Braess’ Paradox

In the context of road networks, Braess discovered that potential improvements of traffic
flows, e.g., opening new streets, could lead to a deterioration of the travel time[Bra68].
This effect is called Braess’ paradox. It is a counterexample to the monotonicity as-
sumption that more network capacity leads to more throughput. This paradox is also
known in gas network expansion planning, e.g. as “more pipeline - less throughput phe-
nomenon”, when adding a new element to the gas network might lead to infeasibility,
see [Sza12]. Here we provide an example that this phenomenon also may occur in the
context of looping, see figure 8. A feasible network flow situation turns infeasible just
by doubling pipe wz. This is because the pressure variables of the nodes are already
at the bounds (fig. 8a). Adding the loop now changes the flow situation in the sense
that more gas flows along the looped pipe wz and therewith through pipe vw, yielding a
violation of the lower pressure bound at node w (fig. 8b). Note that this example requires
non-uniform pressure bounds on the nodes.

4.3. Convexity Analysis

In [HF15], Humpola et al. proved convexity of the feasible region with respect to flow
and node potential variables (x, π) of the so-called domain relaxation problem for passive
networks as described in section 2. The proof relies on the fact that the flow distribution
is uniquely defined and the projection on the π-variables is unique up to a constant shift
within an interval, which was shown by [Mau77].
The interesting fact is that even though the problem comprises nonlinear nonconvex

constraints, such as equation (1), its feasible region is convex. But this property does not
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hold for the feasible regions of both split-pipe and discrete expansion planning problem.
Both problems have a nonconvex feasible region. While it is obvious for the discrete
problem due to its discrete nature of the binary variables, we provide an example that
shows the nonconvexity of the feasible region of the split-pipe problem.

Counterexample Consider a network of two pipes, as shown in figure 14 and the cor-
responding model. Given a demand situation bt = 121 and bh = −121, the physical
properties of the pipes are such that y1 = 1 and y2 = 0.01 and the bounds of the squared
pressure variables are: π2

t − π2
h ∈ [10, 140]. For a given flow situation in parallel pipes,

the flow distribution among the parallel pipes is unique and described by equation (11)
in appendix A. Hence, we get a feasible pressure loss π2

t − π2
h = 121 with x1 = 11 and

x2 = 110. Projecting the solution onto the (y1, y2)-space, we have two feasible solutions:
y = (0.01, 1) and ỹ = (1, 0.01), by symmetry. But a convex combination of y and ỹ,
such as 0.5(y + ỹ) = (0.505, 0.505) is infeasible, since equation (11) yields x1 = 60.5 and
π2
t − π2

h = y1x
2
1 = 0.505 · 60.52 > 140.

5. Computational Study

In this section, we computationally compare the discrete expansion problem with the
split-pipe expansion problem. We conduct two experiments: At first, we compare the
continuous relaxation of the discrete model 2.2 with the split-pipe model 2.1. The latter
one can also be seen as a relaxation of the discrete model. For a fair comparison, we
examine how close the dual bound in the root node of both relaxations comes to the
optimal value of the discrete model.
Secondly, we compare the discrete problem with the split-pipe problem in the tree

search, considering a time-limit of five hours per instance. Especially for practical pur-
poses it is an important question, whether cost savings of the split-pipe loop expansions
are significant compared to the approach of discrete loop expansions.
We implemented these models in ZIMPL [Koc04] using SCIP as MINLP solver ([Ach09]

and [Vig12]).

5.1. Implementation Details

A drawback of the split-pipe formulations (2) and (3) is, that a further quadratic con-
straint has to be introduced for each pipe: πv − πw = yaza, since SCIP cannot take
advantage of the structure of constraint type (2b) or (3a). On the other hand, this
additional nonlinearity does not depend on the number of extreme points, since it is
independent of the number ka in formulation (2) or rather independent of the number
of linear constraints in formulation (3). Subsequently, we illustrate how SCIP handles
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equation (2b). It is split into constraints of types abspower, quadratic and linear:

πv − πw = LaC

(
ka∑
i=0

la,i

D̂5
a,i

)
︸ ︷︷ ︸

=ya linear

xa|xa|.︸ ︷︷ ︸
=za abspower︸ ︷︷ ︸

ya·za quadratic

The advantage of the discrete model (4) is that these additional quadratic constraints
are avoided. This is due to the fact, that the model formulation allows to account for
the impact of the equivalent diameters on the side of the difference of squared pressure
variables, see equation (4b). However an obvious drawback of model (4) is the existence
of binary variables. In the following computational experiments, we use formulation (2)
as representation of the split-pipe model.

5.2. Experimental Setup

Test set We randomly generated 52 instances based on the Belgium gas network, where
the network data is publicly available at [DWS00] or [Lib]. We slightly modified this
network, exactly as done in [HFK16], by substituting all active elements for pipes. Ad-
ditionally we added several new pipelines to the network to create more cycles, which
increase the network complexity. The demand vectors are randomly generated, such that
the same nodes are always sources, sinks or innodes, in accordance with [Lib].

Hardware and Software The experiments are conducted on a cluster of 64bit Intel
Xeon E5-2680 CPUs at 2.7GHz with 20MB cache and 64GB main memory. In order to
safeguard against a potential mutual slowdown of parallel processes, we ran only one job
per node at a time. We used SCIP version 3.2.1 with CPLEX 12.6 as LP solver and
Ipopt 3.12.6 as NLP solver.

5.3. Root Node Comparison of the Split-Pipe and Discrete Problem

In this section we conduct two experiments. Namely, we compare

i) the split-pipe model (2) with the continuous relaxation of model (4) as two possible
relaxations of the “original” discrete model (4),

ii) the split-pipe model (2) with the “original” discrete model (4).

We only processed the root node using the described test set to compare their dual
bounds. To exploit the root node to a maximum extent, we aggressively apply separation
in as many rounds as needed. We also aggressively apply OBBT, see [GBMW16], since
tight variable bounds have an impact on the generation of tight cuts and thus on the
dual bound. Furthermore, we disable all heuristics as well as strong branching, to avoid
random noise.
For both experiments, we split the instances in two groups:
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i) 25 out of 52 instances, where the discrete model could be solved to optimality
within a timelimit of 5 hours. For these optimally solved instances, we compare
the dual bound d of both relaxations after the root node with the optimal value
p∗ of the discrete model by means of d/p∗ ∈ [0, 1], denoted as “relative difference
between dual bound in root node and optimal value” in the figures below. Note
that all these 25 instances hold p∗ > 0.

ii) 27 out of 52 instances, where the discrete model could not be solved to optimality
within a timelimit of 5 hours.

Figure 9 shows that the dual bounds after solving the root node are better for the
split-pipe model then for the continuous relaxation of the discrete model. A possi-
ble reason is that the continuous relaxation of the discrete model is weaker than the
split-pipe model, because with the insights of section 3 and the computational results in
table 5 of the appendix, we know that Xsp ( Xdisc,rel.
Remember also that Xdisc ⊆ Xsp and thus the optimal value of the split-pipe model

might be smaller than the optimal value of the discrete model. Hence the split-pipe model
might not be able to close the gap of the discrete model in the root node.
However, the full discrete model yields better dual bounds in the root node compared

to the split-pipe model as can be seen in figure 10, since the integer variables contain
more information that can be exploited by for example presolving techniques, cutting
planes or others.

5.4. Tree Experiment of the Split-Pipe and Discrete Problem

We conduct this experiment using the SCIP with default parameter settings. Again we
split the instances in two groups:

i) 22 out of 52 instances that can be solved to optimality for both models (2) and (4),

ii) 30 out of 52 instances that are at the timelimit for at least one of both models.

Figure 11a reveals an important fact from the practical point of view. The optimal ob-
jective value of the split-pipe model is better than the one of the discrete model for all
instances yielding pure cost savings when implementing the solution in practice. Remem-
ber that Xdisc ⊆ Xsp and thus the optimal value of the discrete model is always greater
or equal than the one of the split-pipe model.
For example, the optimal solution of instance belgium_240_1 is depicted in figure 13.

It can be seen that partial loops may be optimal for the split-pipe model, while solutions
of the discrete model only account for full loop lengths.
Figures 11b and 12 indicate that the runtime of the optimally solved instances as

well as the remaining gap of the instances that are hit by the timelimit are better for
the split-pipe model than for the discrete model. For the optimally solved instances
(instances of type i), we use the shifted geometric mean as a performance measure. It is
defined as ( n

√∏
(ti + s)− s) for values t1, ..., tn. We use a shift of s = 10 for the runtime

and s = 100 for the number of branch and bound nodes in order to reduce the impact of
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Figure 9: Root node experiment for split-pipe formulation versus continuous relaxation
of discrete formulation.
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Figure 10: Root node experiment for split-pipe formulation versus discrete formulation.
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Shifted Geometric Mean

Runtime in [sec] Branch and Bound Nodes

Split-Pipe Problem 47.95 17145

Discrete Problem 372.91 83586

Table 1: Performance Values of optimally solved instances for
the Split-Pipe and Discrete Problem.

very easy or hard instances in the mean values. Table 1 shows that the split-pipe problem
outperforms the discrete problem with a factor of 7.78 concerning the runtime and with a
factor of 4.88 with respect to the number of branch and bound nodes, which were needed
to prove optimality.
This is due to several reasons, in particular, the relaxation of the discrete model is

very weak as shown in the root node experiments. Take into account that the binary
part comes along with big-M formulations and it is well known that their relaxations are
weak. Besides, the LP-relaxation of the split-pipe model even finds solutions for these
instances, which is very unlikely to happen in the discrete model.
The results in tables 3 and 4 show that no instance is infeasible for the discrete but

feasible for the split-pipe model. Even though this observation suggests that each feasible
solution of the split-pipe model might be transformable to a feasible solution of the
discrete model we have seen in section 4.1 that this strongly depends on the given pressure
bounds.

6. Summary

In the literature, different kind of network loop expansion approaches exist, in particular
the discrete and the split-pipe problem. The question arises, whether there are signifi-
cant differences between both problems, especially with respect to objective value and
computation time.
To answer this question, we presented model formulations for the split-pipe and dis-

crete loop expansion problems. We showed that the split-pipe model represents a re-
laxation of the discrete model and thus theoretically yields at least as good expan-
sion solutions as the discrete model. But our computational study revealed that the
split-pipe problem yields considerable better expansion costs than the discrete problem
for instances that are solved to global optimality. This is of particular interest in prac-
tice, since implementing the split-pipe solutions yield pure cost savings over the discrete
model.
On the other hand, it is worth mentioning that the optimal solution of the split-pipe

problem can be retrieved by the discrete problem, because the split-pipe -argument says
that an optimal solution contains at most two different equivalent diameters for a pipe.
Thus splitting the pipe in two segments according to the optimal split-pipe solution yields
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Figure 11: Tree search experiment for split-pipe versus discrete formulation.
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yet been found for the discrete formulation. For the best known upper and
lower bounds U,L, the Gap = (U − L)/L · 100%.
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(a) Solution of split-pipe model. (b) Solution of discrete model.

Figure 13: Optimal solution of instance belgium_240_1 for the split-pipe and discrete
model in schematic view. The numbers i indicate the equivalent diameters
D̂a,i of the pipes, where pipes with diameter D̂a,0 are not displayed. Fractional
values in the solution of the split-pipe model describe the proportion of the
associated adjacent equivalent diameters, i.e. 0.3 means that 30% of that pipe
corresponds to D̂a,1 and 70% to D̂a,0.

the same results for the discrete problem and requires only the addition of at most one
inner node per pipe segment.
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A. Parallel Pipe Merge

When several pipes appear parallel to each other, every one is represented by a single
Weymouth equation (1) in the model.

t h

x1

x2

Figure 14: Parallel pipes.

For the two pipes in figure 14 we have the following system of equations:

p2
t − p2

h = αx1|x1| (8)
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p2
t − p2

h = βx2|x2| (9)

We transform this into an equivalent single equation for the summed (aggregated) flow
x = x1 + x2. The new equation (10) is equivalent to (8), (9) in terms of the modeled gas
physics, having a new weymouth constant, but the same pressure difference.

p2
t − p2

h = γx|x| (10)

Thus we have:
αx1|x1| = βx2|x2| = p2

t − p2
h

!
= γx|x|

And we also know that sign(x1) = sign(x2), since α, β > 0.
Therefore,

αx2
1 = βx2

2 ⇒ x1 =

√
β√
α
x2 (11)

x = x1 + x2⇒ x = (

√
β√
α

+ 1)x2 (12)

βx2
2 = γx2 ⇒ γ =

βx2
2(

(
√
β√
α

+ 1)x2

)2 (13)

⇒ γ =
β(√

β+
√
α√

α

)2 (14)

⇒ γ =
βα(√

β +
√
α
)2 (15)

B. Equivalent Diameters

For two parallel pipes (see figure 14) we can also compute an equivalent diameter value,
using formula (11). Let

α =
KL

D5
1

, β =
KL

D5
2

, γ =
KL

D̂5

then

γ =
αβ

(
√
α+
√
β)2

⇔ KL

D̂5
=

KL
D5

1

KL
D5

2(√
KL
D5

1
+
√

KL
D5

2

)2

⇔ 1

D̂5
=

1
D5

1D
5
2(

1

D
5/2
1

+ 1

D
5/2
2

)2
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⇔ (D5
1D

5
2)

(
1

D
5/2
1

+
1

D
5/2
2

)2

= D̂5

⇔ D̂ =
(
D

5/2
1 +D

5/2
2

)2/5

C. Serial Merge

t i hq q

Figure 15: Serial pipes

In the situation of two pipes in serial, like in figure 15, we can also construct a single
Weymouth equation equivalent to the original system. However, since the inner pressure
variable pi is eliminated, no bounds can be enforced now.
We start with:

p2
t − p2

i = αq|q|
p2
i − p2

h = βq|q|

A simple linear combination already determines the coefficient:

p2
t − p2

h = (α+ β)q|q|

⇒ γ = α+ β
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D. Computational Results

Dual Bound in [Mio e]

Instance Discrete Model (4) Continuous Relaxation
of Discrete Model (4) Split-Pipe Model (2)

belgium_100_1 0 0 0
belgium_100_2 4.2 0 3.43171814
belgium_110_1 4.2 5.09702375e-06 3.0598197
belgium_110_2 3.63797881e-14 0 0
belgium_120_1 0 0 0
belgium_120_2 0 0 0
belgium_130_1 4.2 0 0.199689463
belgium_130_2 4.2 0 1.98060027
belgium_140_1 0 0 0
belgium_140_2 4.2 0 3.01763531
belgium_150_1 4.2 8.33454766e-06 3.56329475
belgium_150_2 0 0 0
belgium_160_1 0 0 0
belgium_160_2 21.68 0 17.0026622
belgium_170_1 4.2 0 2.36123057
belgium_170_2 17.48 0 2.73106181
belgium_180_1 116.88 7.62076859e-05 8.81607249
belgium_180_2 4.2 0 4.13251234
belgium_190_1 4.8 0 4.73756269
belgium_190_2 0 0 0
belgium_200_1 4.8 3.91433035e-05 4.69945836
belgium_200_2 0 0 0
belgium_210_1 0 0 0
belgium_210_2 0 0 3.55271368e-15
belgium_220_1 4.20000001 5.62643699e-06 3.16825656
belgium_220_2 0 0 0
belgium_230_1 4.2 0 3.76671909
belgium_230_2 4.2 0 4.13025999
belgium_240_1 4.2 0 2.02227104
belgium_240_2 4.8 0 4.31106115
belgium_250_1 54 0 44.5426669
belgium_250_2 4.8 0 4.66326816
belgium_260_1 0 0 4.4408921e-15
belgium_260_2 22.28 0 18.4707778
belgium_270_1 4.2 0 2.95905216
belgium_270_2 4.2 0 3.93234996

continue next page
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Dual Bound in [Mio e]

Instance Discrete Model (4) Continuous Relaxation
of Discrete Model (4) Split-Pipe Model (2)

belgium_280_1 4.8 2.18560156e-05 4.27848719
belgium_280_2 31.72 0.00273293657 18.4460988
belgium_290_1 109.08 0.000214055798 15.0590314
belgium_290_2 35.92 0 26.3421278
belgium_300_1 129.08 0 3.28565277
belgium_300_2 129.08 0 5.67457936
belgium_310_1 5.52 0 5.19578197
belgium_310_2 141.52 0 29.2440716
belgium_320_1 4.8 4.27249261e-05 4.7467948
belgium_320_2 22.28 0.000511436472 17.9327738
belgium_330_1 361.62121 0 19.3869623
belgium_330_2 21.68 7.4944901e-05 6.64494818
belgium_340_1 349.180328 0 22.2699238
belgium_340_2 221.4 0 40.6109587
belgium_350_1 223.35711 0.0103249313 64.3981751
belgium_350_2 236.661681 0.00117791695 26.7149075

Table 2: Root node experiment. Dual bound in root node of the discrete model and its
two relaxations.
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Instance Dual Bound Primal Bound Gap% Nodes Time

belgium_100_1 4.2 4.2 0.0 11 0.5
belgium_100_2 78.32 78.32 0.0 15610 51.3
belgium_110_1 250.1 250.1 0.0 971432 1638.4
belgium_110_2 4.2 4.2 0.0 33 0.6
belgium_120_1 31.72 31.72 0.0 5562 21.9
belgium_120_2 4.2 4.2 0.0 10 0.5
belgium_130_1 39.8 39.8 0.0 18025 47.3
belgium_130_2 222.24 222.24 0.0 743915 2037.2
belgium_140_1 195.131067 308.14 57.9 >8827671 >18000.0
belgium_140_2 147.108893 276.7 88.1 >8608839 >18000.0
belgium_150_1 129.32 129.32 0.0 50784 104.7
belgium_150_2 49.84 49.84 0.0 61327 184.9
belgium_160_1 31.72 31.72 0.0 674 4.2
belgium_160_2 181.28 181.28 0.0 365326 694.9
belgium_170_1 165.88 165.88 0.0 1783993 2981.2
belgium_170_2 236.54743 326.68 38.1 >18079195 >18000.0
belgium_180_1 386.609255 447.4 15.7 >9332640 >18000.0
belgium_180_2 340.3 340.3 0.0 6306613 15597.3
belgium_190_1 233.96 233.96 0.0 27423 101.6
belgium_190_2 358.94 358.94 0.0 4202321 10008.4
belgium_200_1 335.732479 687.94 104.9 >7947916 >18000.0
belgium_200_2 280.92 280.92 0.0 2181875 5308.1
belgium_210_1 350.225023 773.1 120.7 >7787994 >18000.0
belgium_210_2 158.8 158.8 0.0 46259 102.0
belgium_220_1 258.927709 471.72 82.2 >9283627 >18000.0
belgium_220_2 327.7 327.7 0.0 5274875 11339.1
belgium_230_1 283.580154 528.32 86.3 >7624173 >18000.0
belgium_230_2 325.8 325.8 0.0 4028966 9548.7
belgium_240_1 158.6 158.6 0.0 1272525 3012.2
belgium_240_2 351.873667 920.82 161.7 >6298454 >18000.0
belgium_250_1 279.770489 589.91 110.9 >6195518 >18000.0
belgium_250_2 314.520029 438.88 39.5 >7552470 >18000.0
belgium_260_1 287.160951 623.52 117.1 >6429611 >18000.0
belgium_260_2 338.178808 1039.26 207.3 >5748824 >18000.0
belgium_270_1 287.72 287.72 0.0 5966250 12079.5
belgium_270_2 348.585474 438.1 25.7 >6807207 >18000.0
belgium_280_1 294.275986 437.26 48.6 >7106693 >18000.0
belgium_280_2 287.474906 399.18 38.9 >6651906 >18000.0

continue next page
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Instance Dual Bound Primal Bound Gap% Nodes Time

belgium_290_1 269.5 269.5 0.0 3540429 8606.5
belgium_290_2 304.525014 600.32 97.1 >9167402 >18000.0
belgium_300_1 356.847316 770.5 115.9 >6592294 >18000.0
belgium_300_2 324.950915 679.5 109.1 >7842075 >18000.0
belgium_310_1 439.676258 1189.04 170.4 >6101711 >18000.0
belgium_310_2 302.771894 436.1 44.0 >7166303 >18000.0
belgium_320_1 267.110222 522.08 95.5 >8937975 >18000.0
belgium_320_2 260.4 260.4 0.0 2068729 3634.7
belgium_330_1 509.353625 1430.5 180.8 >8804600 >18000.0
belgium_330_2 296.88 296.88 0.0 138776 315.9
belgium_340_1 615.722798 1e+20 – >14588212 >18000.0
belgium_340_2 415.214085 1e+20 – >10248912 >18000.0
belgium_350_1 388.794507 724.44 86.3 >8841363 >18000.0
belgium_350_2 428.808078 804.86 87.7 >6444757 >18000.0

Table 3: Tree experiment. Discrete model (4) using SCIP default parameter settings with
a timelimit of 5 hours.
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Instance Dual Bound Primal Bound Gap% Nodes Time

belgium_100_1 2.52222139 2.52222139 0.0 11 1.5
belgium_100_2 61.9817718 61.9817718 0.0 139461 212.2
belgium_110_1 249.474608 249.474608 0.0 2961 9.4
belgium_110_2 3.18445469 3.18445469 0.0 35 2.3
belgium_120_1 20.4158615 20.4158615 0.0 53311 51.3
belgium_120_2 3.6289559 3.6289559 0.0 112 2.1
belgium_130_1 39.5729903 39.5729903 0.0 5962 11.0
belgium_130_2 202.835589 202.835589 0.0 53594 127.7
belgium_140_1 288.461258 288.461258 0.0 160577 283.4
belgium_140_2 263.563955 263.563955 0.0 1503402 1823.0
belgium_150_1 123.137348 123.137348 0.0 5699 16.5
belgium_150_2 48.290879 48.290879 0.0 6673 15.0
belgium_160_1 27.7657406 27.7657406 0.0 91 1.9
belgium_160_2 159.461633 159.461633 0.0 34238 57.4
belgium_170_1 162.200843 162.200843 0.0 9088 18.9
belgium_170_2 131.825355 302.6115 129.6 >3896341 >18000.0
belgium_180_1 444.155241 444.155241 0.0 4222483 6267.8
belgium_180_2 301.898355 301.898355 0.0 4465 14.9
belgium_190_1 212.171661 212.171661 0.0 3104491 4439.7
belgium_190_2 356.477864 356.477864 0.0 43261 117.5
belgium_200_1 505.683825 641.878072 26.9 >8024424 >18000.0
belgium_200_2 232.213875 271.101186 16.7 >8964972 >18000.0
belgium_210_1 691.634165 691.634165 0.0 728922 1270.4
belgium_210_2 156.151075 156.151075 0.0 20745 28.9
belgium_220_1 394.971073 394.971073 0.0 373035 652.3
belgium_220_2 319.753735 319.753735 0.0 2925988 5520.2
belgium_230_1 497.893409 497.893409 0.0 2087221 1069.9
belgium_230_2 216.21845 322.143883 49.0 >14442090 >18000.0
belgium_240_1 104.036519 104.036519 0.0 7205 25.8
belgium_240_2 726.221864 726.221864 0.0 150481 482.6
belgium_250_1 497.011878 498.61068 0.3 >10336785 >18000.0
belgium_250_2 420.681676 420.681676 0.0 125620 129.0
belgium_260_1 497.187518 540.375004 8.7 >4517080 >18000.0
belgium_260_2 729.190051 763.272131 4.7 >5545957 >18000.0
belgium_270_1 285.17026 285.17026 0.0 705740 1372.5
belgium_270_2 434.696853 434.696853 0.0 9141 22.4
belgium_280_1 395.568669 395.568669 0.0 1261661 1949.2
belgium_280_2 379.689853 379.689853 0.0 7159245 16248.7

continue next page
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Instance Dual Bound Primal Bound Gap% Nodes Time

belgium_290_1 262.191955 262.191955 0.0 188519 249.8
belgium_290_2 563.828834 578.324384 2.6 >7117122 >18000.0
belgium_300_1 718.665201 718.665201 0.0 1810824 6760.6
belgium_300_2 610.419044 610.419044 0.0 182039 414.9
belgium_310_1 915.860975 983.95377 7.4 >6274440 >18000.0
belgium_310_2 364.446337 369.605153 1.4 >11156408 >18000.0
belgium_320_1 505.169855 505.169855 0.0 219656 370.3
belgium_320_2 219.41697 251.257609 14.5 >6631372 >18000.0
belgium_330_1 1102.48954 1104.52468 0.2 >9223579 >18000.0
belgium_330_2 283.406916 283.406916 0.0 790395 1281.3
belgium_340_1 549.960326 1353.24302 146.1 >5597503 >18000.0
belgium_340_2 1054.21974 1085.77798 3.0 >4420102 >18000.0
belgium_350_1 684.491349 687.600538 0.5 >6264668 >18000.0
belgium_350_2 765.661839 765.661839 0.0 4999722 8862.4

Table 4: Tree experiment. Split-Pipe model (2) using SCIP default settings with a time-
limit of 5 hours.
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Objective value

Instance Continuous Relaxation
of Discrete Model

Split-Pipe Model

belgium_100_1 6.60586251e-05 2.52222139
belgium_100_2 6.22150924e-05 61.9817718
belgium_110_1 0.00190599563 249.474608
belgium_110_2 1.36978666e-05 3.18445469
belgium_120_1 0.000499125944 20.4158615
belgium_120_2 2.34692962e-05 3.6289559
belgium_130_1 0.000153166235 39.5729903
belgium_130_2 0.000321241063 202.835589
belgium_140_1 0.00176465756 288.461258
belgium_140_2 0.000825849983 263.563955
belgium_150_1 0.000275305383 123.137348
belgium_150_2 0.000363925487 48.290879
belgium_160_1 0.00288230767 27.7657406
belgium_160_2 0.000949544895 159.461633
belgium_170_1 0.000357317511 162.200843
belgium_180_1 0.0306389204 444.155241
belgium_180_2 0.0298727809 301.898355
belgium_190_1 0.0542993583 212.171661
belgium_190_2 0.0167594006 356.477864
belgium_210_1 0.0358858536 691.634165
belgium_210_2 0.00511362316 156.151075
belgium_220_1 0.0137327484 394.971073
belgium_220_2 0.0022300221 319.753735
belgium_230_1 0.116934571 497.893409
belgium_240_1 0.00247610046 104.036519
belgium_240_2 0.18070113 726.221864
belgium_250_2 0.0394282563 420.681676
belgium_270_1 0.00286603426 285.17026
belgium_270_2 0.101884114 434.696853
belgium_280_1 0.0434874474 395.568669
belgium_290_1 0.0140368277 262.191955
belgium_300_1 0.0239500904 718.665201
belgium_300_2 0.14461752 610.419044
belgium_320_1 0.064840339 505.169855
belgium_330_2 0.132093671 283.406916
belgium_350_2 0.350460766 765.661839

Table 5: Objective value of optimally solved instances for both the continuous relaxation
of the discrete model and the split-pipe model.
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