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Abstract

In the context of gas transmission in decoupled entry-exit systems,
many approaches to determine the network capacity are based on the
evaluation of realistic and severe transport situations. In this paper, we
review the Reference Point Method, which is an algorithm used in practice
to generate a set of scenarios using the so-called transport moment as a
measure for severity. We introduce a new algorithm for finding severe
transport situations that considers an actual routing of the flow through
the network and is designed to handle issues arising from cyclic structures
in a more dynamical manner. Further, in order to better approximate
the physics of gas, an alternative, potential based flow formulation is
proposed. The report concludes with a case study based on data from
the benchmark library GasLib.

1 Introduction
Natural gas is one of the most important sources of energy and has to be trans-
ported over long distances using systems of pipelines. These networks are owned
and operated by Transmission System Operators (TSOs) using technical ele-
ments like compressors or valves in order to realize the transport. Traditionally,
both trading and transport of gas were provided by the same company, which
enabled long-term planning based on reliable forecasts for supply and demand.
Nevertheless, recent regulation towards a market liberalization in the EU has
led to the decoupling of trading and transport. Now the TSOs sell transport
capacity that is booked by the traders at entry and exit points independently.
Within these booked capacities, the traders may then nominate amounts of gas
that they want to insert or withdraw from the network in the short term, that
is hours or days. The TSOs have to ensure that transport can be realized in all
balanced situations, meaning that the amount of gas inserted at the entries is
equal to the amount withdrawn at the exits during a certain time horizon.
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Different strategies to estimate the transport capacity of gas networks have been
developed, usually based on the validation of a finite set of scenarios.
An approach that was developed within the research cooperation “ForNe” be-
tween the German TSO Open Grid Europe GmbH and several research in-
stitutions is documented in the book “Evaluating Gas Network Capacities”
[KHPS15]. Historical data for gas demand at exits are used to estimate dis-
tributions, which are then used to sample realistic scenarios. Each scenario is
completed by supply values that are chosen to be extreme, meaning that the
scenario is balanced and maximal w.r.t. a random preference order on the en-
tries. Afterwards, the numerous resulting transport situations are individually
checked for feasibility in an automated fashion using optimization methods.
On the other hand, the TSO Gasunie from the Netherlands describes an ap-
proach [SHD+15] that first identifies a small set of “stress tests” for their net-
work, which is then validated with simulation tools, in particular the “Multi
Case Approach” (MCA) [vdH04]. The stress tests should be maximally severe,
which is quantified using the transport moment, a measure of a flow amount
transported over long distances, and cover all relevant directions of flow. The
method to generate a “complete” set of stress tests is based on distances relative
to a reference point, and it is summarized in more detail in Section 3. After-
wards, the set of stress tests is reduced using a similarity measure based on node
distances.

Inspired by the second approach, we present a new algorithm which has the goal
to find additional severe transport situations in Section 4. It differs in the selec-
tion of entry-exit pairs where in- and outflow are simultaneously increased, as
well as in the definition of the severity measure. The proposed measure, called
minimum transport moment, is independent of the chosen reference point and
based on an actual routing of the flow. In addition, in Section 5 we discuss the
problem of finding a maximally severe transport situation w.r.t. the minimum
transport moment, with a formulation as a bilevel optimization problem.

In Section 6, we discuss a variation of the minimum transport moment, which
is based on a flow formulation that is linearly constrained by node potentials,
accounting for the pressure loss due to friction in pipelines.

Finally, a case study using network data with corresponding transport situations
from the benchmark instance gaslib-582 [HJO+15] is presented in Section 7.

2 Definitions and Notation
In order to present the mathematical concepts in this paper, we are going to
model gas networks as connected, directed flow networks G = (V,A) with an
anti-parallel arc set A ⊆ V × V . For each arc a ∈ A we are given a length
value `a ∈ R≥0 and for each pair of anti-parallel arcs uv, vu ∈ A it holds that
`uv = `vu.
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Figure 1: Example network with diamond-shaped entries A,B,E, and F, square-
shaped exits G and H, and circle-shaped inner nodes C and D. Arc lengths as
well as the feasible supply and demand intervals are depicted.

Further, let V + ⊆ V and V − ⊆ V be subsets of the node set V representing
the entries and the exits of the network, respectively. W.l.o.g. we assume that
V + ∩ V − = ∅. All remaining nodes are inner nodes and we denote them by
V 0 := V \ (V + ∪ V −).
For each entry v ∈ V + a lower and an upper bound bv, bv ∈ R≥0 with bv ≤ bv
on its supply is given. The supply is the amount of flow that may enter the
network at v. Analogously, for each exit w ∈ V − we are given a lower and an
upper bound bw, bw ∈ R≤0 with bw ≤ bw on its demand, that is the amount of
flow that may be withdrawn at w. For all inner nodes we assume that flow con-
servation holds. Therefore, for all u ∈ V 0 we define bu = bu = 0. An example
network is shown in Figure 1.

A transport situation, synonymously called supply and demand vector in the fol-
lowing, is a vector b ∈ RV with bu ∈ [bu, bu] for all u ∈ V . A transport situation
is called balanced if

∑
u∈V bu = 0. Given a transport situation b, the capacity

of an entry is defined as the difference between its upper bound and its current
supply, i.e., bv − bv for v ∈ V +. For an exit w ∈ V −, the capacity is defined as
the difference between its current demand and its lower bound, i.e., bw − bw.

For the algorithms discussed in this paper the lengths of shortest paths towards
entry and exit nodes play an important role. Therefore, let dvw ∈ R≥0 denote
the length of a shortest path between the nodes v and w with respect to the arc
lengths `a.
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3 The Reference Point Method
The Reference Point Method, as presented in [SHD+15], is an algorithm that
attempts to find transport situations that maximize the transport moment
T = QD, which is defined as the product of the system throughput Q, i.e.,
the total flow from the entries to the exits, and the so-called mean transporta-
tion distance D. To determine D, a reference point P has to be chosen and
distances to all entry and exit nodes are calculated. D is then defined as the
difference of the centers of gravity of the entry and exit nodes, which are the
supply- and demand-weighted average distances towards P .

In the following, we introduce the version of the Reference Point Method that,
according to [SHD+15], is used in practice to determine stress tests. These
are transport situations which are extreme in terms of transport effort but still
realistic w.r.t. capacity contracts.
First of all, a node u ∈ V + ∪ V − is chosen as reference point and the lengths
of shortest paths between it and all entries and exits are determined, i.e., duv
for all v ∈ V + and duw for all w ∈ V −, using for example Dijkstra’s algorithm
[Dij59]. Note that for the correctness of the algorithm bv = 0 for all v ∈ V +

and bw = 0 for all w ∈ V − is assumed in the following.
The Reference Point Method starts with the zero flow transport situation, i.e., it
assumes that all supply and demand values are equal to zero. Next, the supply
at an entry with non-zero capacity which is closest to u as well as the demand
at an exit with non-zero capacity farthest away from u are increased as long as
their capacity bounds allow for it. This procedure is repeated until an increase
of the flow leads to a decrease in T , as the centers of gravity shift, that is the av-
erage distances between entries and exits are reduced. At this point, a stress test
is found and the algorithm terminates returning the current transport situation.

The transport moment can be described as a linear function in supply and
demand variables bv and bw for all v ∈ V + and w ∈ V −, with the constraints that
they do not exceed their bounds and that the transport situation is balanced.
Consequently, given a reference point u, the algorithm solves the linear program:

maximize
b

−
∑
v∈V +

duvbv −
∑
w∈V −

duwbw

subject to
∑
v∈V +

bv +
∑
w∈V −

bw = 0

bv ∈ [0, bv] ∀v ∈ V +

bw ∈ [bw, 0] ∀w ∈ V −

(1)

Note that the bw variables for exits w ∈ V − take on negative values.
The stress tests generated by applying the Reference Point Method to each
u ∈ V + ∪ V − are called global stress tests. For the network in Figure 1 the four
resulting global stress tests can be found in Figure 2.
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(a) Using A as reference point.
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(b) Using B as reference point.
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(c) Using E or G as reference point.
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(d) Using F or H as reference point.

Figure 2: Global stress tests for the example network from Figure 1. All non-
zero supply or demand values are written above or below highlighted nodes.

As in the example, especially if multiple entries and exits are located close to
each other, it may happen that the global stress tests, which are derived when
using them as reference points, are identical. A set of reference points leading
to the same global stress test is called a cluster. There are two clusters in our
example: {E,G} and {F,H}. By maximizing the transport moment within sin-
gle clusters, additional, so-called local stress tests are derived. For more details,
we refer to [SHD+15].

Due to the fixation of the distances towards the reference point u and the pres-
ence of a cycle (ring structure) in the example network, the transport situation
shown in Figure 3 is not found by the algorithm. Although [SHD+15] describes
a procedure based on clusters to handle these problems, it is not clear how this
particular result can be derived.

Given a supply and demand vector, consider the value of a Minimum Cost Flow,
where the arc lengths are used as weights. The transport situation in Figure 3
maximizes this value among all possible demand and supply vectors. Therefore,
as an addition to the Reference Point Method, we propose a new algorithm
called Greedy Minimum Cost Flow Method in the next section, which attempts
to find transport situations that are severe with respect to this value.
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Figure 3: Transport situation not found by the Reference Point Method.

4 The Greedy Minimum Cost Flow Method
In this section we present a new algorithm for finding severe transport situations
in gas networks. It is inspired by the Reference Point Method algorithm from
Section 3, but differs in three main aspects:

First and most importantly, the severity measure for transport situations which
we propose is based on actual routing of the flow through the network. Recall
that `a denotes the length of an arc a ∈ A and let fa denote the (non-negative)
flow on it. We define the minimum transport moment as T =

∑
a∈A `afa.

Moreover, while we want to identify transport situations that are severe with
respect to this measure, we assume that, for any given transport situation,
the flow is routed through the network in a way that it minimizes T . This
assumption is based on the rationale that this is a natural goal of the TSO
when trying to minimize transportation cost.
Hence, finding the minimum transport moment for a given transport situation
means solving a Minimum Cost Flow Problem (MCF), where the lengths `a are
used as weights on the arcs, see for example [AMO93]. This is readily formulated
as a linear program: Given a fixed vector of supply and demand b ∈ RV , the
MCF problem can be formulated as

minimize
f

∑
a∈A

`afa

subject to
∑

a∈δ+(u)

fa −
∑

a∈δ−(u)

fa = bu ∀u ∈ V

fa ≥ 0 ∀a ∈ A

(2)

Note, that this problem has a solution for balanced transport situations only.
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Second, instead of using a fixed distance for each node when choosing the next
opposing entry or exit, namely the length of a shortest path towards the chosen
reference point, we consider the actual lengths of shortest paths between it and
the possible candidates.

Third, our algorithm does not only consider flow going from the close-by entries
towards far-away exits when determining the next node-pair whose supply and
demand values should be simultaneously increased. The roles of entries and
exits are also switched, i.e., we look for close-by exits and a far-away entries in-
stead. Therefore, we introduce two versions of the algorithm: An entry-directed
and an exit-directed one.

Our algorithm, which we call Greedy Minimum Cost Flow Method (Greedy-
MCF), follows several steps, which are similar to the Reference Point Method.
We describe the entry-directed version here, but switching the roles of entries
and exits, as mentioned above, yields the exit-directed version.

1. Choose a reference point u ∈ V +, set v := u, and start with the zero
transport situation, i.e., b := 0 ∈ RV .

2. Choose an opposing exit w ∈ V − having non-zero capacity with maximum
distance towards v.

3. Increase the supply at v and the demand at w simultaneously until one of
the two nodes hits a bound.

4. Determine the minimum transport moment T w.r.t. b by solving (2).

5. If T has decreased, revert the last change and return b. Otherwise, if there
is no more entry or exit capacity left, stop and return b. Otherwise, assign
v an entry with non-zero capacity that is closest to u and go to 2.

Note that like the Reference Point Method, the Greedy-MCF assumes that
bv = 0 holds for all v ∈ V + and bw = 0 holds for all w ∈ V − in order to
generate balanced solutions that are conform with the bounds.
The role of u is similar to the reference point of Section 3: It is used to de-
scribe the direction from which flow is supposed to enter the network, in the
entry-directed case, or leave the network, in the exit-directed case. But the
distances that are used to determine the next opposing node are independent of
it. By using the actual distances towards the current v and by evaluating (2) in
each loop of the algorithm, we avoid problems arising from cyclic structures, in
particular flow augmentations that might relax the overall transport situation
and lead to a decrease in the minimum transport momentum. We illustrate the
algorithm with two examples, based on the 8-shaped network shown in Figure 4.
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Figure 4: 8-shaped network with arc lengths and supply/demand intervals.

Example 1
First of all, we choose entry A as reference point. The exit which is the furthest
away from A is F . We increase supply and demand at both nodes by one unit
and hit the capacity bound of A. This gives us b = (1, 0, 0, 0, 0,−1) and T = 5
(one flow unit along the path A,D,E, F ). Next, consider entry B because it is
closer to A than C. We choose D as opposing exit, since dBD = 4 is greater
than dBE = 2 and dBF = 3. Hence, we get b = (1, 1, 0,−1, 0,−1) with T = 4.
This is a smaller minimum transport moment than we had before, so we stop
and terminate with b = (1, 0, 0, 0, 0,−1). The final transport situation is shown
in Figure 5a.

Example 2
Next, we choose B as reference point and D as the opposing exit, leading to
b = (0, 1, 0,−1, 0, 0) and T = 4. B still has non-zero capacity, hence we choose
F as the next opposing exit and increase both nodes by one flow unit, and end
up with b = (0, 2, 0,−1, 0,−1) and T = 7. Next, we consider entry C and exit E
as the next entry-exit pair and increase both by two flow units resulting in b =
(0, 2, 2,−1,−2,−1) and T = 11. The last exit with unused capacity is F , hence
we increase C and F by two flow units. This results in b = (0, 2, 4,−1,−2,−3)
with T = 15. The last possible step would be to increase A and F by one
flow unit, but this would yield a minimum transport momentum of T = 13.
Therefore we stop and terminate with b = (0, 2, 4,−1,−2,−3) and T = 15. The
final transport situation is shown in Figure 5b.
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Figure 5: Example Greedy-MCF solutions for the 8-shaped network in Figure 4.

5 Finding the Maximum Minimum Transport
Moment using a Bilevel Formulation

Let us now discuss the problem of finding a transport situation that leads to
a maximum minimum transport moment. This setting can be described as
a Stackelberg game in the context of game theory [VS52]. The two parties
involved are the traders as leader and the TSO as follower. In the first stage,
the leader defines the supply and demand vector b, which should be balanced
and respect the capacity bounds. In the second stage, the follower chooses how
the flow f is routed through the network, in order to implement the transport
situation given by b. While the TSO tries to minimize the transport moment,
the (presumed antagonistic) traders try to maximize it. This description of a
Stackelberg game can be formulated in a canonical way as a bilevel optimization
problem [CMS07].
This problem we call the Uncapacitated Maximum Minimum Cost Flow Problem
(UMMCF) and it can be formalized as follows:

maximize
b

∑
a∈A

`afa

subject to bu ∈ [bu, bu] ∀u ∈ V

minimize
f

∑
a∈A

`afa

subject to
∑

a∈δ+(u)

fa −
∑

a∈δ−(u)

fa = bu ∀u ∈ V

fa ≥ 0 ∀a ∈ A

(3)

It has the form of a linear bilevel programming problem (both levels feature
continuous variables and linear constraints). In practice, this class of problems
is solved with the so-called KKT reformulation [CMS07].
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Note that the optimal solution for UMMCF with respect to the introductory
example network in Figure 1 is the transport situation in Figure 3, which is
not found by the Reference Point Method. This solution is also generated by
the Greedy-MCF when using the exit-directed version and any exit as reference
point. But in general, the Greedy-MCF does not generate an optimal solution
for UMMCF, as the case study in Section 7 shows.

As mentioned in Section 3, the Reference Point Method is designed to solve the
linear program (1). It proceeds by increasing the supply and demand of each
entry or exit until it hits a bound, before the next one is considered. Therefore,
in each global stress test there is at most one node u ∈ V + ∪ V − whose supply
or demand value bu is not equal to one of its bounds.

A similar result can be shown for UMMCF, justifying that the same augmen-
tation procedure is used in the Greedy-MCF. In the following, a solution (b, f)
is called bound-close if all supply and demand values are equal to one of their
bounds except for at most one, i.e., bu 6= bu and bu 6= bu for at most one node
u ∈ V +∪V −. Lemma 1 now shows that for each UMMCF instance there exists
a bound-close solution, which is optimal.

Lemma 1
There exists an optimal and bound-close solution for UMMCF.

Proof. Let (b, f) be any optimal solution for UMMCF. If it is not bound-close,
there exist two nodes v, w ∈ V + ∪ V − whose demand or supply values are both
not equal to one of their bounds, i.e., bv 6= bv and bv 6= bv, as well as bw 6= bw
and bw 6= bw.

The basic idea of the proof is to derive two new optimal solutions by in- and
decreasing in- and outflow in case that v ∈ V + and w ∈ V −, or by shifting in-
or outflow in case that v, w ∈ V + or v, w ∈ V −, respectively. Both solutions are
constructed in such a way that either bv or bw is set to one of its bounds.
Let ∆1 := min{bv − bv, bw − bw} > 0 and ∆2 := min{bv − bv, bw − bw} > 0.
Consider the demand and supply vectors b̃ and b̂ defined as

b̃u :=


bv −∆1 if u = v

bw + ∆1 if u = w

bu otherwise
and b̂u :=


bv + ∆2 if u = v

bw −∆2 if u = w

bu otherwise.

By construction, b̃ and b̂ respect all bounds and are balanced. Additionally, for
b̃ either b̃v = bv or b̃w = bw holds, and analogously for b̂ we have that b̂v = bv or
b̂w = bw. An example for the case v ∈ V + and w ∈ V − is sketched in Figure 6.
Next, let f̃ and f̂ be optimal solutions to the MCF problem induced by b̃ and
b̂, respectively. Since G is connected and we do not consider capacities on the
arcs, such a solution always exists. By construction (b̃, f̃) and (b̂, f̂) are feasible
solutions and c(b, f) ≥ c(b̃, f̃) and c(b, f) ≥ c(b̂, f̂) holds because (b, f) is
optimal. This observation we denote by (∗) in the following.
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Figure 6: Derived transport situations b̃ and b̂ in case that v ∈ V + and w ∈ V −.

Next, for λ := ∆2

∆1+∆2
∈ (0, 1) it holds that λb̃+ (1− λ)b̂ = b. This is obviously

true for all nodes u ∈ (V + ∪ V −) \ (v, w). For v it holds that

λ b̃v + (1− λ) b̂v =
∆2

∆1 + ∆2
(bv −∆1) +

(
1− ∆2

∆1 + ∆2

)
(bv + ∆2)

=
∆2

∆1 + ∆2
(bv −∆1) +

∆1

∆1 + ∆2
(bv + ∆2)

=
bv∆2 −∆1∆2 + bv∆1 + ∆1∆2

∆1 + ∆2
=

bv(∆1 + ∆2)

∆1 + ∆2
= bv,

and for w an analogous argument can be made. Further, since λ ∈ (0, 1),
λf̃ + (1− λ)f̂ is a feasible flow for the supply and demand vector b, because

(b, λf̃ + (1− λ)f̂) = (λb̃+ (1− λ)b̂, λf̃ + (1− λ)f̂) = λ(b̃, f̃) + (1− λ)(b̂, f̂)

respects all bounds and linear constraints of (3). Additionally, since (b, f) is
optimal, it follows that c(b, f) = c(b̃, f̃) = c(b̂, f̂), because

c(b, f) ≤ c(b, λf̃ + (1− λ)f̂)

=
∑
a∈A

`a(λf̃a + (1− λ)f̂a)

= λ
∑
a∈A

`af̃a + (1− λ)
∑
a∈A

`af̂a

= λ c(b̃, f̃) + (1− λ) c(b̂, f̂)

(∗)
≤ λ c(b, f) + (1− λ) c(b, f) = c(b, f).
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Therefore, (b̃, f̃) and (b̂, f̂) are optimal solutions with the supply or demand
value of either v or w being equal to one of their bounds.
Iteratively applying the algorithmic procedure to node pairs v, w ∈ V + ∪ V −,
whose demand or supply values are not at their bounds, we derive an optimal
and bound-close solution after at most n− 1 iterations.

6 The Potential Transport Moment
In this section, we propose an alternative way to distribute the flow on the arcs,
as a basis for the transport moment computation. While the flow on the arcs
was determined to lead to the minimum transport moment in Section 4 and 5,
this point of view may be overly simplistic. This is because only shortest paths
in the network are considered, while alternative routes are not used at all.

Gas flow through pipelines incurs a friction induced pressure drop, which is often
modeled by the Weymouth equation in the stationary case [vdH04, KHPS15]:

p2
u − p2

v = `uvCuvfuv|fuv|, (4)

where, p denotes the pressure at the nodes and the coefficient C represents pipe
parameters such as diameter and roughness. These equations imply that the
flow f cannot run in directed cycles, but is instead distributed among several
paths from entries to exits, according to the “resistance” given by the coefficient
`C. Furthermore, in passive networks, consisting only of pipelines with no ac-
tive elements such as compressors, the flow distribution f is uniquely defined
by the supply and demand vector b, see for example [CCHL78, FH13].

Instead of using the Weymouth equation (4), we employ a similar, but linear
equation. Furthermore, we only use the pipe length for the resistance coefficient,
in correspondence to the definition of the minimum transport moment:

πu − πv = `uv(fuv − fvu). (5)

Note, that only a single equation is added for each pair of anti-parallel arcs
uv, vu ∈ A. Moreover, these equations still satisfy the conditions that lead to a
unique flow distribution f , which means that no objective needs to be defined
for the TSO when routing the flow.

As a consequence, we can formulate a single-level optimization problem that
finds the most severe transport situation with respect to the Potential Transport
Moment (PTM):

12



maximize
b,f,π

∑
a

`afa

subject to
∑
vw

fvw −
∑
uv

fuv = bv ∀v ∈ V

πu − πv = `uv(fuv − fvu) ∀uv, vu ∈ A
fuvfvu = 0 ∀uv, vu ∈ A

fa ≥ 0 ∀a ∈ A
bu ∈ [bu, bu] ∀u ∈ V
πv ∈ R ∀v ∈ V

(6)

Note that the complementarity constraint fuvfvu = 0 is needed, because oth-
erwise flow would be send in a cycle from u to v and back. In this case the
problem would be unbounded. The complementarity can be seen as a disjunc-
tion (fuv = 0)∨ (fvu = 0) that can be modeled in a MIP setting using auxiliary
binary variables xuv ∈ {0, 1} for each anti-parallel arc pair uv, vu ∈ A as

fuv ≤ xuvM
fvu ≤ (1− xuv)M,

(7)

where M can be any bound valid for all fuv, for example M :=
∑
v∈V + bv.

In general, optimal solutions for UMMCF and PTM differ in the resulting trans-
port situations and arc flows. To see this, consider the flow network depicted in
Figure 7. It is easy to verify that

bu :=

{
1 if u ∈ {E1, E2}
−1 if u ∈ {X1, X2}

and fa :=

{
1 if a ∈ {E1X1, E2X2}
0 otherwise.

is the unique optimal solution for the corresponding UMMCF instance with
a minimum transport moment of 2. On the other hand, fixing supplies and
demands to b in the corresponding PTM formulation results in the solution
(b, π, f) with

πu :=

{
1 if u = {E1, E2}
0 if u = {X1, X2},

the same flow vector f and the same objective value of 2. Nevertheless, an
optimal solution (b∗, π∗, f∗) for the PTM instance with value 24

11 is given by

b∗u :=


1 if u = E1

−1 if u = X2

0 if u ∈ {X1, E2}
π∗u :=


12
11 if u = E1
8
11 if u = E2
9
11 if u = X1

0 if u = X2
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Figure 7: Flow network where optimal solutions for UMMCF and PTM differ.

f∗a :=

{
8
11 if a ∈ {E1E2, E2X2}
3
11 if a ∈ {E1X1, X1X2}.

7 Case Study: gaslib-582
We now present a short computational study based on the data from the
gaslib-582 network from the GasLib benchmark library [HJO+15]. The net-
work topology and parameters are based on real data of a part of the German
pipeline system, but slightly perturbed. In addition, it contains a collection
of 4227 balanced transport situations, that were created with the methods de-
scribed in Chapter 14 of [KHPS15] and should cover realistic scenarios well. For
each of these situations, we know the feasibility status, with respect to the MILP
model in Chapter 6 of [KHPS15]. The status can be feasible, if a solution to
the transport problem was found, infeasible, if it could be proven that no such
solution exists, or no solution, meaning that no solution was found within the
time limit, but that it might still exist. In this sense, the infeasible situations are
more severe than the feasible situations, taking into account the whole model
including compressors, pressure bounds etc.

We have computed the minimum transport moment (2) for each of the situa-
tions and show a histogram in Figure 8 grouped by status. The solution values
range from approximately 198847 up to 1122826. It is quite obvious that feasible
situations have a lower minimum transport moment than infeasible situations,
but there is also some overlap where situations which have the same value may
be feasible or infeasible.
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Figure 8: Histogram of minimum transport moment for scenarios in gaslib-582,
grouped by feasibility status.
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Figure 9: Histogram of potential transport moment for scenarios in gaslib-582,
grouped by feasibility status.
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Figure 10: Optimal solution of UMMCF on gaslib-582.

Further, we have also computed the potential transport moment (6) for all sce-
narios. Here, the values range from approximately 204260 up to 1140021, and
the histogram in Figure 9 looks almost identical to the one corresponding to the
minimum transport moment.

In order to decide whether the benchmark library contains really severe trans-
port situations, we solved the UMMCF problem as well as the PTM problem
for the gaslib-582 data. Unfortunately, no capacity bounds on the nodes are
provided by GasLib. So we assumed bounds given by extremal values that occur
in the 4227 situations.
Solving the PTM yields an optimal solution with a value of approximately
1456905, almost 30% larger than the maximum value in the data set. Using
the demand and supply values from this solution we derive a minimum trans-
port momentum of approximately 1375486. Solving UMMCF yields an optimal
solution with value 1406674, which is about 23% larger than the maximum value
from the data set. The Greedy-MCF generates a transport situation with value
1379907 and does therefore not find an optimal solution for UMMCF.
Both optimal solutions are visualized in Figures 10 and 11, respectively. Green
and orange disks represent entry and exit nodes, respectively, and solid colors
show the used capacity while transparent colors show the available but unused
capacities. The flow on arcs is drawn in blue. Not many nodes are visible in
these drawings. This is because although the network features 31 entries and 129
exits, only 85 have nonzero in- or outflow and often a relatively small amount.
The difference between the two optimal solutions is depicted in Figure 12. Only
the flow, demand, and supply values differing by more than 10−6 are depicted.
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Figure 11: Optimal solution of PTM on gaslib-582.

Figure 12: Difference between the optimal solutions of UMMCF and PTM.
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8 Outlook
We have defined the UMMCF problem, with the application of severe trans-
port situations in gas transmission in mind, and investigated the Greedy-MCF
heuristic that fails to find an optimal solution in general. Further research could
use the special structure of the network and reduce the model complexity with
respect to the complementarity constraints when trying to solve UMMCF for
even bigger networks. Maybe some valid bounds for the dual variables in the
KKT reformulation could be derived and used for a formulation that uses binary
variables and big-M constraints instead of SOS1 constraints.

Going back to the application, the use of transport moment as a measure of
severity of a flow situation has itself some limitations. First, the physical details
of how gas flow is distributed among the pipelines and the resulting pressure
drop are grossly simplified. Here the potential transport moment can be a first
step towards a more detailed view. Its close relation to the minimum transport
moment should be investigated further. Additionally, the impact and capacity
of active network elements such as valves and compressors are ignored com-
pletely, even though they play a very important role in the actual operation. In
particular with compressors, there is often a lower bound on flow throughput
required when using them. With this knowledge in mind, we cannot claim in
general that if a specific (severe) flow situation is feasible, all scaled down situ-
ations are feasible, too.

A more accurate replacement for the transport moment might be the total cost
of compression required to realize the transport of flow and satisfy all pressure
bounds. This cost is related to the used power, a highly nonlinear and non-
convex function of pressure ratio and flow. Due to this nonconvexity, the KKT
reformulation in the context of a Bilevel Optimization formulation would not
be directly applicable. Further, a model including the relevant pressure bounds
might become infeasible.

Indicators for the severity of situations are also investigated in [ST16], with the
goal of predicting the feasibility status of given, fixed situations, when solving
expensive optimization problems.
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