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Designing Inspector Rosters with
Optimal Strategies

Stephan Schwartz, Thomas Schlechte, Elmar Swarat

Abstract

We consider the problem of enforcing a toll on a transportation network
with limited inspection resources. We formulate a game theoretic model
to optimize the allocation of the inspectors, taking the reaction of the
network users into account. The model includes several important aspects
for practical operation of the control strategy, such as duty types for the
inspectors. In contrast to a formulation in [1] using flows to describe the
users’ strategies we choose a path formulation and identify dominated user
strategies to significantly reduce the problem size. Computational results
suggest that our approach is better suited for practical instances.

1 Introduction

In the past years, a lot of work has been done in the application of game theoretic
models to real-world security problems. These applications range from airport security
[4] over protection of wildlife reserves [4] to toll (or fare) control in transportation
networks [1, 3]. In [4], the authors give an overview on projects with security games
where mostly no network structures are considered. Models for fare evasion in public
transport are studied in [3], but the work is focussed more on theoretical results than
on practical issues. For practical operation it is important to include the notion of
duties for inspection units and the concept of control areas as subparts of the network
where controls can be conducted. Both of these extensions are taken into account in [1]
where a game theoretic formulation for the enforcement of a toll on a transportation
network is studied.

In this paper we reformulate the toll enforcement problem of [1]. By identifying
dominated user strategies, we significantly reduce the size of the presented MIP and
LP formulations to compute the control strategy in a Stackelberg and Nash equilib-
rium, respectively. Computational results for real-world instances show that the new
approach outperforms the existing formulation.

1



2 The Toll Enforcement Game

We consider a user network G0 = (V0, E0) with nodes V0 and directed arcs E0 with
costs ce ≥ 0. For a given time interval, typically one day or one week, we consider an
equidistant time discretization T = {0, . . . , T−1}. A time-expanded graph G = (V,E)
is constructed by adding a copy of G0 for every time window t ∈ T . In addition, we
are given k commodities (si, ti, di) ∈ V × V × N describing the number of users di
travelling from si to ti. We make the simplifying assumption that every network user
starts and ends his trip within the same time window. Every user going from si to ti
is supposed to pay a toll (or fare) of τi. In contrast to the driving costs ce on arc e, the
users can decide not to pay the toll and risk a fine f � τi if caught evading. In order
to enforce the toll, a number of κ inspection units can be allocated throughout the
network. However, the possible distributions of the inspectors are subject to a number
of spatial, temporal and legal constraints which will be specified later. In the following,
we describe a game between the network users and the inspectors concerning the users’
payment of the toll. While there is one player for every origin-destination pair (si, ti),
the inspectors are aggregated as one player choosing a joint control strategy.

Users’ strategies: The set Σi of pure strategies of player i can be divided into
toll paying strategies Σpayi and toll evading strategies Σevi . If we consider the user
network as the toll evading network where no toll is paid, we have

Σevi = {P | P is an si-ti-path in G}.

If player i decides to pay the toll τi she will take a shortest si-ti-path with respect
to the travel costs c. Considering the payoff functions we can assume that there is a
single toll paying strategy for player i and we write Σpayi = {σpayi }.

With the mixed strategy xi = (xi0, x
i
1, . . . , x

i
ki

) we say that player i commits to σpayi

with probability xi0 and to P ij ∈ Σevi with probability xij . The joint strategy of the

users is denoted by x = (x1, . . . , xk).
We would like to point out that [1] uses an equivalent formulation which describes

the toll paying strategy of player i as an si-ti-path in an adopted user network. Con-
sequently, every mixed strategy of player i can be seen as an si-ti-flow of unit value in
this network.

Inspector’s strategies: The spatio-temporal allocation of the inspectors is done
by assigning duties to control areas. A duty can start at the beginning of every time
window t ∈ T and is scheduled for a fixed number L of consecutive time windows.
The control takes place on given control areas A = {a1, . . . , am} with a predefined
adjacency of control areas A′ ⊆ A2. For every part l = 1, . . . , L of the duty the
inspector can switch from ai to aj iff (ai, aj) ∈ A′.

We define the set D of control duties to be

D :=
{(
t, (a1, a2, . . . , aL)

)
∈ T ×AL

∣∣ (ai, ai+1) ∈ A′} .
The set of the inspector’s pure strategies can then be described as {C ⊆ D | |C| ≤ κ}.

In the following, we construct a duty graph D = (W, A) to obtain a more elegant
representation of the inspector’s strategy set Σinsp. For every time window t, every
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duty part l and every control area si we have a control node (t, l, ai) ∈W . If l < L we
introduce an arc

(
(t, l, ai), (t, l+ 1, aj)

)
iff (ai, aj) ∈ A′. Now we add additional nodes

ts and tt for every time window t and insert arcs
(
ts, (t, 1, ai)

)
and

(
(t, L, ai), t

t
)

for
every ai ∈ A. Finally, we introduce a super source ds and a super sink dt and arcs
(ds, ts) and (dt, td) for all t ∈ T .

We can observe that there is a one-to-one correspondence between control duties and
ds-dt-paths in D. The set of strategies for the inspection player can thus be formulated
as

Σinsp := {p | p is a ds-dt-flow of value ≤ κ in D}.
For a given strategy p ∈ Σinsp, the control intensities q = (qe) on arcs E of the

user network G can be obtained by a given linear transformation, i.e. q = Tp. The
induced control intensity qe can be interpreted as the expected number of controls
on arc e ∈ E. We follow the notation of [1] and define the set Q of induced control
intensities q on G to be

Q := {Tp | p ∈ Σinsp}.

Payoffs: While the inspection player wants to maximize his total income, the
users aim to minimize their total costs consisting of travel costs and toll costs or
expected fine. The travel costs of player i choosing strategy σ ∈ Σi are denoted by
cσi . If σ = σpayi then cσi is the length of a shortest si-ti-path with respect to c. For
σ = P ∈ Σevi we have cσi =

∑
e∈P ce.

If player i chooses strategy σpayi , the player’s and inspector’s payoffs are independent
of the chosen control strategy p ∈ Σinsp. Then, the total costs of player i are

−πi(p, σpayi ) := c
σpay
i
i + τi,

while the inspector’s profit from player i in this case is πiinsp(p, σ
pay
i ) := τi.

Let us now assume, that player i chooses the evading strategy P ∈ Σevi while the
inpector plays p ∈ Σinsp. With the induced control intensities q = Tp on G we have
−πi(p, P ) := cPi +

∑
e∈P fqe where the first term accounts for travel costs while the

second term is the expected fine. Accordingly, the inspector’s gain from player i is
πiinsp(p, P ) :=

∑
e∈P fqe. Note that we use a simplified formula for the expected fine

where we assume that evaders can be fined several times. However, our results show
that the probability of being controlled more than once is very small for a reasonable
number of controllers. With the above formula we also assume that the payoff for player
i does not depend on the actions of the other users as we take no congestion effects into
account. Given the control strategy p and the joint users’ strategy x = (x1, . . . , xk),
we have

πi(p, x
i) = xi0 πi(p, σ

pay
i ) +

ki∑
j=1

xij πi(p, P
i
j )

and πinsp(p, x) =

k∑
i=1

xi0 πiinsp(p, σpayi ) +

ki∑
j=1

xij π
i
insp(p, P

i
j )

 .

We denote by BRi(p) the set of best responses of player i to the control strategy p,
i.e. BRi(p) := arg maxxi πi(p, x

i).
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3 Computing Equilibria

Stackelberg Equilibrium: In most security games and fare evasion models the
classical concept of Stackelberg equilibria is applied. A Stackelberg game is a bilevel
game where the players are divided into leaders and followers. First, each leader (in
our case the inspection player) commits to a strategy, then the followers choose a
strategy after observing the leaders’ strategy. Let p be a control strategy and x be a
joint strategy of the users, then

(p, x) is a strong Stackelberg equilibrium :⇐⇒ (p, x) ∈ arg max
(p̃,x̃) : x̃i∈BRi(p̃)

πinsp(p̃, x̃).

Note that the notion of strong Stackelberg equilibria implies that the followers break
ties in favor of the leader. As a consequence, we only need to consider pure strategies
of the followers [2]. While the existence of a strong Stackelberg equilibrium is always
guaranteed, the respective optimization problem is NP-hard in general [2].

In the following we present a mixed integer program (MIP) to compute a leader
strategy of a Stackelberg equilibrium for the toll enforcement game.

max
q,y,µ

∑
i

di

(
yi −

∑
σ∈Σi

µσi c
σ
i

)
(1a)

s.t. 0 ≤ c
σpay
i
i + τi − yi ≤ M

(
1− µσ

pay
i
i

)
∀i (1b)

0 ≤ cPi +
∑
e∈P

fqe − yi ≤ M
(
1− µPi

)
∀P ∈ Σevi ∀i (1c)∑

σ∈Σi

µσi = 1 ∀i (1d)

µσi ∈ {0, 1} ∀σ ∈ Σi ∀i (1e)

q ∈ Q (1f)

The objective (1a) is to maximize the inspector’s income. This can be done by
considering the total costs yi of an optimal strategy of player i subtracted by her travel
costs. The costs yi are bounded from above by the costs of the toll paying strategy
(1b) and the costs of any evasion strategy (1c). The binary variable µσi indicates if
σ ∈ Σi is a best response to the control q. Constraints (1b) and (1c) also guarantee
that µσi = 0 if σ is not a best response for player i. Equation (1d) and the second
term in the objective function make sure that each follower breaks ties in favor of the
leader. Finally, in (1f) we force q to be induced by a control flow p ∈ Σinsp.

Nash Equilibrium: We also study the Nash equilibria of the toll enforcement
game which can be derived for the present case as follows:

(p, x) is a Nash equilibrium :⇐⇒ p ∈ arg max
p̃∈Σinsp

πinsp(p̃, x) and xi ∈ BRi(p).

The existence of a Nash equilibrium in the toll enforcement game is guaranteed and
an optimal strategy for the inspection player can be computed by linear programming
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due to the following important result from [1]: Let x be a joint mixed strategy for the
users, then

p ∈ arg max
p̃∈Σinsp

πinsp(p̃, x
i) ⇐⇒ p ∈ arg max

p̃∈Σinsp

k∑
i=1

−πi(p̃, xi).

Therefore, the inspection player aims to maximize the costs of the users in a Nash
equilibrium and his optimal strategy can be computed with the following linear pro-
gram (LP):

max
q,r

∑
i

di ri (2a)

s.t. ri ≤ c
σpay
i
i + τi ∀i (2b)

ri ≤
∑
e∈P

ce + fqe ∀P ∈ Σevi ∀i (2c)

q ∈ Q (2d)

Due to (2a) the inspection player aims to maximize the total costs of the users.
The costs for player i described by ri are bounded from above by the costs of the toll
paying strategy (2b) and also by the costs of her evading strategies (2c). Again, we
force q to be induced by a control flow p ∈ Σinsp (2d).

Dominated strategies: The number Σevi of toll evading strategies for player i is
potentially huge compared to the size of the network. It is well known that the number
of paths in a graph can be exponential in the number of edges. To avoid a potentially
great number of constraints (1c) and (2c) the authors of [1] use a flow formulation to
describe the users’ strategies.

In practice however, user networks are normally sparse and there are not a huge
number of possible user paths, especially if we exclude dominated strategies. In those
networks, the travel costs represent the largest share of the user’s total costs while toll
costs or expected fines are secondary. As a result, the travel costs of most si-ti-paths

exceed the toll paying costs of c
σpay
i
i + τi. A great number of strategies P ij ∈ Σevi are

thus dominated by the honest strategy σpayi .
We use a preprocessing algorithm to compute the honest costs for every player i and

apply a modified version of Yen’s k-shortest path algorithm [5] to find the si-ti-paths

in G with length ≤ cσ
pay
i
i + τi and thereby build the set Σevi .

4 Computational Results

We applied the presented approaches to three real-world instances of the German mo-
torway network. The instances were provided by the federal office for goods transport
who is responsible for the truck toll enforcement on German motorways. The com-
modities are based on historical data and we schedule the duties for an exemplary
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Table 1: Computation of the inspector’s strategy in a Nash equilibrium for three real-
world instances with |T | = 168 and L = 2. We compare the flow formulation
of (2) taken from [1] to the presented path formulation with non-dominated
strategies. Computation time includes preprocessing, building and solving
time, RAM shows the maximum memory usage during the computation.

instance |V0| |E0| k
# rows in # columns in computation

RAM
reduced LP reduced LP time in s

I1 flow
112 220 118 917

929 445 510 453 482 4.6 GB
I1 paths 67 299 75 194 29 0.4 GB
I2 flow

196 394 220 204
2 997 920 1 569 627 17 095 23.0 GB

I2 paths 157 870 167 317 214 3.7 GB
I3 flow

319 672 365 603
7 593 778 3 718 269 – killed

I3 paths 270 799 235 759 338 7.7 GB

week with 4-hour time windows and duties with two parts. The optimization was run
on a Linux PC (3.6 GHz, 8 cores, 32 GB RAM) and we used CPLEX as an LP and
MIP solver.

We also computed Stackelberg equilibria for the above instances using the path
formulation in the MIP (1). The computation time and RAM usage were similar to the
respective Nash equilibria. Noting that the computation of a Stackelberg equilibrium
is at least as hard as computing a Nash equilibrium, we expect the results from Table
1 to carry over.
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