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Abstract

Accurate modeling and numerical simulation of reaction kinetics is a topic of steady interest.
We consider the spatiotemporal chemical master equation (ST-CME) as a model for stochastic
reaction-diffusion systems that exhibit properties of metastability. The space of motion is decom-
posed into metastable compartments and diffusive motion is approximated by jumps between
these compartments. Treating these jumps as first-order reactions, simulation of the resulting
stochastic system is possible by the Gillespie method. We present the theory of Markov state
models (MSM) as a theoretical foundation of this intuitive approach. By means of Markov state
modeling, both the number and shape of compartments and the transition rates between them
can be determined. We consider the ST-CME for two reaction-diffusion systems and compare it
to more detailed models. Moreover, a rigorous formal justification of the ST-CME by Galerkin
projection methods is presented.

1 Introduction

A reaction network is a system involving several chemical species undergoing multiple reactions.
Depending on the particle concentration and mobility, different mathematical models are appropri-
ate. In the case of rapid diffusion, the spatial position of the particles becomes negligible and the
system may be considered as well-mized. Then, the state of the system is defined by the number
of particles of each species and the dynamics are modeled by a continuous-time Markov chain with
the reactions described by jumps of the chain.[1] A characterization of the process is given by the
chemical Master equation (CME) which describes the temporal evolution of the probabilities for the
system to occupy each different state. Numerical methods for solving the CME are usually based
on Monte Carlo simulations of the underlying Markov jump process, such as Gillespie’s stochastic
simulation algorithm and its variants.[9, 12, 13, 14, 15] In the limit of high population concen-
trations (large copy numbers for all species) the dynamics can be approximated by mass action
kinetics,[21] leading to a deterministic system described by ordinary differential equations.

In biological applications, the well-mixed assumption of the CME is often inadequate due to
spatial inhomogeneities or limited speed of the diffusive motion of the particles. In this case, a
higher resolution in space is required leading to microscopic particle-tracking methods. The most
detailed standard model is given by particle-based reaction-diffusion dynamics (PBRD) where all
individual particle paths and reaction events are explicitly resolved in time and space. Particles are



modeled as points (or spheres) in space undergoing Brownian motion. Bimolecular reactions take
place with a certain probability per unit of time when two reactive particles meet within a predefined
reaction radius of each other.[2, 26, 32] An overview of the existing simulation tools for such detailed
dynamics is given in Ref. 27. Simulations of PBRD-systems are based on time-discretizations. In
each time step, the positions of all particles are advanced, followed by a check-up for adjacent
reactive particles whose reaction radii overlap such that a reaction could fire. This scheme becomes
inefficient when parts of the system are dense, because those parts then continuously stop the clock,
i.e., require extremely small discretization time steps.

As an alternative there exist finite volume approaches where the state space is discretized into a
collection of nonoverlapping cells and diffusion is approximated by a continuous-time random walk
between the cells.[10, 17, 18, 20] A common choice for the discretization is a uniform Cartesian lat-
tice, however, there also exist approaches with other types of meshes, e.g. consisting of triangles.[8]
Bimolecular reactions occur with a fixed probability per unit of time between reactive particles sit-
uated in the same cell. The state of the system is given by the number of particles of each species
in each cell and the dynamics are described by the so-called reaction-diffusion master equation
(RDME) which is formally a CME but with the states having a spatial interpretation. Diffusion is
modeled by first-order reactions, allowing each particle to change its position by switching between
cells. In this kind of approach the question of how to choose the mesh size in order to guarantee
a small approximation error is of central importance. In fact, a fine discretization of space does
not naturally lead to a high approximation quality because encounters of particles within the same
(small) cell become unlikely such that bimolecular reactions are suppressed.[16, 18] In order to
overcome this problem, the convergent RDME has been developed which allows particles to react
also when being in nearby cells.[19]

In such a space discretization by a mesh with uniform size of the cells, all areas of the space are
equally treated, irrespectively of the structural properties of the reaction-diffusion system. However,
in many applications the diffusive and reactive properties of the system naturally exhibit certain
structural properties which suggest a more flexible and non-uniform coarse-graining. Especially
situations of metastable diffusion dynamics propose to coarse-grain space into areas of metastability.
Such situations will be considered in this article. An evident example is given by the process of
gene expression within an eukaryotic cell where some of the involved reactions (e.g. production of
messenger RNA) take place only in the nucleus of the cell while others (e.g. production of proteins)
are restricted to the cytoplasm, and transitions between these two compartments are relatively
rare in time. In this case, a description on the level of a CME (assuming well-mixed behavior
in total space) is obviously not appropriate, however, a split-up of space into two compartments
(nucleus and cytoplasm) with diffusive transitions described by jumps might be enough to capture
the dynamics.

Although such a coarse-graining with only a few compartments which are chosen in consider-
ation of the dynamical properties of the system seems natural, its mathematical background has
not yet been examined. In this article, we describe the theoretical foundation of this approach and
present practical methods to infer a reasonable splitting of space as well as corresponding transition
rates between the compartments out of experimental data or numerical simulations. The central
idea is to apply the theory of Markov state models (MSM) which proposes a scheme to construct
coarse-grained representations of conformational molecular kinetics. The existence of metastable



sets within the dynamics can be exploited to provide good approximation properties of the re-
duced model on long timescales.[30] Instead of conformational dynamics of an individual molecule
we consider the total reaction-diffusion system and approximate the diffusion dynamics of each
molecule by a jump process between the metastable compartments. With the jumps understood
as first-order reactions and the state of the total system given by the number of particles in each
of the compartments, the total dynamics are again characterized by a CME with spatial inter-
pretation, which in this context will be called spatiotemporal CME (ST-CME). The ST-CME is
formally conform with the RDME, but the underlying coarse-graining of space follows a completely
different concept, adapting the natural properties of the process and leading to an incomparably
lower number of compartments. Typical compartments are not “small” such that the problem of
suppressed second-order reactions, which appears for the RDME in the case of a small mesh size,
is circumvented in the setting of the ST-CME.

As a prototypical example we will investigate reaction-diffusion systems within an eukaryote,
where the split-up into nucleus and cytoplasm is quite obvious. However, the theory of MSM’s also
enables to find number and geometry of compartments in cases where they are not known a priori.
The resulting simplified models are readily understood and easy to interpret. By inferring the
spatial clustering and the transition rates from experimental data, particle-based simulations are
completely circumvented and trajectories of the total system can directly be generated by Gillespie
simulations of the derived ST-CME. Even if - for lack of experimental data - the MSM-construction
requires simulations of the diffusion dynamics, the numerical complexity is reduced to a large extend
because only the motion of an individual particle (and not the total population affected by reaction
and diffusion) has to be produced.

In this paper, the ST-CME is viewed as an approximation of microscopic particle-based dy-
namics with the spatial resolution reduced to the minimum possible degree, still maintaining the
characteristic properties of the dynamics. Beside the intuitive, heuristic derivation, we give a con-
crete mathematical justification showing that the ST-CME results from a Galerkin projection of
the corresponding particle-based dynamics. Again inspired by MSM theory, this permits to derive
explicit formulas for the model parameters depending on the microscopic variables.

In Section 2 the ST-CME is introduced as a reaction-diffusion model with adapted spatial
resolution. The construction of the underlying MSM is described, explaining the procedure of
space decomposition and the estimation of transition rates. Two examples are presented in order
to illustrate the approach. In Section 3, we analytically derive the ST-CME for a reduced reaction
system by applying the Galerkin projection method to the corresponding particle-based dynamical
system. In the first step we consider a simplified model with not more than two particle species;
the more general analysis for larger numbers of species and particles is given in the Appendix.

2 Modeling reaction-diffusion processes for metastable diffusion

In the following we first review some basic approaches to model reaction-diffusion processes on a
stochastic level. The spatiotemporal master equation is presented as a model with an intermediate
spatial scaling, adapted to the natural properties of the system of interest. Then, in Section 2.2,
we give a short introduction to the theory of Markov state models and apply it to determine the
spatial coarse-graining and the jump parameters appearing in the ST-CME. Section 2.3 comprises



two illustrative examples to compare the approaches.

2.1 Modeling reaction-diffusion processes

We consider a set of particles moving in a compact domain  C R¢ by continuous diffusion. The
particles belong to different species S;, | = 1,...,L, and may interact with each other through
different reaction channels Ry, k=1, ..., K.

Particle-based reaction-diffusion (PBRD)

In the most detailed model of particle-based reaction-diffusion dynamics, the motion of every in-
dividual particle is resolved in time and space. Positions of particles are represented as points or
spheres undergoing Brownian motion, and bimolecular reactions occur with a certain microscopic
reaction rate as soon as the particles are located within a predefined reaction radius of each other
(Doi-model).[2, 7, 32] These systems cannot be explicitly solved but must be sampled by stochastic
realizations. Time is discretized, and for each time step the positions of all individual particles are
advanced according to a given rule of motion. Each advance is followed by a checkup for reactive
complexes, i.e. sets of reactive particles whose reaction radii overlap. Given such a complex, the
reaction can fire; whether this happens or not is decided randomly based on microscopic reaction
rate. Further methods have been developed in order to include interaction potentials between
particles.[26] These permit effects such as space exclusion, molecular crowding and aggregation to
be modeled.

The particle-based resolution is appropriate in cases of low particle concentrations and slow diffu-
sion. Spatial inhomogeneities can be taken into account up to a very detailed level. The simula-
tions, however, can be extremely costly often requiring several CPU-years in a single simulation for
reaching the biological relevant timescales of seconds. If part of the system is dense, the approach
becomes numerically inefficient because reactions would fire in every iteration step. In such a case,
a description of the population by concentrations is more appropriate, leading to PDE formulations
of the dynamics. For low concentration but rapid diffusion over the total space, the high spatial
resolution becomes redundant and the system can to be modeled by the chemical master equation
(CME).

The chemical master equation (CME)

In the case of rapid diffusion in a homogeneous environment, the system can be considered as well-
mixed such that only the number of particles of each species is relevant while their spatial position is
neglected. Let N (t) = (N'(t),..., NL(t)) denote the state of the system at time ¢t > 0, with N!(t)
referring to the number of particles of species S; at time ¢. Given the state N (¢) = n = (nl)lzlw"L €
N§ of the system, a reaction is described by transitions of the form n — m + vy with the integer

vector vy = (u,i, ey y,f) giving the change in the number of particles of each species due to reaction

Ry. E.g., the chemical reaction 25; — Sy is described by the vector v with I/]lg = -2, V,lcl =1 and
zeros elsewhere. For each reaction Ry, a propensity function o (n) defines the probability per unit
of time for the reaction to occur given that N (¢) = n. According to the law of mass action, the
propensity is a function of the corresponding macroscopic rate constant v¥ > 0 and the number of



particles involved in the reaction: For a unimolecular reaction by species [ it holds a*(n) = ~* - n/;
for a second-order reaction by two species 1,1, [ # I’ one has o*(n) = ¥ - nl . nl/.[l, 22] With
P(n,t) =P (N(t) = n|N(0) = ng) denoting the probability for the system to be in state n at time

t, the dynamics are characterized by the chemical Master equation

K
W = Z (ak(n - Vk)P(n — I/k,t) — ak(n)P(n7t))_
k=1

Realizations of the underlying Markov jump process can be created by Gillespie simulations.

The spatiotemporal chemical Master equation (ST-CME)

There exist many applications where the well-mixed assumption required for the chemical Master
equation is not fulfilled. Instead, diffusion of particles might be limited by local barriers in space,
or the environment € offers inhomogeneities with respect to reaction propensities. An example
that will be investigated in Section 2.3 describes the setting of diffusion within a eukaryotic cell
which naturally decomposes into two compartments, the nucleus and the cytoplasm. By a reduced
permeability of the nuclear membrane, the diffusive flow through the cell is restricted such that
a description by a chemical master equation would fail. Within each of the two compartment,
however, the dynamics can indeed be considered as well-mixed, which motivates to consider the
chemical Master equation on the level of compartments.

Such situations (in which the space €2 exhibits a particular structure with respect to the diffusion
and reaction properties) will be considered here. More precisely, we make the following central
assumption.

Assumption 2.1. There is a decomposition of §2 into compartments £2,., »r = 1, ..., M, such that
1. transitions between compartments are rare (metastability),
2. within each compartment €, diffusion is rapid compared to reaction (well-mixed-property),

3. within each compartment the reaction rates are constant, i.e. independent of the position
(homogeneity).

The first point of Assumption 2.1 delivers the basis for a construction of a Markov state model
for the diffusive part of the reaction-diffusion network. With the diffusion processes of all particles
being metastable with respect to the same space decomposition, they can be approximated by
Markov jump processes on the fixed set of compartments {Q, : » = 1,..., M }. Within the ST-CME,
the jumps are treated as first order reactions. By the second and third point of Assumption 2.1 we
make sure that within each compartment the reaction dynamics can accurately be described by a
chemical master equation.

Let N.(t) denote the number of particles of species [ in compartment r at time . We take
N.(t) = (NX(t),..., NE(t)) to denote the state of present species in compartment r. The total
state of the system at some point in time ¢ is given by the matrix N (t) = (N, (t))r=1,..m € Né\/[’L.



Changes of the state are induced by diffusive transitions (jumps) between the compartments and
by chemical reactions.
A jump of a particle of species [ from compartment r to compartment s ## r is described by a
transition of the form
N> N+E. - E!

where E! is a matrix whose elements are all zero except the entry (r,1) which is one. Let AL,
denote the jump rate for each individual particle of species I. Since all particles are assumed to
diffuse independently of each other, the total probability per unit of time for a jump of species [
from compartment r to s at time ¢ is given by AL N!(t).

For each of the reactions Ry, let again vy = (1/,%, ...,V,f) describe the change in the number
of copies of all species induced by this reaction. Reaction Rj occurring in the r’th compartment
refers to the transition N, (t) — N,(t) + vi. In order to specify where the reaction takes place,
the vector vy is multiplied by a column vector e, with the value 1 at entry r and zeros elsewhere.
This gives a matrix e, v whose r’th row is equal to v while all other rows contain zeros. With
this notation, the change in the total state IN due to reaction Ry taking place in compartment r is
given by

N — N + e, vyg.

The propensity for such a reaction to occur is given by the function a(n) denoting the probability
per unit of time for reaction Ry to occur in compartment r given that N, (t) = n,, i.e. it depends
of(n) only on the values of n referring to compartment r. Note that the rate constants which
determine the reaction propensities may depend on the compartment such that - in contrast to the
CME - spatial inhomogeneities in the reaction propensities can be taken into account.

As in the setting of the CME, let
P(n.t) = P(N(t) = n|N(0) = no)

be the probability that the process is in state m at time ¢ given an initial state N(0) = ng. The
spatiotemporal chemical master equation (ST-CME) is then given by

dP(n,t) S
‘ﬁf*::ZXEX&M%JWW+%_MM_MMHWW (1)
r=1s#r =1

M K
+ Z Z (o/ﬁ(n — e,v)P(n — e,v,t) — af(n)P(n, t)) ,
r=1k=1

where the first line refers to the diffusive part (the transitions between the compartments) while
the second line describes the chemical reactions within the compartments.

Numerical realizations of the ST-CME can again be created using the Gillespie method. Com-
pared to particle-based simulations in which the trajectory of each single particle has to be cal-
culated, the simulations of the ST-CME are computationally less expensive. However, due to the
spatial interpretation, the state space of the ST-CME is larger than the one of the CME.

Remark 2.2. A reaction-diffusion Master equation (RDME) is formally identical to (1) but dif-
ferent regarding the spatial discretization. In a RDME the underlying space € is discretized by a



structured or unstructured mesh leading to a large number mesh cells so that the first line of (1)
in case of a RDME model is based on a discretization of the Laplacian operator underlying the
diffusion process.|[8, 11, 20]

To determine a convenient space discretization as well as suitable jump rates is the fundamental
issue for the representation of a reaction-diffusion system in terms of a ST-CME. It can be handled
by constructing a Markov state model for the space of motion.

2.2 Spatial discretization via Markov state modeling

The theory of Markov state models (MSM’s) is a well established tool to approximate complex
molecular kinetics by Markov chains on a discrete partition of the configuration space.[4, 23, 24,
25, 30, 29] The underlying process is assumed to exhibit a number of metastable sets in which the
system remains for a comparatively long period of time before it switches to another metastable
set. A MSM represents the effective dynamics of such a process by a Markov chain that jumps
between the metastable sets with the transition rates of the original process. Two main steps are
essential for this approach: the identification of metastable compartments and the determination
of transition rates between them. Both steps are extensively studied in the literature, providing
concrete practical instructions.[4, 3, 5] Although usually interpreted in terms of conformational
dynamics, the approaches can directly be transferred to the kinetic dynamics of individual particles
within a reaction-diffusion system. Within the ST-CME, jumps and reactions are uncoupled from
each other and memoryless in the sense that a reaction taking place does not influence the jump
propensity of any species, and the reaction rates within each compartment are independent of the
previous evolution of the system. Thereby, a separate analysis of the diffusion properties is justified.
In the following, we apply the MSM-theory to the pure diffusion process of an individual particle,
fading out its interaction with other particles by reactions.

Spatial coarse-graining

Assuming that the space of motion consists of metastable areas where the reaction-diffusion dy-
namics can be considered to be well-mixed, the first task is to identify the location and shape of
these areas. While in certain applications the spatial clustering might be obvious (like e.g. for the
process of gene expression), others will require an analysis of available data (either from simulations
or experiment) to define the number and geometry of compartments.

The MSM approach to perform this step of space decomposition is based on a two-stage process
exploiting both geometry and kinetics.[4, 5, 28] Starting with a geometric clustering of space into
small volume elements, the kinetic relevance of this clustering is checked for the given simulation
data, followed by a merging of elements which are kinetically strongly connected. As a concrete
example we shortly sketch the automatic state decomposition algorithm introduced in Ref. 5: The
iteration alternates between a split step (splitting the space into microstates) and a lump step
(lumping microstates together to get macrostates with maximum possible metastability). Each
makrostate is subsequently again fragmented into microstates, which are lumped again to redefine
the macrostates. By this alternation, the boundaries between macrostates are iteratively refined.
The splitting is based on geometric criteria, while the lumping considers kinetic aspects, taking
metastability as a measure.



To illustrate the relevance of both geometric and kinetic aspects for the space discretization, one
can consider the example of nuclear membrane transport: By the reduced permeability of the nu-
clear membrane, the cell decomposes into two metastable regions (nucleus and cytoplasm). A small
geometric distance between two points is a first indication for belonging to the same compartment,
however, this would also group together close points which are located on different sides of the nu-
clear membrane and are thereby kinetically distant. While other clustering methods might fail to
capture the kinetic properties of the system under consideration, the MSM approach incorporates
the relevant kinetic information and allocates such points into different compartments.|3]

The theoretical foundation of Markov state modeling comprises the spectral analysis of the
transfer operator which describes how the process propagates functions in state space over time.
The dominant eigenvalues refer to long implied time scales, with the associated eigenvectors giving
information about the metastable areas in space and the aggregate transition dynamics between
them. The algorithms used for spatial clustering by MSM’s require the availability of large amount
of data sets. Transitions between metastable sets are infrequent events which even in long (but
finite) trajectories might be small in number. Fortunately, for MSM’s there exist methods to
validate the model and to quantify the statistical error, allowing to rerun simulations in case of
high uncertainty (so called adaptive sampling).[4, 23, 25] The development of standards for the
number and length of simulations needed for a statistically reliable modeling is in progress.|[5]

Estimation of transition rates

Once a suitable space partitioning for the problem under consideration is given (known in advance
or determined by Markov state modeling as described before), the rates for transitions between the
compartments have to be estimated. The theory of MSM also delivers concrete practical techniques
to determine the transition rates out of trajectory data. Applied to the diffusion dynamics of a
particle in space, the rate estimation can shortly be summarized as follows.

Let the space €2 of motion be decomposed into compartments Q,., r = 1, ..., M, with Ui\/lzl Q. =Q
and (intg,) N (intg,) = 0 for all » # s where intg, denotes the interior of Q,. The diffusion of a
single particle in € is given by a homogeneous, time-continuous Markov process (X¢)>0 with X;
denoting the position of the particle in 2 at time ¢ > 0. We assume that (X;) has a unique, positive
invariant probability measure p on 2. Fixing a lag time 7 > 0, the MSM process is a discrete-time
Markov chain (X, )nen on {1,..., M} with transition probabilities

Py =P, (X, € Q| Xo € Q) (2)

where the subscript u indicates that X ~ p. The Markov process (X,,) serves as an approximation
of the process (Xn) defined by X,, = r < X,,.; € Q, which, in general, is itself not Markovian but
has a memory. For details about the approximation quality see Ref. 25.

Given a trajectory (zo,z1,...,zN) of the diffusion process (X;)i>0 with x, = X,,.A¢ for a fixed
time step At > 0 (given from experimental data or separated simulation), the transition matrix
P is estimated by counting the transitions between the compartments: Let the lag time 7 = [At
(I € N) be a multiple of At and set

~ C N—I
Prs = ia rs — r\dn)Xs\Ln
St O = X0 Q



with x, denoting the indicator function of §2,. Then P is a maximum-likelihood estimator for the
transition matrix P.[23, 24]

In order to turn from discrete time to continuous time within the coarse-grained setting, the
matrix estimation is repeated for a range of lag times 7 and the resulting transition matrices P, are
used to determine appropriate transition rates A.s > 0 between the compartments in the setting of a
continuous-time Markov jump process. More precisely, we aim for a rate matrix A = (Arg)ps=1,..m
with Ars > 0 for r # s and Ap, = — 3 ., Ars which describes the time-evolution of a memoryless
system by the master equation

dptT T
—— =p;/ A 4
dt b (4)
where p;(r) denotes the probability for the diffusion process to be in compartment r at time ¢.[31]

With pg denoting the initial distribution, the solution to (4) is given by pf = p{'e* which suggests

the relation P, ~ €. On short time scales, the “true” process (X;):>o cannot be accurately
approximated by such a memoryless system because recrossings between the compartments induce
memory effects.[6] For 7 not too small, however, it indeed holds [4, 30]

1
—log(P;) ~ constant
-

such that we can set A = %log(PT). The entries of the matrix A are the jump rates appearing in
the ST-CME. The discretization error arising with the coarse-graining can even be quantitatively
bounded.[4]

Remark 2.3. The estimation of the rate matrix can be made more accurate by forcing it to fulfill
certain side constraints like detailed balance or the keep of an equilibrium distribution which is
known a priori.[4]

2.3 Illustrative Examples

For an illustration we consider two different reaction-diffusion systems within the cell of an eukary-
ote. The cell naturally decomposes into two compartments, the nucleus and the cytoplasm, with
the nuclear membrane exhibiting a reduced permeability which induces a metastability of the diffu-
sion dynamics. The cellular membrane is assumed to be impermeable such that the cell’s exterior
is out of interest. Particles are assumed to move independently and not to influence each other in
their crossing behavior. Reactions between particles can only take place if the particles are in the
same compartment. The cell is modeled in two dimensions as two concentric circles representing
the membranes of nucleus and cytoplasm.

The first system under consideration is a quite artificial binding-unbinding network which is
used to compare the dynamics characterized by the ST-CME to the underlying particle-based dy-
namics. The congruence of the quantitative evolution of the systems (in terms of average population
numbers) is revealed. Then, the more applied setting of gene expression is investigated, comparing
the qualitative properties of the ST-CME system to those induced by a RDME with Cartesian grid
as given in Ref. 20. Both examples illustrate the ability of the ST-CME to reproduce the dynamics
of more detailed and complex model descriptions.



2.3.1 Binding and unbinding

As a first example we formulate a very general reaction-diffusion system consisting of three species
S1 = A, S = B,S3 = C which diffuse within the cell and undergo the binding and unbinding
reactions

RlAJrB—)C, Ry: C — A+ B. (5)

We assume that the binding reaction takes place only in the cytoplasm while unbinding is restricted
to the nucleus. This separation of reactions, combined with the metastability of diffusion due to a
reduced permeability of the nuclear membrane, obviously keeps the process from being well-mixed
in total space, such that a description by a CME is not appropriate. A minimum spatial information
- as it is given by a ST-CME - is needed to capture the characteristics of the dynamics. In the
following, we compare the ST-CME dynamics to appropriate particle-based dynamics where the
diffusion of each particle is modeled by a process of Brownian motion with reflecting boundary
conditions at the cellular membrane and limited flux through the nuclear membrane, see Figure 1
for an illustration.

Figure 1: Brownian motion on disk with metastable compartments. Brownian particle
moving on a disk (cell) containing a nucleus. The nuclear membrane exhibits a reduced permeability,
rejecting most of the crossing trials of the trajectory.

Given the microscopic parameters of the system (i.e. diffusion constants, microscopic reaction
rates and reaction radius for the Doi-model) as well as an initial population (we choose 5 A-particles
uniformly distributed in the nucleus and 5 B-particles uniformly distributed in the cytoplasm),
numerical realizations of the particle-based reaction-diffusion system are produced by the Euler-
Maruyama method. For all time-steps of a realization, the number of particles of each species in
each compartment is recorded. Then, a MSM for the diffusion process of each species is constructed
as described in Section 2.2, yielding the jump rates between the two compartments necessary for
the ST-CME. The average binding time for two particles A and B within the cytoplasm is estimated
numerically in order to take its inverse for the macroscopic binding rate. Gillespie simulations of
the resulting ST-CME give realizations of the total system on the spatially discretized level.

For both approaches (particle-based dynamics and ST-CME), the average evolution of the
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population over time is estimated by Monte Carlo samples. In Figure 2 the results are shown, with
an apparent consistency of both models.

5
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Figure 2: Mean number of particles in conformation A (left), B (middle) and C (right) in the
nucleus resp. the cytoplasm for separated reactions.

0.4

This binding-unbinding network will again be investigated in Section 3 where a formal derivation
of the ST-CME is derived.

2.3.2 Gene expression

more applied setting is given by the process of gene expression by which information encoded
in DNA is used for the production of functional proteins. This process is a complex network of
chemical reactions. In eukaryotes some of the involved reactions take place in the nucleus while
others are restricted to the cytoplasm. On a very coarse level, the process can be described as
follows. In a first step, the gene is transcribed into messenger RNA (mRNA); this takes place in
the nucleus. The mRNA molecule is then exported to the cytoplasm where it is translated into
proteins. The proteins are imported into the nucleus where they can repress the gene, meaning that
its functionality in transcription is interrupted. Both mRNA and protein molecules are degradable
in both compartments.

Some of these steps contain themselves a complex series of chemical events. E.g., the crossing of the
nuclear membrane by mRNA and protein molecules requires the assistance of import and export
receptors because the pores of the nuclear membrane are too small for the molecules to pass through
by diffusion. For the ST-CME, such details are omitted and the crossing of the nuclear membrane
is described by a single jump event with the jump rate chosen in a way to take account of all the
involved steps. For many questions of interest a modeling on such a coarse level is appropriate.

In Ref. 20 the process of gene expression is analyzed in terms of the reaction-diffusion master
equation. With the cell and its nucleus also modeled by concentric circles, the space is discretized
by a regular 37 by 37 Cartesian mesh. Transitions of mRNA and proteins between nucleus and
cytoplasm are modeled by binding and unbinding to export (resp. import) receptors which are
assumed to be uniformly distributed throughout nucleus and cytoplasm at certain steady-state
concentrations. After binding to the receptor the molecule can freely diffuse across the membrane.
After this transition, the molecule has to unbind from the receptor before it can undergo further
reactions. For the ST-CME the three steps (binding to receptor, transition, unbinding from re-
ceptor) are merged and replaced by a jump event. In Ref. 20, simulations of the total system
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show a periodicity in the total number of nuclear proteins. This periodicity is reproducible by the
ST-CME with only two compartments as will be demonstrated now.

Modeling for the ST-CME

The process of gene expression perfectly complies with the requirements of the ST-CME: Two of
the reactions (transcription and translation) are restricted to certain areas of space, namely nucleus
or cytoplasm. Transitions between these two compartments are of central relevance for the total
dynamics. Due to the complexity of membrane transition, the diffusion dynamics can be considered
as metastable. Within each compartment, local information is redundant and the dynamics can be
considered as well-mixed.

More precisely, the following model is plausible. The transcription in the nucleus is given by
the reaction

al
DNA — DNA+mRNA

with the index r referring to compartment 2, and ai > 0 in the nucleus (= ;) while af = 0 in
the cytoplasm (= Qg). Translation of mRNA into proteins P is given by

012
mRNA — mRNA+ P

with a? = 0 in the nucleus and o3 > 0 in the cytoplasm. Repressing of DNA by a protein molecule
refers to the reaction

3
DNA+ P 2% DNA*,

where DN A* denotes the repressed DNA. Repressing is reversible by

Cl(4
DNA* — DNA+ P.

Both mRNA and protein are degradable which is described by

mRNA %

resp.
046
P 0.

Transitions between nucleus and cytoplasm (possible for mRNA and protein molecules) are de-
scribed by jumps with jump rates AJ3#NV4 > 0 (export of mRNA) and A} > 0 (import of protein).

In the RDME-formulation given in Ref. 20 most of these reactions are decomposed into several
steps. Then, the protein production is shown to occur in bursts which is due to its repressing
function: Given a large number of proteins, the repressing of the gene becomes very likely. If the
gene is repressed, no new mRNA is transcribed, and the existing mRNA-molecules quickly vanish
because of the large decay rate a2. The translation into proteins is interrupted, and the protein
population simply decays over time. With a smaller protein population, the repressing of the gene
becomes less likely and transcription can start again. Such a periodic evolution of the number

of proteins exists in our coarse-grained model, see Figure 2.3.2 which looks much like Figure 8 in
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Ref. 20. The chosen reaction rates roughly follow those given in Ref. 20, however without any
claim to reproduce reality - we simply intend to maintain the fundamental qualitative behavior
of the system. Concretely, we set ai = 0.05 (transcription in nucleus), a3 = 0.5 (translation
in cytoplasm), a3 = 0.01 (repressing in nucleus), af = 0.01 (reversal of repressing in nucleus),
a3 = 0.3 (degradation of mRN A in the cytoplasm), a8 = 0.0025 (degradation of protein in both

compartments), ATFNA = AP = 0.4 (jump rates).

30 T T T

20 a

15 - 1

10 - 1

number of proteins

0 0.5 1 15 2
time «104

Figure 3: Number of nuclear proteins over time in one realization of the ST-CME. The protein
production occurs in bursts.

3 Formal derivation of the ST-CME for a reduced model

In Section 2.2 we presented the theory of Markov state models as a practical tool to significantly
coarsen the diffusion dynamics by finding suitable space decompositions as well as rates for transi-
tions between the compartments. Beside the practical and algorithmic details, MSM’s also provide a
well understood mathematical background, with the coarse-grained dynamics arising from Galerkin
projections of the original process.[30]

In this section, we apply the technical concepts and formally derive the ST-CME from a given
particle-based model by means of a Galerkin approximation of the associated evolution equations.
To this end, we study a reduced model consisting of two particles, one of species A and one of
species B, that diffuse independently in space €2 and undergo the binding reaction A + B — C
with a position-independent rate ., = when getting closer than e; > 0. The resulting C-particle
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diffuses in space and can unbind again with a fixed rate 2. _, compare the reaction system given
in (5). In this setting, the state space of the ST-CME reduces to states n € Ng/[’?’ of either the
form n = Ei + Eg - which refers to finding an A-particle in compartment €2, and a B-particle in
compartment Q4 while species C' is absent - or m = E? referring to the existence of a C-particle in
compartment €, while A and B are absent.

This is a totally over-simplified case that nevertheless allows to perform the formal derivation
of the ST-CME in all details. As one can see in the Appendix, the approach can be transferred to
larger populations (particle and species numbers).

The particle-based model

As for the particle-based dynamics we make the following assumptions. Given A and B undergoing
a reaction, the resulting C-particle is placed at the position = € () of the A-particle. After an
unbinding reaction, the particles A and B are placed within a ball B.,(z) of radius €3 > 0 around
the position z € € of the preceding C-particle, with the positions x and y of A resp. B chosen
independently of each other, both uniformly distributed on B.,(z).

We denote by p(z,y,t) the probability density for the particles A and B to be unbound and
located at x resp. y at time ¢ > 0, and by p(z,t) the probability density for the particles to be
bound with the C-particle located at z at time ¢ > 0. With this notation it holds

/ p(z,y,t) dl‘dy+/ﬁ(z,t) dz=1
02 Q

for all times ¢ > 0.
The time evolution of the two functions p and p is given by a coupled system of differential
equations:

atp(xayvt) = (L1p)($,y, t) + (Lgp)(l‘,y,t) (6)
_Vilicro ¢€1 ($7 y)p(m, Y, t)

2

HE [ 6esl. 21000 205 (211)

op(z,t) = (L3p)(z,t) (7)
F Y miero / bey (2, y)p(2,y,1) dy

_’yglicro p(’z? t))

where Ly, Ly, L3 denote the generators of the diffusion processes of species A, B,C (in flat spaces
without energy barriers these are Laplacian operators), respectively, and ¢., (k = 1,2) is given by

¢z, (,y) = @ (‘x_y’>

€k

where ® denotes the indicator function of the ball B1(0). In (6), outflow is induced by the binding
reaction in cases where the positions x and y are ej-close to each other (2nd line), while inflow is
induced in case of an existing C-particle with its location being able to produce the given positions
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x and y after unbinding (3rd line). In (7), binding induces inflow (2nd line) where the position of
the former A-particle has to be at the given position z of the resulting C-particle, while unbinding
induces outflow (3rd line), compare the given placement assumptions.

Galerkin projection

The dynamics described by the coupled equations (6) and (7) have a full spatial resolution, breaking
down the exact positions of the particles in space. For the ST-CME the information must be
coarsened to the level of compartments. This is done by projecting the dynamics onto a suitable
low-dimensional ansatz space.

We consider a partition of € into subsets €., r = 1,..., M, and denote by ¥, the indicator
function of ©,.. That is, x, is 1 inside of 2, and 0 outside. Let (f, g) be the usual L?-scalar product
of functions f and g that depend on €, i.e., (f,9) = [g f(x)g(x)dz. If the generators Ly, Lo, L3
do not denote flat diffusion but diffusion in an energy landscape, then the scalar product must be
weighted with the respective product invariant measure, see Ref. 30. Define

Hr = <1>Xr>

where 1 is the constant 1-function on §2. The Galerkin projection @ : L?(Q) — D onto the
finite-dimensional ansatz space D = span{x, : r = 1,..., M} is given by

M
1
Qu = Z — (xm V) xr, v EL*Q).
r=10"T
We further use the functions

er(x,y) = Xr(x)Xs(y), r,s=1,....M,

as a partition of unity of 2 x 2. Parallel to the definitions before, we set

Hrs = <17X7"5> )

where in this context (-, -) refers to the L2-scalar product on © x €2, and

l 1 2 2
QU = Z <X7“57U> Xrsy U € L (Q ) P
r,s=1 TS

as a projection onto D = span{x,s : r,s = 1,..., M }. By definition it holds

Hrs = Hrlls-
Applying the projection to the density functions p and p gives the ansatz

M

(@p)(z,y,1) = Z Prs(t)xrs(2,9),

r,s=1
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(Qp)(2,t) Zpr )xr(2

with time dependent coefficients p,s(t) and p,(¢). Inserting into (6) and (7) yields

M
Z 8tprs(t)er(l'ay) = Z prs <L1er(x y) +L2er(l' y)) (8)

r,s=1 r,s=1

M
~Viere D Prs(t)de, (2, 9)xrs (2, 1)

r,s=1

ré“‘?z S 0) el 2D v 2

2 0 (Dxr(z) = Z@«(twmz) (9)

+’lecro Z pT’S /¢51 ZY XTS(Z y) dy

r,s=1
_7r2nicro Z p?" (t)XT (Z)
r=1

The local coordinates x, y, z of the particles still appear as arguments. In order to eliminate them,
the coupled equations (8) and (9) are themselves projected onto the given ansatz space, which refers
to taking local averages of the terms for each combination of compartments. This automatically
delivers the formal relation between the microscopic and the macroscopic model parameters. In
fact, we define the macroscopic reaction rate constant for r, s, = 1, ..., M by the averages

1
Yos = 'Yim-r / Xr (%)X (Y) b,y (2, y) da dy,
9 72. 1
Trsr S Tp g‘“,; s / Xr (%) Xs (U)X (2) Py (2, 2) Dy (y, 2) da dy dz,
€9 T

which depend on the microscopic reaction rate and the reaction radius. Similarly, the jump rates
are given by

= f/xs VLo (2) dr = — (xo i), 1 =1,2,3,
7‘

Since L;, I = 1,2, only acts on x;, we have that

7L ) = ’ )\1/ for s = S/,
<X7"57L1XT’3’> = { Hs <XT 1Xr > Mt s Aty

0 otherwise,

<X7‘s; L2XT’s’> -

fr (Xs> Laxs) = um/)\g,s for r =1/,
0 otherwise.
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With this observation and the notations from above we get, by multiplication of (8) with (x;s, ')
and by multiplication of (9) with (x,, ), the system

M M
prsOeprs(8) = D Aoy - rrsprrs(8) 4 D N - phrsrDpst (1) (10)
= s'=1
M
Al prsprs() S A2 iy (1),
r’'=1
M
OB (t) = Y Ab - g (1) (11)
r’'=1

+ Z 71}3 < prsPrs(t) — ’Yiicm - P (1),
s=1
which does not contain any local coordinates, anymore. The system of equations (10) and (11) ac-
tually can be understood as a spatiotemporal master equation, given the assumption that reactions
are also possible between particles suited in different compartments. With respect to the notation
given in (1), we have the relation

Hrs - prs(t) for n = Ei + Eg,
P(n,t) = oy - Dr(t) for n = E3,
0 otherwise,

where P(n,t) is the probability to find the system in state n at time ¢, compare Section 2.1.

In order to reveal the parallelism to the ST-CME given in (1), we assume that such “mixed”
reactions are suppressed. l.e., reactions take place only between particles located within the same
compartment and the product of a reaction is placed in the compartment of the reagents. This
refers to setting 7., = 0, 7%, = 0 for all mixed (non constant) combinations of indices. For
comparatively large compartments and small €1, 9, all these values are close to zero for mixed
indices by definition, anyway. For the reaction rate functions appearing in (1) we then obtain

1 1Bl _ gl 2 2 f — g3
OK,’% (n) — melcro jors for n _ ET + E’r‘? az(n) — ’Ymicro orn ] T
0 otherwise, 0 otherwise.
Now, the equations simplify to
M
NTSatpT’S(t) = Z )‘qlﬂ/r My’ sPr? s + Z )\ * Mrs' Prs! ( )

| Bei |

r

pr Ot Py (t) = Z )‘ * ! Dyt )

* HrsPrs (t) + 57“37311@0 * lyDr (t)a

1
_57‘87111icr0

| Bz |

+’Yr}nicro
I

* PrrPrr(t) — ,‘Yglicro - (1),

T
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where 6, is the Kronecker delta. Noting that by definition it holds A, = — Dot AL, for all
[ =1,2,3, this is just a reformulation of the ST-CME (1).

Remark 3.1. The available theory of Markov state models shows that one may also use ansatz
functions x, that are different from indicator functions as long as they form a partition of unity
of ©.[30, 29] That is, along these lines we can also derive versions of the ST-CME where spatial
discretization is not based on sets/compartments but on smooth functions, e.g. committor functions
for core sets as in Ref. 29 or radial basis functions as in meshless discretization.[33] This increases
the flexibility of our approach significantly and is known to allow for superior approximation quality
if recrossing scenarios are important.[30]

4 Conclusion

We introduced the spatiotemporal master equation as a framework for modeling reaction-diffusion
dynamics in situations where the diffusion process exhibits metastability. By the construction of a
Markov state model for the diffusive part, the structural properties of the dynamics are preserved
and diffusion is replaced by a jump process on a comparatively small set of compartments. Al-
though in the literature usually related to conformational dynamics of an individual molecule, the
theory of MSM is a powerful tool for finding adequate space decompositions and estimating the
related transition parameters in a reaction-diffusion system of several molecules. In application, the
method can directly process experimental data such that particle-based simulations are completely
circumvented.

For the ST-CME approach to by valid, the well-mixed assumption does not have to apply
for the total dynamics (as it does for the CME) but only on the level of compartments. As for
the spatial resolution the ST-CME lies between the CME which excludes all spatial information
and more detailed models like the RDME (where space is discretized by meshes) or particle-based
reaction-diffusion systems (where the exact positions of all particles are retraced). The same is
true for the numerical effort induced by simulations of the respective systems. We compared the
models for two reaction-diffusion systems within an eukaryotic cell and showed that the ST-CME
is able to replicate the more detailed models regarding quantitative and qualitative properties.

Describing a reaction-diffusion system which behaves well-mixed in spatial subareas by a ST-
CME is an intuitive approach. We showed that this approach has a clear mathematical foundation,
with the ST-CME arising from a Galerkin projection of the corresponding particle-based dynamical
system onto the subspace spanned by appropriate ansatz functions. In the standard case, these
ansatz functions are the indicator functions of the compartments, and the ST-CME is a combination
of a jump process between compartments and the reaction part. However, other families of ansatz
functions may provide superior approximation properties. The analysis given in the Appendix shows
that, in principle, the ansatz functions used for the Galerkin approach could not only discretize the
spatial domain but also particle number space. A detailed analysis of how to choose the ansatz
functions is not given here but will have to be part of future research.

Another topic of interest is the combination of the different models in situations where parts
of a system are well-mixed while others require a particle-based resolution. Then, the ST-CME
has to be coupled to the stochastic dynamics of some particles that are individually tracked in
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certain areas of space. In contrast, also parts of the system could show high density allowing for
a description by ODE’s which leads to a stochastic-deterministic evolution equation comprising
a ST-CME. The development of such hybrid approaches to handle multi-scale reaction-diffusion
dynamics is subject of ongoing work.
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Appendix

In Section 3 we formally derived the ST-CME from a given particle-based model of binding and
unbinding with not more than one particle of each species. We will here generalize the analysis
to systems with larger populations: Several particles of species A and B diffuse independently in
space  and undergo the binding reaction A+ B — C with a position-independent rate 7., when
getting closer than €7 > 0. The resulting C-particles diffuse in space and can unbind again with a
fixed rate 72,
Particle numbers: Subsequently we assume that we never have more than n particles of every
individual type in our system. That is, if a,b, c denote the numbers of molecules of types A, B,C

in the system, then

(a,b,c) €N, N ={(a,b,¢): a,b,c <n,,a+b+2c<2n}.

Notation: In addition to the given space of motion 2 we introduce the artificial void state V'
indicating that the particle is absent. For every individual particle in the system the position then
comes from § =V x Q. The positions of the n particles of type A are denoted by

X =(x1,...,2p) €S",
and those of B and C' by
Y =(y1,...,yn) € S", Z = (21,...,2n) €S,
such that the state of the entire system is given by
(X,Y,Z) € S
In the following we consider only those (X,Y, Z) with

(Z xa(zi), Z xa(¥i), Z xg(zi)> e N.

Placement assumption: Given the positions z; € 2 and y; € Q of an A- and a B-particle
undergoing a reaction, the resulting C-particle is placed at the position x; of the A-particle. After
an unbinding reaction, the particles A and B are placed within a ball B.,(z) of radius 2 around
the position z;, € €2 of the preceding C-particle, with the positions x; and y; of A resp. B chosen
independently of each other, both uniformly distributed on B, (zx).

The index of a C-particle resulting from a binding reaction is chosen to be the first index of a
void state in Z. Equivalently, the positions of the A- and B-particles resulting from unbinding are
inserted into X and Y at the respective first void entry. The insertion of a position x € {2 at index
k into state X € 8™ is denoted by

X]:_(.T) = (.’131, s s L1, Ty Tty - - - 7$n)7
while setting position xj in state X € S™ to void is denoted by
X =(x1,- 21, V, Tpg1, - -, ).

Equivalent notations are chosen for Y and Z.
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The particle-based dynamics

By p(X,Y, Z, t) we denote the probability density function of finding the system in state (X,Y, Z) €
S3" at time t. For integration we use the notation, for example,

/p(xl,...,:cn,Y,Z,t)d:El:p(V,xg,...,me,Z,t)%—/p(xl,...,xn,YjZ,t)dxl.
S Q

Let Ly, Ly,, L., denote the generators of the diffusion processes of species A, B, C' acting on coor-
dinate x;, y; and z; on (2, respectively. Then we define

n

LAP(ZL'L ceo s Ty Y7 th) = ZXQ(xz)Lmzp(:ﬁl) vy Ty va Z? t)
i=1

The time evolution of the function p is given by the following differential equation:

8tp(X7)/7Z7 t)
= (La+Le+Lc)p(X,Y, Z,t) (12)

n

“miero D, X (@)X ¥5)des (@i, y;)P(X, Y, Z,1)
i,j=1

+’Ym1cro ZHXQ Zl Z XV(xl XV(y] /¢61 Zkvy)p X+(Zk) +(y)7zk_7t) dy

k=1 1=1 i,j=1

_712111(30 Z XQ(Zk)p(Xz Y, Z, t)
k=1

‘”;“'g ZXV ) Z Hxa(wz)Hm v / bea (w0, 2) s (4, 2P (X[, V) 2 (2),8) d

i,7=11=1

where ¢. is given by

be(w1,09) = D (lwl—@)

e
with @ denoting the indicator function of the ball B;(0).

Explanation:

e The first line in equation (12) refers to the independent diffusion of all particles.
e The second line refers to the outflow from state (X,Y, Z) induced by the binding reaction.

e The third line refers to the inflow induced by the binding reaction of the form
(X:_(Zk%)/]—‘r(y)azk_) — (X7Y7Z)

For the state (X,Y, Z) to result from this reaction, the entry z; of Z has to be located in Q
and must fulfill z; € Q for all [ < k because the new positions are assumed to be located at
the first index of a void state in Z. The actual positions x; and y; of X and Y have to be
void, while before they are given by z; and y with y located in an e1-environment around zg.
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e The 4’th line refers to the outflow from (X,Y, Z) by unbinding.

e The 5th line refers to the inflow induced by unbinding of the form
(XZ_7 1/;‘_7 Zl:r (Z)) — <X7 Ya Z)

Here, the actual position z; must be void, while the positions x; and y; both have to be in £}
with no preceding void-entries (again because the new positions resulting from unbinding are
placed at the respective first void-entries). Both z; and y; must be ea-close to the z-particle
they result from. As both positions are chosen uniformly distributed in the B.,-ball around
z, the unbinding rate is divided by its size squared.

Galerkin projection

Ansatz functions. We consider a partition of €2 into subsets €1, ..., Q,, and define the indicator
function for the system to have exactly a, € {0,...,n} molecules of type A in set €, C €

)1 it 370 xr(z:) = ar,
Xa, (X[2) = { 0 otherwise,

where x, is the indicator function of §2,.. Then, the indicator function for having exactly a, molecules
of type A and b, molecules of type B and ¢, molecules of type C in set Q, (a,, b, ¢, € {0,...,n})
is given by

Xarbrcr (X, Y, Z|Qr) = Xa, (X[ xp, (Y [) Xe, (Z]€2).

For the total system we use the ansatz functions

m
Xa,b,c(X7 Y7 Z) - H Xar,br,Cr (X7 Y7 Z‘QT)

r=1

where a = (ay)r=1,..m, b = (by)r=1,...m, ¢ = (¢r)r=1,...,m With a,,b,, ¢, € {0,...,n} and

m m m

(Sadomda) e

r=1 r=1 r=1
The allowed index set of the three vector-indices of our ansatz functions will be denoted Z. It is
important to notice that these ansatz functions do not overlap,

<Xa,b,ca X@j@) = Ha,b,c 5ad5b55céa Hab,c > 0,

but form a partition of unity of the accessible state space.

Galerkin ansatz. We consider the Galerkin projection @ : L? (S%") — D onto the finite-
dimensional ansatz space D = span{xqapc : (a,b,c) € Z} given by

Q= %

(a,b,c)eT Ha.bc

1

<Xa,b,c, ’U> Xab,e, VE L2 (Sgn)
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with

Habc = (1, Xa,b,c>

(u,v) = / . / w(X,Y, 2)v(X,Y, Z)dx; ... dxpdy; ... dypdz; ... dzy,.
S S
The ansatz for p(X,Y, Z,t) now is

and

(Qp> (Xa Y, Z, t) = Z pa,b,c(

t) Xa,b,c(Xa Y, Z)v
(a,b,c)eT

with
1

Ha,b,c

Pabe(t) =

<Xa,b,c:p('a t)>
Inserting into (12) gives

Z 875pa,,b,c Xa,b,C(X Y Z)
(a,b,c)eT

D Pape®(La+ Lp+ Lo)Xabe(X, Y, 2)
(a,b,c)€T

n
“micro Y Pabe®) D Xa(@)XaWy)de (@6, 45 Xap.e(X, Y, 2)

(a,b,c)€T i,j=1

Fimicro Y, Pawelt Z Hm(z»xv (@)xv (v) / be1 (2 )Xa e (X3 (200, Y5 (), 25

i \Bk)s j Y)s k)dy
(a,b,c)eZ i,j,k=11=1

_'7[2nicr0 Z pa,b,c(t) Z XQ (Zk)Xa,b,c(X) Y, Z)

(a,b,c)eT k=1
2
B D pave® Z xv (=) Hxn 2 ng(yz) / bea (i, 2)be (0, Mxape (XY 25 (2)) da
e
(a,b,e)€T i,j,k=1

Multiplication by <X,~1 Be > gives

Z <X LA +Lp+ LC)Xa b c> 'pa,b,c(t)
(a,b,c)eT
n
_711nicro Z Xa,b,& Z Xﬂ(xi)XQ(yj)(bél (xi7yj)Xa,b,c 'pa,b,c(t)
(a,b,c)eT i,j=1
L - X+ Yr(y),Z; ) dy ) - (t)
+"/mlcro a,b,e’ XQ(ZZ)XV xl)XV(y] ¢81 2k Y Xa,b,c ,L (zk)7 j Y) 4y Y Pa,b,c
(a, b c)eT i,7,k=11=1
~Ymicro < b,e ZXQ(Zk)Xa,b,c> 'pa,b,c(t)
(a,b,e)eT
2 n i J
Ymi _ _
+|glcr|g Z Xa b,a Z XV(Zk)HXQ(xl)HXQ(yZ)/ Gea (Tiy 2)Pes (Yj, 2)Xa,b,e (Xi Y Z (Z)) dz ) Pabc(t)
©2 (a,b,c)eT 1,5, k=1 =1 =1 2
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Due to the scalar product structure, most of the summands vanish. For the remaining summands
we choose the following notations:

1
a'(a,b,e) = Thero - / ZXQ )X (Y3)9e1 (i Yj)Xa b,e (X, Y, Z) dX dY dZ
Ha,b,c
1 n
al(@,6,¢) = Fhiero / > Hm 20X (21)xv (@) xv (3) / ber (21 Xape (X (20), VS (), 27 ) dydX dY dz
Ma,b,c
i,5,k=11=1 r!
1 n k—1
= miero” Z T xeGoxy Goxe @) Wi (@i,9:)xa b (X, 2) dX dY dZ
i,7,k=11=1
1
= Voo Z Xr (@)X (4)0e1 (21,95 Xa be (X, Y, Z) dX dY dZ
MHa,b,c
4,j=1
which implies
1 1
Zaw(a, b,c) =a(a,b,c)
rr!
for all a,b,c € Z, and
o®(a,bc) = Y- 7/ZXQ 26)Xab.e(X,Y, Z)dX dY dZ
Ha,b,c
2
. ’ymicro )
e S o [t oo Hm e (35)

i,7,k=1 =1

: / ey iy 2)bes (Uj, 2)Xape (X; Y], 21 (2)) dzdX dY dZ
Q-

) i—1 j—1
’}/ .
_ ﬁ'u - / Z XT(Zk)HXQ((El)Xr(fEi)Hxﬂ(yl)Xr’(yj)
€2 a,b,c
=1 =1

i,5,k=1

ey (is 2k)Pes (Ujs 2k) Xab,e (X: Y, Z) dX dY dZ

2
’Y .
_ micro xr(zk) Xﬂ(xl Xv(xl xa(y XV(yJ)
|Be, |2

Ha,b,c
i,7,k=1

/ ¢52 (Jf,Zk)¢52 (y7 Zk)dm dy * Xa,b,c (X7 Y7 Z) axdy dz
Q Q.

2
Ymicro v’
= B xr(zK) zi)| - |Bey (2k)] - Xa,b,e (X, Y, Z) dX dY dZ
B, |2 MC/E r 5 (z1)] - 1B2, (26)] - Xabe )

| BL,( / Ge,(x,2)d

such that Y7 | |BL (2)| = | Be,| for all z € Q and therefore
Za (a,b,c) = a?(a,b,c)

where
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for all a,b,c € 1.

For the diffusion part we have
<X&,5,E’ (LA +Lp+ LC)Xa,b,c> = <Xa,f,,az LAXa,b,c> + <Xa’f,’57 LBXa,b,c> + <X&j,7a’ LC’Xa,b,c>
and

n
<X{1’1~)’a7 LAXa,b,c> = <Xd,~,é’ Z XQ(xi)inXa,b,c> . (13)
i=1

In each of these summands, the generator only acts on the coordinates X; of one individual particle
of species A which means that the related scalar product can be nonzero only for those a, b, ¢ with
a=a+ 1. —1, for some r,7’ € {1,...,m}, while b=bandé¢=c. (In an equivalent notation, this
statement holds for species B and C.)

We assume that all particles of one species follow the same diffusion dynamics (i.e. Ly, = L1
for all 4; equivalently for y;, z;). Then, for r,7/ = 1,...,m and | = 1,2,3 we define the jump rate

from Q,. to €, by
1

™

)"lr"r’ = <X7"7LZXT’>

which - by the properties of the propagator L - fulfills AL, > 0 for 7/ # r and Al = — Dot AL
for all r.

Fixing one x; (for simplicity ¢ = 1) we have
<Xﬁ,5,a’XQ(m1)L11Xa,b,c>

= Z <X&,5,E7XT(‘%1)LCE1XG,I),C>

s
Z/X&7575(X:Y: Z)XT(xl)(LfElXa,b,c)(Xzyv Z) dxXdY dz
s

> / X (@) (L Xo ) @1)Xa- 1, (22, s Z0)Xa 1,0 (@2, 20) X5 (VX6 (Y )Xa(2)Xe(2) dX dY dZ
r:a@,>0
r' a,.s >0

1
E Brt Ay Ga—1_,,6—1, /X&—IT(ZC% oy @) AT ... dTn - O 4, g - Oz, pa
ria@,>0
7":(17,/ >0

- 5. . \! -
E da—1,/,a-1, " O p * Oz.c Arrrba i, -1, 6,6

r:@r>0
r a, >0

In (13) we sum up over all i = 1, ..., n, which leads to a multiplication of A}, by @,y = (@+1,, —1,),s
giving

_ ~ 1 )
<Xa,5,a7 LAX&+1T7-1“B,&> = Z(a + 1L = 1) - Ay - Hat1,-1,.b,e

rr!

~ 1 ~ 1
= D@ A saget D@ 1) At be
T r'#£r
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We finally get

rorlZr
2 (T 2 7
)0 (N (b + Dt bt 1,,6Pa b1, -1,. )‘rr’br#a,é,epa,é,e>
Torir
+ Z Z (A’I”/’V‘(éw + 1)Md,5,é+1r"1rpa76:é+1r"1r B )\Tr’éTMaj,ﬁ-paj)j)
Tori#r

+
Q
el
ﬁ\
—
[~}
+
—
-
S
_|_
—
’-L
o
—
—
SN—
=
N
+
=
o
+
=
™
-
3
=1l
+
=
o
+
=
™
—
—
~
~

rr’:ar>0,b,, >0

Setting o, = 0, a2, = 0 for r # r’, this is the ST-CME given in (1), where n is given by

(a,b, &) with nl = a,, n? = b., n3 = &. and

for n = (a, b, &).
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