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Fig. 1: Two facial expressions (a,b) from our database set into dense correspon-
dence using the proposed framework. High geometric and photometric details are
accurately morphed between both expressions via a dense corresponding mesh.

Abstract. We present a novel framework for fully automated and highly
accurate determination of facial landmarks and dense correspondence,
e.g . a topologically identical mesh of arbitrary resolution, across the
entire surface of 3D face models. For robustness and reliability of the
proposed approach, we are combining 2D landmark detectors and 3D
statistical shape priors with a variational matching method. Instead of
matching faces in the spatial domain only, we employ image registra-
tion to align the 2D parametrization of the facial surface to a planar
template we call the Unified Facial Parameter Domain (ufpd). This
allows us to simultaneously match salient photometric and geometric
facial features using robust image similarity measures while reasonably
constraining geometric distortion in regions with less significant features.
We demonstrate the accuracy of the dense correspondence established by
our framework on the BU3DFE database with 2500 facial surfaces and
show, that our framework outperforms current state-of-the-art methods
with respect to the fully automated location of facial landmarks.

Keywords: dense face matching, face shape and appearance models,
markerless motion capture

1 Introduction

The fully automated matching of sparse or dense facial landmarks in uncon-
strained 2D or 3D measurement data, e.g . the semantic annotation of facial
images captured in the wild, is of great interest in various fields, ranging from
entertainment to affective computing. When dealing with conventional cameras,
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the loss of information due to the perspective projection requires sophisticated
techniques for robust estimation of pose or facial landmarks. Even more de-
manding is the ill-posed inverse problem of estimating the 3D shape from 2D
images. Knowledge about plausible variations in facial shape and appearance as
well as their correlation are learned from training samples and used to constrain
results to desired solutions especially in unconstrained environments. Similarly,
for the semantic annotation and tracking of facial features from 3D data, statis-
tical shape and appearance models (SSAM) of faces improve the reliability and
robustness of automated approaches as has been shown recently [1].

Facial morphology varies between individuals due to factors like sex, age,
or ethnicity, while significant intra-individual changes are caused by facial ex-
pressions. Although 3D databases including a wide variety of both, inter- and
intra-individual factors, are publicly available (e.g . [2,3]), the training samples
used to construct statistical face models are restricted to face scans in neutral
position (see [4,5]). Only few models include expressions, for instance the work
published by Brunton, Bolkart, and Wuhrer in [6] or Cao et al . [7]. Unfortu-
nately, these models do not include appearance and solely capture 3D shape
variation. They are thus limited for applications in computer vision.

A reason for the rare availability of statistical models of facial shape and ap-
pearance lies in the challenging problem of dense correspondence estimation for
faces. Many generic shape matching methods as well as approaches specifically
tuned to estimate dense correspondence for faces have been proposed, but they
either lack accuracy, robustness or automation. Nevertheless, approaches satis-
fying all these characteristics are needed to establish the next generation of 3D
face models, and in order to handle improved geometric and photometric resolu-
tion of new scanning devices, growing 3D databases, and applications requiring
highly accurate semantic annotation of faces in raw measurement data.

With applications for fully automated processing of large-scale databases in
mind, we propose a new framework for dense 3D face matching (see Figure 2). To
ensure robustness of the automated processing, we extract reliable prior knowl-
edge on facial shape and appearance from the input data using 2D facial land-
mark detectors and non-rigid fitting of 3D face models. Highly-accurate dense
correspondence, even for fine facial structures (see Figure 1), is obtained by
combining the prior knowledge with a variational approach for the matching of
geometric and photometric facial features. We evaluate and compare the perfor-
mance of our method in localizing facial landmarks on 2500 scans of the publicly
available BU3DFE dataset[2] as well as on 400 high-resolution 3D face models
acquired using our own prototypic stereophotogrammetric setup. The accuracy
of the dense correspondence established by our method can not only be used to
improve various applications such as the retargeting of facial shape and texture
or the detection of facial expressions. By providing the basis for fully automated
computation of individual blendshape rigs as well as large-scale statistical face
models, our framework opens up new directions for computer vision tasks, par-
ticularly in the emerging field of consumer devices equipped with 3D sensors.
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Fig. 2: The proposed framework includes two stages for initialization and dense
matching of accurate correspondence. The matching allows to transfer semantic
annotations and a reference mesh to the input data.

2 Related work

Semantic face annotation has been subject of active research in different com-
munities during the last twenty years. The general problem can be stated as
the definition of inter-individually corresponding facial landmarks, ranging from
few landmarks at clear anatomical structures to an arbitrary number of points
covering the entire face, and their identification in raw measurement data. How-
ever, the measurement device and its sensor characteristics affect how accurately
significant features can be located and distinguished from other landmarks as
well as from surrounding facial and non-facial parts.

In the case of 2D images taken with conventional cameras, a great variety of
algorithms exist for the detection of sparse facial landmarks [8]. Usually, locally
significant, intensity-based features around landmark points are extracted from
facial images contained in a database and used to train landmark predictors.
Current methods are able to locate the silhouette of a face, as well as a number
of sparse landmarks reliably from the frontal view in presence of a wide range of
inter- and intra-individual variation even in unconstrained situations [9,10,11,12].
Similarly, for the detection of sparse landmarks on 3D measurement data, knowl-
edge about characteristic geometric properties is gathered from an annotated
database. For instance, in [13,14,15] local quantities like geodesic length, surface
area or curvature measures are employed to learn the relevant features of distinct
facial landmarks for later prediction.

More challenging is the problem of establishing dense correspondence across
the entire face where landmarks cannot be clearly defined by local photographic
or geometric features. Instead, correspondence estimation in regions like the
cheeks or the forehead is usually constrained by means of mathematical objec-
tives. In the case of 2D warping techniques, the topological subdivision of the
facial region into geometric primitives allows the definition of dense correspon-
dence. For example in [16,17], triangular patches covering the facial region are
established and affinely warped to match new landmark positions. These ap-
proaches yield continuous correspondence mappings for the entire face varying
inter- and intra-individually, but suffer from the strong assumption of affine
warps.
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Recent methods that directly operate in the 3D domain take advantage of
the ability to measure distortion of the surface or the embedding space when
deforming a shape into an other. In the computer graphics community, general
non-rigid shape matching approaches have been developed that are based, for
instance, on the as-isometric-as-possible assumption or by measuring the de-
formation energy (e.g . [18,19,20,21] and [22] for a comprehensive survey). A
common strategy often adopted in computer vision tasks is to use spatial warp-
ing techniques, like non-linear variants of the well-known Iterative Closest Point
algorithm (ICP) [23], that deform a template surface into the target e.g . by lo-
cally constraining coherent deformation of the surface (see Coherent Point Drift
for a general technique [24], and [4,5] particularly for faces).

When matching objects of a specific type, like human faces, methods sig-
nificantly benefit from additional prior knowledge that is incorporated into the
matching process. For instance in [14,7], a 3D statistical shape model (SSM) of
the face is fitted to the target. Non-linear ICP is then used to warp the template
to the target in order to project dense correspondence. Similarly in [15], Gilani,
Shafait, and Ajmal combined feature detectors based on geodesic curves with
the fitting of a deformable model to assign dense corresponding points to un-
seen faces. The advantages of these methods are their reliability and robustness,
which make them ideally suited for the automated processing of large databases.
However, the accuracy of the established correspondence is limited, mainly be-
cause of two reasons: (1) The constraints derived from the prior knowledge are
not flexible enough to match individual features, and (2) most approaches only
use the facial geometry for matching.

Alternatively, the problem of face matching can be casted into an image regis-
tration task. Using the continuous parametrization of the target and the template
surfaces, their features can be commonly mapped into the plane (see Figure 3).
In [25], annotated surface patches were matched to a template by mapping both
to the unit circle. Via the common parametrization, dense correspondence was
established to build a statistical shape model of anatomical structures that was
successfully applied in medical image processing [26,27]. Additionally, methods
like Optical Flow can be used to improve dense correspondence between the flat-
tened photographic textures. As appearance varies heavily between individuals,
the method of [28,29] applied a smoothing filter to the estimated flow field to
obtain valid correspondences. By exploiting the temporal dependency between
successive scans recorded with professional 3D video setups, recent work has
shown that highly accurate dense correspondence can be established over entire
facial performances of an actor [30,31,32]. Kaiser et al . [33] as well as Savran and
Sankur [34] proposed variational registration methods employing robust similar-
ity measures on photographic and geometric features. They showed that image
registration methods can be used to successfully establish accurate dense cor-
respondence between individuals. However, variational approaches are typically
prone to converge to undesired local minima or require additional user interac-
tion, which prevents them from being used in a fully automated processing of
large-scale face databases.
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Fig. 3: Matching of a facial surface S to the reference R: Parametrizations ΦS
and ΦR are computed and photometric as well as geometric features are mapped
to the plane. The dense correspondence mapping ΨΦS→ΦR

accurately registers
photographic and geometric features from S and R.

3 Challenges and Overview

The estimation of dense correspondences on human faces is particularly chal-
lenging, mainly due to the following reasons: (1) global facial morphology sig-
nificantly varies between individuals, (2) facial expressions cause large intra-
individual changes in shape and appearance, and (3) large regions like the cheeks
or the forehead provide little information on correspondence between individuals.

To build a fully automated method for accurate dense correspondence estima-
tion on human faces, we propose a novel pipeline that addresses these challenges
by combining the reliability of methods using prior knowledge with the accu-
racy of variational matching based on image registration (see Figure 2). Our key
contribution can be divided into two subsequent processing stages:

1. Given a photographically textured raw 3D surface S, we estimate reliable
initial correspondence using 2D facial landmark detectors and non-rigid fit-
ting of a 3D SSAM to S. The initial correspondence estimates are used to
compute a parametrization for the surface ΦS : S ⊂ R3 7→ R2 that maps fea-
tures into the plane as reliable initial values for variational correspondence
matching.

2. We employ an image registration approach to estimate a mapping ΨΦS→ΦR
:

R2 7→ R2 that optimizes dense correspondence accurately by matching indi-
vidual photographic and geometric features from ΦS to a reference template
ΦR which we call Unified Facial Parameter Domain (ufpd) (see Figure 3).

By using prior information to compute ΦS , our framework accounts for chal-
lenges (1) and (2). The combination of photometric and geometric features with
reasonable constraints which penalize non-isometric deformations during image
registration further helps to define correspondence according to (3) and to accu-
rately match intra- and inter-individual features that have roughly been aligned
in the first stage.

A central concept of our approach is the definition of the planar ufpd ⊂
[0, 1]2 (see subsection 4.1). We propose the ufpd as the reference template do-
main ΦR aggregating all relevant information for robust and reliable optimization
of the dense correspondence mapping ΨΦS→ΦR

. Similar to the template provided
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Fig. 4: Left: Our prototypical stereophotogrammetric setup. Right: Facial land-
marks detected in a frontal view using implementations of [35] and [11]. The set
of landmarks used for SSAM fitting and parametrization are marked in green.

by face SSMs, we learn significant geometric and photometric features in the
ufpd from our high-resolution face database, that serves as the reference dur-
ing the variational matching stage. Using the inverse of ΨΦS→ΦR

, we are able to
transfer a dense corresponding mesh to the surface S via Φ−1S ◦ Ψ

−1
ΦS→ΦR

◦ ΦR.

4 Method

This section describes the main parts of our matching framework. The data is
acquired with our prototypical stereophotogrammetric setup using eight DSLR
cameras (six Nikon D800E, two Nikon D810, 36MP each) in four stereo-pairs, and
two flashes (Elinchrom 1000) arranged in a semicircular arc around a common
focal point. We employed the method of Beeler et al . [36] for stereo-matching
and Poisson surface reconstruction [37] to obtain detailed facial surfaces. High-
resolution photographic textures are seamlessly composed by Poisson image edit-
ing [38]. Before describing the processing stages for new facial surfaces in detail,
we define the ufpd as follows.

4.1 The Unified Facial Parameter Domain

A key strategy of our framework is a Unified Facial Parameter Domain (ufpd),
that serves as a flattened facial template during variational matching similar to
[28]. As the ufpd ⊂ [0, 1]2 represents inter- and intra-individually varying faces,
we propose to learn significant photometric and geometric facial features from a
representative database.

Initially, a reference parametrization ΦR of the average face of the Basel Face
Model (BFM, see [4]) has been computed employing the QuadCover method pre-
sented in [39] as it minimizes isometric distortion. Using ΦR, the set of sparse
facial landmarks provided by the 2D landmark detectors as described in sub-
section 4.2 is marked on the average face and mapped to the ufpd accordingly.
As the BFM only provides low-resolution vertex colors, we have computed an
average photographic texture (16MP resolution) from the high-resolution face
database acquired with our own setup by projecting the initial parametrization of
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Fig. 5: The unified facial parameter domain: average photographic texture with
the set of sparse landmarks (a), the same texture overlayed with its correspond-
ing weight map (b) and the curvature where values are mapped to a normalized
gray scale ranging from black (min) to white (max) (c).

the fitted BFM to the facial surfaces (see subsection 4.2). The rendered textures
were then median-averaged to retain sharp edges and salient features around
anatomical structures like the eyes. We use mean curvature as the geometric
feature of each surface during surface matching. To avoid unwanted influence of
non-corresponding high-frequency features like facial hair or small wrinkles, all
surfaces were filtered using Laplacian surface smoothing. According to the gen-
eration of the photographic texture, the averaged mean curvature images were
mapped to the ufpd (see Figure 5).

To account for the specific value of the photometric and geometric features in
various facial regions during dense correspondence optimization, we have defined
weight maps in the ufpd. The photometric texture is particularly informative
in the regions around the eyes, eye-brows, and mouth because they clearly sepa-
rate skin from other anatomical structures. Similarly, the color of the nostrils is
highly valuable for matching due to its high contrast to the skin tone. The geo-
metric features are matched on the entire facial surface except the outer hairline,
because this region varies heavily between individuals and disrupts the matching
procedure.

Together the set of sparse landmarks, the textures and the weight maps define
the ufpd as shown in Figure 5. Note that the particular definition of ufpd is
done once in advance and is independent of the proposed approach. In principle,
the parametrization of the ufpd is extensible and can simply be adopted to
different scenarios. Additional features or weight maps used for dense matching
can easily be integrated.

4.2 Initial Estimation of Facial Landmarks

The detection of sparse facial landmarks is done on the frontal view of a face
using two state-of-the-art algorithms (see Figure 4). The method of Kazemi and
Sullivan [11] employs cascades of weak learners, which showed to be more ac-
curate in detecting landmarks with respect to individual morphological features
and facial expressions. STASM provided by Milborrow and Nicolls [35] fits a
statistical shape and appearance model to the image data and appeared to be
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a b dc

Fig. 6: For model fitting to (a), the SSAM is first rigidly aligned using 3D land-
marks (b) and fitted to the data (c). The resulting SSAM instance as shown in
(d) roughly matches the facial features (mouth, nose or eyes).

more robust. Both methods detect 68 and 77 facial landmarks in frontal faces,
respectively. We combined a set of well-defined landmarks faithfully predicted
by both approaches for further processing (Exo- and Endocanthion, Pronasale,
and Cheilion).

Dense correspondence is further estimated using an SSAM fitted to the raw
3D data similar to [7] (see Figure 6). Since we desire a combination of shape
and color information for better alignment of significant structures like the eyes
or mouth, we implemented a fitting routine using the BFM. The sparse facial
landmarks are used to estimate the initial parameters of the similarity trans-
form aligning the SSAM with the raw data by performing a single ICP step [23].
Starting with the average face of the BFM, new shape and intensity parame-
ters P = (PS ∈ Rm, PI ∈ Rn) are obtained as the maximum-aposteriori es-
timates employing a centered isotropic Gaussian prior with hyper-parameter
σ = (σS , σI) according to

p(P |C) ∼ p(C|P ) p(P |0, σ), (1)

where C ⊂ N×N×R is our set of robust landmarks between the SSAM and the
point cloud with an additional weight assigned. For color estimation, correspon-
dence is established by nearest-neighbour lookup, while for shape estimation,
points are also matched by similar colors. Data likelihoods p(C|P ) are defined
as isotropic Gaussians according to their Euclidean distance by

p(C|P ) =
∏

(ı,,β)∈C

N (xı|m, β), (2)

where xı are positions or colors of the point cloud and m of model vertices.
Varying point density in both, the BFM as well as the target, introduces a bias
into the data likelihood p(C|P ) (e.g . high vertex density around the cheeks in the
BFM). We therefore determined the correspondence weights β to be the inverse
sum of both frequencies, in which each point occurs in the set of correspondences.
Correspondences are determined in each optimization step and new parameters
for shape and intensity are estimated using the solution of the system of linear
equations with Tikhonov regularization (see [40]) equivalent to Equation 1.



Fully Automated and Highly Accurate Dense Correspondence 9

a c

Fig. 7: Initial parametrizations ΦS for a sad expression computed without any
soft-constraints (a), with constraints for the inner vertices V ◦ (b), and addition-
ally combined with facial landmarks L (c). Note that the latter already aligns
features to the ufpd nicely (d).

4.3 Computation of the Initial Parametrization ΦS

Because variational methods are prone to convergence to local minima, we pro-
pose a method to estimate the initial parametrization ΦS , such that it roughly
aligns with features of the ufpd. We constrain the computation of ΦS using the
sparse facial landmarks and the reference parametrization ΦR projected from
the fitted SSAM.

The set of sparse facial landmarks on S is used to match the corresponding
positions xı as defined in the ufpd. Nearest vertices on the surface mesh S =
(V,E) are determined and a set of labeled correspondences L = {(vı, xı) | vı ∈
V, xı ∈ ufpd} is assembled. Using the projected reference parametrization ΦR,
the facial region on S is segmented and non-facial parts that map outside the
ufpd are discarded. We fix the boundary of the facial region as defined by ΦR
to its corresponding position in the ufpd. Similarly, the inner vertices are soft-
constrained to their positions as defined by ΦR. Two separate sets are determined
by K∂ = {(vı, yı) | vı ∈ V ∂ , yı ∈ ufpd} for the boundary vertices V ∂ of S and
K◦ for the inner vertices V ◦ = V \V ∂ .

To compute ΦS while accounting for the soft constraints defined by the land-
marks L and the inner vertices K◦ as well as the fixed boundary K∂ of the
facial surface, we adopt the approach of convex-combination maps [41]. Here,
the mapping of vertices is expressed as a weighted sum of its 1-ring neighbors:

u(vı) =
∑

∈N1(vı)

λıu(v). (3)

To keep geometric distortion minimal, λı is calculated as the mean value weight
defined in [42] while the boundary vertices are constrained according to K∂ . By
rewriting Equation 3 as a linear least squares problem in the mapped coordinates
of the inner vertices u(V ◦), the soft constraints

α

|L|
∑

(vı,xı)∈L

‖u(vı)− xı‖2 +
β

|K◦|
∑

(vı,yı)∈K◦

‖u(vı)− yı‖2 (4)
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can conveniently be added, where α, β are weighting factors accounting for the
influence of the soft constraints. The solution of the equivalent sparse system of
linear equations in V ◦ gives the desired mapping ΦS (see Figure 7).

4.4 Variational Matching for Accurate Dense Correspondence

Dense correspondence of S is improved using a variational approach for sur-
face matching inspired by the work presented in [18,33,34]. The initial surface
parametrization ΦS allows us to map arbitrary features of S into the plane. We
can then use off-the-shelf image registration frameworks that allow us to combine
robust similarity measures with reasonable regularization terms into a common
objective for optimization of the correspondence mapping ΨΦS→ΦR

.

To measure the similarity between photographic and geometric features, we
use two data terms accordingly defined to the weight maps in the ufpd (see Fig-
ure 5, b and c). Several image metrics have been investigated (e.g . sum of squared
differences, flavors of mutual information, gradient metrics) and we found an ad-
vanced version of Normalized Cross Correlation (NCC, see [43]) to be well suited
for our purpose. As a correlation measure, the advantage of NCC is its robustness
to changes e.g . in lightning or exposure as well as individual facial characteristics
like skin tone that vary significantly with respect to the ufpd.

To regularize the correspondence mapping ΨΦS→ΦR
in regions with less sig-

nificant facial features, we use a regularization term similar to [34]. This term,
called orthonormality criterion Poc as defined by equation (7) in [44], employs
the Green-Lagrange strain to measure isometric distortion. Additionally, local
foldings of ΨΦS→ΦR

are avoided by the bending energy Pbe as defined by Klein
and Staring [43].

We discretized the correspondence mapping ΨΦS→ΦR
∈ F , where F is the

space of cubic B-spline transformations with 1282 basis functions located on a
uniform regular grid covering the ufpd. The objective used to solve the image
registration therefore becomes:

O(u) =

∫
ufpd

wbePbe(u, x) + wocPoc(u, x)dx

+

∫
ufpd

mP (x)NCC(PS(u(x)), PR(x))dx

+

∫
ufpd

mG(x)NCC(GS(u(x)), GR(x))dx,

(5)

where mP (x),mG(x) are weight maps of the photometric (PS , PR) and the geo-
metric (GS , GR) features from S and the ufpd. The optimization of Equation 5
was implemented using elastix, a framework for rigid and non-rigid image reg-
istration [45]. A multi-scale approach for both, the discretization of the corre-
spondence mapping and image resolution is used during optimization. We employ
quasi-Newton L-BFGS optimizer including line-search for faster convergence.
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Fig. 8: Close-up of the photometric (eyes) as well as the geometric features (nose
area) before (upper row), and after (lower row) dense correspondence has been
optimized. ufpd and the individual features are overlayed using a chessboard
pattern as indicated by S,R. Note the accurate correspondence between charac-
teristic morphological structures.

5 Experiments and Results

We built a database consisting of 400 facial surfaces aquired with our stereopho-
togrammetric setup as described in the beginning of section 4. We tested the
proposed framework on our database because it contains highly detailed re-
constructions including high-resolution photographic textures comparable to 3D
models acquired with state-of-the-art stereophotogrammetric devices. We refer
the reader to the supplementary material provided with this paper for a collec-
tion of representative surfaces from our database.

We also run extensive experiments on all 2500 cases of the BU3DFE database
[2]. This database contains 3D models of 100 persons varying in sex, age and
ethnicity. The faces are captured in neutral position as well as 6 basic emotions
of the Facial Action Coding System [46] in 4 levels of intensity. An initial surface
reconstruction using [37] was done to close holes or remove meshing artifacts
frequently contained in the raw data (e.g . below the chin). All data was processed
in a fully automatic fashion.

During initial correspondence estimation in the first stage of our frame-
work, sparse facial landmarks were reliably located at the expected positions in
the 2D images. In some cases, especially in presence of extreme expressions or
when the camera perspective significantly differs from the frontal view, facial
landmark detection was less accurate. However, the combination of landmarks
from both detectors is generally reliable and serves as valuable information in
further processing. During fitting of the SSAM, the incorporation of color in-
formation improves the registration to structures like the mouth, eyes, and eye-
brows where geometric information is less significant. Unfortunately, the BFM is
build from a dataset containing neutral expressions only and it fails to adapt to
strong variations in shape of the mouth or the eyes. To avoid implausible results
in case of expressions, we gave high weight to the prior distribution in shape
space and chose σ = (10, 1) in Equation 1.
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anger

fear

disgust

happy

surprise

Fig. 9: Results for several expressions from the BU3DFE. Note the accurate
dense correspondence established over the entire surface. The red dots indicate
the location of landmarks used for quantitative evaluation.

For the same reason, the initial surface parametrization ΦS was computed
with higher weight given to the set of landmarks L than to the inner vertices
V ◦ with α = 1, β = 0.001. Theoretically, the constraints that we have added
to Equation 4 might lead to non-injective parametrizations (see [41] for a dis-
cussion). In practice, we did not find any cases were this occurred. The initial
parametrizations obtained are roughly aligned with the ufpd and served as suit-
able starting values for the optimization of dense correspondence (see Figure 7).

The dense correspondence mapping accurately registers photographic
and geometric features with the ufpd (see Figure 8). We fixed weights wbe = 150
and woc = 2 to ensure bijectivity of ΨΦS→ΦR

and to reasonably constrain match-
ing in regions with less significant features. To quantitatively evaluate our ap-
proach, we measured the deviation of landmarks distributed with the BU3DFE.
Corresponding landmarks were defined in the ufpd and identified accordingly
on the original surfaces after matching. Landmark-wise Euclidean distance was
computed and averaged (see Table 1). Using the proposed framework, we were
able to predict the landmarks with higher accuracy than previous approaches
(except Pronasale in [13] where about 200 cases have been discarded). More-
over as depicted by the standard deviations, the prediction-uncertainty has been
significantly reduced.

In fact, using the surface mapping established with our approach, we are
able to predict any number of landmarks or mesh vertices that are identified
in the ufpd. Here, we used a low-level reference mesh of about 15k vertices
as it is sufficient for the resolution available in BU3DFE. We have segmented
facial regions in the ufpd and generated a color-coded texture overlayed with
a chessboard pattern. The result for several facial expression scans of a single
individual is shown in Figure 9.

Finally, the reference mesh was transferred to all surfaces of the BU3DFE.
To demonstrate the suitability of our approach for morphological analysis and
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Table 1: Localization error on the BU3DFE database (for landmarks see Fig-
ure 9). The improvement with respect to the best result from previous work is
reported in the last column.

Segundo et al .
[13]

Salazar et al .
[14]

Gilani et al .
[15]

This paper

Mean SD Mean SD Mean SD Mean SD impr.

Ex(L) - - 9.63 6.12 4.42 2.74 2.95 1.93 33.3%
En(L) 6.33 4.82 6.75 4.54 4.75 2.64 3.04 1.75 36%
Ex(R) - - 8.49 5.82 4.35 2.70 3.22 2.18 26.0%
En(R) 6.33 5.04 6.14 4.21 3.29 2.67 3.23 1.86 1.80%
Sn - - - - 3.90 3.26 1.97 1.06 49.49%
Prn 1.87 1.12 5.87 2.70 2.91 2.03 2.05 1.21 -9.63%
Sbal(L) - - - - 4.86 2.80 2.37 1.37 51.23%
Sbal(R) - - - - 3.57 2.59 2.47 1.29 30.81%

generation of statistical face models, we have build two SSAMs using Principal
Component Analysis (PCA) on the vertex positions and the photographic tex-
tures of the 3D face models. The first SSAM contains the geometric variation
related to the inter-individual morphology using the neutral scans only. The
second model captures the intra-individual variations due to facial expressions.
We have simply computed displacement vector fields for the expressions with
respect to the neutral scan of each subject and applied it to the average face
of the first SSAM using vertex correspondence. Note the morphological varia-
tion captured by the shape parameters in Figure 10. The chessboard pattern is
accurately morphed when the shape varies.

6 Limitations and Future Work

In some rare cases of extreme expressions, we found that matching in the mouth
and the forehead region is disturbed by folds, e.g . by matching them to other fea-
tures like the eyebrows. Special detectors could be used to remove these features
from textures. Similar strategies could be integrated to handle severe changes
in surface area/topology by an open mouth or closed eyes. In the future, we
will use the BU3DFE-SSAM instead of the BFM because it already contains
several expressions and thus better adapts to an individual morphology. A Rie-
mannian variant of the BU3DFE-SSAM will be established, as non-linear shape
spaces have been shown to be superior to PCA based models e.g . for learning
relationships between shape and expressions.

The variational matching in the plane comes at the cost of geometric dis-
tortions introduced by the parametrization. As the proposed framework is inde-
pendent of the actual ufpd, improved definitions will be investigated in further
experiments. Similarly, we aim in learning the parameters used in our frame-
work from an annotated ground truth database to further improve accuracy and
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Fig. 10: The BU3DFE-SSM. Left: the face shape according to ±2SD of the first
three shape parameters of the neutral model. Middle: The average neutral face.
Right: The first three shape parameters (±2SD) of the expression model.

robustness of automated data processing. The run time of the framework highly
depends on the resolution of the input data. In our experiments, we measured
times between 0.5 and 3 minutes on a standard workstation without optimizing
our code. We believe that the computation time could be significantly reduced
if certain routines are implemented more efficiently and by employing computa-
tional parallelism.

7 Conclusions

We have presented a framework for the fully automated determination of highly-
accurate dense correspondence for facial surfaces. We showed that the proposed
approach works well on a wide range of textured 3D face models varying inter-
and intra-individually. Our approach outperforms state-of-the-art methods as
confirmed by our experiments. To the best of our knowledge, no SSAM of faces
based on a variety of facial expressions with dense correspondence has been
released to the research community yet. We are aiming to publish the BU3DFE-
SSAM and believe, that this model including geometric as well as photomet-
ric variation will help researchers to understand the complex nature of facial
morphology. The proposed framework will help to build the next generation of
highly-detailed 3D face models on a large scale basis and thus opens up new
directions for applications in computer vision and computer graphics.
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