
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

MATTHIAS NOACK1, FLORIAN WENDE1,
GEORG ZITZLSBERGER2, MICHAEL KLEMM2 AND

THOMAS STEINKE1

1ZUSE INSTITUTE BERLIN

2INTEL DEUTSCHLAND GMBH

KART
–

A Runtime Compilation Library for
Improving HPC Application

Performance

ZIB Report 16-48 (October 2016)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

KART – A Runtime Compilation Library for
Improving HPC Application Performance

Matthias Noack∗, Florian Wende∗, Georg Zitzlsberger†, Michael Klemm† and Thomas Steinke∗
∗Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, Email: {noack, wende, steinke}@zib.de

†Intel Deutschland GmbH, Email: {georg.zitzlsberger, michael.klemm}@intel.com

Abstract—The effectiveness of ahead-of-time compiler opti-
mization heavily depends on the amount of available information
at compile time. Input-specific information that is only available
at runtime cannot be used, although it often determines loop
counts, branching predicates and paths, as well as memory-access
patterns. It can also be crucial for generating efficient SIMD-
vectorized code. This is especially relevant for the many-core
architectures paving the way to exascale computing, which are
more sensitive to code-optimization. We explore the design-space
for using input-specific information at compile-time and present
KART, a C++ library solution that allows developers to compile,
link, and execute code (e.g., C, C++, Fortran) at application
runtime. Besides mere runtime compilation of performance-
critical code, KART can be used to instantiate the same code
multiple times using different inputs, compilers, and options.
Other techniques like auto-tuning and code-generation can be
integrated into a KART-enabled application instead of being
scripted around it. We evaluate runtimes and compilation costs
for different synthetic kernels, and show the effectiveness for two
real-world applications, HEOM and a WSM6 proxy.

I. INTRODUCTION

Many C, C++, and Fortran HPC applications are general-
ized solutions for their respective domains. They typically
implement a wide range of algorithms that are meant to be
applicable for many different workloads or combinations of
input sets. Whilst the applications grow with adding more
methods and features there is also a growing demand for
applying a subset of methods to restricted workloads. Such
use cases do not require the full complexity and flexibility of
the original implementations. Hence users strive for optimiz-
ing their (limited) workloads by tuning the implementations.
This starts with algorithmic optimizations, delivering different
implementations of the original algorithm, such as reducing
dimensions or replacing algorithms that work better for smaller
problem sizes. To give a few examples, for the WSM6 proxy
code [1], the authors provided constants at compile time and
achieved a more than 40% performance gain on the Intel R©

Xeon Phi
TM

coprocessor (former codename Knights Corner,
KNC). For the DL MESO code it was recently demon-
strated [2] that if increasingly more source code constants
are known at compile time a performance improvement of
more than five times can be achieved by enabling better SIMD
optimizations for the compiler’s auto-vectorizer.

At some point in this process, implementations in source
code are specific enough to be further optimized by compilers.
Compilers typically do not apply algorithmic optimizations
that change the semantics, but they have a rich set of op-

timizations to enhance code generation. However, compiler
optimizations for C, C++, and Fortran can only be applied
upon the provided algorithmic implementations and need to be
general and adhere to language standards. Knowledge about
the runtime context of a unit of code would allow to optimize
for specific memory access strides, eliminate conditional code,
or apply workload-dependent loop transformations.

A typical approach to remedy this is to apply multi-
versioning, that is, generating multiple specialized instantia-
tions of the same function, loop, or code fragment. This can be
achieved by a programmer using dedicated implementations,
like C++ template specializations, or preprocessor macros, for
example. Compilers can also emit versioned code to handle
aligned versus unaligned data, to create different code paths
for different instructions sets (e.g., Streaming SIMD Exten-
sions and Advanced Vector Extensions), or to avoid SIMD
vectorization for too small loop trip counts, to just name
a few. Because multi-versioning can dramatically increase
the code size, compilers usually only generate a few code
versions and provide a general fallback code path. For the
large combinatorial space spanned by the potential inputs of
an HPC application, multi-versioning becomes ineffective.

Programmers can try to help the compiler by adding compi-
lation hints (e.g., pragmas/directives or attributes) to limit the
amount of code versions. But even if a programmer provides
different implementations there are limits. Optimizations can
only be applied for a small set of categories of workloads,
and also lead to code size increase which can make an
implementation harder to maintain. While it is quite simple to
provide different optimizations for different dimensionality of
input data sets, it is much harder to do so for different memory
access patterns, access strides, or loop trip counts. There are
far too many different goals to optimize for, and grouping
them into categories for directed optimization is hard.

The main contributions of this work are the exploration of
the design space for exploiting runtime data for compiler op-
timization, a light-weight, flexible runtime-compilation frame-
work (KART), and its evaluation. Our solution is to recompile
algorithms (kernels) during the runtime of an application,
thereby optimizing within the current context of kernel execu-
tion. This especially allows to optimize for values that manifest
as constants during runtime but were not known at compile
time. KART is general enough to benefit a wide range of
applications without being limited to a certain back-end. The
approach is particularly relevant for many-core architectures

like the Intel Xeon Phi (co)processor, whose microarchitecture
is more sensitive to code-optimizations.

For frequently used kernels, we show that the improved
optimization outweighs the runtime compilation overhead.
We also regard this approach as a solution for OpenMP [3]
applications to benefit from the same dynamic recompilation
advantages that OpenCL

TM
[4] and CUDA [5] provide.

II. RELATED WORK

In the following section we will exclude work which is
focused on just-in-time compilation for interpreter or scripting
languages (e.g., Python, Perl, Lua). We are aware that Java and
Microsoft’s .NET Framework rely on JIT compilation for high-
speed code execution, but both have still a small representation
in the HPC domain.

The LLVM compiler infrastructure [6] includes a JIT
code generation system which supports various CPU archi-
tectures, and provides a foundation for just-in-time compi-
lation projects. For the QCD application domain, the QDP-
JIT/LLVM approach [7], which extends the ideas of QDP-
JIT/PTX [8], uses C++ expression templates to implement
LLVM IR code generators that emit executable code via
the LLVM JIT component. In Julia, the language design is
combined with the high-performance LLVM-based JIT com-
piler [9], [10]. This enables code generation that comes close
to the performance of a C implementation.

The LIBXSMM library [11] for small dense matrix-matrix
multiplications enables static and JIT code generation for
Intel R© Xeon R© processors and Intel Xeon Phi (co)processors.
While the basic ideas of LIBXSMM are similar to our proposal
in that it specifically compiles kernels for a particular target
architecture, it only supports sgemm and dgemm with restricted
alpha and beta inputs.

In the context of MPI communication, Schneider et. al. [12]
demonstrate that through runtime compilation of (un)pack
functions for non-contiguous data in MPI an order of magni-
tude better performance can be achieved over the interpretation
scheme found in today’s MPI implementations.

In contrast to the specialized solutions above, our approach
is more general, as it applies to arbitrary code and allows use
of different C, C++, and Fortran compilers.

III. DESIGN SPACE

A. Recompile Everything

The most straight-forward approach to using input-specific
data as compile-time constants would be to simply recompile
the whole application for each set of input data. It completely
avoids the complexity of additional compilation at runtime
and enables the compiler to apply cross-module optimization
techniques like whole-program optimization. However, large
parts of the code are typically not performance critical and
recompiling them would introduce a prohibitive compilation
overhead that grows with the size of the code base and
optimization levels. For large codes with compile times in the
range of hours, this is a significant impact on time-to-solution
and renders quality assurance procedures less feasible.

An important question for this approach is: How to acquire
the needed data from the input at build time? Typically,
reading and parsing of input data is done at runtime during
the initialization phase. So some application code has to be
executed to get the data required for building the application.
To break this circular dependency, an input parser would be
required to analyze the input data and to provide the necessary
constant values before the build process can be started.

A concern for some developers, e.g., of commercial codes,
might also be that binary releases of applications (or libraries)
would still require to contain the runtime-compiled code
sections as source.

B. Pre-instantiate Code for all Cases

A different approach would be to prepare for a potential
and classified set of inputs. Performance critical functions
would be instantiated or specialized multiple times with dif-
ferent classes of compile-time constants when compiling the
application. This is similar to what some compilers already do
when generating multiple versions of functions or loops, e.g.
to provide both a scalar and a vectorized version. Such multi-
versioning is bound by combinatorial effects of the parameter
space and for all input variables their numerical domain needs
to be known at compile time.

One manual implementation approach is to use C++ tem-
plates with desired constants as template parameters, i.e.
classification of values. Those can be explicitly instantiated
to collect the resulting function pointers in a map with their
classification as the key. Additionally, a fall-back implemen-
tation without compile-time constants but a set of additional
parameters could be provided. At runtime, the calling code
uses actual values from the input to select the appropriate
function template specialization, or a fall-back if no suitable
instantiation was found. For dimensions of domains this might
be applicable as those are typically limited. However, optimiz-
ing for different sizes becomes infeasible if their values cannot
be restricted to a small amount of classes.

C. Call a Compiler Library at Runtime

Another solution that is already commonly used and in-
spired this work is OpenCL that aims for portability across
heterogeneous compute devices, such as CPUs, GPGPUs, Intel
Xeon Phi (co)processors, or FPGAs. It divides the application
into host code for a host processor and device code that
runs on a compute device and is compiled at runtime. This
enables portability, but can also be used for passing runtime-
data from the host program into the compilation of the
device code. Previous work has shown that there can be a
performance benefit when compile-time constants are known
to the OpenCL compiler [13]. Since recently, Nvidia’s CUDA
GPGPU framework provides similar means [14].

Porting an existing (HPC) application to OpenCL is a major
effort and requires rewriting code using OpenCL’s kernel
language, explicitly managing kernel invocations and memory
transfers between host and compute device.

2

application

KART

dynamic
symbols

kernel
sources

kernel
source

files

app.
input

comp.
time

consts

1

dynamic
library

loaded
library

kernel bar

kernel foo

. . .

// kernel call site
kernel foo = get kernel(. . .);
kernel foo(. . .);
. . . 4

5

linkercompiler

2
3

Fig. 1. Schematic of KART: 1) Compile-time constants derived from the
input, and kernel source code are passed to KART. 2) KART starts a system
compiler and linker to create a dynamically linked library. 3) The library is
dynamically linked into the application. 4) The application queries KART
using the kernel’s function name to get a callable function pointer. 5) The
kernel is invoked.

OpenMP supports heterogeneity but is limited to one code
version and does not provide runtime compilation. C, C++,
or Fortran compilers do not expose a library API that could
be used in an OpenCL-like fashion. LLVM with its modular
architecture would be a viable basis to implement such a mech-
anism. The major drawback of an LLVM-based solution is
the limitation to mere LLVM optimization abilities. OpenMP
support of LLVM is still not complete, although catching up
fast [15], [16].

D. Call Arbitrary Compilers at Runtime

A more abstract and flexible solution is to provide an API
to use any installed command-line compiler from within the
application and then incorporate the resulting object code into
the running program. Being close to the OpenCL model,
it yields the highest flexibility, as any compiler, even for
different languages, can be used. It can defer the compilation
of performance critical-code sections until execution time
and apply the best-optimizing compiler for a specific code
fragment and target architecture, or to multi-version a kernel
using different compilers and apply auto-tuning. Also different
(hand-written) implementations of the same kernel can be
used. As such, optimization is not only defined by compiler
capabilities and varying compile-time constants, but also by
the user at algorithmic level. Kernels can be supplied in lan-
guages different from the one chosen for the host application,
which increases the flexibility, e.g., by using C SIMD intrinsics
within a Fortran application. This is the approach we have
chosen for the solution presented in this paper.

IV. THE KART LIBRARY

A. Design and Implementation

KART provides application developers with the means to
compile and use pieces of code at runtime with a minimal
amount of overhead and maximal flexibility. KART resembles
a minimal build system with a library interface.

KART offers a slim API to compile a code fragment given
either as a text string or a source file, and to call the result
after compiling the code. KART is implemented in C++ using
several Boost libraries [17] and provides APIs for C, C++, and
Fortran, so far.

The intended flexibility to use any compiler requires the
invocation of command-line compilers and linkers in separate
processes at runtime to create a shared library from a given
source code. Subsequently, the resulting library is linked to the
running program via dlopen(), and the contained functions
can be accessed and executed using their (symbolic) name.
Compile time constants can be integrated into the runtime-
compiled code by either generating the corresponding lines
before passing the code to KART, or can be specified using
compiler command line options (e.g., -DNAME=VALUE) for
which KART provides an interface, too. Figure 1 illustrates
the basic working principle of KART.

Figure 2 shows a class diagram containing the C++ API
of KART together with its abstractions. The API provides
a toolset abstraction that encapsulates the specification of a
compiler and linker command, as well as different sets of
options for these commands. Toolsets are defined in small
configuration files. A default toolset file can be set via an
environment variable. Once a toolset object is created from a
configuration file, additional options can be specified, e.g., to
add constant definitions.

The second main abstraction is the program, which is
constructed from either a string or a file containing the source
code. The program is then built using the selected toolset
and once built, callable function pointers can be acquired by
specifying a name, and optionally a signature to ensure type-
safety in C++. The application must know and use the correct
signature of the called kernel.

Already built programs can be rebuild with a different
toolset. This is more efficient than creating new program
objects from the same source. The motivations behind this
functionality are auto-tuning and benchmark codes that apply
many configurations to the same code. Another use-case is
applications with temporary run-time constants, for instance
loop trip counts or sizes of data structures that may change
after a load-(re)balancing step between compute nodes.

A rebuild invalidates existing pointers, which is handled
by using smart function pointers (called kernel ptr). These
pointers are callable objects that are transparently used like
a function with negligible overhead. Each kernel ptr is reg-
istered with its corresponding program on construction, and
unregistered on destruction. This allows the program object
to update all pointers after a rebuild has been performed.
When a program goes out of scope, all registered objects are
invalidated to prevent scoping errors.

In order to cover the most relevant languages for HPC
applications, there is also an API for C and Fortran. The C API
is a wrapper around the C++ implementation that uses opaque
handles and functions, instead of objects and methods. The
Fortran interface is a set of bindings for the C API.

Internally, KART uses the POSIX calls dlopen(),

3

1
0..*

0..*

0..1

toolset

. . .
toolset(const string& config file name)

get compiler options() : const string&
set compiler options(const string&) : void
append compiler options(const string&) : void

get linker options() : const string&
set linker options(const string&) : void
append linker options(const string&) : void

program

. . .
program(const string& src)
create from file(const std::string& file name) : program
create from binary(const std::string& file name) : program

build(const toolset& ts) : void
rebuild(const toolset& ts) : void
get build log() : const string&

get kernel〈Sig T〉(const std::string& name) : Sig T
get kernel ptr〈Sig T〉(const std::string& name) : kernel ptr〈. . . 〉
get binary file name() : const std::string&

kernel ptr

. . .
operator(Args. . .) : Ret

Ret, Args. . .

Fig. 2. This simplified class diagram depicts the main abstraction of KART,
their relation, as well as the basic C++ API. toolset class encapsulates the
compiler and linker command line tools, and their corresponding options.
The program class is used to build source code using a toolset, or from an
already built library. Callable kernel objects can either be acquired as raw
function pointers, or safer kernel ptr objects.

dlsym(), and dlclose() for interfacing with the gener-
ated shared libraries. This allows the use of different compilers
and even languages within the same application—as long as
the resulting libraries are binary compatible. The application,
as well as the runtime-compile code can be still statically
linked. There are some ABI-based constraints, especially when
combining compilers of different major versions, but we have
not found any issues when combining the typical GNU, Intel,
and LLVM/clang compilers for C, C++, and Fortran. Whereas
C and C++ have a fixed ABI on Linux, it can be problematic
to mix different Fortran compilers. It is recommended to use
the Fortran ISO-C bindings to have a common ABI.

GNU-compiled C/C++ applications can use the most recent
Intel R© C++ Compiler to generate performance-critical code
using its vectorization capabilities in addition to the input-
specific compile-time constants. Fortran codes could use a
C/C++ compiler to facilitate manual vectorization for kernels
via C SIMD intrinsics, for instance. In addition, a benchmark
or auto-tuning code could automatically evaluate different
compilers and sets of options, e.g., for different optimization
levels, pre-fetching settings, or numerical precision levels.

Paths and names for temporary files can be configured using
environment variables or the API, respectively. The internally
generated library binaries can be acquired from the program
object, and a program object can be initialized by a pre-built
shared library. This provides the flexibility needed to deal with
various application architectures found in the HPC context, for
instance, coprocessor offloading, message passing, or complex
tool pipelines.

#include "kart/kart.hpp"

// signature type
using my_kernel_t = double(*)(double, double);
const char my_kernel_src[] = R"kart_src(
extern "C" {

// original function
double my_kernel(double a, double b)
{ return a * b * CONST; }

})kart_src"; // close raw string literal

int main(int argc, char** argv)
{
// create program
kart::program my_prog(my_kernel_src);
// create default toolset
kart::toolset ts;
// append a constant definiton (runtime value)
ts.append_compiler_options(" −DCONST=5.0");
// build program using toolset
my_prog.build(ts)
// get the kernel
auto my_kernel =

my_prog.get_kernel<my_kernel_t>("my_kernel");

/* ... application code ... */

// call the kernel as usual
double res = my_kernel(3.0, 5.0);

/* ... application code ... */
}

Fig. 3. This example shows how to embed a kernel as source code, and
compile it at runtime using KART. The highlighted lines show what is needed
to introduce KART. Raw string literals, as provided by C++11 can be used to
embed source code without having to escape some characters.

B. Usage

KART was designed with ease of use in mind. Figure 3
shows a simple example, where the function my_kernel
is compiled at runtime. For a single function, wrapping the
original code into a raw string literal, as shown in the example
above, is sufficient. Using an extern "C" block makes sure
the kernel’s name does not get mangled by the compiler and
can be used directly. However, if the needed source code
already is a separate compilation unit or gets larger, it is more
convenient to use source files instead of embedded strings.

There are two ways to specify dependencies and other
compile/link options: toolset configuration-files, intended for
the compiler and the host-specific part (often non-portable),
and methods called at runtime for the application-specific part.
This way, the source code remains portable.

For existing code, the most convenient way of integrating
runtime compilation would be a directive-based approach,
where code is simply annotated as runtime compilation target.
A mechanism like the one provided by KART could become
part of a widely accepted and standardized programming
model like OpenMP in a future version. However, this would
mean giving up the flexibility to use any compiler and the
library-only implementation.

1) Adapting existing code: When adapting a code, the best
method is identifying hotspots whose index computations,
memory access patterns, loop counts, and branching predicates
depend on input data. Once identified, it can be recompiled
using compile-time constants for a few inputs to estimate the

4

potential gain before restructuring the code. The runtime gain
determines an upper bound for the acceptable compilation
overhead. The process is very similar to adapting an appli-
cation for offloading to an accelerator—without the need to
rewrite kernels in another language and optimize them for the
accelerator’s architecture.

The intrusiveness of incorporating runtime kernel compila-
tion into an existing code base depends on the current code
structure, as the build-time and run-time compiled source
needs to be separated. For a well-structured code base, this
means identifying the compilation units and adding the KART
API calls into the application’s initialization phase.

Most build systems provide a verbose mode that prints out
the compile and link commands used. That is the natural
starting point to generate a toolset specification for KART
that include necessary flags and dependencies. In a second
step, the dependencies can be minimized, and compile flags
further optimized to improve compilation and runtime of the
kernel, respectively.

The following sections describe how KART can be used in
different HPC application patterns.

2) Coprocessors: Applications for the Intel Xeon Phi
coprocessor often use an offload programming model like
OpenMP or Intel’s LEO (Language Extensions for Offload).
In such a setting, KART can be called prior to the offload
to cross-compile the coprocessor code leveraging the better
single-thread performance of the host CPU. For the first-
generation of Intel Xeon Phi coprocessor (Knights Corner),
cross-compilation is even mandatory, as there is no highly
optimizing compiler available running natively on the copro-
cessor.

KART allows the developer to specify the directory and
file name for the created binary, which in turn allows using a
shared file system for direct access. The offload only needs the
path to the binary as an argument, from which a KART pro-
gram object can be created inside the offloaded code. Within
a more flexible offloading framework, like HAM Offload [18],
a reverse offload from a native coprocessor application to the
host can be used to offload the compilation, even remotely
over a fabric.

Another possibility would be a symmetric MPI job with pro-
cesses on both, the coprocessor and the host. The host rank(s)
could then do the compilation work for the coprocessors in a
similar fashion as described above, communicating either the
path on a shared filesystem, or the binary itself.

3) OpenMP: OpenMP can be used within KART-compiled
kernels or higher up in the calling tree. We have successfully
tested both. Code that is built at runtime using KART is and
behaves like a shared library. So as with other libraries that
make use of OpenMP, the developer has to make sure that there
is no conflict between the OpenMP implementation used in the
application code and the one used inside the library. Other than
that, there are no known limitations.

4) MPI: For large distributed jobs, solely using KART on
the node level is the easiest way, but not always the best. It is
beneficial in cases where every node uses different constants,

for example if loop counts for local partitions of an irregular
grid are used. In cases where every node does the same work,
there is potential for optimization. The situation can be used
for an auto-tuning step, where different compilation options or
kernel variants are built and timed, followed by an exchange
of the timings and the best-performing kernels. Ranks can
exchange their compilation results via a distributed file system
or by transferring the generated binaries as messages. If that is
not applicable, factoring out the compilation step into a small
prologue job that runs on a single node, processes the input,
and pre-builds the kernel binaries for the big job might be an
option. KART can also use wrapper compilers if the runtime-
compiled code uses MPI directly.

A less technical but more legal problem is the licensing
issue. On large clusters and supercomputers, commercial com-
pilers are often using a license server with a limited amount
of licenses. Depending on the configuration, there is a chance
for an unintended “denial-of-service attack” against a license
server, by taking all licenses of a shared system hostage. So
it is either impossible, or at least not desirable, to check out
thousands of licenses. For these cases, compilation needs to
be limited to a few ranks, or be performed using the prologue-
strategy.

5) Auto-tuning: KART can be used to easily implement
auto-tuning and also to complement it orthogonally. Within
an applications, the use-cases are slightly different: KART
can address given runtime-values, not subject to tuning, by
making them a compile-time known value enabling better
optimization. For instance, given a tunable value like a block-
size, KART could be used to auto-tune through a range of
values, e.g., distributed across ranks of an MPI-job during
initialization, while using the input-specific overall size of
the blocked data-structure as a compile-time constant. Where
auto-tuning typically generates multiple versions for a wide
variety of options/inputs with later run-time selection, KART
generates the code for the current scenario at runtime.

Beside the described HPC-relevant patterns and use cases,
the availability of a general runtime compilation mechanism
can be exploited in more sophisticated ways. There is no
fixed pattern. For instance, instead of just using compile-
time constants or different compilers, languages, and options
for existing code, KART can be used as a back-end for
code generators and domain-specific languages. In contrast to
existing specialized solutions (see Section II), KART provides
a maximum of flexibility for a broad variety of use-cases.

V. EVALUATION

A. Benchmarks

To demonstrate the motivation for KART, we exemplify
the potential of runtime kernel compilation with two simple
and synthetic benchmarks. We also demonstrate the achieved
speed-ups for two tested real world applications. Table I
lists the hardware used for benchmarking. The used software
versions are: Intel OpenCL Runtime 16.1.1, Intel C++ Compiler
16.0.3, GCC 6.1.0, and Clang 3.8.1.

5

TABLE I
CHARACTERISTICS OF THE PROCESSOR PLATFORMS USED FOR

BENCHMARKING. THE XEON SYSTEM IS A DUAL SOCKET NODE.

Intel Xeon processor Intel Xeon Phi
E5-2630 v3 (HSW) processor 7210 (KNL)

Cores 8 64
Threads 16 (8×2) 256 (64×4)
SIMD Width 256 Bit 512 Bit
Frequency 2.4 GHz 1.3 GHz
MCDRAM — 16 GiB (ECC)
Memory BW 59 GiB/s 102 / 352 GiB/s
TDP 85 W 215 W

1) Runtime Compilation: On principle, runtime compila-
tion always introduces overhead. Hence, it is important to un-
derstand the trade-off between runtime compilation overhead
and kernel speed-up first. The overhead introduced by KART
is largely determined by the runtime of the invoked compiler
and linker. The speed-up of the runtime-compiled kernel
without incorporating the compile time over the reference
kernel is sb = tref/tkart , with sb > 1 for tref > tkart.
It is an upper bound for the actual speed-up that includes
the compile time, which is s = n·tref

n·tkart + tcompile
with n being

the number of kernel calls. Numerator and denominator are
two linear functions for the respective overall runtime cost
of the reference and KART-compiled kernel. For given run
and compile times, there is an nc where both functions cross
and s = 1. For every n > nc, there is an actual application
speed-up, asymptotically approaching sb. Runtime compilation
techniques pay off when the accumulated runtime savings of
all kernel calls exceed the runtime compilation cost.

Figure 4 shows the compilation cost using OpenCL as
a reference and KART with different compilers. These are
roughly the same timings as measured when executing the
command lines generated by KART by manually typing them
into a console terminal—the cost of the KART API itself is
negligible. The linking step took roughly two thirds of the
time. The timings for the empty kernels show that there is a
large constant cost coming with the command line compilers.
This includes starting processes and lots of file operations
when handling dependencies like a large set of header and
library files, all not present in OpenCL. A library interface
to existing compilers together with a set of small headers
and libraries specifically optimized for compilation time could
improve the situation. For commercial compilers, additional
time is lost for fetching licenses from a file system or network.
Caching the compilation results between application runs
could mitigate these costs if the actual reuse is high.

For all use-cases that only need a single runtime build
per kernel during initialization, a few seconds are tolerable,
given that the kernel runtimes for computational hotspots can
easily add up to many minutes or even hours during large
production runs. For more dynamic use cases, where kernels
are regularly rebuilt as values of compile-time constants need
to be adapted, we recommend profiling the performance gain

KART+clang, KNL

KART+gcc, KNL

KART+intel, KNL

OpenCL, KNL

KART+clang, HSW

KART+gcc, HSW

KART+intel, HSW

OpenCL, HSW

compile time [ms]
0 2000 4000 6000 8000 10000

HEOM kernel compilation cost

6508 ms

7910 ms

10077 ms

500 ms

950 ms

1552 ms

2935 ms

95 ms

6198 ms

7844 ms

6634 ms

176 ms

942 ms

1524 ms

2438 ms

56 ms

empty kernel auto vect. kernel

Fig. 4. Comparison of runtime compilation costs using OpenCL and KART
with different compilers for the OpenMP-vectorized Hexciton kernel of the
HEOM benchmark, and an empty kernel. There is a high constant cost for
any compilation regardless of the kernel size. Only the Intel C++ Compiler
adds a significant cost to the empty kernel, but also generates the fastest code
in case of auto vectorization. OpenCL’s compiler with a library ABI and also
less indirectly compiled code from standard library headers is two orders of
magnitude faster. The Xeon Phi processor (KNL) compilation times suffer
from the lower single thread performance compared with a Xeon (HSW).

per kernel invocation, the compilation cost, and the frequency
of recompilation. The large constant cost of each compiler
invocation can be distributed among multiple kernels by using
a single program object that aggregates all sources.

2) Synthetic Kernels: Demonstrating the potential of run-
time kernel compilation highly depends on the kernel itself
and the context it is invoked in. It also depends on the used
compiler, compiler options, and processor architecture. We
have selected two simple kernels to highlight the principal
usefulness of runtime compilation for HPC kernels:

• convolve: One-dimensional linear convolution with an
offset into the input vector input. This offset could be
seen as a way to decompose the input and assign subsets
to different threads. Figure 6 shows the KART version.

• matvec: Matrix vector multiplication with scaling (alpha).
To give the compiler’s optimizer some optimization head-
room, we assume the scaling to be 0.0 or 1.0, and matrix a
to have just one column. This simulates cases where the
compiler can remove invariant statements and/or loops.
Compared to convolve, which is only called once, the
matvec kernel is executed multiple times. Figure 5 shows
the KART version.

Both kernels have been compiled via KART (as seen in
the listing) and as ordinary C functions with all parameters
as arguments (e.g., alpha, rows, and cols for kernel matvec).
KART was used to pass the static values via preprocessor
macros (-D...).

The runtimes for the Intel C++ compiler are shown in
Figure 7 (the compiler options used were always identical:
-restrict -std=c++11 -qopenmp -xHost -O3).

For the matvec kernel the compiler was able to entirely
eliminate the loops for alpha=0 and even showed a 3.0×

6

extern "C"
void matvec_kart(float a[][COLS],

float b[ROWS],
float x[COLS])

{
for (int i = 0; i < ROWS; ++i)
for (int j = 0; j < COLS; ++j)
b[i] += a[i][j] * x[j] * ALPHA;

}

Fig. 5. The synthetic matvec kernel, a benchmark for matrix vector multipli-
cations. COLS, ROWS, and ALPHA are the introduced compile-time constants.

extern "C"
void convolve_kart(float* restrict input,

float* restrict kernel,
float* restrict output)

{
#pragma omp parallel for
for (int i = 0; i < INPUT_SIZE; ++i) {

float sum = 0;
for (int j = 0; j < KERNEL_SIZE; ++j)
sum += kernel[j] * input[OFF + i + j];

output[i] = sum;
}

}

Fig. 6. The synthetic convolve kernel, implementing a one dimensional
convolution algorithm. INPUT_SIZE, KERNEL_SIZE, and OFF are the
introduced compile-time constants.

kernel speed-up for alpha=1 where the inner-most loop was
removed since there is only one column of matrix a. For the
convolve kernel, having off, input size, and kernel size known
by the compiler could improve kernel runtimes by 16.9×.

Those cases are just examples to show the potential that can
be unleashed through runtime code generation and optimiza-
tion. Especially, if the input data has certain properties that
can be exploited by compiler optimizations of a kernel, the
effects can be quite high.

B. Real World Applications

1) HEOM: HEOM is a short for Hierarchical Equations of
Motion, which is a mathematical approach to solving open
quantum systems. It is used, for instance, to simulate the
energy transfer in photo-active molecular complexes to under-
stand recent observations of femto-second laser-experiments
on photosynthesis molecules found in bacteria and plants.

For the GPU HEOM OpenCL implementation [19], a
detailed case study [20] including a benchmark is publicly
available. It compares a variety of OpenCL and OpenMP
implementations of the Hexciton kernel as well as different
vectorization and optimization strategies. We integrated KART
into the OpenMP version of the benchmark to build the
different kernel variants at runtime and enable the use of input-
specific constants at kernel compile time. Two constants, the
matrix dimension and the number of matrices of the central
HEOM data-structure, are most relevant for the memory access
pattern and the loop counts. Figure 8 shows the achieved
performance gain. The plotted values are from the set of the
best-performing kernel variants using the Intel C++ Compiler.
The highest speed-up of 2.6× was observed for clang++ on
the Xeon CPU with the manually vectorized kernel, but the

convolve, off=0, KNL

matvec, alpha=1, KNL

matvec, alpha=0, KNL

convolve, off=0, HSW

matvec, alpha=1, HSW

matvec, alpha=0, HSW

runtime [s]
0 2 4 6 8 10

Synthetic kernel runtime comparison

16.91 x

3.04 x

14.79 x

2.11 x

w/o KART KART

Fig. 7. Speed-ups for two synthetic kernels matvec (single threaded) and
convolve (OpenMP). The speed-ups do not include the compilation overhead,
as it this would require defining a somehow “realistic” number of kernel calls.
A compile-time known alpha=0 entirely removed the computation loops. The
average compilation times for each kernel ranges from 0.90 to 0.92 s on the
Xeon (HSW) and 3.46 to 3.60 s on the Xeon Phi processor (KNL).

Xeon Phi 7210 (KNL), MV

Xeon Phi 7210 (KNL), AV

2x Xeon E5-2630v3 (HSW), MV

2x Xeon E5-2630v3 (HSW), AV

runtime per call [ms]
0 5 10 15 20

HEOM kernel runtime comparison

1.44 x

1.59 x

1.12 x

1.09 x

w/o KART KART

Fig. 8. Runtimes and speed-ups achieved by using KART for the OpenMP
version of the HEOM benchmark. Matrix size and number of matrices read
from the input are used as compile-time constants during runtime compilation.
AV is automatic and MV is manual vectorization. Amortization of compile
time requires 659 and 7195 calls, 90 % of the theoretical gain (sb − 1) are
reached after 7195 and 24431 calls, on Xeon (HSW) and Xeon Phi (KNL),
respectively. Typical application runs need 4000 to 40000 calls.

absolute runtime was still slower than that of the code emitted
by the Intel C++ Compiler.

The Intel Xeon Phi (co)processor benefits much more from
the compiler optimizations. Its light-weight cores and the miss-
ing L3 cache requires better optimized code than the Haswell
architecture. The effect on the whole HEOM application run-
time cannot be measured as only the Hexciton kernel has been
ported to OpenMP. However, it is the computationally most
complex part of the solver, and the remaining computations
will most likely benefit in a similar way as they work on the
same data structure using the same constants. The compile-
time overhead is not relevant for production runs of the HEOM
code, as they typically take several hours.

2) WSM6 Proxy Code: We integrated KART into the
WSM6 proxy code [1] written in Fortran for demonstrating
different optimization techniques. WSM6—the WRF SIngle
Moment 6-class Microphysics schema—is part of the Weather
Research and Forecast (WRF) model, widely used for numer-
ical weather prediction. The authors investigated the impact
of known compile-time constants describing loop lengths and
array dimensions on the efficiency of the generated code.

The original benchmark uses the C preprocessor and a set
of Perl scripts to modify the source code to generate a version

7

Xeon Phi 7210 (KNL)

2x Xeon E5-2630v3 (HSW)

runtime [ms]
0 20 40 60 80 100

WSM6 kernel runtime comparison

1.16 x

1.11 x

w/o KART KART

Fig. 9. Runtime comparison and speed-ups for using runtime compilation
with the WSM6 Kernel on the Xeon (HSW) and Xeon Phi (KNL) architecture.
Average compilation times are 3.24 s on the Xeon (HSW) and 20.13 s on the
Xeon Phi processor (KNL).

with compile time constants for every run. This is no longer
necessary when using KART. Our modified Kernel uses the
preprocessor only to simplify the build process at runtime. For
the WSM6 proxy code, KART achieved a speed-up of 1.16×
for the slightly modified kernel (see Figure 9).

VI. CONCLUSION AND OUTLOOK

Studies on the optimization of HPC workloads for many-
core CPUs demonstrate the impact of available constants on
the optimization capabilities during the compilation step. In
particular, the more parameters affecting the data layouts
and loop/branching structures can be provided, the better the
compiler is able to optimize. Compiling hot-spot kernels at
run-time for the context of their invocation can yield better
optimizations and thus shorter time-to-solutions.

We have presented KART, a flexible and easy to use
framework that allows runtime compilation with a variety of C,
C++, and Fortran command line compilers. It supports dynamic
re-compilation during program execution if kernel parameters
such as data sizes are changed, e.g., after load-balancing
steps between nodes or to adjust for different input data
sets. For applications with irregularly distributed data across
the compute nodes, our approach can support individually
optimized kernels for each node.

We have demonstrated the effectiveness of our solution
for synthetic and real-world kernels. Potential speed-ups can
be significant, depending on the specifics of the kernel and
target architecture. KART considerably accelerated the HEOM
(1.59×) and WSM6 (1.16×) kernels with an acceptable com-
pilation overhead, given the typical runtimes of HPC applica-
tions. The approach is particularly effective on the Intel Xeon
Phi (co)processor, which represents a many-core architecture
whose successors are a likely technology for exascale systems.
The convenience and efficiency of runtime compilation could
be further improved if it would be integrated into a pro-
gramming model like OpenMP or if compiler vendors would
provide an—ideally standardized—API to their tools.

KART and the benchmarks are available as open source
on GitHub (https://github.com/noma/kart). We expect further
improvements of KART and adoptions by other HPC applica-
tions in the near future and are currently working on automatic
caching mechanisms for compiled kernels.

ACKNOWLEDGMENTS

This work is partially supported by Intel Corporation within
the “Research Center for Many-core High-Performance Com-

puting” (Intel PCC) at ZIB. We thank the “The North-German
Supercomputing Alliance - HLRN” for providing us access to
the HLRN-III production system ‘Konrad’ and the Cray TDS
system with Intel KNL nodes.

REFERENCES

[1] T. Henderson, J. Michalakes, I. Gokhale, and A. Jha, “Chapter 2
- Numerical Weather Prediction Optimization,” in High Performance
Parallelism Pearls, J. Reinders and J. Jeffers, Eds. Boston: Morgan
Kaufmann, 2015, pp. 7 – 23.

[2] S. Siso, “DL MESO Code Modernization.” Intel Xeon Phi Users Group
(IXPUG), March 2016, IXPUG Workshop, Ostrava.

[3] OpenMP Architecture Review Board, “OpenMP Application Program
Interface, Version 4.5,” 2015, http://www.openmp.org/.

[4] Khronos OpenCL Working Group, “The OpenCL Specification, Version
2.2,” March 2016, https://www.khronos.org/registry/cl/specs/opencl-2.2.
pdf.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, March
2008. [Online]. Available: http://doi.acm.org/10.1145/1365490.1365500

[6] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation,” in CGO, San Jose, CA, USA,
March 2004, pp. 75–88, llvm.org.

[7] B. Joó, “LLVM and QDP-JIT,” https://www.ixpug.org/events/
ixpug-annual-meeting-2015, September 2015, iXPUG Workshop,
2015, Berkeley.

[8] F. T. Winter, M. A. Clark, R. G. Edwards, and B. Joó, “A
Framework for Lattice QCD Calculations on GPUs,” in Proceedings
of the 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, ser. IPDPS ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 1073–1082. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2014.112

[9] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A
fast dynamic language for technical computing,” September 2012,
http://julialang.org.

[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” November 2014.

[11] A. Heinecke, H. Pabst, and G. Henry, “LIBXSMM: A
High Performance Library for Small Matrix Multiplications,”
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech\
poster/tech\ poster\ pages/post137.html, November 2015, poster.

[12] T. Schneider, F. Kjolstad, and T. Hoefler, “MPI Datatype Processing
using Runtime Compilation,” in Proceedings of the 20th European MPI
Users’ Group Meeting. ACM, Sep. 2013, pp. 19–24.

[13] A. Heinecke, M. Klemm, D. Pflüger, A. Bode, and H.-J. Bungartz, “Ex-
tending a Highly Parallel Data Mining Algorithm to the Intel R© Many
Integrated Core Architecture,” in Euro-Par 2011: Parallel Processing
Workshops, Bordeaux, France, August 2011, pp. 375–384, lNCS 7156.

[14] NVIDIA, “NVRTC - CUDA Runtime Compilation User Guide,”
September 2015, http://docs.nvidia.com/cuda/pdf/NVRTC User Guide.
pdf.

[15] “OpenMP: Support for the OpenMP language,” http://openmp.llvm.org/,
April 2016.

[16] “OpenMP Compilers,” http://openmp.org/wp/openmp-compilers/,
September 2016.

[17] B. Schling, The Boost C++ Libraries. XML Press, 2011.
[18] M. Noack, F. Wende, T. Steinke, and F. Cordes, “A Unified

Programming Model for Intra- and Inter-Node Offloading on Xeon
Phi Clusters,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, New Orleans,
LA, USA, November 16-21, 2014, 2014, pp. 203–214. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.22

[19] C. Kreisbeck, T. Kramer, and A. Aspuru-Guzik, “Scalable High-
Performance Algorithm for the Simulation of Exciton Dynamics.
Application to the Light-Harvesting Complex II in the Presence
of Resonant Vibrational Modes,” Journal of Chemical Theory and
Computation, vol. 10, no. 9, pp. 4045–4054, 2014, pMID: 26588548.
[Online]. Available: http://dx.doi.org/10.1021/ct500629s

[20] M. Noack, F. Wende, and K.-D. Oertel, “Chapter 19 - OpenCL: There
and Back Again,” in High Performance Parallelism Pearls, J. Reinders
and J. Jeffers, Eds. Boston: Morgan Kaufmann, 2015, pp. 355 – 378.

8

