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Cutting Planes for Families Implying Frankl’s
Conjecture

Jonad Pulaj

Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
pulaj@zib.de

Abstract. We find previously unknown families which imply Frankl’s
conjecture for all families that contain them using an algorithmic frame-
work. The conjecture states that for any non-empty union-closed (or
Frankl) family there exists an element in at least half of the sets. Poo-
nen’s Theorem characterizes the existence of weights which determine
whether a given Frankl family implies the conjecture for all Frankl fami-
lies which contain it. A Frankl family is Non–Frankl-Complete (Non–FC),
if and only if it does not imply the conjecture in its elements for some
Frankl family that contains it. We design a cutting-plane method that
computes the explicit weights which imply the existence conditions of
Poonen’s Theorem. This method allows us to find a counterexample to
a ten-year-old conjecture by R. Morris about the structure of generators
for Non–FC-families.

1 Introduction

Frankl’s (union-closed sets) conjecture is a celebrated unsolved problem in com-
binatorics that was recently brought to the attention of a wider audience as a
polymath project led by Timothy Gowers [1]. A non-empty finite family of finite
sets F is Frankl if and only if for every A,B ∈ F it follows that A ∪ B ∈ F .
Frankl’s conjecture states that for any Frankl family F there exists an element
in at least |F|/2 sets. The problem appears to have little structure – perphaps
the very reason why a proof or disproof remains elusive. In this paper, we focus
on what are referred to as local configurations in [3], namely Frankl families that
imply the conjecture for all Frankl families which contain them. In this regard,
given a Frankl family A, Poonen’s Theorem [10] characterizes the necessity of
the implication by the existence of weights on the elements of A that obey cer-
tain inequalities. Following Vaughan [12], we say that a Frankl family of sets
A is Frankl-Complete (FC), if and only if for every Frankl family F ⊇ A there
exists an element in the sets of A which satisfies Frankl’s conjecture. A Frankl
family A is Non–Frankl-Complete (Non–FC), if and only if there exists a Frankl
family F ⊇ A such that any element contained in the sets of A is in less than
half of the sets of F .

Using special structures and averaging arguments, previous researchers de-
termine a number of FC-families. In particular, Poonen proves that any Frankl



family which contains three distinct 3-subsets of a 4-set satistifies the conjec-
ture and Vaughan [12], [13], [14] proves that the conjecture holds for any Frankl
family which contains all five of the 4-subsets of a 5-set, or ten of the 4-subsets
of a 6-set, or three 3-subsets of a 7-set with a common element. With the help
of a computer program, Morris [9] completely characterizes FC-families on at
most 5 elements. Finally, Marić, Živković, and Vučković [8] formalize a combi-
natorial search in the interactive theorem prover Isabelle/HOL and show that
all families containing four 3-subsets of a 7-set are FC-families. In this paper,
we design a general computational framework that is able to precisely character-
ize FC or Non–FC-families by using exact integer programming, thus providing
an algorithmic roadmap for improving many of the known results and settling
previously unknown questions.

The connection between Frankl’s conjecture and combinatorial optimization
is well-established in [11], where the authors derive the equivalence of the prob-
lem with an integer program and investigate related conjectures. Furthermore,
given a Frankl family A, Poonen’s Theorem yields a constructive proof to deter-
mine if A is FC or Non–FC in the form of a fractional polytope with a potentially
exponential number of constraints. In general, this makes it difficult to explicitly
exhibit the conditions which determine whether a given Frankl family implies
the conjecture for all families that contain it. To overcome this, we design a
cutting-plane method that computes the explicit weights which imply Poonen’s
existence conditions. In particular, this paves the way toward automated dis-
covery of FC-families by computational integer programming, especially when
coupled with an exact rational solver [4] and other verification routines. As a
result, we are able to find previously unknown FC-families. Although our cur-
rent implementation1 in SCIP 3.2.1 [6] allows us to characterize any FC-family
up to 9 elements tested so far2, within the confines of this paper we only fea-
ture a few new FC-families as examples of our method. The main contribution
of our algorithm in this work is the construction of an explicit counterexam-
ple to a ten-year-old conjecture of Morris [9] about the structure of generators
for Non–FC-families. We believe this application best illustrates the reach and
potential of our method.

2 Cutting Plane for FC-families

As mentioned in section 1, Poonen’s seminal article [10] precisely characterizes
existence conditions for FC-families. Poonen’s theorem is at the basis of all
subsequent approaches for classifying FC-families, which in turn form an integral
part of checking whether the conjecture holds for n ≤ 11 [2]. Let Sn denote the
power set on n elements, and define [n] := {1, 2, . . . , n}. We say that a family of

1 Final computations are rechecked with CPLEX 12.6.3 [5], Gurobi 6.5.2 [7], and exact
SCIP [4].

2 To date, we have verified hundreds of (previously unknown) non-isomorphic (under
some permutation of [n]) FC-families. Furthermore, these families are minimal in
the sense that they do not contain smaller FC-families.



sets A covers n elements if and only if the union of all sets in A is [n], and for
families of sets A and B define A ] B := {A ∪B | A ∈ A, B ∈ B}. Finally, for a
family of sets F define Fi := {F ∈ F | i ∈ F}, and denote by XF the incidence
vector of F .

Theorem 1 (Poonen 1992). Let A be a Frankl family that covers n elements.
The following statements are equivalent:

1. For every Frankl family F ⊇ A, there exists i ∈ [n] such that |Fi| ≥ |F|/2.

2. There exist non-negative real numbers c1, . . . , cn with
∑

i∈[n] ci = 1 such that
for every Frankl family B ⊆ Sn with B]A = B, the following inequality holds∑

i∈[n]

ci|Bi| ≥ |B|/2. (1)

The proof of the theorem includes a beautiful application of the separating hy-
perplane theorem and points, at least algorithmically, in the right way. Indeed,
for a fixed Frankl family A that covers n elements, it is easy to see that the
second statement above describes a convex polyhedron Pc ⊂ Rn defined by:

∑
i∈[n] ci = 1;∑
i∈[n] ci|Bi| ≥ |B|/2 ∀B ⊆ Sn : B ] A = B;

ci ≥ 0 ∀i ∈ [n];


Furthermore since the coefficients are all integral, if there exists a feasible point
of Pc, we can safely assume (via Fourier-Motzkin elimination) that the ci are
rational. Thus, we can use the simplex or interior point methods to find a feasible
point of Pc, or show that one does not exist via Farkas’ Lemma. Furthermore
let Pc̄ denote the following integer program:

min
∑
i∈[n]

c̄i

s.t.
∑
i∈[n]

c̄i|Bi| ≥ (|B|/2)
∑
i∈[n]

c̄i ∀B ⊆ Sn : B ] A = B

∑
i∈[n]

c̄i ≥ 1

c̄i ∈ Z≥0 ∀i ∈ [n]

Observation 2 Let A be a Frankl family that covers n elements. Then there
exists a feasible point of Pc if and only if there exists a feasible solution of Pc̄.



Proof. We simply scale. More precisely, let pc be a feasible point of Pc. We can
safely assume that p is a rational vector, i.e. pc = {c1 = a1

b1
, c2 = a1

b1
, . . . , cn =

an

bn
} ∈ Qn

≥0. Define g := lcm(b1, b2, . . . , bn), and c̄i := gci ∈ Z≥0 for all i ∈ [n]. It
is easy to see that the defined c̄i yield a feasible solution of Pc̄. Let pc̄ be a feasible
solution of Pc̄, i.e. pc̄ = {c̄1, c̄2, . . . , c̄n} ∈ Zn

≥0. Define ci := c̄i/(
∑

i∈[n] c̄i). It is
easy to see that the defined ci yield a feasible point of Pc. ut

A separation oracle for a polyhedron P ⊂ Rn is an algorithm that, queried on
x ∈ Rn, either asserts that x ∈ P or returns h ∈ Rn such that hy < hx for all
y ∈ P . In order to design a separation oracle for Pc (or Pc̄), we first need the
following corollary of Poonen’s Theorem, a version of which is already noted in
[9]. We formalize it here for clarity and reference.

Corollary 1. Let A be a Frankl family that covers n elements. The following
are equivalent:

1. The Frankl conjecture holds for every Frankl family F ⊇ A. In particular,
there exists i ∈ [n] such that |Fi| ≥ |F|/2.

2. For every B ⊆ Sn with B ] A = B, we have
∑

S∈B
(∑

i∈S ci −
∑

i/∈S ci
)
≥ 0

with
∑

i∈[n] ci = 1, and ci ∈ Q≥0, for all i ∈ [n].

Proof. Fix a Frankl family B ⊆ Sn with B ] A = B. Then the following holds,

∑
S∈B

(∑
i∈S

ci −
∑
i/∈S

ci

)
= 2

∑
S∈B

∑
i∈S

ci −
∑
S∈B

(∑
i/∈S

ci +
∑
i∈S

ci

)
= 2

∑
S∈B

∑
i∈S

ci −
∑
S∈B

∑
i∈[n]

ci

= 2
∑
i∈[n]

ci|Bi| − |B|
∑
i∈[n]

ci ≥ 0

⇐⇒
∑
i∈[n]

ci|Bi| ≥ |B|/2.

Since the above holds for every Frankl family B ⊆ Sn with B ] A = B, the
desired result follows from Poonen’s Theorem. ut

Corollary 1 combined with an integer programming approach to Frankl families
inspired by [11], provides the basis of our separation oracle. Fix a Frankl family
A ⊆ Sn, and fix C := {c1 = a1

b1
, c2 = a1

b1
, . . . , cn = an

bn
} ∈ Qn

≥0 with
∑

i∈[n] ci = 1.

Furthermore, define g := lcm(b1, b2, . . . , bn), and c̄i := gci ∈ Z≥0 for all i ∈ [n]
as previously. Let FC(A, C)n denote the following polyhedron:





xT + xU ≤ 1 + xS ∀T ∪ U = S ∈ Sn;∑
S∈Sn

(∑
i∈xS

c̄i −
∑

i/∈xS
c̄i
)
xS + 1 ≤ 0;

xT ≤ xU ∀S ∪ T = U ∈ Sn, S ∈ A;

xS ∈ {0, 1} ∀S ∈ Sn;


Suppose FC(A, C)n is non-empty, and let p∗ ∈ FC(A, C)n. Then p∗ = XB where
B ⊆ Sn. The first inequalities ensure that the chosen family B is Frankl, and we
denote them as Union-Closed (UC) inequalities. The third class of inequalites
ensures that B ]A = B, and we denote them as Fixed-Set (FS) inequalites. We
explain the c̄i inequality in the next theorem.

Proposition 1. Let A be a Frankl family that covers n elements, and let C ∈
Qn
≥0 with

∑
i∈[n] ci = 1. If FC(A, C)n is unfeasible, then all Frankl families

F ⊇ A satisfy Frankl’s conjecture.

Proof. Suppose that FC(A, C)n is unfeasible. Let P̃ be defined as FC(A, C)n
without the c̄i inequality. It is easy to see that P̃ is non-empty since the all zero
vector is feasible. Indeed, any p∗ = XB where B ⊆ Sn with B]A = B is feasible.
Therefore if FC(A, C)n is unfeasible this implies there exists no Frankl family
B ⊆ Sn with B ] A = B such that:

∑
S∈B

(∑
i∈S

c̄i −
∑
i/∈S

c̄i

)
≤ −1.

Since xS = {0, 1} for all S ∈ Sn, and c̄i ∈ Z≥0 for all i ∈ [n], this implies that
for all Frankl families B ⊆ Sn with B ] A = B, the following inequality holds:

∑
S∈B

(∑
i∈S

c̄i −
∑
i/∈S

c̄i

)
≥ 0.

It is easy to see that corollary 1 still holds if we replace ci with c̄i. Therefore
Poonen’s Theorem implies that all Frankl families F ⊇ A satisfy the Frankl
conjecture. ut

A natural candidate for checking the feasibility of FC(A, C)n, for some A and
C, is a standard branch and bound algorithm. Since we are mainly interested in
proving that certain (previously unknown) Frankl families A are FC or Non–FC,
we do not address questions of complexity, but simply optimize some linear
objective function over FC(A, C)n in a general purpose integer programming
solver as specified in section 1. We do the same for optimizing over Pc̄, and
checking the feasibility of Pc.

Corollary 2. Let A be a Frankl family that covers n elements. Given C ∈ Qn
≥0

with
∑

i∈[n] ci = 1 as input, determining whether there exists a feasible point p∗

of FC(A, C)n is equivalent to a separation oracle for Pc.



Proof. Suppose p∗ = XB is a feasible point of FC(A, C)n. As a result, we arrive
at the following valid inequality for Pc (where we distingush the variables c̃i ≥ 0
from the fixed ci, for all 1 ≤ i ≤ n)

∑
i∈[n]

c̃i|Bi| ≥ |B|/2,

which separates C from Pc since the following implications hold

∑
S∈B

(∑
i∈S

c̄i −
∑
i/∈S

c̄i

)
≤ −1⇐⇒ |B|/2−

∑
i∈[n]

ci|Bi| > 0.

Otherwise, if FC(A, C)n is unfeasible, no such valid inequality exists. In this
case, proposition 1 implies that C ∈ Pc. ut

Furthermore, define as FC(A, C)Max
n the binary program which maximizes the

following linear objective function

∑
i∈[n]

c̄i

(∑
S∈Sn

xS − 2
∑

S∈Sn:i∈S
xS

)
,

over FC(A, C)n.

Observation 3 Let A be a Frankl family that covers n elements, and let C ∈
Qn
≥0 with

∑
i∈[n] ci = 1. An optimal solution of FC(A, C)Max

n returns a maxi-
mally violated inequality for Pc.

It is easy to see that in the following algorithm the tuples
(
Pc̄, FC(A, C)Max

n

)
and

(Pc, FC(A, C)n) may be used interchangeably with appropriate adjustments3 .

3 The reason for using the different formulations is entirely computational. For exam-
ple, when using Pc, if the least common multiple of a given C is very large, it can
spell numerical trouble for optimizing over FC(A, C)n.



Algorithm 1: Cutting planes for FC-families

Data: A Frankl family A that covers n elements.
Result: ci for A, or infeasible Pk ⊇ Pc.

1 Pk ←
(∑

i∈[n] ci = 1, ci ≥ 0,∀i ∈ [n]
)

, C ← ∅, g ← ∅;
2 while ∃ C ∈ Pk do
3 g ← lcm(b1, b2, . . . , bn), where

C = {c1 = a1

b1
, c2 = a1

b1
, . . . , cn = an

bn
} ∈ Qn

≥0 ;

4 C ← {gc1, gc2, . . . , gcn} ;
5 if ∃ p∗ ∈ FC(A, C)n then

6 Pk ← Pk ∩
(∑

i∈[n] ci|Bi| ≥ |B|/2
)

, where p∗ = XB ;

7 else
8 return C

9 return Pk ⊇ Pc

Theorem 4. Let A be a Frankl family that covers n elements. Then Algorithm
1 either outputs weights which prove that A is FC, or an infeasible system of
constraints which proves that A is Non-FC.

Proof. It is clear algorithm 1 finitely terminates. Let A be a Frankl family that
covers n elements. Suppose A is a FC-family. By Poonen’s Theorem there exist
ci ≥ 0 for all i ∈ [n] with

∑
i∈[n] ci = 1 that satisfy all inequalites of type 1.

Given A, at some iteration of algorithm 1, for some C, by corollary 2 we arrive at
C ∈ Pc, otherwise if the algorithm terminates without outputing some C ∈ Pc,
it outputs an infeasible Pk ⊇ Pc which implies that A is not an FC-family and
we arrive at a contradiction. Suppose A is a Non–FC-family. This implies there
exist no ci ≥ 0 for all i ∈ [n] with

∑
i∈[n] ci = 1 that satisfy all inequalites of type

1. By corollary 2 during all the iterations of algorithm 1 we have that C 6∈ Pc,
otherwise we arrive at a contradiction. Therefore algorithm 1 terminates when
Pk = ∅, which implies that Pk ⊇ Pc is infeasible. ut

3 Valid Inequalities

Given a family of sets S, we say that S generates (or is a generator for) F ,
denoted by 〈S〉 = F , if and only if F is the smallest Frankl family that contains
S. A family of sets S generates F with A, denoted by 〈S〉A = F , if and only if
F is the smallest Frankl family that contains S such that F ]A = F .

Proposition 2 (FC inequalities). Let A be a Frankl family that covers n
elements, and let C ∈ Qn

≥0 with
∑

i∈[n] ci = 1. Suppose we have S ∈ A, S ∪U =
F , and S ∪ T = F . Then the following inequality

xT + xU − xT∪U − xF ≤ 0,

is valid for FC(A, C)n.



Proof. Suppose there exists a feasible solution of FC(A, C)n which yields a
Frankl family F such that the following inequality holds

xT + xU − xT∪U − xF ≥ 1.

This implies that the number of variables which equal one with positive coeffi-
cients is greater than the number of variables with negative coefficients which
equal one. But if either xT or xU are one then xF is one (if both are one then
xT∪U is one) and we arrive at a contradiction. ut

Definition 1 (FC-chain). Let A be a Frankl family that covers n elements,
and let C ∈ Qn

≥0 with
∑

i∈[n] ci = 1. Let S,S ′ ⊂ Sn, S ∩ S ′ = ∅. Given Bi ∈
S, Bj ∈ S ′, we say Bi, Bj form a FC-chain which we denote by Bi −→ Bj, if
there exist tuples (Bi, B1), (B1, B2), . . . , (Bm, Bj), Bk ∈ Sn for all 1 ≤ k ≤ m,
such that for any tuple (Bl, Bp), at least one of the following conditions holds:

1. There exists A ∈ A such that xBl
≤ xBp is a valid inequality for FC(A, C)n.

2. There exists S ∈ 〈S〉A such that xBl
+ xS ≤ 1 + xBp is a valid inequality for

FC(A, C)n.

We denote an explicit FC-chain by Bi
S−→ B1

U−→ . . . Bm
T−→ Bj, where S,U, T sat-

ify either condition listed above. When needed we specify which type of inequali-
ties form an FC-chain by SUC , UUC , TUC for UC inequalities, and SFS , UFS , TFS

for FS inequalites.

Proposition 3 (FC-chain inequalities). Let A be a Frankl family that covers
n elements, and let C ∈ Qn

≥0 with
∑

i∈[n] ci = 1. Let S,S ′ ⊂ Sn, S ∩ S ′ = ∅. For

any T ⊆ S define UT := {S′ ∈ S ′ | ∃ S ∈ T : S −→ S′}. Suppose that |T | ≤ |UT |
for all T ⊆ S. Then the following inequality∑

S∈S
xS −

∑
S∈S′

xS ≤ 0,

is valid for FC(A, C)n.

Proof. Suppose there exists a feasible solution of FC(A, C)n which yields a
Frankl family F such that the following inequality holds∑

S∈S∩F
xS −

∑
S∈S′∩F

xS ≥ 1.

It is clear that S ∩ F 6= ∅, otherwise we arrive at a contradiction. Therefore
the inequality implies that the number of variables xS which equal one, for all
S ∈ S ∩ F is greater than the number of variables xS which equal one, for all
S ∈ S ′∩F . Let T ⊆ S ∩F , and for all S ∈ T , let xS = 1. Then |T | ≤ |UT | holds
by hypothesis. Furthermore by the definition of a FC-chain, for all S′ ∈ UT we
conclude that xS′ = 1. Thus we arrive at a contradiction. ut

Remark 1. FC-chain inequalities are generalizations of FC inequalites and FS
inequalities.



4 Generators for Non–FC-families

In this section we exhibit a counterexample to a conjecture of Morris [9] about
generators for Non-FC-families. A generator S for a Frankl family F is minimal
if and only if there exists no S ′ ⊂ S such that S ′ is a generator for F .

Definition 2 (regular). Let S be a family of sets that covers n elements. Sup-
pose S is a minimal generator for a Frankl family F , such that F is a Non–FC-
family. Then S is regular if and only if for any A ∈ S, A 6= ∅, the Frankl family
〈(S \ {A}) ∪ {A ∪ {i}}〉 is Non–FC.

Conjecture 1 (Morris 2006). S is regular for all n ∈ Z≥1.

Morris [9] thought the conjecture plausible and checked that it held for all
known families at the time. Our counterexample on six elements is minimal, in
the sense that Morris [9] completely characterizes FC-families on 5 elements.
Let S = {∅, {4, 5, 6} , {1, 3, 4} , {1, 2, 5, 6} , {1, 2, 3, 4}}. Furthermore, let T =
{{1, 2, 4, 5, 6} , {1, 3, 4, 5, 6} , {1, 2, 3, 4, 5, 6}}. Then, we see that 〈S〉 = S ∪ T .
It is easy to see that S is a minimal generator for S ∪ T .

Proposition 4. S ∪ T is a Non–FC-family.

Proof. The proof is the output of algorithm 1 with S ∪ T as input, which is an
infeasible system of constraints. We display an irreducible infeasible subset of
the given system. We identify columns with zero one entries for each S ∈ S6.
The six matrices featured below represent Frankl families. The top row keeps
track of the number of sets in each family. In addition to rechecking with an
exact rational solver [4] and other solvers, we check that each matrix is Frankl
via simple external subroutines and finally by hand 4. Furthermore, let F be a
family represented by one of the matrices below. It easy to see that F ]〈S〉 = F
by inspection. In each matrix, we color columns which correspond to sets in S,
T , red and blue, respectively. Each matrix yields an inequality of type 1 (multi-
plied by two) featured below it. The following system of constraints is infeasible
in non-negative ci for all 1 ≤ i ≤ 6. For each row we display the Farkas dual
values in square brackets. This yields a certificate of infeasibility5.

[−7190] : c1 + c2 + c3 + c4 + c5 + c6 = 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1

c3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1

c4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1

c5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1

c6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1

4 Using a subroutine to indicate the position of a set that is the union of two sets in
the exhibited family, a determined reader can speed up the process of checking each
matrix by hand.

5 A straightforward application of Farkas’ Lemma yields the result. For convenience
we state the lemma in the appendix.



[30] : 22c1 + 46c2 + 50c3 + 50c4 + 46c5 + 46c6 ≥ 43.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

c3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1

c4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1

c5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 1

c6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1

[9] : 46c1 + 14c2 + 42c3 + 42c4 + 42c5 + 42c6 ≥ 39.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

c3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

c4 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1

c5 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1

c6 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1

[44] : 52c1 + 46c2 + 52c3 + 28c4 + 52c5 + 52c6 ≥ 46.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

c3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

c4 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1

c5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

c6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

[21] : 48c1 + 40c2 + 16c3 + 48c4 + 40c5 + 40c6 ≥ 40.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

c3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

c4 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

c5 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

c6 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

[32] : 44c1 + 44c2 + 42c3 + 48c4 + 20c5 + 52c6 ≥ 42.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

c1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

c2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

c3 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

c4 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

c5 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

c6 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1



[32] : 44c1 + 44c2 + 42c3 + 48c4 + 52c5 + 20c6 ≥ 42.

ut

Proposition 5. Let S ′ = {∅, {4, 5, 6} , {1, 3, 4} , {1, 2, 5, 6} , {1, 2, 3, 4, 5}}.
Then 〈S ′〉 is an FC-family.

Proof. Let C = {16, 8, 12, 20, 17, 15}. Then FC(〈S ′〉, C)n is infeasible 6. ut

Corollary 3. S is a counterexample to conjecture 1.

Proof. S ′ = (S \ {1, 2, 3, 4}) ∪ {{1, 2, 3, 4} ∪ {5}}. ut

We exhibit a few more new FC-families verified by our algorithm. As mentioned
earlier, the computations are rechecked with a number of solvers followed by a
final check with an exact rational solver. Furthemore, for all the families shown
here, by adding FC-chain inequalities at the root node, it is possible to reduce
the resulting branch and bound tree to a few nodes and check some irreducible
infeasible subset of each leaf node (linear program) manually, or with an external
subroutine.

Proposition 6. Let S = {{4, 5, 6, 7} , {1, 3, 4, 5} , {3, 4, 6, 7} , {5, 6, 7} , {2, 3, 4}}.
Then 〈S〉 is an FC-family.

Proof. Let C = {4, 8, 11, 13, 10, 9, 9}. Then FC(〈S〉, C)n is infeasible. ut

Proposition 7. Let S = {{4, 5, 6, 7} , {1, 2, 5, 7} , {3, 4, 5, 7} , {5, 6, 7} , {4, 6, 7}}.
Then 〈S〉 is an FC-family.

Proof. Let C = {1, 1, 1, 3, 3, 3, 4}. Then FC(〈S〉, C)n is infeasible. ut

Proposition 8. Let S = {{2, 5, 6, 7} , {2, 4, 6} , {1, 4, 7, 8} , {1, 2, 3, 7} , {1, 2, 7, 8}}.
Then 〈S〉 is an FC-family.

Proof. Let C = {10, 15, 5, 13, 3, 13, 12, 4}. Then FC(〈S〉, C)n is infeasible. ut

Conclusion

In this work we design a cutting-plane algorithm that determines if a given
Frankl family necessarily implies Frankl’s conjecture for all families that con-
tain it. As a result, we exhibit a counterexample to a ten-year-old conjecture of
Morris [9] about generators for Frankl families, and display a number of previ-
ously unknown families that imply Frankl’s conjecture. It is easy to see how our
framework can be used to improve on many other results of this nature, such as
the minimum number of k-sets that necessarily generate an FC-family [9], [8],
or the classification of FC-families for 6 ≤ n ≤ 9 which is the current focus of
our research.
6 In the appendix we explicitely show the infeasibility of FC(S ′, C)n by making use of

FC-chain inequalities and displaying irreducible infeasible subsets of constraints for
the two leaf nodes of the resulting branch and bound tree.
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5 Appendix

To check the claims of infeasibility for the linear systems in this paper it is
sufficient to ensure that the vector of values exhibited in square brackets before
each row corresponds to the vector y below.

Theorem 5 (Farkas’ Lemma). Let A1 ∈ Rm1×n, A2 ∈ Rm2×n and A3 ∈
Rm3×n. Also let b1 ∈ Rm1 , b2 ∈ Rm2 and b3 ∈ Rm3 . Then the following system



of linear equalities and inequalities in x ∈ Rn :

A1x = b1

A2x ≤ b2

A3x ≥ b3

x ≥ 0

is infeasible if and only if there exist y1 ∈ Rm1 , y2 ∈ Rm2 , y3 ∈ Rm3 such that:

b>1 y1 + b>2 y2 + b>3 y3 > 0

A>1 y1 + A>2 y2 + A>3 y3 ≤ 0

y2 ≤ 0

y3 ≥ 0

Proof of proposition 5. We identify sets in S6 with the columns in the matrix
below. For each column, the number on the top row represents its correspond-
ing variable index in FC(A, 〈S ′〉)n. Column W corresponds to a weight vector
for the elements in [n]. The columns representing families of sets S ′ and T are
colored red and blue, respectively. As previously, 〈S ′〉 = S ′ ∪ T .

W 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

20 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

17 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

15 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

We show that FC(A, 〈S ′〉)n is unfeasible by branching on x0 and showing that
the linear relaxations of the two subproblems are infeasible. We do this by ex-
plicitly exhibiting Farkas dual values (shown in square brackets) for each row
of some irreducible infeasible subset of constraints. Define FC(A, 〈S ′〉)1

n :=
FC(A, 〈S ′〉)n ∩ (x0 = 1), FC(A, 〈S ′〉)0

n := FC(A, 〈S ′〉)n ∩ (x0 = 0). Then

it is clear that if FC (A, 〈S ′〉)1
n and FC (A, 〈S ′〉)0

n are infeasible, this implies

FC (A, 〈S ′〉)n is unfeasible. Let FC (A, 〈S ′〉)1
n ⊇ FC (A, 〈S ′〉)1

n, and let the fol-

lowing be the linear relaxation of FC (A, 〈S ′〉)1
n, defined by the following con-

straints (trivial ones not shown):



1. [44] : x0 = 1.
2. UC inequalites:

[−2] : x11 + x45 − x9 ≤ 1, [−3] : x13 + x59 − x9 ≤ 1,
[−2] : x14 + x43 − x10 ≤ 1, [−1] : x22 + x61 − x20 ≤ 1,
[−3] : x23 + x60 − x20 ≤ 1, [−1] : x35 + x45 − x33 ≤ 1,
[−3] : x35 + x62 − x34 ≤ 1, [−6] : x37 + x59 − x33 ≤ 1,
[−1] : x38 + x43 − x34 ≤ 1, [−3] : x38 + x45 − x36 ≤ 1,
[−1] : x38 + x61 − x36 ≤ 1, [−1] : x39 + x44 − x36 ≤ 1,
[−2] : x42 + x55 − x34 ≤ 1, [−2] : x53 + x43 − x33 ≤ 1,
[−5] : x54 + x43 − x34 ≤ 1, [−3] : x44 + x55 − x36 ≤ 1,
[−4] : x47 + x49 − x33 ≤ 1.

3. FS inequalities:
[0] : x47 − x1 ≤ 0, [−6] : x63 − x1 ≤ 0, [−14] : x63 − x8 ≤ 0,
[−1] : x7 − x4 ≤ 0, [−16] : x55 − x4 ≤ 0, [−12] : x63 − x12 ≤ 0,
[−3] : x14 − x2 ≤ 0, [−24] : x46 − x2 ≤ 0, [−12] : x47 − x3 ≤ 0,
[−21] : x61 − x17 ≤ 0, [−19] : x62 − x18 ≤ 0, [−4] : x63 − x19 ≤ 0,
[−24] : x31 − x24 ≤ 0, [−1] : x37 − x32 ≤ 0, [−4] : x38 − x32 ≤ 0,
[−23] : x39 − x32 ≤ 0, [−16] : x47 − x40 ≤ 0, [−11] : x55 − x48 ≤ 0,
[−8] : x63 − x56 ≤ 0.

4. FC-chain inequalities:
[−2] : x15 + x53 − x1 − x5 ≤ 0, [−7] : x15 + x57 − x1 − x9 ≤ 0,
[−9] : x58 + x15 − x8 − x10 ≤ 0, [−2] : x15 + x59 − x1 − x11 ≤ 0,
[−7] : x45 + x23 − x1 − x5 ≤ 0, [−5] : x60 + x23 − x20 − x16 ≤ 0,
[−1] : x61 + x23 − x21 − x16 ≤ 0, [−5] : x45 + x27 − x1 − x9 ≤ 0,
[−3] : x27 + x61 − x25 − x16 ≤ 0, [0] : x43 + x29 − x1 − x9 ≤ 0,
[−5] : x54 + x29 − x20 − x16 ≤ 0, [−6] : x29 + x59 − x16 − x25 ≤ 0,
[−4] : x43 + x30 − x10 − x8 ≤ 0, [−2] : x53 + x30 − x16 − x20 ≤ 0,
[−7] : x59 + x30 − x16 − x26 ≤ 0, [−4] : x31 + x60 − x16 − x28 ≤ 0,
[−1] : x43 + x45 − x8 − x41 ≤ 0, [−1] : x43 + x62 − x8 − x42 ≤ 0,
[−3] : x47 + x62 − x8 − x46 ≤ 0, [−3] : x51 + x62 − x16 − x50 ≤ 0,
[−7] : x7 + x54 − x4 − x6 ≤ 0, [−9] : x51 + x53 − x48 − x49 ≤ 0.

5. Feasibility inequality:
[−0.5] : 88x0 + 58x1 + 54x2 + 24x3 + 48x4 + 18x5 + 14x6 − 16x7 + 64x8
+34x9 + 30x10 + 24x12 − 6x13 − 10x14 − 40x15 + 72x16 + 42x17
+38x18 + 8x19 + 32x20 + 2x21 − 2x22 − 32x23 + 48x24 + 18x25
+14x26 − 16x27 + 8x28 − 22x29 − 26x30 − 56x31 + 56x32 + 26x33
+22x34 − 8x35 + 16x36 − 14x37 − 18x38 − 48x39 + 32x40 + 2x41
−2x42 − 32x43 − 8x44 − 38x45 − 42x46 − 72x47 + 40x48
+10x49 + 6x50 − 24x51 − 30x53 − 34x54 − 64x55 + 16x56 − 14x57
−18x58 − 48x59 − 24x60 − 54x61 − 58x62 − 88x63 ≤ −1.

Let FC (A,S ′)0
n ⊇ FC (A,S ′)0

n, and let the following be the linear relaxation of

FC (A,S ′)0
n, defined by the following constraints (trivial ones not shown):

1. [−186.5] : x0 = 0



2. FS inequalities:
[−7.5] : x1 − x0 ≤ 0, [−10] : x6 − x0 ≤ 0, [−8.5] : x11 − x0 ≤ 0,
[0] : x19 − x0 ≤ 0, [−8.5] : x23 − x0 ≤ 0, [−4] : x35 − x0 ≤ 0,
[−7] : x37 − x0 ≤ 0, [−9] : x38 − x0 ≤ 0, [−24] : x39 − x0 ≤ 0,
[−2.5] : x41 − x0 ≤ 0, [−16] : x44 − x0 ≤ 0, [−21] : x46 − x0 ≤ 0,
[−15] : x47 − x0 ≤ 0, [−6] : x50 − x0 ≤ 0, [−19] : x55 − x0 ≤ 0,
[−5.5] : x56 − x0 ≤ 0, [−17] : x59 − x0 ≤ 0, [−16] : x61 − x0 ≤ 0,
[−11] : x62 − x0 ≤ 0, [−23] : x63 − x0 ≤ 0, [−12] : x13 − x12 ≤ 0,
[−12.5] : x14 − x2 ≤ 0, [−12.5] : x22 − x18 ≤ 0, [−6.5] : x62 − x18 ≤ 0,
[−1] : x42 − x40 ≤ 0, [−7] : x51 − x48 ≤ 0, [−7.5] : x43 − x8 ≤ 0,
[−5.5] : x29 − x17 ≤ 0, [−5.5] : x61 − x9 ≤ 0, [0] : x63 − x56 ≤ 0.

3. FC inequalities:
[−7.5] : x15 + x45 − x1 − x13 ≤ 0, [−9] : x15 + x53 − x1 − x5 ≤ 0,
[−3.5] : x15 + x57 − x1 − x9 ≤ 0, [−7.5] : x23 + x62 − x16 − x22 ≤ 0,
[−8] : x27 + x45 − x1 − x9 ≤ 0, [−8.5] : x31 + x43 − x1 − x11 ≤ 0,
[−1] : x31 + x53 − x16 − x21 ≤ 0, [−3.5] : x45 + x57 − x8 − x41 ≤ 0,
[−9] : x55 + x58 − x16 − x50 ≤ 0, [−17] : x7 + x54 − x4 − x6 ≤ 0,
[−5] : x51 + x53 − x48 − x49 ≤ 0.

4. FC-chain inequalities (it is easy to check that the explicit chains work for all
subsets):
[−1.5] : x29 + x47 + x61 + x63 − x8 − x13 − x17 − x56 ≤ 0,

(29
19FS

−−−→ 17), (63
8FS

−−→ 8), (47
8FS

−−→ 8), (61
56FS

−−−→ 56), (63
56FS

−−−→ 56),

(47
29UC

−−−→ 13), (61
19FS

−−−→ 17).
[−4] : x29 + x61 + x62 − x16 − x17 − x28 ≤ 0,

(29
16FS

−−−→ 16), (61
19FS

−−−→ 17), (62
19FS

−−−→ 18
16FS

−−−→ 16),

(29
62UC

−−−→ 28).
[−7.5] : x30 + x31 + x47 + x63 − x8 − x14 − x16 − x24 ≤ 0,

(63
8FS

−−→ 8), (47
8FS

−−→ 8), (63
16FS

−−−→ 16), (47
30UC

−−−→ 14), (30
16FS

−−−→ 16),

(30
56FS

−−−→ 24), (31
16FS

−−−→ 16), (31
56FS

−−−→ 24).
[−4] : x30 + x31 + x55 − x19 − x22 − x24 ≤ 0,

(30
56FS

−−−→ 24), (31
56FS

−−−→ 24), (31
19FS

−−−→ 19), (55
30UC

−−−→ 22), (55
19FS

−−−→ 19).
[−7] : x30 + x31 + x59 − x16 − x24 − x26 ≤ 0,

(30
56FS

−−−→ 24), (31
56FS

−−−→ 24), (31
16FS

−−−→ 16), (30
16FS

−−−→ 16),

(59
16FS

−−−→ 16), (59
30UC

−−−→ 26).
[0] : x47 + x54 + x63 − x8 − x16 − x38 ≤ 0,

(63
8FS

−−→ 8), (63
16FS

−−−→ 16), (47
8FS

−−→ 8), (54
16FS

−−−→ 16), (54
47UC

−−−→ 38).
[−12] : x47 + x60 + x63 − x8 − x44 − x56 ≤ 0.

(47
8FS

−−→ 8), (63
8FS

−−→ 8), (63
56FS

−−−→ 56), (60
56FS

−−−→ 56), (60
47UC

−−−→ 44).
5. Feasibility inequality:

[−0.5] : 58x1 + 54x2 + 24x3 + 48x4 + 18x5 + 14x6 − 16x7 + 64x8
+34x9 + 30x10 + 24x12 − 6x13 − 10x14 − 40x15 + 72x16 + 42x17
+38x18 + 8x19 + 32x20 + 2x21 − 2x22 − 32x23 + 48x24 + 18x25



+14x26 − 16x27 + 8x28 − 22x29 − 26x30 − 56x31 + 56x32 + 26x33
+22x34 − 8x35 + 16x36 − 14x37 − 18x38 − 48x39 + 32x40 + 2x41
−2x42 − 32x43 − 8x44 − 38x45 − 42x46 − 72x47 + 40x48
+10x49 + 6x50 − 24x51 − 30x53 − 34x54 − 64x55 + 16x56 − 14x57
−18x58 − 48x59 − 24x60 − 54x61 − 58x62 − 88x63 ≤ −1.

ut


