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Stable Multi-Sets

Arie M.C.A. Koster'? Adrian Zymolkal

Abstract

In this paper we introduce a generalization of stable sets: stable multi-sets. A stable
multi-set is an assignment of integers to the vertices of a graph, such that specified
bounds on vertices and edges are not exceeded. In case all vertex and edge bounds
equal one, stable multi-sets are equivalent to stable sets.

For the stable multi-set problem, we derive reduction rules and study the associated
polytope. We state necessary and sufficient conditions for the extreme points of the
linear relaxation to be integer. These conditions generalize the conditions for the stable
set polytope. Moreover, the classes of odd cycle and clique inequalities for stable sets
are generalized to stable multi-sets and conditions for them to be facet defining are
determined.

The study of stable multi-sets is initiated by optimization problems in the field of
telecommunication networks. Stable multi-sets emerge as an important substructure in
the design of optical networks.

1 Introduction

Stable sets, also referred to as independent sets, cocliques, or set packings, are among
the most studied structures in graph theory/combinatorial optimization. A stable set in a
graph is a subset of the vertices, where no two vertices are adjacent. A generalization of
the notion of stability in a graph is obtained by considering multi-sets of vertices, where
the multiplicities of the elements (vertices) in the multi-set are bounded by vertex and edge
weights. This generalization is called stable multi-set here. The study of stable multi-sets
is motivated by an optimization problem from telecommunication industry. In the design
of optical networks, structures like stable multi-sets play an important role. For more
information how stable multi-sets are used in the optimization of optical networks, we refer
to [7].

This paper serves as a first step in the development of polyhedral theory for stable multi-
sets. In Section 2, we formally define stable multi-sets and the associated optimization
problem. Next, in Section 3 we derive rules to reduce the problem complexity. Our main
purpose is to study the associated stable multi-set polytope, which is the topic of Section 4.
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We not only show that the well-known cycle and clique inequalities of the stable set polytope
can be generalized to the stable multi-set polytope, but also prove necessary and sufficient
conditions under which the polytope defined by the linear relaxation is integer. The paper
is concluded in Section 5 with a comparison of the results obtained for stable multi-sets to
stable sets and directions for further research.

2 Problem Description

Throughout this paper, we assume that all graphs are simple, i.e., contain no loops and
no multiple edges. We first introduce a generalized (stable) set concept which the studied
problem is based upon.

Definition 2.1 A multi-set S is a pair (V,t) consisting of a ground set V and a function
t:V — ZJ, where t(v) denotes the multiplicity of v € V in the multi-set S.

Definition 2.2 Given a graph G = (V, E), non-negative integers o, associated with every
verter v € V, and non-negative integers By, associated with every edge vw € E, a stable
multi-set (SMS) is a multi-set S defined by the multiplicity function t: V — ZO+ such that
t(v) < ay for allv € V and t(v) + t(w) < Py for all vw € E.

Figure 1: Example of a stable multi-set instance.

Consider the example in Figure 1. At every vertex «, is given, whereas [, is dis-
played at the edges. Possible stable multi-sets are for example (0,1,4,2,6), (2,2,3,4,4)
or (1,3,3,3,4).

Note that the special case with o, = 1 for all v € V and B, = 1 for all vw € E represents
the traditional stable set. With weights ¢, for all v € V', the (weighted) stable multi-set
problem (short: SMS problem or SMSP) now can be defined as follows.

STABLE MULTI-SET PROBLEM

Input: A graph G = (V, E), non-negative integers «, and ¢, associated with every vertex
v € V, non-negative integers [,, associated with every edge vw € FE, and a positive
integer K <) v Cyuy.



Question: Does there exist non-negative integers ¢, such that ¢, < a, for all v € V,
ty + bty < Py for allvw € E, and ) oy ety > K?

For the example of Figure 1 and weight function ¢ = (1,1,1,1,1), the solution (2,2,3,4,4)
belongs to the set of optimal solutions (with value 15).

In case ay = By = 1 for all v € V and vw € E, the problem reduces to a maximum
weighted stable set problem (SSP) which is well studied (cf. [1]). Since the maximum
(weighted) stable set problem is well known to be A'P-hard and occurs as a special case,
the maximum (weighted) stable multi-set problem is also NP-hard.

We can formulate the problem with integer variables ¢, as follows:

veV

s, ty +ty < Buw Yow € E (2)
ty < YveV (3)
ty € Zg YveV (4)

In the sequel, we refer to the inequalities (2) as the edge inequalties, whereas the vertex
inequalities are given by (3). Together with the non-negativity inequalities t, > 0, we will
refer to them as the model inequalities.

In this paper, we primarily study the polytope associated with this formulation. However,
by basic preprocessing it might be possible to reduce the graph and some of the bounds, and
thus, to simplify the problem formulation. So we first point out these reduction rules before
analyzing the polyhedral structure of (not further reducible) stable multi-set problems.

3 Reduction Rules for Stable Multi-Set Problems

We consider a given stable multi-set problem on a graph G = (V, E) with vertex bounds a,
for all v € V, edge bounds S, for all vw € E, and objective values ¢, for all v € V. Let
N (v) denote the set of neighbors of v € V, i.e., N(v) := {w € V : vw € E}. First of all
we check whether ¢, > 0 for all v € V, since ¢, < 0 implies ¢, = 0, and the vertex can be
removed from the problem. Next, if 3, > @, + ay,, inequality (2) will always be fulfilled so,
edge vw can be removed from the instance. If o, > By, then o, can be set to By, - Hence,
without loss of generality c, < miny,en () Bvw- AS a consequence, we may assume in the
sequel that max{a,, oy} < Byw < @y + ay for all vw € E. Finally, we assume that a, > 0
for all v € V and S, > 0 for all vw € E, because otherwise vertex v or both vertices v and
w, respectively, can be deleted from the graph (with the appropriate vertex values fixed to
0).

Now, we can specify lower bounds on the variable values in any optimal solution independent
of the objective function. Let -y, := minwEN(v){ﬂvw —ay} forveV.

Lemma 3.1 Any optimal solution t* meets t;, > v, for allv € V.



In case there exist vy, > 0, the values of the vectors a and 8 can be reduced using the lower
bounds provided by Lemma 3.1 in order to simplify the problem representation.

Corollary 3.2 For a graph G = (V,E) let P = (G, o, B8, ¢) define a SMS problem and set
Yo = Miye N () {Bow — w} for allv € V. On the same graph, let P' = (G, ', 3',c') be the
SMS problem defined by o) = ay — 7y for allv € V, Bl = Bow — Yo — Y for all vw € E,
and ¢}, = ¢, for allv e V.

Then each optimal solution t' for P' corresponds to an optimal solution t for P by t, =
ty, 4+ Yo- Moreover, if 2' is the optimal value of P', then z = 2' + 37, .y, cuyy is the optimal
value for P.

Note that all previous assumptions are unaffected by this transformation, i.e., the conditions
0 < max{al,al,} < B, < o, + ), hold for all vw € E. Furthermore, the reduced SMS
problem P’ can not be reduced again (in the same way), since v, = miny,e n(y){ B~} = 0
forallveV.

For the SMS problem of Figure 1, the reduced problem is given by Figure 2. In this case,
v=1(1,1,2,2,3).

Figure 2: Reduced SMS problem of Figure 1.

Since the described transformation can be simply applied and may reduce the problem size
(or at least some values), it suffices to analyze the problem only for instances which are not
further reducible this way.

4 The Stable Multi-Set Polytope

In this section, we study the stable multi-set polytope (Pg,,q)- In contrast to the well-
studied stable set polytope (see [1] for a survey), to our knowledge only Gerards and Schrij-
ver [5] discuss a related polytope (in the context of the Edmonds-Johnson property).

A SMS polytope Pg,,¢ is defined by the triple (G = (V, E), a, 3). We assume that none of
the reduction rules described in the previous section can be applied anymore, i.e., we have
0 < max{ay, ay} < Byw < ay + ay, for all vw € E and v, = min,ey(y){Byw — @} = 0 for

all v € V. For a graph G = (V, E) and vectors a € ZL‘_/‘ and 3 € Z‘f‘, let T(G, a, 8) denote
the set of all solutions to (2)—(4), i.e.,

T(G,a,pB) :{tEZM 0<ty, <apYw eV, t,+ty < Byw Yow € E}.
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The convex hull of this set is denoted by
TIP(G7 «, ﬁ) = COIIV(T(G, «, IB))

Moreover, by Trp(G,a,3) we denote the polytope described by the linear relaxation of
inequalities (2)—(4):

Tip(Ga,B) = {t e RV :0 < t, < Vo € Vi by + to < BowVow € E}
If there is no danger of confusion, we use T', Typ, and Trp as short version of T'(G, a, ),
Trp(G, a, ), and Trp(G, a, B), respectively.

Let us now start the study of the relation between Trp and T7p. First of all, we state the
dimension and the trivial facets of Typ. Let n = |V| denote the number of vertices.

Proposition 4.1 (i). The dimension of Trp equals the number of vertices, dimTip = n.
(ii). For all v € V, the non-negativity inequality t, > 0 defines a facet of Trp.

(iii). For v € V, the non-negativity inequality t, < «, defines a facet of Trp if and only if
Bow > @ for all w € N(v).

Proof. For v € V, let ¢* € {0,1}/V/ be the vertex unit vector defined by ¥ = 1 and e?, = 0
for all w € V' \ {v}.

(). Since ay, > 0 for all v € V, T contains all unit vectors e¥ for v € V. Moreover, 0 € T'.
Obviously, these vectors are affinely independent.

(ii). Except for e, all vectors of the previous part satisfy t, = 0 at equality.

(iii). We define n affinely independent solutions that satisfy ¢, = a,. Let the solution ¢¥
be defined by t) = a, ti, = 0 for w # v. Next, for all w € V, w # v, we can define
the solution t¥ by t%¥ = au, t% =1, t%¥ = 0 for u ¢ {v,w}. These solutions are valid
since a, > 0 and Sy, > @, for w € N(v). Moreover, they are affinely independent.

In case there exists w € N(v) with £y, = a,, then t, = «, implies ¢,, = 0. This yields
dim{t € Trp : ty = ap} < n — 2, i.e., t, < a, can not define a facet of Trp. [ |

Completing the facets defined by the model inequalities, we state a similar result for the
edge inequalities.

Proposition 4.2 For vw € E, the edge inequality t, + t,, < Buw defines a facet of Trp
if and only if for all u € N(v) U N(w), there exist integers T, < q, and Ty, < oy, with

Ty + Ty = Bow, To < Pou if u € N(v) \ {w}, and Ty < Pyu if u € N(w) \ {v}.

Proof. If t, + 1, < By defines a facet of Trp, there exist n affinely independent solutions
of Trp on the appropriate hyperplane. For each u € N(v) U N(w), there is at least one
solution t* with ¢ > 0. Then z, = ¢ and z,, = t,,, are integers with Z, + Z,, = By, and



since t% > 0, we have T, < Byy — t¥ < Buy, if u € N(v) \ {w}, and Ty, < Buw — t < Buw, if
u € N(w) \ {v}.

For sufficiency, we construct n affinely independent solutions satisfying ¢, + t,, = Byw-
Again, for v € V let ¥ € {0, 1}‘V| be the vertex unit vector defined by e} =1 and e =0
for all w € V' \ {v}. Since we have a, + ay, > By by assumption, there must be integers
0 < Ty < ayand 0 < Zyy < g With T, 4+ Ty, = Byw. Then t! = Z,e” + Z,,e” is a solution of
Trp. Moreover, either T, < @, Or Ty, < au,. Without loss of generality, we assume z, < ay,
and as a consequence, Ty = By — Ty > Buw — @y > 0 by the problem assumptions. Thus,
the vector t2 = (Z, + 1)e¥ + (T, — 1)e¥ is another solution of Typ.

Now, let u € V' \ {v, w} be arbitrarly chosen. If u ¢ N(v)UN (w), then we define t* = ¢! +e*
which is clearly also a solution of T7p. If u € N(v) U N(w), then there exist Z, and Z,, as
stated in the Proposition, and we set t* = T,e¥ + T,e* + e* € Trp.

Summarized, the vectors ¢, #2, and t* for all u € V' \ {v,w} are solutions of Trp and satisfy
ty + tw < Buw at equality. Since they are affinely independent, the edge inequality defines
a facet of Typ. [ |

Note that in general, the inequalities ¢, < oy and t, + t,, < By do not define facets for the
stable set polytope (with o, = By, = 1 for all v € V and for all vw € E). In this special
case, it follows from Proposition 4.2 that ¢, + ¢, < 1 is a facet if and only if the vertices do
not have a common neighbor, i.e., vw is a maximal clique. In the sequel, we will refer to
the facets of Propositions 4.1 and 4.2 as the trivial facets.

Next, we derive conditions under which the model inequalities describe all facets of T7p,
i.e., the special case Tr,p = T7p. For the stable set polytope, the edge inequalities (2) suffice
to describe Tjp completely if and only if the graph does not contain an odd cycle (i.e., G
is bipartite) and no isolated vertices exist (see Padberg [9]). Since, T1p also includes the
vertex inequalities (3), the condition that the graph does not contain isolated vertices can
be dropped. Hence, for the stable set polytope, Trp = T p if and only if G is bipartite. For
the stable multi-set polytope, Ttp = T7,p may also hold for non-bipartite graphs. To state
conditions that are necessary and sufficient for T7p = T p, we first have to define the cycle
inequalities that are valid for T7p. For a cycle C in G, let E(C) denote the edges on the
cycle. Moreover, let 8(C) =", ¢ g(c) Bow denote the sum of the edge values on the cycle.
A cycle C is called even (odd), if |C| is even (odd), and even-valued (odd-valued), if 5(C)
is even (odd).

Definition 4.3 Let C be a cycle in G. Then
Dt < [38(0)] (5)

veC

defines a cycle inequality.

It is easy to see that all cycle inequalities (5) are valid for T;p. Moreover, every even cycle
inequality cannot be violated by any solution ¢ € Ty p.

Lemma 4.4 Let C be an even cycle. Then the cycle inequality (5) is satisfied by all solu-
tionst € T p.



Proof. Let the edges of the cycle be consecutively indexed, beginning with an arbitrary
edge. Then the inequality defined by the sum of the edge inequalities of either the even-
indezed edges in the cycle or the odd-indered edges has a right hand side that is at least
as strong as the right hand side of (5). Thus, the cycle inequality (5) is satisfied by all
solutions, since all of them satisfy all edge inequalities. |

Also every even-valued odd cycle inequality cannot be violated by any ¢t € T p, since in
this case the cycle inequality can be obtained by summing up all edge inequalities half. An
even stronger result can be proved: if all odd cycles are even-valued, then the polytope
is completely described by the model inequalities. This bases on a result of Gerards and
Schrijver [5] (a Chwvdtal-Gomory cut is an inequality cz < [§], where ¢ integer, ¢ = AA and
d = Ab for some vector A > 0 of appropriate size):

Proposition 4.5 (Gerards and Schrijver [5]) Let A be the vertez-edge incidence ma-
triz of a graph G = (V,E) and b € Z\E then the system

Az < b, cr < 6],

where cx < § is implied by Az < b with ¢ integral (i.e., cx < |§] is a Chvdtal-Gomory cut)
has the same solution set as the system

Az < b, Zwv < [%b(C)J for all odd cycles C in G,
veC

where b(C) =Y, cc by-
Theorem 4.6 If all odd cycles C' in G are even-valued, then Trp = Ty p.

Proof. We prove the theorem by showing that the Chuvdtal rank (cf. [2, 10]) of the polytope
Trp is 0. The Chvatal rank of a polytope is defined as the minimum number of times all
Chvital-Gomory cuts have to be added to the set of linear inequalities in order to obtain
a complete description of the integer polytope. The Chvatal rank of Trp equals 0 if and
only if Tjp = Trp. Otherwise stated, we demonstrate that every Chvatal-Gomory cut is
equivalent or dominated by a linear combination of the model inequalities (2)—(3).

To do so, we apply Proposition 4.5 to a slightly mod_iﬁed graph G where the vertex bounds
are replaced by edge bounds. We define the graph G = (V, E) by

V = Vu{s},

E = EU{vi:veV}u{vi:veV}u{v},
and
Bow if vw € F,
byw =4 a, fveV,w=oVw=7o,
0 ifv=0,w=nuv.

Then every solution of T corresponds to a solution of X := {z € Z"*?: Az < b,z > 0},
and vice versa (note that Az < b implies 5 < 0 and z> < 0). Let X;p := conv(X) and
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3 3 3

Figure 3: Example of a SMS instance with an odd-valued odd cycle and T7p = Ty, p.

Xrp = {z € R"? : Az < b,z > 0}. To verify Chvital rank 0 for T;p, it suffices to
prove that the Chvatal-Gomory cuts of rank 1 are satisfied by all solutions z* € Xpp. By
applying the result of Gerards and Schrijver, all rank 1 Chvétal-Gomory cuts are given
by the inequalities for the odd cycles C in G. Now, we distinguish three cases where
|C N {5,9}| € {0,1,2}. If C is an odd cycle in G (i.e., |C N {5,9}| = 0), then b(C) is even
by the assumptions stated in the theorem, and the inequality is satisfied by every solution
z* € Xpp (see Lemma 4.4). Now, suppose |C N {,7}| = 1, then we may assume without
loss of generality that o € C, v € C. Let C = {v1,...,v,,9} (with n even). Then the odd
cycle inequality reads

n n—1
Z Ty; < \‘% (Z /31)@'117;_,_1 + ay, + avn)J (6)
=1

=1

Now, let C' be an even cycle with C = {vy,...,v,,9,9}. The even cycle inequality for
this cycle is identical to (6) due to the setting of by,. As a consequence, by Lemma 4.4,
inequality (6) cannot be violated. Finally, if 4,4 € C, a similar idea is applied. We construct
an even cycle by removing either ¢ or ¥ from the cycle. By the definition of b,,, both cycles
result in the same cycle inequality, which cannot violated by any z* € Xyp by Lemma 4.4.
This completes the proof. |

Note that the condition of Theorem 4.6 is not necessary for T;p = Trp. Consider the
instance in Figure 3. Although, it contains an odd cycle with odd value (i.e., 9), the
polytope Trp is completely described by the model inequalities. This is because the odd
cycle inequality z, + z, + x4, < 4 is dominated by the sum of the model inequalities z, <1
and z, + x, < 3. For odd-valued odd cycles, this example precisely gives the condition
under which an odd cycle inequality (5) cannot be violated. To state this result, as well as
to prove it, we will frequently denote the vertices of an odd cycle C by {v1,...,v9,41}. In
general, the index j of a vertex v; is calculated modulo 2k + 1, e.g., if 2k +1 < j <4k + 2
then j =4 — 2k — 1.

Theorem 4.7 Let C = {v1,...,v9x+1} be an odd cycle in G with 5(C) odd. The odd cycle
inequality (5) is dominated by a linear combination of the model inequalities if and only if

k
min 1) Qi +Zﬂ”i+2j—lvi+2j < [38(0)]. (7)
7j=1

i=1,....2k+



Proof. The proof of sufficiency is easy. Let p be an index for which the left hand side of (7)
obtains its minimum. Then the inequalities ¢,, < ay,, and ty,; ., + vy p, < Buyjip_1vaj 4y
for all 7 = 1,...,k sum up to an inequality that is at least as strong as the odd cycle
inequality (5).

Next, we show that (7) holds whenever the odd cycle inequality (5) is dominated. It is
dominated if there exists a linear combination (), u) of the model inequalities that results
in the same left hand side as (5), but has a right hand side that is less than or equal to the
right hand side of (5). The minimum right hand side of such a linear combination (A, u) is
calculated by the following linear program

2k+1 2k+1

2z* =min z()\,u) = Z CYW)\W + Z ﬂvw¢+1uvwi+1 (8)
=1 =1

. Aos + B o T oy, = 1 Vie{l,...,2k+1} 9)

Avi Z O’ l’l’vivi.'_l 2 O VZ E {17 ) 2k + 1} (10)

where \,; corresponds to the inequality z,;, < ay,;, and iy,
Buivi:- We have to prove that (7) holds, whenever z* < |28(C)]. This is done by analyzing
the optimal solution of (8)-(10).

to the inequality z,, +y,,, <

First of all, we prove that if z* < [53(C)], then there exists an integer vector (X, s) with
z(A, u) = z*. Suppose Ay, =0 for all i =1,...,2k + 1. Then the (unique) solution is given
DY fivuip = 3 for all i =1,...,2k + 1 which contradicts z* < [$8(C)], since B(C) is odd.
So, at least one \,, > 0. Next, suppose \,, > A > 0 for some ¢ € {1,...,2k + 1}. Then
the solution (), i) defined by

Vi+1

Aoi = Aviyy i =14, -
— K 3 . - . o ) f —
)\vj = 0 ifj=44+1, and Povjoji1 = { Povin + Avgyy 1 fl Z.’
Av; otherwise Bojvjqq otherwise,
j ;

has objective value Z(S\, i) = z(A, l‘)‘}'/\wﬂ (ﬁviviﬂ —Qy;, _avi+1) < z(A, p) by aytay > Buw-
So, without loss of generality A,, > 0 implies A,, , = A = 0. This idea can be generalized
to obtain an integer optimal solution (A, ).

Vi41

Let (7,5) be an index pair with 0 < A; < 1, 0 < Ay, < 1, and Ay, = 0 for alli < p <

j. Now, suppose j — ¢ = 2[ for some [ > 0. Moreover, without loss of generality let
1 l ..

O, D1 Buitay 1vipay < ;D1 Boj_spr1vj_apis (Otherwise i, j have to be exchanged,

and the indexing direction must be reversed). Note that from the conditions of the sequence,

it follows that fy; 15, 20140, 1 = Av;  Bvjvji1s Bvigap 1vi0p = 1 = Avj — Bwjuj . P =1, 1,

and Ay; <1 — Xy, — fly;0;,,- Then the solution (A, 1) defined by

) Av, + A, i g=1, Pogugsr — M, i g <J, q—ieven,
Aoy =14 0 ifi<g<yj, and [y = Hogugrr T Ay, g <j,g—1odd,
Avg otherwise, Pvgvgs1 otherwise,

is valid and has objective value
~ l l
z()\, /7') = z()\, N) + )\’Uj (avi + Zﬂvi+2p—2vi+2p—l — Qy; — Z ﬂvi+2p—lvi+2p) < z()\, U)
p=1 p=1



. . l l
where the lower estimation comes from o, +Zp:1 Buisop_1vipap < O +Zp:1 Bo; _aps1vj—2p12-
The number of fractional variables is reduced by at least one (namely A,,).

If j —i=20+1 for some [ > 0, then either the solution (A i) or (X, i) is at least as good
as (A, p). Here, (A, z) is defined by

) Aoy + bouiy  if g € {4,5}, 0 if g < j, g —1 even,
Ayy =48 0 ifi<qg<yj, and fiyu,, = 1 if ¢ < j, g —1 odd,
Avg otherwise Pogugyy Otherwise
and (X, i) by
. Ao, — A if g € {i,j}, Poguger T A if ¢ < j, ¢ — i even,
Ayy =4 0 ifi<qg<j, and [iyu,41 = § Hogugr — A if g <j,q—1odd,
Avg otherwise Pvgvg 41 otherwise

with A = min{\,,, Ay, }. Again, the number of fractional variables is reduced by this con-
struction. This procedure can be repeated as long as there are multiple fractional A,
variables. In the end, at most a single fractional \,, variable remains. The existence of such
a single fractional \,, variable, however, leads to a contradiction. Let 0 < A,, < 1, whereas
Ay; € {0,1} for all i > 2. Then at least fiy,p, O fy,, 41 18 fractional as well. Without loss
of generality, we can assume that f,,,, is fractional. From \,, € {0,1} and gy, > 0 it
follows that A,, = 0 and pyy0; = 1 — fy,0,- Repeating this argument leads to A,, = 0 for
all 4 > 2, and oy, 0y = Hoyvy- It also holds that py,, 0, =1 — Ay; — phyyv,- This implies
that Ly, 10 = 3 — 3Avo; AN Lypien;y, = 5 + 3As, for i = 1,..., k. However, then (X, u) is
a convex combination of the solutions (X, ) and (X, i) defined by

X — 1 ifi=1, and | 1 if ¢ even,
Y"1 0 otherwise, Hoiies =7 otherwise,

>~

and

Ay; =0 for all 3, and fiyp,, = % for all 4.

Hence, (A, 1) = Ao, (A, 1) 4 (1 — Ay, )(A, f2). Moreover, since (X, ) is optimal, we get z* =

2O\ ) = z(\ i) = +B(C), which contradicts 2* < |$8(C)] for B(C) odd.

So, after repeated application of the above described procedure, all A\,, variables are integer,
with at least one non-zero. Consequently, all fi,,,,,, variables are integer as well. Now, let
Iy={i: A, =1}, and let I, = {i : p1y;0,,, = 1}. Note that |I| = 2/ + 1 for some [ > 0. If
I = 0, then the proof is completed. Otherwise, suppose that, although z* < |358(C)], (7)
does not hold. Then for all i € {1,...,2k + 1}, u; + Yr—) Buirojorvir; = 3(B(C) + 1).
Summation for all 7 € Iy results in

2 +1
Z ay; +1B(C) + Z Buvisn = —5— (B(O) +1)
1€l ZEIH

which yields
Y o+ Buvian = 5 (BO) +1) +1>

1€l i€ly,

(B(C)+1) (11)

N
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On the other hand, however, since (A, u) is optimal, it holds for every pair 4,7 € I with
p & I for all i < p < j that the solution (A, 1) defined by

T 0 ifge{i,j} ~ 1 = pygo ifi<qg<y
A = R ’ ’ d — qUqg+1 =1
Ya { Ay, Otherwise e Hugvgir Hogugin otherwise

(i.e., an exchange of the p values between i and j) does not improve the solution value.
Hence,

Qy; + a’Uj + Z /vavp+1 < Z IB’U])—I’Up + /B’Uj—l’ljj
PE:i<p<j PE:i<p<j
Summation for all pairs 4,5 € I, with p & I for all i < p < j results in

2 Z Qg + Z ﬂvpvp_H S Z /va—lvp + Z 16111—1111

1€l pel, pel, 1€ly

Addition of 37 ¢, Bu,v,4, t0 both sides gives

2 Z Qy,; + 2 Z 6vpvp+1 < IB(C)

i€l pEIu,

Since the right hand side is odd by assumption, whereas the left hand side is even, it holds
that

Z Oy, + Z ﬁvpvp.,.l < %(ﬁ(C) - 1)

1€y pEly
which contradicts to (11). So, (7) holds whenever z* < [18(C)]. [ ]

Now, Theorem 4.6 and Theorem 4.7 together result in the following statement.

Corollary 4.8 The polytope Trp is completely described by the model inequalities, i.e.,
Trp = Trp, if and only if for every odd cycle C = {v1,...,vokt1} in G either B(C) is even
or (7) is satisfied.

Now, let us return to the situation T;p # TLp. Several classes of valid inequalities exist.
A natural starting point is the class of odd cycle inequalities. Padberg [8] proved for the
stable set polytope that the odd cycle inequality defines a facet in case the graph is an odd
cycle. For more general graphs, cycle inequalities have to be lifted to obtain a facet. Also
for stable multi-sets we have to restrict ourselves an odd cycle. Moreover, by Corollary 4.8,
additional conditions are necessary. In the next proposition, we state conditions that are
not only necessary but also sufficient for an odd cycle to be facet defining. Let G¢ denote
the subgraph restricted (not induced) to the cycle C, i.e., Go = (C, E(C)).

Proposition 4.9 Let C = {v1,...,v9,41} be an odd cycle in G with (C) odd. Then the
odd cycle inequality (5) defines a facet of Tip(Ge, o, B) if and only if

k k
1 .
izlf’??;”l Jz_:l BPoiyaj 1viga; (< [38(0)] < i:lf.T.l.gllH-l Qy; + Jz_:l Buitaj 1vi1s;

11



Proof. From Corollary 4.8 it is clear that

i=1,...2k+1

k
min Oy, + ZIB’Uz’+2j—1'Ui+2j > [%,B(C)J (12)
j=1

has to be satisfied for all 7 € {1,...,2k + 1} in order to define a non-dominated valid
inequality.

The odd cycle inequality (5) defines a facet if and only if there exist 2k + 1 affinely in-
dependent solutions that satisfy (5) with equality. Since the right hand side of (5) is
violated by at most %, it follows that every solution must satisfy all but one edge inequal-
ities ty, + ty;,, < Buv;,, With equality, whereas the remaining inequality has to have slack
exactly one. Since C is an odd cycle (and thus the edge-node incidence matrix has full
rank), only one such a solution can exist for each edge. As a consequence, we can identify
the 2k + 1 solutions by the index ¢ of the edge v;v;+1 that is not satisfied with equality by
the specific solution: #*. Each solution ¢ is uniquely defined by

; : i — 1 i =1
ot =4 Puvn !

v; T toji { Bu;vj 41 otherwise,

To be feasible, these solutions have to satisfy

0 <t < ay, Vi=1,...,2k+1

From the equality constraints, it follows that

k k

i _ 1 Z Z j—i

0< tUj -2 5Uj+2pvj+2p+1 o ﬁvj+2p—1vj+2p +(=1) < Qy;
p=0 p=1

should hold for all ¢ € {1,...,2k+ 1}, j € {i +1,...,i+ 2k + 1}. Since for fixed j the
difference j — ¢ is half the times even and half the times odd. This statement is equivalent
to

k

k
1< § :/6”j+2pvj+2p+1 - E :ﬂqup,lijp < 2ay; —1
p=0 p=1

for all j € {i +1,...,%5+ 2k + 1}. The right part of this estimation follows immediately
from (12). The left part is equivalent to

k k
§ :lB,U'i+2p71'Ui+2p S § :ﬁvi+2pvi+2p+l -1
p=1 p=0

for alls € {1,...,2k + 1}, and addition of E];ZI Buisap—1vipe, t0 both sides and division by
2 this transforms to

k
D Buiprprvisny < 38(C) — 5 = [38(C))

p=1
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foralls € {1,...,2k+1}. Now, the condition stated in the proposition follows immediately.
|

Chviétal [3] introduced the concept of t-perfectness of a graph. A graph is t¢-perfect if
the associated stable set polytope is completely described by the model inequalities and
the odd cycle inequalities (or equivalently, the polytope has Chvétal rank 1). However, a
full characterization of ¢-perfect graphs is unknown, and as a consequence, the same holds
for the graphs for which the stable multi-set polytope has Chvatal rank 1. Gerards and
Schrijver [5] proved that for strongly ¢-perfect graphs, i.e., graphs that do not contain a
subdivision of K4 such that all four cycles corresponding to triangles in K, are odd, the
model and odd cycle inequalities completely describe the stable multi-set polytope. This
result is independent of the vectors a and S. For actual values «, and S,,,, stronger results
for Chvétal rank 1 are likely to hold (cf. the results for Chvétal rank 0, Corollary 4.8).

Moreover, without going into details, the polynomial time separation algorithm for odd
cycle inequalities proposed by Grotschel, Lovész and Schrijver [6], is not applicable to the
separation of odd-valued odd cycles. As a consequence, the question whether the separation
of odd cycle inequalities for the SMSP can be solved in polynomial time remains open.

A second class of inequalities that is well-known for the stable set polytope are the clique
inequalities. For the stable multi-set polytope, we derive a similar result for cliques with
uniform edge bounds S,,, = B for all vw € E which we call S-cliques. For suitable vertex
bounds a, we get the following B-clique inequalities defined on a clique K,,.

Proposition 4.10 Let G = (V, E) = K,, for an integer n > 2, with By, = B for allvw € E
and oy > [%m for all v € V.. Then the clique inequality

Sty < nlbB) + (6 mod 2) (13)

is valid for T, and defines a facet of Trp if and only if B is odd or n = 2.

Proof. We prove the validity of (13) by induction on n. For n = 2, let Ky = {v1,v2},
and consider the model inequality t,, +t,, < 8. By 8 =2[38] + (8 mod 2), the inequality
belongs to the class of clique inequalities (13).

Now, suppose the result holds for cliques of size n — 1. Then for all v € V, it holds (by
assumption)

Yt <(n—1)[38] + (8 mod 2)

veV\{u}

Summation of these inequalities for all u € V yields

(n—1) Z ty < n(n—1)| 3] +n(8 mod 2)

veV

13



Division by n — 1 and rounding results in

>

veEV

IN

{ngm + (B mod 2) + ﬁ(ﬂ mod 2)J

alds] + (B moa ) + |1 (fmoa2)]

Because we can assume n > 3, ﬁ < % < 1. Moreover, since (8 mod 2) € {0,1}, we have

—L-(B mod 2)] = 0, which proves that (13) is valid for n.
Finally, we prove that (13) defines a facet of T7p, if and only if 8 isodd or n = 2. If G = Kj,

the conditions of Proposition 4.2 are satisfied, and so (13) defines a facet. If S is odd, then
the n solutions t¥ for all v € V defined by

o 138] +1 ifu=w,
v 1381 otherwise

are valid, satisfy the clique inequality (13) with equality, and are affinely independent. If
neither 8 is odd nor n = 2, i.e., 8 is even and n > 3, then (13) is a linear combination of
the model inequalities ¢, + t,, < 8 for all vw € F, and thus cannot define a facet. |

For more general graphs, the clique inequality is valid for all cliques that satisfy the described
properties. To be facet defining in general graphs, an additional condition has to be satisfied.
Since cliques of size 2 are already treated by Proposition 4.2, we restrict to cliques with at
least 3 nodes.

Proposition 4.11 Let G = (V,E) be an arbitrary graph. Let Q C V, |Q| > 3, be a
cligue in G with Byy = B for all vw € E, and a, > [%ﬂ] for all v € V. Then the clique
inequality (13) is valid for Trp. Moreover, (13) defines a facet of Trp if and only if B is
odd and for all u € N(Q), there exists w € Q with w & N(u) or Byw > [%m + 1.

Proof. We first prove sufficiency. By the described conditions, we have |Q| affinely inde-
pendent solutions t¥ for v € (), defined by

58] +1 ifu=wv,
£={ [1g]  ifueQu#y,

0 otherwise

1
2
1
2

Furthermore, by assumption there is a node v € @ for each w € V'\ Q), such that t* = t"+e,,
is valid (where e, denotes the w-th unit vector). These in total n vectors are affinely
independent and satisfy (13) with equality, implying that (13) defines a facet of T7p.

Necessity is shown indirectly. By Proposition 4.10, we know that for 8 even, the inequal-
ity (13) can not define a facet. Moreover, if 8 is odd, but there exists u € N(Q) with
@ C N(u) and By < [28] for all w € @, then all solutions satisfying (13) with equality
also satisfy ¢, = 0, which implies that (13) is a face of t, = 0 and does not define a facet of
Trp. [ |
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Note that in case of a stable set polytope, we have 8 = 1, and s0 By, > [%B] + 1 cannot be
satisfied. Thus, the clique inequality (13) defines a facet for the stable set polytope if and
only if @ is a maximal clique, which has been shown by Fulkerson [4] and Padberg [8].

In case G is complete, T7p is completely described by the clique inequalities. To prove this
result we need some general properties of facet defining inequalities.

Lemma 4.12 Let nt < mg be a valid inequality that defines a facet of Trp. Then my > 0,
and if mg = 0, then wt < 0 is identical to a non-negativity inequality t, > 0 for some v € V.
Moreover, if mg > 0, then 0 < my < mo/ for allv € V.

Proof. From 0 € T, it follows that w9 > 0. If my = 0, then the solution t¥ = e, v € V,
implies that 7, < 0. But in this case, 7t < 0 is a linear combination of the inequalities
ty > 0. Since both t, > 0 and nt < 0 define facets of Tjp, the inequalities have to be
identical.

Now, let m9 > 0 and 7, < 0 for some v € V. Since nt < 7 defines a facet (and is not
identical to a non-negativity constraint), there has to be a solution ¢ with 7t = 7y and
ty > 0. Then the solution ¢ with %, = &, — 1 and ¢, = %, for all w # v, however, violates
7wt < m. Finally, by a,e’ € T for allv € V, myay, < 7y for all v € V. [ |

Theorem 4.13 Let G = (V,E) = K,, for an integer n > 2, with By, = B for allvw € E
and qy > f%ﬁ} for all v € V.. Then Trp is completely described by the model inequalities
and the k-clique inequalities (13) for all k < n.

Proof. We have to prove that each inequality nt < my that defines a facet of T7p is in fact
identical to one of the inequalities describing the polytope P,

teR": t, <ay vev,
P = t'u‘l'th,va ’UUIEE,
Yveste < ISIL38] +1 SCV,|S| >3

First of all, without loss of generality, we assume that all coefficients 7y € Zb" and 7, € Z(‘)" ,
v € V. By Lemma 4.12, we can restrict us to mg > 0, and it holds that 7w, > 0 for all v € V.
Moreover, in case 7, = 0 for all vertices but one v € V, the inequality must be identical to
the inequality ¢, < a,. So, in the sequel we may assume at least two positive coefficients
T,. We also may assume that at least two different positive coeflicients exist, otherwise the
inequality has to be identical to an edge or clique inequality.

Now, let u = argmax,cy mpy. It holds that either m, > ZvEV\{u} Ty OF Ty < Zuev\{u} Ty
Suppose that m, > ZveV\ {u} T holds. Sian: 7t < 7o deﬁnes a facet not identical to ¢, < ay,
there has to be a solution ¢ € T7p with nt = ny and ¢, < «a, — 1. Now, construct a new
solution # by #, = £, + 1, #, = max{0,%, — 1} for all v # u. Obviously ¢ € T;p, but 7t > m,
which implies that 7t < 7y cannot be a valid inequality in this case.

So, it holds that m, < ZvEV\ {u} To- We construct a non-negative combination of the
inequalities describing P, which is equivalent to or dominates 7t < my. On the one hand,
if m, = Zvev\ {u} Tv; W€ can combine edge inequalities ¢, + t,, < 8 to an equivalent (or
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dominating) inequality. On the other hand, if there exists a v € V' \ {u} with 7, = 7, a
combination of clique inequalities gives the desired result. In general, we have to combine
these two approaches. To do so let VO = v\ {u} and x(© = 0. Moreover, for i > 1
let VO = {v € VO : 7, > pul~D} and u() = mlnvev(l) my- Now, consider the values
f() =Y ey® T — my and g(6) == (V@] = 1)u®. An increase of i to i + 1 results in a
decrease f(i) by |V \ V+1)|4() | whereas g(i) decreases by |V \ V4D |40 — (v +D)| -
1) (0D — 4@). So, the f(i) decreases at least as fast as g(i). Moreover, let ¢ be the smallest
integer such that V(@Y = (. Then f(q) = |V 9 |u® — 7, < g(q), whereas £(0) > 0 = ¢(0).
As a consequence, there exists a minimal p € {0, ..., ¢} such that f(p) < g(p).

Note that, |[V(®)| > 1, since p < ¢. Now, suppose |[V®)| = 1. By definition of p, we
have f(p) < g(p) and f(p — 1) > g(p — 1). With [V?P)| =1 we have Y,y m = ut®
and 3>, cpo-n T = (VO] = 1)p=1) + 4). This yields p®) — m, < 0 and (V@] -
),u(pfl) +p® — 7, > (V@] — 1)uP~D, but both cannot be true. Hence, we have
V)| > 2,

Now, consider the non-negative combination of the inequalities

Z ty < (V@] + 1)|:8] +1 with weight p® — 0D for 1 <i<p

veV@Ou{u}
St < (VP +1)[46] +1 with weight —Eﬁ;zz;(iz;“ — plr= V)
UEV(P)U{u}
ty +tw < B with weight m,, — %, for all w € V)
This yields to the inequality

mt < Z DV +1)[58) +1}

+ Z'UEV(P) Ty — Ty —,Lt(p 1) {(lV ‘+1)LlﬁJ +1} (14)

(Vo - 1) :
_ 'UeV(P) Ty — Ty
3 (- HEGET)
weV (@)

which has the same left hand side as the inequality 7t < mp. On the other hand, the solution
t defined by #, = [38] + 1, T, = [38] for all v # u satisfies (14) at equality, because it
satisfies all combined inequalities at equality. So, my has to be at least as large as the right
hand side of (14). As a consequence, nt < 7 is identical to or dominated by a non-negative
combination of the inequalities describing P. |

For g =1 (stable set), Chvatal [2] showed that the maximum clique inequality defines the
only non-trivial facet if G is complete. By Proposition 4.11, we know that for 8 > 1, in fact
all clique inequalities are necessary.

For arbitrary [,,, the clique inequality can be derived by Chvatal-Gomory rounding of
clique inequalities of subcliques. An n-clique inequality can be derived from n k-clique in-
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equalities, k > [%nJ Here, different values of k as well as different permutations of the ver-
tices result in different right hand sides, which makes a formula for it difficult to determine.
Consider, for example, the SMS problem in Figure 4. The 5-clique inequality obtained by
Chvétal-Gomory rounding of the 3-clique inequalities defined on {a, b, c}, {b, c,d}, {c,d, e},
{a,d,e}, and {a,b,e} results in a right hand side of 15, whereas Chvétal-Gomory round-
ing of the 3-clique inequalities defined on {a,c, e}, {b,c, e}, {b,d,e}, {a,b,d}, and {a,c,d}
results in a right hand side of 13. Moreover, the Chvatal-Gomory rounding of the 4-clique
inequalities defined on {a,b,c,d}, {b,c,d,e}, {a,c,d, e}, {a,b,d,e}, and {a,b,c,e} results
in a right hand side of 14. So, it is not clear which smaller cliques have to be combined to
obtain the best right hand side. Moreover, none of the above defines a facet. In fact, the
5-clique {a, b, c,d, e} does not define a facet at all.

Figure 4: Example SMS clique problem.

So far, we have given some sets of valid inequalities that are generalizations of the valid
inequalities derived for the stable set polytope. This section is closed with a more general
result how facet defining valid inequalities for a stable multi-set polytope can be derived
from the facet defining inequalities of a stable multi-set polytope with smaller « and .

Proposition 4.14 Let Pg,,3 = (G = (V,E), o, ) define a stable multi-set polytope and
u € V. Moreover, on the same graph G let P§,,¢ = (G,a*, %) be a second stable multi-set
polytope defined by

« | o+ 1 ifv=u, « ) Bow+1 ifv=uorw=uy,
Gv = { ay otherwise and By = { Bow otherwise.

If mt < mo with m, > 0 defines a facet of Pqy,q, then nt < mo + m, defines a facet of Pgy,q.

Proof. Let t* be a solution of P§,,¢ with ¢} > 0. Then ¢* — e* (where e denote the unit
vector with 1 at position u) is a solution of Py, and as a consequence 7 (t* — e*) < .
So, mt* < my+my. If &) = 0, then by o) = ap < By < By, for all v € N(u), we have that ¢*
is also a feasible solution for Pg;,s. So 7t* < mg < mg + 7y, and it follows that 7t < mg + 7y
is valid for Pg,,q.

Now, by assumption let 7t < 7 be facet defining for Py,,¢. Thus, there exist n = dim Py,
affinely independent solutions t',...,¢" of Pg, s that satisfy nt < mg with equality. Then
tl + e ..., t" + ¢e* are n affinely independent solutions of Pg,,s that satisfy nt < mg + m,
with equality. |
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Stable set polytope  Stable multi-set polytope

Dimension n n
Trivial facets ty, >0 ty, >0
ty < ay
tU + tw S 6'[}“}
0dd cycle inequalities ~ » t, < [§|C|] Dt < [38(C))
veC veC
facet for G¢ facet for G¢
Clique inequalities Z t, <1 Z ty <n|iB] + (B mod 2)
vEQ vEQ
facet for () maximal facet for 8,, = f odd for all vw € E
Tip=Tip G bipartite for all cycles C, |C| odd,
B(C) even or (7) satisfied.
Complete  description Zt” <1 Zt” <|S|l38] +1,VSCV,|S|>2
K, veV veS
ty >0,YveV 0<ty <ay, YwveV

Table 1: Similarities and differences stable sets vs. stable multi-sets

Note that the result does not hold in general for the reverse direction of Proposition 4.14,
i.e., a decrease of the values o and S associated to some vertex u. Especially, solutions with
ty = 0 that satisfy nt < my + 7, at equality cannot be transformed to new solutions that
satisfy 7t < mp at equality.

5 Concluding Remarks

In this paper, we introduced and studied stable multi-sets. In particular, properties of the
associated polytope were identified. In Table 1, the obtained results are compared with their
analogues for the stable set polytope. Note that Table 1 does not show all conditions for
the model inequalities to define facets. The table shows that many of the results obtained
for stable sets have their counterpart for stable multi-sets.

As this paper is meant to be a starting point for studying the stable multi-set polytope,
only a limited number of results for stable sets have been generalized, and many directions
for further research exist. First of all, many other classes of valid inequalities are known
for stable sets: wheel inequalities, web and anti-web inequalities, odd anti-hole inequalities,
and blossom inequalities, to name a few (cf. [1]). It is likely that many of them can be
generalized to the stable multi-set polytope. Another opportunity is to study whether
specific classes of inequalities are separable in polynomial time. As we pointed out, for the
odd cycle inequalities, the polynomial time algorithm by Grotschel, Lovédsz and Schrijver [6]
is not applicable anymore. For the separation of clique inequalities, the separation problem
is even more complex, since no general right hand side is known.
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