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Abstract. This book offers a self-contained introduction to the field of semidefinite
programming, its applications in combinatorial optimization, and its computational
methods.

We equip the reader with the basic results from linear algebra on positive semidefinite
matrices and the cone spanned by them. Starting from linear programming, we intro-
duce semidefinite programs and discuss the associated duality theory. We then turn to
semidefinite relaxations of combinatorial optimization and illustrate their interrelation.

In the second half we deal with computational methods for solving semidefinite pro-
grams. First, the interior point approach, its iteration complexity, and implementa-
tional issues are discussed. Next, we explain in great detail the spectral bundle method,
which is particularly suited for large scale semidefinite programming.

One of the most successful techniques in integer linear programming is the cutting
plane approach which improves an initial relaxation by adding violated inequalities.
We explore possibilities to combine the two solution methods with the cutting plane
approach in order to strengthen semidefinite relaxations of combinatorial optimization
problems.

Mathematics subject classification (MSC 2000). Primary 90C22; secondary
90C27, 90-02

Keywords. Positive semidefinite matrices, semidefinite cone, semidefinite program-
ming, semidefinite duality, combinatorial optimization, max-cut, quadratic 0-1 pro-
gramming, graph partitioning, semidefinite relaxations, interior point methods, spec-
tral bundle method, eigenvalue optimization, cutting plane algorithms.

Software. An implementation of the spectral bundle method is now available at URL
http://www.zib.de/helmberg/SBmethod

Note. Except for a few minor corrections, this text is identical to my Habilitations-
schrift of January 2000.
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Introduction

Combinatorial optimization is the task of finding, with respect to a given cost function, an optimal
subset in a given family of subsets of a finite set. In general, the solution of this kind of problems
requires complete enumeration. Typically, structural properties of the feasible set and the cost
function allow to reduce the number of subsets that have to be enumerated. In this context, the
technique of convex relaxation has proven highly effective. First, the combinatorial optimization
problem is reformulated (if possible) as the task of optimizing a linear cost function over a finite
set of integral points. Then the set of integral points is relaxed to some convex set that contains
all feasible integral points and is accessible for standard optimization methods.

The technique of convex relaxation is strongly connected to linear programming. After all,
the tightest convex relaxation is the convex hull of the integral points, a polyhedral set, which
can be described by linear constraints. Unfortunately, for many problems of practical relevance
it is computationally too expensive to provide the full description of the convex hull. None the
less, numerous examples of linear relaxations of combinatorial optimization problems can be found
in the literature, that lead to strong theoretical results and efficient practical solution methods.
The success of linear programming goes hand in hand with the general familiarity of the scientific
community with its theoretical properties and the availability of efficient solvers.

If no reasonable linear approximation of the convex hull is available, it is worth to consider
other than linear relaxations of the feasible set. Several classical problems, e.g., quadratic 0-1 pro-
gramming, suggest the use of nonlinear methods. In general, nonlinear relaxations are considered
much harder to analyze and implement. In the last two decades, new results and algorithms for
convex optimization have led to a better understanding and better solution methods for nonlinear
optimization problems. In particular, the field of semidefinite programming has experienced (and
is still experiencing) considerable progress. Within the last few years it has become a standard
tool in optimization that is sufficiently easy to use. Its most important applications are found
within control theory, signal processing, eigenvalue optimization, and combinatorial optimization.

In comparison to linear programming, semidefinite programming offers the additional possibil-
ity to work with positive semidefinite matrix variables. A linear cost function is optimized over
the cone St of positive semidefinite matrices (instead of the cone R} of nonnegative variables)
subject to linear constraints. Since the semidefinite cone is not polyhedral, duality theory requires
more care than in linear programming. In order to guarantee strong duality, one usually assumes
the Slater condition to hold, i.e., the existence of a strictly feasible primal or dual solution. Given
this, semidefinite programs can be solved in a routine manner by interior point methods.

In the seminal paper “On the Shannon Capacity of a Graph” Lovész [1979] introduced a sur-
prising bound on the independence number of graphs. He gave several equivalent formulations of
this bound. They involved the minimization of the maximal eigenvalue over an affine set of matri-
ces or linear programs with positive semidefiniteness constraints. Groétschel, Lovasz, and Schrijver
[1981] proved that, in fact, the bound can be computed in polynomial time by means of the el-
lipsoid method. Unfortunately, the ellipsoid method has not been successful in implementations,
so the result was mainly of theoretic interest at the time. With his nonlinear polynomial time
algorithm for linear programming, Karmarkar [1984] initiated the development of interior point
methods with polynomial iteration complexity for more general convex problems. To the best of
our knowledge the first for semidefinite programming was proposed by Nesterov and Nemirovskii
[1994]. Overton and Womersly [1993] clarified the connection between certain eigenvalue opti-

iii
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mization problems and semidefinite programs, a connection that was in part anticipated already
in the fifties (cf. Overton and Womersly [1992]). Because of this connection the first semidefi-
nite programming bounds for combinatorial optimization may arguably be attributed to Donath
and Hoffman [1972]; Donath and Hoffman [1973]; they employed eigenvalue optimization in or-
der to obtain lower bounds for graph partitioning. Alizadeh [1995], who was among the first to
develop semidefinite interior point methods with polynomial iteration complexity, also presented
a survey on combinatorial applications of semidefinite programming. With his work semidefinite
relaxations were considered to be of potential practical value. Recent progress in approximation
algorithms, initiated by the paper of Goemans and Williamson [1995], confirmed the importance
of semidefinite programming for combinatorial optimization.

In spite of these promising developments, only few people have embarked on actually employing
semidefinite programming as a tool for attacking hard combinatorial optimization problems. The
reasons for this moderate interest might be twofold. Even though semidefinite programming
is currently a “buzz-word”, there is a lack of introductory texts that lead into the field. In
consequence, semidefinite programming remained somewhat peculiar for many people that have
grown accustomed to linear programming. Second, the development of semidefinite programming
algorithms and codes is still in its beginning. In particular, it seems to be significantly more
difficult to exploit structural properties of the underlying data. This has led many people to
believe that semidefinite programming is applicable to small academic problems only.

In this text we address both topics. First, we hope to provide an introduction to the field that
is sufficiently easy to read for anybody with some basic knowledge about linear programming and
convexity, yet complete enough to establish a firm ground for subsequent deeper studies. Second,
we describe in detail two semidefinite programming algorithms, the primal-dual interior point
method and the spectral bundle method, which we believe to be especially useful for combinatorial
applications. For these two methods we discuss various possibilities, as well as advantages and
disadvantages of combining them with a cutting plane approach. We hope to convince the reader,
that in particular the spectral bundle method is well suited for large scale optimization and may
indeed be a helpful tool for several difficult combinatorial optimization problems.

We give a short outline of the contents. Chapter 1 reviews some important results from linear
algebra and basic properties of the cone of symmetric positive semidefinite matrices. Chapter 2
is devoted to the theory of semidefinite programming, including standard formulations, duality,
and a short survey on complexity results. In Chapter 3 we discuss semidefinite relaxations of
several combinatorial optimization problems and their interrelation. The interior point approach
to semidefinite programming in general and a particular primal-dual interior point method are
the topic of Chapter 4. In Chapter 5 we explain the spectral bundle method, its connection
to semidefinite programming, and its extension to bounded variables. Finally, we present our
experience with cutting plane approaches in semidefinite programming in Chapter 6. In this last
chapter we also provide some numerical results illustrating the quality of the relaxations obtained
and describe an approach for fixing variables whose bounds are implied by the semidefiniteness
constraint.

For the convenience of the reader, basic terminology and facts about linear algebra and con-
vexity are listed in the appendices.

We would like to emphasize that this text is not a comprehensive study of semidefinite pro-
gramming and its algorithmic approaches, nor does it provide a complete listing of combinatorial
applications in semidefinite programming. Indeed, we have confined the material to aspects that
we believe are indispensable in order to understand and work with semidefinite relaxations of
combinatorial optimization problems. We try to compensate for the omission of further relevant
material by including, at the end of each chapter, an extra section “Remarks on the Litera-
ture” that refers to the sources of the presented material and provides pointers to further read-
ing on related topics. Many of the articles cited may still be available on the world wide web,
see http://www.zib.de/helmberg/semidef.html. For a comprehensive treatment of all aspects
of semidefinite programming we recommend the “Handbook of Semidefinite Programming” by
Wolkowicz, Saigal, and Vandenberghe [2000], which will be published soon.

Acknowledgments. I thank Andreas Eisenblétter, Alexander Martin, and Robert Weisman-
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tel for reading parts of this text and for their thoughtful suggestions that helped to improve the
presentation. I thank Martin Grétschel for his challenging, yet supporting scepticism on my at-
tempts to render semidefinite programming applicable to real world combinatorial optimization
problems, for his helpful criticism on an earlier version of the text, and for providing an exceptional
working environment at the Konrad-Zuse-Zentrum fiir Informationstechnik Berlin.

Berlin, January 2000 Christoph Helmberg
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0.1 Personal Contributions to the Field

This text is my Habilitationsschrift, but in the hope to open it to a wider audience it is organized
as a self contained introduction to the field. In view of the latter goal it is unavoidable that
the major part of the contents refers to results that are not part of my work and it would not
be appropriate to bore my audience by constantly explaining my contributions inside the text.
Therefore I will try to point out my contributions in this separate section, so that they can be
located easily within the text.

Chapter 1 and Chapter 2 contain no noteworthy personal contributions. Chapter 1 provides
the basic tools from linear algebra. These are rarely used by people working in combinatorial
optimization and so a detailed treatment seemed advisable. Chapter 2 leads into semidefinite
programming and its duality theory.

In Chapter 3 the personal contributions are the representation of the isomorphism between
quadratic {—1,1}- and 0-1 formulations as a scaling (Section 3.2; Helmberg [2000]) and the work
on the quadratic knapsack problem (Section 3.3.2; Helmberg, Rendl, and Weismantel [2000]).

The isomorphism between the max-cut problem and quadratic 0-1 programming has been
known for a long time (Hammer [1965]; De Simone [1989]), the equivalence of the semidefinite
relaxation is first noted in Helmberg, Poljak, Rendl, and Wolkowicz [1995]; Laurent, Poljak, and
Rendl [1997]. The advantage of the scaling transformation given in Helmberg [2000] is that
this representation also allows to map the constraints so that the dual variables and structural
properties of the constraints are preserved, in particular, sparsity (sparsity was also achieved by
the previous transformation) and low rank structure. The preservation of the dual variables is
of importance, because certain manipulations are easier in the dual of the max-cut relaxation
than in the dual of the quadratic 0-1 programming relaxation. In particular the routine for
fixing variables of Section 6.3.2 exploits the constraint structure of the max-cut relaxation. With
the scaling transformation it is easy to employ this routine to optimal solutions computed for
appropriate formulations of the quadratic 0-1 programming relaxation. In connection with the
conic representation 7 (see Lemma, 3.1.7) of the approximation result of Goemans and Williamson
[1995] the transformation easily yields the equivalent result for the quadratic 0-1 programming
setting (see Corollary 3.2.6).

In the case of the quadratic 0-1 knapsack problem the intention of Helmberg, Rendl, and
Weismantel [2000] was to devise a good representation of a linear inequality by just one constraint
in the semidefinite relaxation. The motivation came from the fact that the number of constraints
in a semidefinite program has a significant influence on the performance of interior point methods.
The general approach of Lovész and Schrijver [1991] would require n inequalities to represent
one linear inequality. For a constrained quadratic 0-1 programming problem with many linear
constraints, applying the Lovasz-Schrijver approach may be computationally too expensive. The
square representation ((SQK2) in Lemma 3.3.3) proved not only to be better than the diagonal
representation (SQK1) in theory, but also to be of good quality in comparison to the Lovasz-
Schrijver relaxation (SQK4) in practice. Recently, Bauvin and Goemans informed me, that we
had overlooked an intermediate representation that was used in our original proof of Lemma 3.3.3
(it needs a moment of thought, though, therefore we attribute it to Bauvin and Goemans), this is
now (SQK3) in Lemma 3.3.3. The semidefinite relaxation for linear cost functions (Lemma 3.3.5)
has certainly little practical relevance, because the semidefinite approach is not competitive, but
it is instructive to see that the representation gains something even in this simple case. For
quadratic cost functions, however, the difference between diagonal representation (SQK1) and
(SQK2)/(SQK3) may be significant, see the numerical results of Section 6.1.2. We consider this
an important first step towards a general cutting plane routine for constrained quadratic 0-1
programming.

In Chapter 4 the main contribution has already been part of my PhD-thesis Helmberg [1994].
It is the development of the first primal-dual interior point algorithm for semidefinite programming
by Helmberg, Rendl, Vanderbei, and Wolkowicz [1996]. Independently the same algorithm was
developed by Kojima, Shindoh, and Hara [1997]. Whereas we presented good numerical results
but could only prove convergence of the method (see also Helmberg [1994]), they provided a proof
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of polynomial convergence but had not yet implemented the algorithm. One year later Monteiro
[1997] rediscovered the same search direction. It is now often referred to as the HRVW/KSH/M
or HKM direction. In the text, the direction is listed under (4.6). It is the basis of the algorithm
described in Sections 4.2 and 4.4. The search direction still yields one of the fastest methods
in terms of CPU time, in particular for combinatorial applications. Other than through the
development of the search direction the theoretic results of Chapter 4 are not influenced by my
work. In an introduction to the field, however, these results are indispensable and so I tried to
present them in a unified framework that may differ considerably from the original works. Section
4.4 is based on personal experience with implementing the method, but several recommendations
are still open to discussion.

The spectral bundle method of Chapter 5 forms the core of the Habilitationsschrift. The
chapter is based on Helmberg and Rendl [2000], Helmberg and Kiwiel [1999], but includes some
new material as well. The motivation for this work was to devise an algorithm that can compute,
within reasonable time, approximate solutions of well structured semidefinite programs with large
matrix variables and many constraints.

Helmberg and Rendl [2000] employ, to the best of our knowledge, for the first time a non-
polyhedral model in bundle methods (Section 5.2). The concept of combining semidefinite interior
point methods and nonsmooth optimization techniques in order to derive an efficient algorithm for
solving semidefinite programs is also new. The structure of the semidefinite cutting plane model
is unusual in that not the subgradients are stored themselves but rather a set for generating them.
On the one hand this makes it possible to use the bundle approach also for cutting plane methods,
see Chapter 6. On the other hand, this opened new possibilities for aggregation in combination
with the interior point algorithms. For linear cutting planes, aggregation consisted of linear com-
binations of cutting planes; here, aggregation is achieved in part by identifying and maintaining
an appropriate nonpolyhedral face of the semidefinite cone.

Helmberg and Kiwiel [1999] propose a new technique for including box constraints (Section
5.4) that is particularly easy to implement and very efficient in practice. This allows the use of
inequality constraints in the associated primal semidefinite program at almost the same cost as
equality constraints. The inexact evaluation approach of Section 5.6 reduces the time spent in the
eigenvalue computation significantly. Kiwiel [1995] already suggested inexact function evaluation
and subgradient computations; The inexact evaluation criterion used in Helmberg and Kiwiel
[1999] differs slightly from Kiwiel [1995] and exploits the special structure of the problem. The
proofs of convergence follow the framework of Kiwiel [1990], but several subtle changes had to be
made in order to cover bounds and inexact evaluation.

The proof of Theorem 5.3.8, establishing convergence of the optimal solutions of the subprob-
lems to a solution of the associated primal problem, is new. The result is not very surprising, but of
fundamental importance for cutting plane methods, because it justifies the use of the solutions of
the subproblems for separation. The inexact stopping criterion for the quadratic semidefinite sub-
problem of Lemma 5.5.3 is published here for the first time, fruitful discussions with K. C. Kiwiel
are gratefully acknowledged. It ensures finite convergence of the interior point method and suffi-
cient relative precision of the respective solution. The associated Lemma 5.5.4 helps to establish
convergence of the entire algorithm (Theorem 5.5.5) for inexact model evaluation.

Chapter 6 on cutting plane algorithms in semidefinite programming is based on the implemen-
tations of Helmberg [1994]; Helmberg and Rendl [1998]; Helmberg, Rendl, and Weismantel [2000];
Helmberg [2000] and new work on the spectral bundle method. The importance of implementa-
tional contributions is difficult to judge because of their heuristic nature. I believe that the early
separation and restarting technique developed for max-cut in my PhD-thesis Helmberg [1994] does
make good use of the possibilities offered by primal-dual interior point methods. At first it was a
surprise that the approach did not work at all for the quadratic 0-1 knapsack problem (Helmberg
and Weismantel [1998]), so I try to highlight this problem dependence. Helmberg, Rendl, and
Weismantel [2000] introduce a new class of valid inequalities for the quadratic knapsack polytope
(see Lemma 6.1.5), but the proof does not match the topic of this text. On the implementational
side, the development of separation routines for quadratic knapsack cuts seems important, but
this has not yet led to direct use in real world applications.
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The cutting plane approach employing the spectral bundle method (Section 6.2) is new but
still very much in its beginnings. Usually, bundle methods are not well suited for solving the
dual to cutting plane methods, because the constant change in dimension destroys the collected
subgradients. This can be avoided in the spectral bundle method if appropriate aggregation
information is stored, because the subgradients are maintained and generated via an independent
semidefinite set. The ideas presented should make it possible to attack larger problems. We try to
illustrate the potential of this approach by including preliminary computational results for max-
cut and max k-cut. In particular, the results on max k-cut yield, to the best of our knowledge, the
first significant lower bounds on co-channel interference in some real world frequency assignment
models. Attempts to provide such bounds by pure linear cutting plane approaches failed so far
(A. Eisenblétter [personal communication]).

Finally, Helmberg [2000] proposes a method for fixing variables in semidefinite relaxations
(Section 6.3). This is a basic technique needed in branch and cut approaches. We investigate the
case that the bounds on the variables are implied by the semidefiniteness constraint; thus, the
corresponding duality information has to be extracted from the dual semidefinite slack matrix.
In order to do this, we develop a more general approach for fixing constraints. To obtain an
implementable algorithm we have to exploit the special structure of semidefinite programs that
are equivalent to eigenvalue optimization problems. This is, e.g., the case for max-cut and extends,
via the scaling of Section 3.2, to constrained quadratic 0-1 programming.



Chapter 1

Basics from Linear Algebra

In this chapter we recapitulate some basic facts about semidefinite matrices and matrix calculus
that are fundamental for duality and algorithmic approaches in semidefinite programming. In
addition we give some insight into the geometry of the cone of positive semidefinite matrices. The
reader somewhat acquainted with the field may safely skip this chapter and return for selected
topics upon need.

Section 1.1 introduces some notation and lists well known results on symmetric and positive
semidefinite matrices. In Section 1.2 we discuss properties of the cone of positive semidefinite
matrices and look at its facial structure. Section 1.3 is devoted to the Kronecker product. This
will turn out to be useful when working with matrix equations and derivatives of matrix functions.
Finally, Section 1.4 mentions some basic facts from matrix calculus that are of importance for
interior point algorithms.

1.1 Symmetric and Positive Semidefinite Matrices

The set M,,,, of m X n real matrices can be interpreted as a vector space in R™™. In this vector
space the natural inner product between two elements A, B € My, ,, is

i=1 j=1

The trace tr(-) is the sum of the diagonal elements of a square matrix. For brevity, the set of square
matrices of dimension n is denoted by M,,. It is an important fact that the trace of A € M, is
equal to the sum of the eigenvalues of A. The trace is a linear function. If the argument of the
trace is a product of matrices the matrices may be rotated without affecting the result,

(AB,C) = tr(CTAB) = tr(BCT A) = (A,CB").
The norm associated with this inner product is the Frobenius norm,

lAlle = V(A A).

Instead of M, , we will usually work with the set of symmetric matrices S,, which is a vector

space in R("$"). All results on the positive semidefinite cone will be stated with respect to this
(";rl)—dimensional space. It is convenient to use the inner product of My, , for Sy, as well. For
A, B €S,

(A, B) = tr(BT A) = tr(AB).

A matrix A is called skew-symmetric if it satisfies A = —AT. Obviously, the diagonal of a skew-
symmetric matrix is zero. The dimension of the vector space of skew-symmetric matrices is (g)

1
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The linear subspaces of symmetric and skew-symmetric matrices are orthogonal in M,,. For A € S,
and a skew-symmetric matrix B € M,, we have

(A,B) = tr(BTA) = 3" aijbij + Y aji(~bji) = 0. (1.2)
i<j i>j
Symmetric and skew-symmetric matrices together span M,,. Any matrix A € M,, can be decom-
posed into its symmetric part (4 + AT)/2 and skew-symmetric part (A — AT)/2,

A4+ AT A AT
-T2 T3

All eigenvalues of a symmetric matrix A € S, are real and there is an orthonormal matrix
P € M, which diagonalizes A, PTAP = A4 (see Theorem A.0.1). A, is a diagonal matrix
with the eigenvalues of A on its main diagonal. Since the eigenvalues are the solutions of the
characteristic polynomial det(A — AI), they depend continuously on the matrix elements. We
denote the eigenvalues of A by A;(A), ¢ = 1,...,n. For our purposes it is convenient to sort
the eigenvalues non-increasingly, Amax(4) = A1(4) > Aa(4) > ... > M(A) = Anin(4). We
will usually drop the zero eigenvalues. For a matrix A € S,, with rank(A) = k the eigenvalue
decomposition is given by a diagonal matrix As € Sy and a matrix P € M, ; with PTP =1, so
that A = PA4PT.

A

Observation 1.1.1 Let A € S,,. Since Apax(A) = maxyern |v|=1 vT Av by the Rayleigh-Ritz
theorem A.0.4, it follows that Amax(A) > max{a; : i € {1,...,n}}.

We now turn to positive semidefinite matrices. Although it is possible to define this term for
arbitrary square matrices we will use it exclusively in connection with symmetric matrices.

Definition 1.1.2
A € S, is positive semidefinite (4 € S}, A>=0) ifzTAz >0 Vze R".
A € S, is positive definite (4 € S+, A= 0) ifzTAz >0 Vz e R\ {0}.

We state some immediate consequences of this definition that will be useful in the following.

Observation 1.1.3 Any principal submatriz of a positive definite/semidefinite matriz is again
positive definite/semidefinite. In particular, all diagonal elements of a positive definite matriz
must be positive.

Observation 1.1.4 Let A; € Sy, for i ={1,...,n}. The symmetric block diagonal matriz

A 0 - 0
A= 0 A

: . .0

0 -~ 0 A,

is positive definite/semidefinite if and only if all of the A; are so.

Observation 1.1.5 For A € S} there is always a diagonal element a; among the elements of
largest absolute value, i.e., 3i € {1,...,n}: a; = max{|a;;|: 4,5 € {1,...,n}}.

Observation 1.1.6 If A € S} and a;; = 0 for some i € {1,...,n} then a;; = 0 for all j €

{1,...,n}.
The next proposition states that positive semidefiniteness is invariant under basis transformations.

Proposition 1.1.7 Let B € M,, be a nonsingular matriz. Then A € S; if and only if BTAB €
St and A € S}t if and only if BTAB € S}+.

Proof. For z € R* and y = B!z we obtain 27 Az = 2" B~TBTABB~'2 = y" BT ABy. [ |

There are several equivalent characterizations for positive definite matrices.
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Theorem 1.1.8 (Characterizations of positive definite matrices)
For A € S,, the following statements are equivalent:

1. A is positive definite.
2. Mi(A) >0 fori=1,...,n.
8. 3C € M,, with rank(C) = n such that A = C7C.

4. For an arbitrary nested sequence! A; € S;, i = 1,...,n, of principal submatrices of A:
det(A;) >0 fori=1,...,n.

Proof. We show (1) = (2) = (3) = (1) and (2) < (4).

(1) = (2). Let v € R be an eigenvector of norm 1 to the eigenvalue A of A. Then, by the
positive definiteness of 4, 0 < vT Av = AvTv = \.

(2) => (3). Let A = PAPT be the eigenvalue decomposition of A and denote by A2 the diagonal
matrix whose elements are the square roots of the elements of A. Then C' = A2 PT is a matrix as
required in (3).

(3) = (1). For arbitrary v € R?\{0} let w = Cv. Then w # 0 and v Av = vTCTCv = wTw > 0.
(2) = (4). The determinant is the product of the eigenvalues and any principal submatrix is
positive definite by Observation 1.1.3. Together with (2) <= (1) this implies that the determinant
of any principal submatrix is positive.

(4) = (2). We proceed inductively. Clearly, A; € R has exactly one positive eigenvalue, because
det(A;) > 0. In extending A; to 4;11 we make use of the interlacing theorem for bordered matrices
A.0.5. By this theorem, the eigenvalues of A; interlace with the eigenvalues of A;;;. Since all of
the eigenvalues of A; are positive, at most one eigenvalue of A;y; could be nonpositive. But this
is impossible, because then det(A;+1) would be nonpositive as well. |

A is positive definite if and only if the inverse A~! is positive definite, because the eigenvalues of
A=t are 1/);(A).

The following theorem gives a characterization of the positive semidefiniteness of a matrix via
the positive semidefiniteness of the so-called Schur complement with respect to a block partitioning
of the matrix.

Theorem 1.1.9 (Schur complement) Let A € S+, C € S,,, and B € M,, ,,. Then

[;T g]>0 = C-BTA'B»0
and
[;T g]zo < C-B"A7'Bro0.

Proof. Since A is positive definite we may define the following nonsingular matrix,

I, —A'B
X_[O " ]

The theorem now follows from

o 8154 o e

BT C 0 C-BTA'B
Proposition 1.1.7, and Observation 1.1.4. |
LA nested sequence is determined by a sequence of proper subsets J; C J2 C ... C Jp = {1,...,n} of indices

with |J;| =ifori=1,...,n.
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This theorem may be used to construct an algorithm for recognizing and factorizing positive
definite matrices. Partition a given matrix 4,, € S,, into blocks a,, € R, b,, € R*1 , and C € S,,_;.
Then

an by 1 T

A, = =0 <= a,>0 and 4, ; =C,— —b,b, = 0. (1.3)

bn Cn Qn
The positiveness of a,, is easy to check and for checking A,,_; > 0 we can apply the algorithm
recursively until it remains to test A; = a; € R for positiveness. The vectors

@
v,—li_; fori=mn,...,1
a; ¢
give rise to a factorization via the relation
_ T 0 0
An = vpu, + |: 0 A, :| (1.4)

0 Uy, O2x2  Oax(n—2) | _
[vn [Un—l ” [ [0 wvo_y ] ]+ { On—2)x2  An—2 T

Continuing this process we obtain a lower triangular matrix L satisfying A = LL%. This is called
the Cholesky factorization.

Theorem 1.1.10 (Cholesky factorization) For A = Q there is a unique lower triangular ma-
triz L such that A = LLT. Furthermore, L can be constructed via (1.3) and (1.4).

Proof. Existence is clear from (1.3) and (1.4). Since L is lower triangular, element a;; = a,
determines [;; uniquely, which again determines the first column of L uniquely. By (1.3) and (1.4)
this argument can now be applied recursively to prove uniqueness of L itself. |

We continue with a sufficient condition for positive definiteness.
Definition 1.1.11 .
A matriz A € M, is strictly diagonally dominant if |a;;| > Z lasj| for alli=1,...,n.
ji=1

i

Theorem 1.1.12 If A € S, is strictly diagonally dominant and if all diagonal elements are
positive then A is positive definite.

Proof. From the Gersgorin disc theorem A.0.6 and the definition of diagonally dominant matrices
it follows that all Ger§gorin discs of A lie in the positive halfspace, and so all eigenvalues are
positive. By Theorem 1.1.8 the matrix A is positive definite. |

Diagonal dominance is easy to check and it often comes in handy when constructing initial feasible
solutions for semidefinite programs.

For positive semidefinite matrices almost the same characterizations as in Theorem 1.1.8 are
valid.

Theorem 1.1.13 (Characterizations of positive semidefinite matrices)
For A € S,, the following statements are equivalent:

1. A is positive semidefinite.
2. Mi(A) >0 fori=1,...,n.
8. 3C € My, , such that A= CTC. For any such C, rank(C) = rank(A).

Proof. Analogous to the proof of Theorem 1.1.8. ]
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For a positive semidefinite matrix A the determinant of any principal submatrix of A is certainly
non-negative. However, the existence of a nested sequence of non-negative principal minors is
no longer sufficient for positive semidefiniteness. On the other hand, it is again possible to test
algorithmically, whether a matrix A, € S, is positive semidefinite. Like in (1.3) we may use
Observation 1.1.6 and the Schur complement theorem 1.1.9 to set up a recursive test,

An:[a" bf]to — {either an >0 and A,_; = n—ibnbfto

by C, or a4, =0, by=0 and A, | —C, >0 19

The following theorem is now easy to prove.

Theorem 1.1.14 The positive semidefiniteness of a matriz can be checked in n3/3+O(n?) arith-
metic operations.

Remark 1.1.15 In fact, for a matriz with rational entries, the length of the binary encoding can
be shown to remain polynomially bounded in the input length of the matriz throughout the algorithm
(see Gritschel, Lovdsz, and Schrijver [1988], (9.3.30), Claim 4.)

The fact that a positive semidefinite matrix A can equivalently be written in the form CTC
is very important and will be exploited in many proofs. A very intriguing interpretation of a
factorization is to view the columns of C' as vectors v;. Element a;; is the scalar product (v;,v;)
of the vectors v; and v;. The matrix A is referred to as the Gram matriz of the vectors vy, ..., v,.
The factorization is not unique and there are several algorithmic possibilities to construct one.
Examples are Cholesky decomposition of Theorem 1.1.10 and eigenvalue decomposition as in the
proof of Theorem 1.1.8.

Eigenvalue decomposition is also used to prove the following theorem.

Theorem 1.1.16 (root of a positive semidefinite matriz)

Let A € S, be positive semidefinite and k > 1 integral. Then there exists a unique positive
semidefinite matrix B with B¥ = A. Furthermore, this matriz B satisfies AB = BA and
rank(A) = rank(B).

Proof. Such a matrix B exists because for an eigenvalue decomposition PA APT of A the matrix
B = P¥/A4P7T fulfills the requirements. We show uniqueness. Since B* commutes with A4, i.e.,
B*¥A = AB*, Theorem A.0.3 implies that there is an orthonormal matrix P € M,, that diagonalizes
B* and A. Denote the diagonal matrix by Ay = PTAP = PTB*P. Any eigenvector of B to
an eigenvalue Ag of B is an eigenvector of B¥ to the eigenvalue A%, so P diagonalizes B as well,
Ap = PTBP. Therefore B¥ = PAKPT = PA4PT and the spectral information determines the
matrix entries uniquely. [ |

We denote the k-th root of A by A and, if A is positive definite, the k-th root of A~! by A%,

1.2 The Cone of Semidefinite Matrices

We will now take a close look at the set of positive semidefinite matrices, interpreted as a subset of
Sn- Some fundamental concepts from convexity will be needed. For the convenience of the reader
we have collected basic terminology and results in Appendix B.

Definition 1.2.1 A set C C R™ is a cone if it is closed under nonnegative multiplication and
addition (z,y € C = Mz +y) € C YA >0). A cone C is pointed if C N (—C) = {0}.

Note, that this definition implies that a cone is a convex set.

Proposition 1.2.2 S}t is a full dimensional, closed pointed (convex) cone in rR(").

Proof. For A,B € S} it is not difficult to check that A(A + B) € S, for all A > 0 by making
use of the definition of positive semidefiniteness. Closedness is a consequence of the continuity
of the eigenvalues and Theorem 1.1.13. The cone is full dimensional, because sufficiently small
perturbations of the identity I in any direction A € S, yield a positive definite matrix, I +

A/ (2max{|Amax(A)]; [Amin(A)[}) > 0. u
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The set of positive definite matrices S;t* is not a cone because 0 ¢ S;7+. It is easy to see that S+
is the interior of the cone S and that the boundary of S;' consists of the positive semidefinite
matrices having at least one zero eigenvalue.

The next lemma proves that, at its apex, the semidefinite cone opens with an angle of 7.

Lemma 1.2.3 Let A,B € S;*. Then (A,B) >0 and (A, B) = 0 if and only if AB = 0.

Proof. Let A,B € S} and k = rank(A4). Let the eigenvalue decomposition of A be given by
A = PAsPT with Ay € S, P € My i, PTP = I;. Then

k
(A,B) = tr(PA4P"B) = tr(As4P"BP) = > \;(A) - P,BP.; > 0.

=1

As B is positive semidefinite, P,?;BP.,i is nonnegative for i = 1,...,k. (A, B) = 0 implies that
eigenvectors corresponding to positive eigenvalues of A belong to the null space of B and thus
AB = 0. |

We will need the following simple bounds on the inner product of semidefinite matrices when
proving the boundedness of sequences of semidefinite matrices.

Lemma 1.2.4 Let A, B € S;*. Then (A, B) is bounded by
)\min(A))\max(B) S )\min (A) tI‘(B) S <A7 B) S )\max(A) tI‘(B) S n/\max(A))\max(B)-

Proof. We only prove the two left hand side inequalities. The proof of the right hand side
inequalities is left to the reader. Let P € M, be an orthonormal matrix such that A = PA4PT.
Then

(A,B) = tr(AB) =tr(PAsPTB) = tr(AAoPTBP)
> Amin(A) tr(PTBP) = Apin(A) tr(B)
Z /\min(A))\max(B)-

We will now prove a key property of the cone of semidefinite matrices, its self-duality. We start
with a definition.

Definition 1.2.5 For a cone C the polar cone C* is the set {y : (z,y) >0 for all x € C}.

For a cone C the polar cone C* can be seen as the set of tight valid linear inequalities for C' or,
equivalently, as the set of tangent planes to C. It is therefore natural to speak of C* as the dual
cone to C. Cones that satisfy C' = C* are called self-polar or self-dual.

Lemma 1.2.6 S} = S,

Proof. S} C S}* follows from Lemma 1.2.3. To show S;7* C S} note that for all z € R" the
matrix zzT is positive semidefinite. For A € S;}* we have

0< <A,me> =zT Az Vr € R?
and therefore A € S;t. [ ]
Lemma 1.2.6 is equivalent to Fejer’s Trace Theorem, which we formulate as a Corollary.

Corollary 1.2.7 (Fejer’s Trace Theorem)
A is positive semidefinite if and only if (A, B) > 0 for all B € S;\.

What are the faces of the cone of positive semidefinite matrices? We first repeat the definition
of a face of a convex set.
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Definition 1.2.8 A conver set F' C C is called o face of a convex set C if for any two elements
z,y € C with ax + (1 — o)y € F for some o € (0,1) we have z,y € F.

The faces of the positive semidefinite cone can be characterized as the cones of semidefinite matrices
with the property that the eigenvectors to non-zero eigenvalues are restricted to some subspace of
R™.

Theorem 1.2.9 (Barker and Carlson [1975]) The faces of S} are
1. the trivial faces O and the set containing the zero matriz {0},

2. or they are generated by a rank k matrix P € M, , in the form
F={X: X=PWPY WeS}}

Proof. We first show that the given sets are faces. It is easy to check that ) and {0} are faces.
Let F = {X: X = PWPT, W € S/} for some k and P as required above. F is a cone because
S;is a cone and for V,W € S and a > 0 we have a(PVPT + PWPT) = P(a(V + W))PT € F,
so F is convex. Assume, for contradiction, that there exist X € F, A,B € S}, not both in F,
such that X = aA + (1 — a)B for some a € (0,1). W.lLo.g. let A ¢ F. Then thereisay € R
with y7 Ay > 0 and PTy = 0. Therefore 0 = y* Xy = ay” Ay + (1 — a)y” By > 0, a contradiction.

Now we show that all faces are obtained this way. Observe that 0 € F for any face F # ()
because X € F is a convex combination of 0 and aX € S} for @ > 1. Furthermore, {0} is the
only face containing only one element. Now let F' be a face with |F| > 1 and choose some element
from the relative interior of F, say X € relint(F). Let k = rank(X) and P € M, \, contain, as

columns, the eigenvectors of X belonging to the nonzero eigenvalues of X. Consider the set
F={X:X=PWPT Wes}

We have already proved that Fis a face. Since X € relint(F) and X € relint(F) and both are
faces, we must have F' = F. |

In this theorem the columns of P span a subspace of R™. All eigenvectors that belong to non-zero
eigenvalues of matrices in this face are restricted to this subspace. Whenever we say that a face
is spanned by a subspace of R" we will refer to this characterization.

Any positive semidefinite matrix A can be written as a nonnegative linear combination of n
rank one positive semidefinite matrices (Theorem 1.1.13 and eigenvalue decomposition),

n
A= Z)\Z.’E,.’L'ZT with  A; > 0.
i=1

By the theorem above {Azz” : X > 0} is a face for any € R™. These faces cannot be expressed
as the convex combination of smaller faces. Consequently, {X : X = zz?, z € R*, ||z|| = 1}
forms a minimal generating system for S;". In contrast to polyhedral cones this cone cannot be
generated by a finite set. It is also interesting that the faces of S; have dimension (*}'), so by
going from a large face to a smaller one there is a considerable jump in dimension.

The cone of semidefinite matrices induces a partial order on the set of symmetric matrices.

Definition 1.2.10 (Léwner partial order)
For A/ B€ S, A= Bif(A—B)€S;.
For AABe S, A~ Bif(A—B)e Stt.

This is the origin of the notation A > 0 (A > 0) in Definition 1.1.2 for A € S} (4 € S;).
The Hadamard product or sometimes Schur product refers to the componentwise multiplication
of matrices; for A,B € My, ,
AoB= [aij -bi]‘].

The Hadamard product of two positive semidefinite matrices is again a positive semidefinite matrix.
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Theorem 1.2.11 (Schur Product Theorem)
Let A/ Be€ S}. Then AoBe S;t. If A€ S}t and B € S+ then Ao B e S},
Proof. For v € R", one verifies directly that (A o B)v = diag(A Diag(v)B).
vI(AoB)w = o7 diag(ADiag(v)B) = tr(Diag(v)A Diag(v)B)
= (Diag(v)A Diag(v), B) > 0.

The last inequality follows from Lemma 1.2.3, because Diag(v)A Diag(v) € S;t. If A € S+ and
v # 0 then Diag(v) A Diag(v) is nonzero. If, in addition, B € S+ then the inner product must be
positive. m

1.3 Kronecker Products

Kronecker products facilitate the handling of matrix-equations and derivatives. The Kronecker

product is a map ® : My, X My ; = Mpp n; which is defined via

a11B .- alnB

A®B = : :
amB -+ amnB

In connection with Kronecker products we will often have to transform a matrix A € M,, , into a

vector in R™” by stacking the columns of A on top of each other. More precisely, the vec-operator

vec(+) is defined via
A,

We list some important properties of Kronecker Products.

Proposition 1.3.1 Let A, B, C, and D be matrices of appropriate sizes.

(A B = (AT @ BT) (1.6)

(AR B)(C®D) = (A ) ® (BD) (1.7)
vec(ABC) = (CT ® A)vec(B) (1.8)
vec(AB + BC) (I® A+ CT ®1I)vec(B) (1.9)

Proof. (1.6) to (1.8) are proved by direct computation. For (1.9) assume A € M,, n, B € My,
Ce Mk,l; then by (18)

vec(AB + BC) = vec(ABI},) + vec(I,BC) = (I ® A+ CT ® I,) vec(B).

If the eigenvalues and eigenvectors of two matrices A and B are known then it is easy to construct
the eigenvalues and eigenvectors of A ® B.

Proposition 1.3.2 Let A (B) have eigenvalues \; (u;) with corresponding (orthogonal) eigenvec-
tors x; (y;) € C*. Then all eigenvalues of A ® B are given by \;ju; with eigenvector z; ® y;.

Proof. By (1.7)

(A® B)(zi ®y;) = (Az;) ® (By;) = (Niwi) ® (1595) = Niptj (@i @ yj),

and because (z; ® y;)T (zn @ yx) = (2] 21) ® (y] yx) the eigenvectors are orthogonal. |
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The set of symmetric matrices S, is isomorphic to R("2") via the map svec(A). The svec operator
is the symmetric analogue to vec() and is defined as stacking the columns of the lower triangle of
A on top of each other and multiplying the offdiagonal elements with v/2,

T
SVGC(A) = [011, \/5&21, ey \/ianl, as2, \/5(132, ey ann] .

The factor v/2 for offdiagonal elements ensures that, for A, B € S,
(A, B) = tr(AB) = svec(A)T svec(B).

The symmetric Kronecker product ®, is defined for arbitrary square matrices A, B € M, by its
action on a vector svec(C) for a symmetric matrix C € S,,,

(A®; B)svec(C) := % svec(BCAT + ACBT).

The operator svec and the symmetric Kronecker product were introduced by Alizadeh, Haeberly,
and Overton [1998]; here we use the notation of Todd, Toh, and Tiitlincii [1998]. Both established
several convenient properties of this product.

Proposition 1.3.3

1. A, B=B®; A

2. (A®, B)T = BT @, AT

3. AR, I is symmetric if and only if A is.
4. (AR, A)1=A"1w, A!
5

. (A®,; B)(C ®, D) = 1(AC ®, BD + AD ®, BC)

(=

. IfA>0 and B > 0 then (AQ,; B) >0

Proof. Properties 1 and 5 can be verified by direct computation. For the other properties we will

need a ("—2%1) x n? matrix U defined by (row and column ordering corresponding to svec and vec)
Uij et = % ifi=k#j=1 ori=l#j=F,
0 otherwise.

For A € M, it is the linear operator U vec(4) = svec(AJEAT). For A € S, it allows to switch
between svec and vec representations via the relations

Uvec(A) =svec(A) and U7 svec(A) = vec(A). (1.10)

These properties are straightforward to check. Furthermore, UUT = I ") and UTU vec(A) =

vec(A) for all A € S,,. In particular UTU is the orthogonal projection matrix onto the space of
symmetric matrices. Using (1.10) and (1.8) we obtain

1
A®,B= 5U(A®B+B®A)UT.
Property 2 now follows from (1.6), property 3 is due to A ®s B being symmetric if and only if

A® B+ B ® A is symmetric. Finally, properties 4 and 6 are a consequence of Proposition 1.3.2.
|
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1.4 Matrix Calculus

We will now study functions depending on matrices, matrix functions, and their derivatives. Ini-
tially, derivatives in matrix variables may cause confusion due to simple arrangement problems of
the terms. In this case it helps to resort to the vec-operator. We will therefore define the gradient
for functions depending on vectors only, but we will also rearrange the resulting gradient in some
other matrix form if it is convenient.

Let x denote a vector in R™ and let f:R® — R™; z — [fi(z),..., fm (x)]T be a continuously
differentiable function. Then the gradient or derivative of f(x) with respect to x is the n x m
function

Ofi(z) ... Ofm(z)
oz1 dx1
Vof=| s
Ofa(z) .. Ofm(z)
OTn 0Tn

The linearization of f in z° is
F@®) + [V, f(2)]" A

It is the first order approximation of f(z° + Az). Two basic facts about derivatives are listed
below.

Proposition 1.4.1 Let A € My, ,,, and y: R* — R™ and z : R™ — RF be two continuously
differentiable functions.

V.(4z) = AT (1.11)
Veoz(y(x)) = Vay-Vyz (chain-rule) (1.12)

We illustrate the application of (1.11) to matrices for the products AX and XA with A, X € S,.
For AX we have vec(AX) = (I ® A) vec(X) by (1.8).

Vx vec(AX) = (I ®A) and analogously Vx vec(XA)=(AQI).

To obtain agreeable representations of the linearizations we observe that (I ® A)vec(AX) =
vec(AAX) and therefore

[Vx vec(AX)]T vec(AX) = vec(AAX) and [Vx vec(X A)]7 vec(AX) = vec(AX A).

More intuitively, we will write AAX and AX A for the linearizations of AX and X A.
In Chapter 4, when discussing interior point methods, the function

—logdet X = —logH)\i(X) = —Zlog)\i(X).
i=1 i=1

plays a paramount. Since det X is a continuous function which is positive for positive definite
matrices and zero for singular semidefinite matrices, this function grows to infinity as X > 0
approaches the boundary of the positive semidefinite cone, it acts as a barrier for the iterates.
One of its most important properties is its strict convexity.

Lemma 1.4.2 logdet X is strictly concave on the set of positive definite matrices.
Proof. Let A,B € S;/*. We have to show that for 0 < a <1

logdet(aA + (1 — a)B) > alogdet A + (1 — a)logdet B
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is satisfied and that equality only holds for A = B or a € {0,1}. We spilt A into A7 Az and
denote the i-th eigenvalue of A~2 BA~2 by ;.

log det(A? (o + (1 — )A"2BA™2)A3) =
log(det(A4) det(al + (1 — a)A~2 BA™?))

log det(A) + log ﬁ(a +(1—-a)\)

i=1

log det(A) + z": log(a + (1 —a)\;)

i=1

> logdet(A) + (1 —a)log H Ai
i=1

logdet(A) + (1 — a)logdet(A 'B)
logdet(A) — (1 — a)logdet A + (1 — a)logdet B

Strict concavity follows from the strict concavity of the logarithm. ]

To compute the first order optimality conditions for the barrier problem in Section 4.1 we will
need the derivative of logdet X.

Theorem 1.4.3 For a nonsingular matriz X € M,
Vx det(X) = det(X) vec(X 7).

Proof. Let X € M, be nonsingular. We denote by X;; € M;,_; the matrix obtained from X by
deleting the i-th row and j-th column. Laplace expansion along row i yields

det(X) = ixij(—l)iﬂ det(X;;).

Therefore

ddet(X)

e (1) det(X;;) = det [X.1,..., X jo1,€, X jia, .o, Xop)] -
j

T .
By Cramer’s rule the vector y = [a%zci(lx)’”" a%‘;ti(f)] solves Xy = det(X)e!. yT forms the

“j-th row” of Vx det(X). Consequently, the transpose of the solution Y of XY = det(X)I yields,
after application of the vec-operator, Vx det(X). [ ]

We obtain the derivative of logdet(X) for positive definite matrices X by the chain rule,

Vx log det(X) Vx det(X) = vec(X ™). (1.13)

1
| det(X)]

For scalar matrix functions it is common practice to represent the gradient in the form of a matrix.
We will keep to this practice and, by a slight abuse of notation, write Vx logdet(X) = X 1.

Remark 1.4.4 For symmetric matrices we have ignored the fact that x;; = x;;, thus the offdi-
agonal variables are dependent. The correct derivative with respect to the ("J{l) variables of a
symmetric matriz requires another application of the chain rule. However, the linearizations using

AX remain correct as long as AX is symmetric.
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1.5 Remarks on the Literature

Most results of this chapter can be found in the standard literature on linear algebra, in particular
in the outstanding books Horn and Johnson [1985]; Horn and Johnson [1991]. Theorem 1.2.9,
the characterization of the faces of the positive semidefinite cone, appears in Barker and Carlson
[1975] where it is cited as “part of the oral tradition of the subject”. The proof of the Schur
product Theorem is taken from Nesterov [1998]. A short survey on some properties of the cone
of semidefinite matrices is given in Hill and Waters [1987]. The operator svec and the symmetric
Kronecker product were introduced by Alizadeh, Haeberly, and Overton [1998]; here we use the
notation of Todd, Toh, and T1itiincii [1998]. The standard reference for convex analysis in general is
Rockafellar [1970]. For further reading on Kronecker products and matrix calculus we recommend
Horn and Johnson [1991]; Graham [1981].



Chapter 2

Semidefinite Programming

In this chapter we introduce our standard formulation of a primal semidefinite program (PSDP)
and derive its dual (DSDP). Semidefinite programming includes several classical optimization
problems. Three of them are of relevance in subsequent chapters, namely linear programming,
quadratic programming, and semidefinite linear complementarity problems. We show how they
can be formulated as standard semidefinite programs. Next we explain how to scale a problem
in semidefinite programming. Scaling is a simple but important technique that is often used to
facilitate computations or arguments in a proof. Due to the nonpolyhedral structure of semidefinite
sets the duality theory of semidefinite programming is somewhat more involved than in linear
programming. It may happen that primal and dual optimal values do not coincide, but the problem
is well behaved if there exists a positive definite feasible point in the primal or the dual feasible
set. We illustrate the basic difficulties by several examples, prove the strong duality theorem, and
discuss possibilities to ensure the existence of strictly feasible solutions. We conclude the chapter
with some remarks about the geometry of the feasible sets and the computational complexity of
semidefinite programming in general.

2.1 Semidefinite Programs

Semidefinite programming is linear programming over the cone of semidefinite matrices. In com-
parison to standard linear programming the vector € R} of variables is replaced by a matrix
variable X € S;'. In other words, the cone of the nonnegative orthant > 0 is replaced by the
cone of semidefinite matrices X > 0. In order to pronounce this similarity we first formulate the
problem with respect to the vector representation of X,

min  ¢T vec(X)
st. Avec(X)=b
X>0

for given vectors ¢ € R"2, b € R™, and a constraint matrix A € M, 2.

Usually semidefinite programs arise in a natural way from problems whose data is given by
matrices. The use of the vec-operator tends to hide the obvious and complicates the formulation.
It pays to introduce a more agreeable notation by interpreting ¢ and the rows of A as matrices.

Let C € M,, denote the matrix corresponding to c, i.e.,

€1 Ci4n " Cig(n—-1)n

C2  Co4n Cot(n—1)n
C= .

Cn Con Cnn

13



14 CHAPTER 2. SEMIDEFINITE PROGRAMMING

so that ¢ = vec(C). Then the inner product ¢? vec(X) in vector space can equivalently be written
as the inner product (C, X') in matrix space (1.1),

n n
¢’ vec(X) = Z Cit(j—1)nTij = Z Cijzi; = (C, X).

3,j=1 i,j=1

Since X is a symmetric matrix, the skew-symmetric part of C is of no influence in this inner
product (1.2). Without loss of generality we require C' to be a symmetric matrix.

In the same vein we interpret row A;. as a symmetric matrix A; € S,, rewrite the i-th
constraint A; . vec(X) as (A4;,X) and collect the constraints in a linear operator A : S, - R™,

<A17X>
AX = :
(Am, X)

With this notation we arrive at our standard formulation of a semidefinite program,

min {C, X)
(PSDP) st. AX =b (2.1)
X 0.

In order to derive the dual of this program we need the adjoint operator to A. By definition, it is
the operator AT : R™ — S, satisfying (AX,y) = (X, A%y) for all X € S, and y € R™. Since

(AX,y) =Y gitr(A:X) = tr(X ) idi) = (X, ATy),
=1 =1

we obtain

Aly = i YiAi.
i=1

With respect to the initial vector formulation, ATy is simply a different representation of ATy
emphasizing the fact that we are working with matrices.

For constructing the dual we use a Lagrangian approach. The primal equality constraints are
lifted into the objective by means of a Lagrange multiplier y € R™ so that the primal problem
reads inf xyo sup, cgm (C, X) + (b — AX,y). The dual of (PSDP) is obtained by interchanging inf
and sup,

. B S .
)l(r;__fo Sup. (C,X)+(b—AX,y) > Sup. )?éfo

(b,y) +(X,C — ATy). (2.2)

The construction implies that the right hand side value cannot exceed the value of the primal
problem (see, e.g., Rockafellar [1970], Lemma 36.1; an explicit justification will be given in (2.9)).
For the supremum on the right hand side to be finite the inner minimization over X > 0 must
remain finite for some § € R™. This requires C — A%j to be positive semidefinite (Corollary 1.2.7).
We write this condition by introducing a slack matrix Z,

max (b, y)
(DSDP)  st. Aly+2Z=C (2.3)
yeR™, Z»0.

This is the standard formulation of the dual semidefinite program to (PSDP).

The use of the free variables y in (DSDP) may raise doubts whether (DSDP) is indeed a
semidefinite program. To remove these doubts we give a slightly different representation of (PSDP)
and (DSDP) that highlights their common structure (see Nesterov and Nemirovskii [1994]). To
this end we assume that the system AX = b is consistent, i.e., there exists an X e Sy satisfying
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AX = b. In this case we can eliminate all y variables in (DSDP). We first express the cost function
in terms of Z,

(b,y) = <AX,y> = <X,ATy> - <X,c— z>.

y still serves to span the feasible set of Z-values. Let R(AT) denote the range space of A7,
let N (A) denote the null space of A, and observe that these two subspaces are perpendicular,
R(AT) = N(A)*L. The dual (primal) equality constraints require a feasible Z (X) to be contained
in the affine subspace {C+N(A)T} ({X+N(A)}). In these terms the primal-dual pair of problems
takes the following form.

min (C, X) max <X,C—Z (2.4)

st X € (Sy n{X+N(A)}) st.  Ze(SEn{C+N(A*LY '
Thus both, (PSDP) and (DSDP), are semidefinite programs. Any property holding for the primal

formulation has its analogue in the dual formulation.

2.1.1 Optimization problems comprised in SDP

So far we have been considering just one semidefinite matrix variable. We may also formulate
problems that consist of several semidefinite variables,

min Zf:l (Ci, Xi) max (b, y)
st Yr AX;=b st. Aly+Z;=C; i=1,...,k (2.5)
XieSt,..., Xpe S} yeR™, ZveSt,....,Zre S}t .

In many practical applications such a structure arises naturally and it is important to exploit it to
gain in efficiency. However, for theoretical purposes the standard primal dual pair of problems is
sufficient. In fact, any semidefinite program in several semidefinite variables of varying dimensions
can be formulated equivalently within standard (PSDP), because by Observation 1.1.4

X, 0 .- 0
X120, X250, ..., X3, =0 < 9 X2 >0

: .. .. 0

o .- 0 X

It is now easy to see that linear programming is indeed a special case of semidefinite programming:
Interpret each single component z; > 0 as a 1 x 1 positive semidefinite matrix in (2.5).

Several other convex optimization problems may also be formulated as semidefinite programs.
In particular, Schur complements (cf. Theorem 1.1.9) offer excellent possibilities to model nonlinear
constraints in semidefinite programming (see, e.g., Boyd, El Ghaoui, Feron, and Balakrishnan
[1994]). We illustrate this for a convex quadratic constraint

tTQx < ¢z +c. (2.6)

Here, z € R" is the vector of variables and Q € S;', g € R”, ¢ € R are given constants. Since () may
be singular we factorize it, Q = CTC, and use the identity I in 27 CTICz as the positive definite
matrix A in the Schur complement. The Schur complement theorem 1.1.9 allows to reformulate
the quadratic constraint as
I Cx
= 0. 2.

20T Tz +c z0 (2.7)
The nonlinear constraint on x is transformed into a linear constraint over the cone of positive
semidefinite matrices. This proves that convex quadratically constrained convex quadratic pro-
gramming problems can be formulated as semidefinite programs.
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Another popular class of programming problems are monotone linear complementarity prob-
lems. We state them here over the cones of positive semidefinite matrices.

(LCP)  Find (X,Z) € S} x S with (X,Z) € F and (X, Z) =0,

where F' is a monotone affine subspace of S, x S,. An affine subspace F' C S, x S, is called
monotone if

(X'—X,Z'—2)>0 forall (X,2),(X',Z') €F.

The special case of linear complementarity problems over the nonnegative orthant (r,z € R7})
are a strict generalization of linear programming, because they include convex quadratic program-
ming. They attracted much interest when Megiddo [1989] showed that interior point methods for
linear programming extend to this more general class in a natural way. The semidefinite linear
complementarity problem (LCP), however, is not a generalization of semidefinite programming
because (LCP) may itself be formulated as a semidefinite program (Kojima, Shida, and Shindoh
[1997]). We will do this in several steps.

First observe that any k dimensional affine subspace of S,, X S,, can be represented in the form

svec(X) A a | el
et ) T80 ] opem) - o
ith A, Be M d 4 having full k
w1 , Db € ")k an B aving tull rank.
Lemma 2.1.1 (Kojima, Shida, and Shindoh [1997]) The affine subspace F of (2.8) is monotone

if and only if yTATBy > 0 for all y € RF.

Proof. For arbitrary y,y' € R¥ let (X, Z) and (X', Z') denote the corresponding elements in F
of (2.8). Then F is monotone if and only if for all y,y' € R*

0<(X-X"Z-Z")=(Aly—y"), Bly—y)) = (y —y) A" By —y).
|
A consequence of this Lemma is that the dimension of monotone affine subspaces is bounded by
("31)-
Corollary 2.1.2 (Kojima, Shida, and Shindoh [1997]) If k > (";H) then F' of (2.8) is not mono-

tone.

Proof. Let k > ("}'). Choose a y € N(A) so that there is a y' € R¥ with (By, Ay) > 0. This
is possible because the dimension of {By : y € N(A)} plus the dimension of {Ay : y € N(4)1}

is k> ("}') (the matrix [ g ] has full rank by assumption). Hence, the latter two subspaces of
R("?") cannot be perpendicular. For this choice
lim (ay —y)"ATB(ay —y') = lim ()" ATBy' —a(y')" A" By —» —co.
Now the statement follows from Lemma 2.1.1. ]
For feasible (X, Z) of (LCP) arising from some y € R*
0<(X,Z) = (Ay+a,By +b) =y Qy+ 'y + d,

where Q = 1(ATB + BT A), ¢ = Ab+ Ba, and d = a'b. For monotone F the matrix @ is positive
semidefinite by Lemma 2.1.1, we may therefore rewrite (LCP) as the convex optimization problem

min  yTQy + ¢y +d

st. svec(X)=ATy+a,X >0
svec(Z) =BTy +b,Z =0
y € RF.
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To complete the transformation into a semidefinite program it remains to replace the convex
quadratic cost function by a semidefinite constraint like in (2.7). Even though this proves that
(LCP) is not more general than semidefinite programming, this does not mean that the (LCP) is
useless. Indeed, some applications are more naturally formulated as an (LCP) and conveniently
solved by interior point methods in this formulation (e.g., the quadratic semidefinite subproblem
of the spectral bundle method in Section 5.5). A transformation into standard SDP form would
increase computational burden unnecessarily. For theoretical purposes, however, considering stan-
dard semidefinite programs is sufficient.

2.1.2 Scaling

Sometimes it will be useful to transform one representation of a semidefinite program into another,
for numerical or structural reasons, by transformations of the type W = QXQ* for some given
nonsingular @ € M,,. The map Q(-)Q? is an automorphism on M,, (a linear and bijective trans-
formation from M, to M,), because vec(QXQT) = (Q ® Q) vec(X) and (Q ® Q) is nonsingular
(cf. (1.8) and Proposition 1.3.2). By Proposition 1.1.7 these linear transformations bijectively map
positive definite/semidefinite matrices to positive definite/semidefinite matrices (they belong to
the automorphism group of the semidefinite cone). We call this a scaling of the variable X (Tungel
[1998]).

Now suppose we want to scale the primal matrix X to W = QXQT. How do we have to
change the constraints of (PSDP) in order to get the same semidefinite program in terms of W?
Since X = Q7'WQ~T and, for arbitrary A € S,,,

(A,X)=(4,Q7'WQ™") =(Q TAQ™",W),

the correct transformation of a coefficient matrix 4 is QT AQ !, which is the adjoint to the
inverse transformation of Q XQ*. With

C=Q77CQ™", 4;=QTAQ" i=1,...,m,

and the linear operators

(A1, W) m
AW = : and ATy = 74
<Am7 W> i=1
we obtain the transformed primal dual pair
min (C,W) max (b,y)
(Pg) st. AW =1b (Dg) st. Ay+2Z=C
W =0 Z = 0.

Proposition 2.1.3 X is a feasible solution of (PSDP) if and only if the associated W = QXQT
is a feasible solution of (Pq). Furthermore, X and W satisfy (C,X) = (C,W). (y, Z) is a feasible
solution of (DSDP) if and only if the associated (§,7) = (y,Q~TZQ™') is a feasible solution of

(Dg). Trivially, (b,y) = (b, 7).

Proof. Clear by construction. ]

2.2 Duality Theory

We derived the dual to (PSDP) by a Lagrangian approach in (2.2). The gap between a dual
feasible solution (y, Z) and a primal feasible solution X is

(C.X) = (by) = (ATy + Z,X) - (AX,y) = (Z,X) > 0. (2.9)
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The last inequality follows from Lemma 1.2.3. The property that the objective value of any primal
feasible solutions is greater or equal to the objective value of any dual feasible solution is called
weak duality.

If (Z, X) turns out to be zero then this primal-dual pair is an optimal solution. In contrast to
linear programming, however, it is no longer true that optimality implies (Z, X) = 0. We illustrate
this by extending an example of Vandenberghe and Boyd [1996].

Example 2.2.1 Consider the following primal semidefinite program.

min s

0 12 0
s.t. T12 I22 0 t 0
0 0 1+ I12

In order to determine the dual program we write the cost function and constraints in matriz form
and give the corresponding dual variables in brackets

[0 1 0
min < % 0 0 ,X>
| 0 0 0
0 -1 0
s.t. < -1 0 0 ,X> =1, [y1]
i 0 1
1 0 0]
<0 00 ,X> =0, [y2]
| 0 0 0|
[0 0 17
<0 00 ,X> =0, [ys]
|1 0 0|
[0 0 0]
<001 7X> =07 [y4]
| 0 1 0 |
X>0

Dualizing by the standard procedure yields
max y; s.t. Z =C —y1 A1 —y245 —ys Az —ys Ay = 0.

The dual program can be written in the form

max Y1
1
1_y2 % —Ys
st. Z=| 1L 0 —y | =0

—Y3 —Ys U
A necessary condition for the primal matrixz to be positive semidefinite is that x15 is zero because
z11 = 0 (see Observation 1.1.6). Likewise we obtain from z22 = 0 that 212 = 0 and hence y; = —1
in the dual program. The gap between any pair of primal and dual optimal solutions is one.

This insufficiency of the primal-dual pair is due to the dualization procedure (2.2) which is
purely algebraic and does not take into account the actual geometry of the feasible sets. In this
particular example the primal equality constraints imply that any feasible X > 0 has a zero eigen-
value with eigenvector [1,0, O]T. By Theorem 1.2.9 the primal feasible set is contained in a face of
the semidefinite cone that has the following form,

00
F={PWP": W=0} with P=|1 0
01
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The particular choice of P is convenient, but any P whose columns form a basis of the space
orthogonal to the nullspace of the feasible set will do as well. If we replace the condition X > 0 by
X € F in the primal problem, the primal problem remains unchanged. Constructing the dual in
analogy to (2.2) yields

. _ . _ YT
inf. ysetﬁzpmw,X) +(b— AX,y) > sup dnf (b,y) +(X,C = A"y).

Because F is a cone infxcp <X, C - ATy> is finite if and only if <X, C - ATy> >0 foral X €F,
i.e., C — ATy is in the dual cone to F. For Z = C — ATy the condition reads

(PWPT,Z) =(W,PTZP) >0 YW = 0.

In words, Z must be positive semidefinite on the subspace spanned by P. Applying this to the
current example we obtain

—Y2 —Y3 00 _
O N I S N O I 7 B
0 0 1 2 —Ys+ -
—Ys —Ys —W 01

For this specialized dual problem the optimal solution is attained for y; = 0 and the gap between
the optimal values of the primal problem and the specialized dual problem has disappeared.

The primal cone of the original primal problem was too large, this restricted the dual cone too
much. Reducing the size of the primal cone to its non-redundant part increased the dual cone. The
additional freedom enabled the dual to reach the same objective value.

In the following we will prove that the gap between optimal primal and dual objective value
is guaranteed to be zero (i.e., strong duality holds) if at least one of (PSDP) and (DSDP) has a
strictly feasible point.

Definition 2.2.2
A point X is strictly feasible for (PSDP) if it is feasible for (PSDP) and satisfies X > 0.
A pair (y, Z) is strictly feasible for (DSDP) if it is feasible for (DSDP) and satisfies Z > 0.

Geometrically, the existence of a strictly feasible primal solution ensures that the primal cone is
non-redundant in the sense that we cannot restrict it to one of its faces without changing the
primal feasible set.

The assumption of the existence of such a point is referred to as Slater condition (see Hiriart-
Urruty and Lemaréchal [1993a]; Bertsekas [1995]). Regularity assumptions of this kind form
sufficient conditions for strong duality in general convex programming (see Hiriart-Urruty and
Lemaréchal [1993a]; Rockafellar [1970]), but for the sake of simplicity we will follow the specialized
approach of Alizadeh [1995].

Here is a rough outline of the proof of strong duality. We will assume that (DSDP) has a
strictly feasible point and that, in spite of this assumption, the primal optimal objective value p*
is strictly greater than the dual optimal value d*. The existence of a dual strictly feasible point
guarantees that the set { [ﬁ’? >] : X = 0} is a closed convex set (see Lemma 2.2.3 below). By
assumption, [d;] is not contained in this set, so there is a hyperplane strictly separating this

point from the feasible set. Via Lemma 2.2.4 we will use this separating hyperplane to construct
a better dual solution than d*. This will establish the desired contradiction.
We will prove the two lemmas mentioned above for a general linear operator BX. BX corre-

sponds to [<€(§ >] in the proof of the strong duality theorem. We start with the closedness of the
image of B.
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Lemma 2.2.3 Let B : S, — R™ be a linear operator. Assume that there exists a § € R™ such
that Z = BT = 0. Then the set {BX : X = 0} is closed.

Proof. Let X;, i € N, be a sequence of positive semidefinite matrices with lim; .., BX; = b.
We first prove the boundedness of this sequence. We use Lemma 1.2.4 to bound the maximal
eigenvalue of the Xj.

(9, BX:) = (BT5, Xs) = ( 2,X:) > Amin(Z) Amax(X0).
Since
71— 00

the maximal eigenvalue Amax(X;) is bounded for this sequence and hence, by Observations 1.1.5
and 1.1.1, the elements of X; remain bounded as well. The sequence remains in a compact subset
of S;F. Therefore there is a convergent subsequence converging to some X > 0 with BX =b5. H

Since B is a linear operator, the image of a convex set is again convex. If the image of the
semidefinite cone is closed we can apply a separation theorem to obtain the following analogue of
the Farkas-Lemma.

Lemma 2.2.4 Assume that {BX : X > 0} is closed and let b € R™. Then either there exists an
X > 0 such that BX = b or there is an y € R™ such that BTy > 0 and b7y < 0.

Proof. First suppose that there exists an X = 0 with BX = b. From bTy < 0 we conclude
(b,y) = <BX,y> = <X’,BTy> <0.

Therefore, by Corollary 1.2.7, BTy cannot be positive semidefinite. Now suppose that there is
no X > 0 with BX = b. Because the set {BX : X = 0} is convex and closed there exists a
hyperplane 4 separating b from this set (Rockafellar [1970], Corollary 11.4.2), i.e., b¥'§ < 0 and
(9, BX) = (B'j,X) >0 for all X = 0. By Corollary 1.2.7 this ensures B§ > 0. [ |

We are now ready to prove the strong duality theorem.

Theorem 2.2.5 (Strong Duality) R

Assume that there exists a strictly feasible solution (4, Z) for (DSDP) and let
p* = inf{{(C,X): AX=0b,X =0} and
d = sup{(by): ATy+Z=C,Z »0}.

Then p* = d* and if p* is finite it is attained for some X € {X =0: AX = b}.

Proof. We note that p* = —oo is impossible because by weak duality p* > b7¢. Observe
that { [ﬁ’))ﬁ >] X - 0} is closed because [_ly] yields the correct vector to apply Lemma 2.2.3.
Assume, for contradiction, that p* > d* with d* finite. Then the system

(C¢,x) = &
AX = b
X >

is infeasible, implying by Lemma 2.2.4 that there exists some vector [y_o] such that

<

d*yo + 015 <0 and yoC + Alg > 0.

Now consider the following cases.
(i) yo = 0. We get b7y < 0 and ATy > 0. § + a(—7y) with a > 0 is a dual feasible ray along
which the dual objective function is strictly increasing. Thus d* = oc.
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Figure 2.1  An illustration of the feasible set of Example 2.2.7.
£ € (0,0.5], x19 € [—1,00), .1'22(6,.1'12) = .’L‘%Q/E

(ii) yo > 0. Dividing by yo yields d* +bT5/yo < 0 and C + ATy /ye = 0. The choice y = —g/yo
yields a dual feasible solution with better objective value than d*.

(iii) yo < 0. Dividing by —yo yields —d* — bT§/yo < —e; with & > 0 small enough and
—C — A%§/yo = 0. Select some feasible solution § with d* — 7§ < &5 with 0 < €2 < &; and
C — ATj = 0. We add these inequalities to obtain b (—§ — 7/yo) < 0 and AT(—§ — §/yo) = 0. As
in case (i) this yields an improving ray § + (¢ + 4/yo) (a > 0) for (DSDP).

This proves p* = d*. Attainment of the primal optimal solution for finite p* follows from the
closedness of the set { [<i’§>] : X = 0}. [ |

We state the result for all possible primal-dual combinations in the following corollary.

Corollary 2.2.6 Let p* and d* be defined as in Theorem 2.2.5.

(i) If (PSDP) is strictly feasible with p* finite, then p* = d* and this value is attained for (DSDP).
(i1) If (DSDP) is strictly feasible with d* finite, then p* = d* is attained for (PSDP).

(i#) If (PSDP) and (DSDP) are both strictly feasible, then p* = d* is attained for both problems.

In view of the proof of the Strong Duality Theorem let us turn once more to Example 2.2.1.

Example 2.2.7 For the primal program of Example 2.2.1, the set

C.X
B= { [<AX>] : X EO} = {[5612,3733 —$12,$11,2$13,2$23]T3 X = 0}
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is not closed, because for the sequence defined by the matrices

L1 0
Xe=| -1 k 0 for 1<keN
0 0 O
the images converge to limy_, o [(i’))((:)] = [—1,1,0,0,0]T. The latter vector is clearly in the

closure of B but cannot be contained in B, because a positive semidefinite matric X > 0 cannot
satisfy x11 = 0 and T2 = —1.

In order to get a better geometric understanding why this causes a gap for the optimal solutions
of Example 2.2.1 we examine the case where the diagonal element x11 is set to some positive value
€ > 0. Then the standard primal dual pair reads

min 12 max Y1 + €y2
E  T12 0 —yy HL s
s.t. 12 T22 0 >0 s.t. L‘;ﬂ 0 —Y4 > 0.
0 0 14z =Y —Ys -
Clearly, for € > 0 the primal has a strictly feasible solution. The optimal solution of the dual
problem is —1 as before and it is attained for y; = —1 and y, = 0. X is positive semidefinite for
72
12 € [-1,00) and 33 > o1z
For any € > 0, the optimal solution of the primal problem is —1 and it is attained for x12 = —1

and Too > %; there is no gap between primal and dual optimal solutions.

Figure 2.1 displays the lower bound on x2o (truncated at value 10 for better visibility) in de-
pendence of 12 € [—1,1] and € € (0,0.5]. The epigraph of this function can be interpreted as the
primal feasible set.

At e = 0 the feasible range of x12 contracts to a single point, z1o € {0}. The optimal value
of the primal problem suddenly rises from —1 to 0. As in the proof of Theorem 2.2.5 we would
like to construct an improving direction for the dual solution with d* = —1. However, there is

no hyperplane strictly separating the point [db*] =[-1, 1,0,0,0]T from B, because we have proved
above that the point is contained in the closure of B.

If there is no strictly feasible dual solution, the primal optimal solution may not be attained.
This is illustrated by the following example.

Example 2.2.8

min 1 max 2y

s.t. [“m 1 ]zo s.t. [ 1 _yl]zo
1 x99 -y 0

The primal problem has a strictly feasible solution (r11 = 2, x22 = 2) and indeed the dual optimal
solution 0 is attained for y; = 0 which is also the only feasible solution. By the strict feasibility of
the primal problem we know that the infimum of the objective values of the primal feasible solutions
must be zero. To check for primal attainment we compute the feasible set explicitly. Because of
the semidefiniteness constraint the determinants of the principal submatrices must be nonnegative,

z11 > 0, T2 > 0, ZT11%22 —1 2> 0.

This yields the lower bound x11 > zl; which is zero for xo2 — 0o. The primal optimal value is not
attained. Note, that the dual does not have a strictly feasible solution and that the primal feasible
set is mot polyhedral.
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What can we do if the semidefinite program at hand does not have a strictly feasible point? If
we know the minimal face of the positive semidefinite cone that contains the feasible set then we
can project the problem onto this face and obtain a well posed problem (Wolkowicz [1981]). In
particular, let F = {PWPT : W € S} } with P € M, denote this minimal face. The columns of
P are a basis of the subspace that is orthogonal to the null space common to all feasible matrices
X. In the projected problem W takes the place of X. The projected cost matrix is PTC' P, because

(C,X)=(PTCP,W) for X=PWPT eF.
Likewise we define the projected constraints by
(PTA,P,W)
ApW = :
(PTA,P,W)

Then the projected problem
min <PTCP, W>
s.t. ApW =b
W =0

is equivalent to the original problem and has strictly feasible solutions.
The minimal cone can be constructed explicitly if a point in the relative interior of the feasible
set is known.

Lemma 2.2.9 Let X € X = {X = 0: AX = b} with eigenvalue decomposition X = PAPT,
PTP =1 and A » 0 diagonal. Denote by Sp = {PVPT V= 0} the face of St spanned by P.
Then X is in the relative interior of X if and only if Sp is the smallest face of S} containing X.

Proof. Let X be in the relative interior of X'. The set Sp is the smallest face of S, containing
X, so it remains to prove that Sp contains X. Suppose it does not, then there is a X € X not
contained in Sp. This X must have a normalized eigenvector v with vuT not contained in Sp.
Since X is in the relative interior of X" there is an ¢ > 0 so that X = X —¢(X — X) € X. But for
w = v — PPTv we have Xw = 0 and therefore w” Xw = —ew” Xw < 0, yielding a contradiction.

Now let Sp be the smallest face of S} containing X. Since for X € X it follows that X € Sp
there is a V = 0 with X = PVPT. For V there is ¢ > 0 so that for all || < € the matrix
V = A+ 8(V — A) > 0 is positive semidefinite and therefore X + §(X — X) = PVPT € X. So X
is in the relative interior of X. |

If we do not know this minimal face there is no obvious way to arrive at an equivalent well
posed problem. In theory it is possible to construct, via an algebraic description of the mini-
mal face, an extended dual semidefinite program, called the extended Lagrange-Slater dual, that
guarantees that the gap between primal optimal value and dual optimal value is zero (Ramana
[1997]). The construction is quite involved and requires the introduction of several additional
semidefinite variables. Although the extended slater dual can be constructed in polynomial time,
the computational burden is too high for practical applications.

2.3 Geometry and Complexity

Next we study the facial structure of feasible sets. A feasible set of a semidefinite program is
the intersection of an affine subspace with the semidefinite cone. The faces of intersections of
convex sets are the intersections of the faces of the convex sets. Consequently we can expect that
the facial structure of the semidefinite cone has a strong influence on the facial structure of the
feasible set. One such consequence is that in general feasible sets are not polyhedral. Another
one is that optimal solutions are likely to have small rank. As the low dimensional faces of the
semidefinite cone correspond to matrices of small rank, we can expect that matrices contained in
low dimensional faces of the feasible set will have small rank, as well. The following lemma gives
a mathematically precise explanation of this phenomenon.
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Lemma 2.3.1  (Pataki [1998])
(i) Let F' be a face of dimension k of the feasible set of (PSDP). For X € F the rank r = rank(X)

is bounded by
1
(T ; ) <m+k.

(ii) Let F be a face of dimension k of the set {Z = 0: Iy € R™ : Z + ATy = C'} of feasible Z-
values of (DSDP). For Z € F the rank r = rank(Z) is bounded by

r+1 n+1
< - k.
(5)= () -
Proof. Since (i) is the dual result to (i), we only have to prove (i). Take some feasible X of rank
r and let P € M, , contain, as columns, the eigenvectors corresponding to the positive eigenvalues

of X. For ¢ > 0 small enough X + ¢ {PWPT : A(PWPT)=0,W €S,,||[W| <1} is a convex

set feasible for (PSDP) with X in its relative interior. The affine dimension of this set is at least
("+') — m, because S, has dimension ("}'). Thus a face containing X must have dimension at

least ("}') — m. Reversely, ("}') > m + k implies that X cannot be contained in F. [ |

Before discussing semidefinite relaxations of combinatorial optimization problems as well as
practical methods for solving semidefinite programs it is worth to spend some thought on the com-
plexity of the problem. It is well known that “under reasonable assumptions” convex programming
is of polynomial complexity. In particular, if we have a full dimensional, compact convex set given
by a weak violation oracle with its “interesting region” contained in a ball centered at the origin
with radius R then there exists an oracle polynomial time algorithm that solves the weak optimiza-
tion problem (Grotschel, Lovész, and Schrijver [1988], Corollary 4.2.7). In the case of semidefinite
programming a polynomial weak violation routine is obtained by Gaussian elimination pivoting
on diagonal elements (cf. Remark 1.1.15). The next two examples illustrate that the assumptions
are indeed necessary for semidefinite programming.

Example 2.3.2 (Ramana [1997])

min .,

s.t. (w1—4)§0,[1 ml]to,[l "’”2]50,...,[ 1 xm—l]zo.
r1 I9 Ty X3 Tm—1 Tm

The encoding length of this program is O(m). What can we say about its feasible set? We get
T > 22 3y > > (22)2 =22 gy > 22 > 207 g, > x2,_, > 27 A strictly feasible
solution exists and the optimal solution is obtained by setting all variables to their respective
lower bounds. But the optimal solution is doubly exponential in m and the feasible region is doubly
exponentially far away from the origin, i.e., R grows doubly exponentially in m. Thus, the encoding
length of any feasible solution is (2™) if binary encoding is used.

Example 2.3.3

min I12
1
s.t. [ 12 ] > 0.
I12 2
Although all coefficients are integers the optimal solution is x12 = —v/2. In contrast to linear

programming we cannot expect solutions to be rational numbers when coefficients are restricted to
integers.

Strong bounds on the complexity of semidefinite programming were obtained by Porkolab and
Khachiyan [1997]. They employ complexity results of the first order theory over the reals, where
solutions may be described as the roots of polynomials with integral coefficients. We cite the main
results in the following theorem.



2.4. REMARKS ON THE LITERATURE 25

Theorem 2.3.4 (Porkolab and Khachiyan [1997]) For integral A : Sy, — R™ and b € Z™ let
F={X*>0:AX <b},
and let | denote the maximum bitlength of the coefficients in A and b.

1. If F # 0 then it has a solution X satisfying | X|| < R with log R = 1 - nO™»{mm*}) 1 in
addition, F is bounded, then | X|| < R for all X € F.

2. It can be tested in mnC™™{m"D grithmetic operations over [ - nOmin{mn®h) ot pumbers
whether F' is empty.

Another important result, due to the same authors, states that integer semidefinite programming
is polynomially solvable in fixed dimensions. In this case, the coefficients of 4 and b may be
algebraic numbers, i.e., roots of polynomials.

Theorem 2.3.5 (Khachiyan and Porkolab [1997]) For fized n there exists a polynomial time
algorithm that finds an integral X € S}t satisfying AX < b or decides that no such matriz ezists.

Note that the result does not depend on the number of constraints m, but only on the dimension
of X.

In terms of complexity classes, Ramana [1997] proved by means of his extended Lagrange-Slater
dual that there is an exact theorem of the alternative for the semidefinite feasibility problem:
Either an appropriate modification of the primal problem is feasible or its extended slater dual
is feasible. Since the size of a binary encoding of both problems is polynomially bounded in the
size of a binary encoding of the primal problem, this established that in the Turing model of
computation, the semidefinite feasibility problem is either in NPNco-NP or outside NPUco-NP.
In the real number model of computation it is in NPNco-NP (this follows from Theorem 1.1.14).
It is not known, however, whether in the Turing model semidefinite programming is in NP or not.
As illustrated in Example 2.3.2, the size of a binary encoding of a solution may grow exponentially
in the input size, so standard encoding schemes will not suffice. Currently there is little hope to
prove either result, but Example 2.3.2 is taken as an indication that SDP might not be in NP.

2.4 Remarks on the Literature

Semidefinite programming is a special case of linear programming over cones. Some important
references are Duffin [1956]; Ben-Israel, Charnes, and Kortanek [1969]; Ben-Israel, Charnes, and
Kortanek [1971]; Wolkowicz [1981]; Luo, Sturm, and Zhang [1997]. Nesterov and Nemirovskii
[1994], Boyd, El Ghaoui, Feron, and Balakrishnan [1994], Vandenberghe and Boyd [1996], and
Ben-Tal and Nemirovski [1998] offer a rich source for applications of (SDP) in various fields.
The transformation of (LCP) to (SDP) was developed in Kojima, Shida, and Shindoh [1997].
The strong duality theorem presented here is covered by more general results from convex analysis
(Rockafellar [1970]; Hiriart-Urruty and Lemaréchal [1993a]), our approach follows Alizadeh [1995].
Example 2.2.1 is based on an example of Vandenberghe and Boyd [1996], Example 2.2.8 is folklore.
Papers on problem specific dualization and the extended slater dual are Wolkowicz [1981]; Ramana
[1997]; Ramana, Tuncel, and Wolkowicz [1997]. Lemma 2.2.9 is folklore, Lemma 2.3.1 is due to
Pataki [1998]. For nondegeneracy in semidefinite programming we refer the reader to Alizadeh,
Haeberly, and Overton [1997]. Grotschel, Lovasz, and Schrijver [1988] proved that well behaved
positive semidefinite programming problems can be solved (in approximate sense) in polynomial
time. Example 2.3.2 is taken from Ramana [1997], who attributes the first example of this type
to Khachiyan.
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Chapter 3

Semidefinite Relaxations of
Combinatorial Optimization
Problems

In this chapter we study semidefinite relaxations of several combinatorial optimization problems
and present some of their major properties. We start with the semidefinite relaxation of max-cut
in Section 3.1, prove the approximation result of Goemans and Williamson, and show that this
relaxation is asymptotically optimal for a large class of random graphs. In Section 3.2 we derive a
semidefinite relaxation for quadratic 0-1 programming, which turns out to be a scaled version of
the max-cut relaxation. We then consider two examples of constrained quadratic 0-1 programs,
namely the independent set problem and the quadratic 0-1 knapsack problem. We conclude with
Section 3.4 by surveying different modeling techniques used to obtain approximation algorithms
for max-2sat, k-partitioning, coloring, and the betweenness problem.

3.1 Max-Cut

The max-cut problem is one of the standard NP-complete problems defined on graphs. Let
G = (V, E) denote an edge-weighted undirected graph without loops or multiple edges. We use
V ={1,...,n}, ij for an edge with endpoints ¢ and j, and a;; for the weight of an edge ij € E.
For S C V the cut §(S) is the set of edges ij € E that have one endpoint in S and the other
in V'\ S. The max-cut problem asks for the cut maximizing the sum of the weights of its edges.
More formally, the max-cut problem can be written as follows,

(MC) mc(G):rgléla( Z @ij- (3.1)
= ijes(s)

Here, we only work with the complete graph K,. In order to model an arbitrary graph in this
setting, define a;; = 0 for ij ¢ E. A = (a;;) € Sy, is referred to as the weighted adjacency matrix
of the graph.

An algebraic formulation can be obtained by introducing cut vectors z € {—1,1}" with z; = 1
fori€ S and z; = —1 for i € V'\ S. Consider the following problem,

1-— TiTj
ma; a;; ————. 3.2
we{—l?cl}" ; “ 2 ( )

The value of the expression (1 —2;2;)/2is 0 if x; = x;, i.e., if  and j are in the same set, and 1 if
x; = —x;. In other words (1 — z;x;)/2 yields the incidence vector of the cut associated with cut

27
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vector x, evaluating to 1 if edge 4j is in the cut. Therefore problem (3.2) is equivalent to (MC).
We modify this formulation by exploiting the symmetry of A and z;z; = 1,

1 1
52(1”-(1 —.’L‘il'j) = ZZaU(l —.CL'i.’E]')
1,5

i<j
1 n n n
= 1 YD aizimi = aijzix; (3.3)
i=1 \j=1 j=1
1o
= 4 (Diag(Ae) — A)zx.
The matrix

L(G) = Diag(Ae) — A

is called the Laplace matriz of the graph G. Usually we will drop the argument and speak of L
only. For C' = iL the max-cut problem may be interpreted as a special case of the following more
general problem,
max z!Cx (34)
ze{-1,1}"

for given C € S,,. In order to derive a semidefinite relaxation of (3.4) we observe that
" Cz = (Cz,z) = (C,zz™).

For z € {—1,1}" the matrix zzT is positive semidefinite, its diagonal entries are equal to 1, and
it is a rank one matrix. Now consider the relaxation of zz” to a matrix X satisfying these three
characteristic properties,

max 1(L,X)
s.t. diag(X) =e
X >0 (3.5)
rank(X) = 1.

Because of the rank one constraint this is not a semidefinite program. In fact, this is again problem
(3.4).

Lemma 3.1.1 (Laurent and Poljak [1995]) Problem (3.5) is equivalent to (3.4).

Proof. Let X be feasible for (3.5). As X > 0 with rank(X) = 1, there is a factorization z € R"
such that X = zzT. But since X;; = 1 = z;z; for i = 1,...,n we have z € {—1,1}". Conversely,
we have observed above that for any z € {—1,1}" zzT is contained in the feasible set of (3.5).
Therefore (3.5) and (3.4) optimize the same objective function over the same feasible set. |

Dropping the rank one constraint yields a semidefinite programming relaxation of (3.4), and, for

C= iL, of max-cut.

max (C,X) min eTuy
(SMCQ) s.t. diag(X)=¢e st. C+ Z —Diag(u) =0
X0 Z = 0.

An illustration of the primal feasible set of (SMC) for n = 3 is given in Figure 3.1.

The semidefinite program is well behaved, because X = [ is strictly primal feasible and u; =
1+ Z;;l |Cij] for ¢ = 1,...n, Z = Diag(u) — L yields a strictly dual feasible solution. (SMC)
implies the box constraints —1 < z;; < 1, because the principal two by two submatrices of a
feasible X must be positive semidefinite. If, for a feasible X, |z;;| = 1 for some indices i # j then
the nonnegativity of the determinant of the principal three by three submatrix with indices 4, j,
and k € {1,...,n}\{i,j} implies that x;; = sgn(z;;)-z;x. Together with Lemma 3.1.1 this proves
that the matrices zz7 with z € {—1,1}" are the only feasible matrices with £1 entries.
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0.8
0.6
0.4+

0.2 4

-0.2
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Figure 3.1 The primal feasible set of the semidefinite relaxation (SMC) of max-

}:0.

Lemma 3.1.2 (Laurent and Poljak [1995]) Let X € {X > 0 : diag(X) = e}. Then —1 < z;; < 1.
If z;; € {—1,1} for all ij then X = zz™ with x € {-1,1}".

[SE
—-— N

1
cut for n = 3. The surface is the solution of det [ T
Yy

In other words, all vertices of the [—1, 1](;) cube (associated with the upper triangle of X) that
do not correspond to integral solutions of (3.4) are eliminated by this relaxation.

Goemans and Williamson [1995] provided an intriguing geometric interpretation of the feasible
set of (SMC). Based on this interpretation they developed an approximation algorithm for max-
cut whose performance guarantee is significantly better than that of previous algorithms. So far
all other approximation algorithms employing semidefinite programming techniques build on their
ideas. It is worth to study the approach in detail.

A feasible matrix X of (SMC) can be interpreted as the Gram matrix of vectors v; € R”,
i =1,...,n. For any factorization of a feasible X into V7'V with V € M, the columns of V
yield such vectors v;. Because of diag(X) = e each vector is of unit length, ||v;|| = 1. Associating
vector v; with node ¢ we may interpret v; as a relaxation of z; € {—1, 1} to the n-dimensional unit
sphere. The products z;z; € {—1,1} are relaxed to v} v; € [—1,1]. Thus, formulating relaxation
(SMC) in vector notation we obtain

max ), Cijv] v
st. vivy;=1 VieV (3.6)

v; € R? VieV.

This vector formulation provides a clear intuition on how the semidefinite solution can be inter-
preted. Vectors v; and v; are unit vectors, v v; is the cosine of the angle enclosed by these vectors.
If the angle between two vectors is large then we should separate the corresponding vertices, if
it is small we should put them into the same set. However, we have to take care of conflicting
configurations. In order to avoid conflicts consider the following alternative. Generate a random
hyperplane through the origin and group all vectors on the same side of this hyperplane together.
In particular the random hyperplane is constructed by a random vector h acting as the normal
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vector of this hyperplane. The partition of V into (S,V \ S) is formed by assigning all vertices i
to S whose corresponding vectors ¢ have positive inner product with A,

S(h) = {i€{1,...,n}: sgn(vj h) =1}.

It is to be expected that vectors with a large angle will be separated because the random hyperplane
is likely to end up between them. More formally, we have the following theorem.

Theorem 3.1.3 (Goemans and Williamson [1995]) For n unit vectors v; € R™ and for a vector
h randomly chosen from the standard normal distribution in R™, let

H= Z cij sgn(vi h) sgn(vfh).
i,J

Then the expected value of the integral solution is

2
E(H) = - Z cij arcsin(v] v;).
i3

Proof. By the linearity of expectations

E(H) = 3" ci; E(sgn(v h) sgn(v? h),
i,J

and E(sgn(v] h)sgn(v] h)) = 1 — 2Pr(sgn(v] h) # sgn(v] h)). The latter probability is equal to
the probability that the projection of the random hyperplane onto the plane spanned by the two
vectors v; and v; separates them. The projection of vector h onto this plane is again normally
distributed. As the standard normal distribution is spherically symmetric the probability that the
projected vector separates ¢ and j is twice the angle between v; and v; divided by 2.

2 2
E(sgn(v] h) sgn(vah)) =1— = arccos(vi v;) = = arcsin(v] v;).
T 7r

Remark 3.1.4 Bertsimas and Ye [1998] provide an alternative interpretation of the rounding
procedure that yields the same result: For a feasible X of (SMC) generate the vector h from a
multivariate normal distribution with 0 mean and covariance matriz X and round h directly to a
{-1,1}-vector z by x = sgn(h) (sgn(-) acting componentwise). The probability of edge ij to end
up in the cut is again %arcsin(mij).

This result has a surprising consequence. Let arcsin(X) denote the matrix with entries arcsin(z;;).

Corollary 3.1.5 (Goemans and Williamson [1995]) Problem (3.4) is equivalent to

max 2 (C,arcsin(X))
s.t. diag(X) =e (3.7
X > 0.

Proof. (3.7) is a relaxation of (3.4), because for X = zzT with z € {-1,1}", X is feasible for
(3.7) and the objective values of (3.7) and (3.4) coincide, 2 (C,arcsin(X)) = (C, X) = 27 Cxz.

On the other hand let X* = VTV denote an optimal solution of (3.7) and let v} = V. ;. Then
the expected value of an integral solution obtained via rounding these v} by a random hyperplane
is the optimal value of (3.7) by Theorem 3.1.3. Consequently there exists an z € {—1,1}" with at
least this value. ]

For positive semidefinite cost matrices C' we already obtain a reasonable bound.
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Theorem 3.1.6 (Nesterov [1998]) Let C = 0, then

2
max z! Cr > = max{(C,X): diag(X)=e, X > 0}.
ze{-1,1}" T

Proof. For 2 < k € N define X°% = X o X°(k~1) with X°! = X and observe that the Taylor
series expansion for arcsin(z;;) with |z;;| < 1 implies

1X°% 1.3X°5

in(X) =X + = i

arcsin(X) +2 3 +2_4 z

For feasible X > 0 with diag(X) = e the matrix entries satisfy —1 < z;; < 1. Therefore it follows
form the Schur product Theorem 1.2.11 that arcsin(X) > X. Since C' > 0 Lemma 1.2.3 yields

+...

(C,arcsin(X)) > (C, X) . (3.8)

The result now follows from Corollary 3.1.5. |

With respect to the semidefinite relaxation of a max-cut problem with nonnegative edge weights
Theorem 3.1.6 states that there is always a cut with value at least % (> 0.6366) times the optimal
value of the semidefinite relaxation, because the Laplace matrix L(G) of a graph with nonnegative
edge weights is positive semidefinite.

For special positive semidefinite matrices the inequality (3.8) can be sharpened. In particular,
let T;jr € S}t denote the matrix with ¢; = ¢;; = 1 and tj; = t;; = 1 and which is zero otherwise,
and let Ti; € S,f denote the matrix with ¢;; = ¢;; = 1 and t;; = t;; = —1 and which is zero
otherwise. For example, for n = 3,

110 1 0 -1
TH=|1 10| and Tz=| 0 0 0
000 ~1 0 1

Lemma 3.1.7 LetT = {T{}',Ti; i<y, 4,5 €{1,... ,n}} Then for all T € T and for all X = 0
with diag(X) = e
(T, arcsin(X)) > § (T, X)

Z +arcsin(6)

T > 1.38.

with B = min_1<p<1

Proof. It suffices to consider the case n = 2. Let T = [} }] (the other case can be proved
analogously) and let X be a feasible matrix. For (T, X) = 0 the claim is true, therefore let
(T,X) > 0. Then
(T,arcsin(X)) 5 + arcsin(z12)
<T, X) - 1+ T12

Minimizing this ratio over —1 < z12 < 1 yields the lemma. [ |

Because of the linearity of the inner product the result extends to matrices that are nonnegative
linear combinations of matrices from 7.

Observation 3.1.8 The Laplace matriz of a nonnegatively weighted graph is in the cone T .

Putting Lemma 3.1.7 and Observation 3.1.8 together we obtain the result of Goemans and
Williamson as a Corollary.

Corollary 3.1.9 (Goemans and Williamson [1995]) Let C € cone(T) and let m* denote the
optimal value of (3.4). Then for any feasible solution X of (SMC),

m* > E(H) 2 a(C, X), (3.9)

with a = B2 > 0.87856.
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Observe, that (3.9) is true for any feasible solution of (SMC), in particular for an optimal solution
X,. Since (SMC) is a relaxation of (3.4), its objective value satisfies (C, X,) > m*, so we obtain

(C,X.) >m* > EH) > a(C,X.). (3.10)

Given the optimal solution X, the random hyperplane rounding scheme yields an integral vector
z € {—1,1}" whose expected objective value E(H) is within a of the maximum cut (ironically,
the expected value of the cut gets closer to m* as the bound (C, X.) gets worse). Mahajan and
Ramesh [1995] devised a deterministic version of the randomized rounding scheme that achieves
this expected value for a given X in polynomial time.

In the Turing model ofAcomputation, we cannot hope to compute an optimal X, exactly, but
only an e-approximation X of an optimal solution, see the discussion in Section 2.3. Since the
primal feasible set of (SMC) is contained in the unit cube (Lemma 3.1.2), the ellipsoid method
can be used to compute such an approximate solution in polynomial time (Grotschel, Lovdsz, and
Schrijver [1988]). Therefore, Corollary 3.1.9 and the deterministic rounding method of Mahajan
and Ramesh [1995] give rise to a polyniomal (a—¢) > 0.8785 approximation algorithm for the max-
cut problem (MC) with nonnegative edge weights. On the negative side, Hastad [1997] has shown
that there is no polynomial approximation algorithm that achieves a constant of % +e < 0.9412
unless P=NP, so the gap is moderate.

A natural question is, whether « also reflects the quality of the bound obtained by (SMC) or
whether better constants exist for this purpose. The 5-cycle, for example, has %Jg—g‘/g -4 as optimal
value of (SMC) (Delorme and Poljak [1993]). Since the max-cut value of the 5-cycle is 4, the ratio
max-cut to relaxation is 32/(25 + 5v/5) < 0.8845. Slightly stronger examples have been referenced
in the literature (cf. Goemans [1997]). Therefore the constant cannot be improved significantly
without improving on (SMC).

Remark 3.1.10 Goemans and Williamson [1995] show that the rounding algorithm behaves even
better if the the percentage of edges in the cut is relatively high, say, more than 85% of all edges are
in the cut. In the opposite case, when the percentage of edges in the cut is smaller than 84.458%,
then it pays off to introduce more uniform randomness into the rounding procedure (Zwick [1999]).
In the interpretation of Remark 3.1.4, the covariance matrix is shifted from X towards the identity,
i.e., pick h € N0,y + (1 —v)X) for appropriate v € [0,1].

Historically, the first bound equivalent to (SMC) was a spectral bound derived from (3.4).
Indeed, (3.4) shows strong similarities to the Rayleigh-Ritz characterization of the maximal eigen-
value. As all feasible vectors z lie on a sphere of radius /n it seems natural to relax z € {-1,1}"
to ||z|]| = v/n, which yields an upper bound of nAy.x(C) (Mohar and Poljak [1990]),

max z1Czx < max z!Cz=n max 27 Cz = nAmax(C)
ze{-1,1}" llzll=vn llz]l=1
In order to improve this bound observe that diagonal perturbations of the cost matrix in form of
C + Diag(a) with @ € R* and 47e = 0 do not change the value of (3.4), because 27 Diag(@i)z =
eTa =0 for all z € {—1,1}". These diagonal perturbations, however, have considerable influence

on the maximal eigenvalue. Therefore a better bound is (Delorme and Poljak [1993])

min  nAmax(C + Diag(a)). (3.11)

a€R™, @t e=0
It turns out that (3.11) and (SMC) are indeed the same.
Lemma 3.1.11 (Poljak and Rendl [1995a]) (3.11) is equivalent to the dual of (SMC).

Proof. We start by formulating (3.11) as a semidefinite program,

min nA
s.t. A —C —Diag(a) = 0
aTe=0.
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Rewrite AI — Diag(u) as Diag(Ae — @) and use the substitution u = Ae — @. This yields A = eTu/n
and @ = eTu-e/n—u, with aTe = 0 being satisfied generically. After this substitution the program

reads

min eTu

s.t. —C + Diag(u) = 0.
Setting Z = —C' + Diag(u) completes the proof. |

This spectral formulation of (SMC) gives rise to an extraordinary strong result for max-cut with
respect to the class of random graphs with fixed edge probability. Let G, , denote a random
graph with n vertices where each edge is included with probability p. The adjacency matrix of
this (unweighted) graph has entries a;; = 1 if 45 is an edge and a;; = 0 if it is not. We will use
the following result of Juhdsz [1981] which we state without proof.

Theorem 3.1.12 (Juhdsz [1981]) For graphs Gpp with 0 < p < 1 and for any € > 0 the eigen-
values of the adjacency matriz A satisfy A (A) = pn + o(n2%¢) and maxi<i<n [Ai(4)| = o(nzte)
with probability tending to 1 as n tends to infinity.

The theorem says, that for large n the maximal eigenvalue of the adjacency matrix is roughly of
the size of the expected degree and all other eigenvalues are small in comparison. By means of
this theorem we will now prove that the optimal solution of (SMC) is asymptotically optimal for
Gnp.

Theorem 3.1.13 (Delorme and Poljak [1993]) For p fixed with 0 < p < 1

min = Amax(L(Gn,p) + Diag(a))

a€R”, aTe=0

li =1

e me(Gr p)

Proof. Let d denote the average degree of G, ,. Note, that a maximal cut will contain at least
half of the edges, mc(Gp,p) > tnd. To prove the result it suffices to choose @ = de — Ae. For this
choice L(Gy,p) + Diag(i) = dI — A and therefore, by Theorem 3.1.12,

min " Amax(L(Gnp) + Diag(@) < = (d-+o(n*9)).

a€Rm, aTe=0 4

~3

Combining this upper bound with the lower bound for mc(G,,p) we obtain

min %)\max(L(Gn,p) + Dla‘g(u))

u€R™, uTe=0

lim < lim in(d—i—o(n%“))

=1.
n—>00 mc(Gp,p) n—co ind

It is instructive to compare the semidefinite relaxation to the convex hull of the integral solu-
tions. The feasible set of the semidefinite program (SMC) is a relaxation of the cut polytope!

P =conv {zz” : z € {-1,1}"}. (3.12)
A general family of valid inequalities for P reads (Laurent and Poljak [1996a])
b"Xb > min {bTz2"b: z € {-1,1}"} = min {(bTz)? : z € {-1,1}"}, (3.13)

where b € Z". If the right hand side value is strictly positive, the corresponding inequality is
called a gap inequality. Since the positive semidefiniteness of X implies b7 Xb > 0, the addition of
gap inequalities to (SMC) strengthens the relaxation. If min {(b"z)? : z € {—1,1}"} is equal to
one, the gap inequality is also called hypermetric. If b € {—1,0,1}" consists of an odd number of

ITraditionally, the cut polytope is defined as the convex hull of the incidence vectors of all cuts in the graph. In
our context, however, the definition given here is more convenient.
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nonzero entries, hypermetric inequalities are called clique inequalities. Clique inequalities always
define facets of Py (Barahona, Grotschel, and Mahjoub [1985]). Clique inequalities with three
nonzero elements specialize to the well known triangle inequalities,

Tij + Tk +xjp > —1

Tij — Tik — Tjp > —1 314
—Tij + Tk —Tje > —1 (3.14)
—T;j — Ty +Tjp > —L

The set of all points satisfying all triangle inequalities defines the so called metric polytope. It
is conjectured by Deza, Laurent, and Poljak [1992] that among all valid inequalities for Pc, the
triangle inequalities are those with the least distance to the center I of Pg; the conjecture is
proved for all valid inequalities having coefficients in {—1,0,1}. Since there are 4(}) triangle
inequalities one can optimize over the metric polytope in polynomial time. The metric polytope
is exact for graphs not contractible to K5 (Seymour [1981]; Barahona [1983]), this includes planar
graphs. If we add the triangle inequalities to (SMC) then the bound is tight for the 5-cycle. With
respect to nonnegatively weighted graphs, the worst example known for (SMC) with triangle
inequalities is the antiweb AWZ (a graph on 9 nodes with edges {4,i + 1} and {i,i + 2} modulo 9
for i =1,...,9). The value of the relaxation is > 50.445 as opposed to the value of the maximal
cut 48 (F. Rend! [personal communication]). This would yield a max-cut to relaxation ratio of
approximately 0.9515.

Although the bound, determined by the optimal value of (SMC) combined with the triangle
inequalities, seems to improve, the performance of the randomized algorithm does not. Karloff
[1996] proved that for a class of highly symmetric graphs the optimal solution of (SMC) satisfies
all triangle inequalities, and that its objective value coincides with the value of the optimal cut.
Since the optimal solution of (SMC) is not influenced by the triangle inequalities, the expected
value of the cuts generated by random hyperplanes is a times the value of the optimal cut.

3.2 Quadratic 0-1 Programming
Quadratic 0-1 programming refers to the problem

P T By.
(QP) S,y By

Since y? = y; for y; € {0,1}, a linear term b”y can be modeled on the diagonal of B. In analogy to
the max-cut case, we can construct a semidefinite relaxation by replacing yy” with a semidefinite
matrix Y whose diagonal elements are bounded by one. However, this relaxation turns out to be
of poor quality. In order to arrive at a better relaxation, observed that the matrix (y +v)(y +v)7
must be positive semidefinite for any vector v € R™,

yyl + oyl + 90l + 0T =0 Yo e R
In this formulation we relax yy? to Y € S;} and exploit that diag(yy’) =y for all y € {0,1}",

Y +vdiag(Y)T + diag(Y)vT + w0’ =0 Vv eR?
= Y + (v + diag(Y))(v + diag(Y))T — diag(Y) diag(Y)T =0 Vv € R".
Since (v + diag(Y))(v + diag(Y))? is positive semidefinite, the condition is most restrictive if

we choose v = — diag(Y’), whereupon this matrix disappears. We end up with the following
semidefinite relaxation for quadratic 0-1 programming,

max (B,Y)
(SQP) st. Y —diag(Y) diag(Y)? = 0.
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This relaxation is a semidefinite program, because by the Schur Complement Theorem 1.1.9

— 1 T
7 1 diag(Y)

i . T =
Y — diag(Y) diag(Y)" =0 < ~ | diag(Y) Y

= 0. (3.15)
Y may also be interpreted as the relaxation of the dyadic product of an extended 0-1 vector

7= [l,yT]T (Lovész and Schrijver [1991]). The first component of § is referred to by index 0.
Matrices of the form §g” are positive semidefinite, their first row and column is equal to their
diagonal, and their rank is one.

Lemma 3.2.1 The optimization problem

max (B,Y)
5 1 diag(Y)T
- 1
st. YV diag(V) v =0 (3.16)
rank(Y) =1
is equivalent to (QP).
Proof. Similar to the proof of Lemma 3.1.1. |

Like in max-cut, (SQP) can be interpreted as a relaxation obtained by dropping a rank one
constraint. In analogy to the cut polytope Pz we define the boolean quadric polytope

1
Pg = conv {ny 1y = [y] Y € {0,1}"}-

In contrast to max-cut, only part of the box constraints 0 < y;; < 1 are implied by (SQP). In
particular the positive semidefiniteness of the two by two principal submatrices of Y with indices 0
and 1 <4 < nimplies 0 < y;; < 1. Since offdiagonal elements of positive semidefinite matrices may
never be larger than the maximum of the corresponding two diagonal elements, the offdiagonal
elements are bounded by 1 from above. Better bounds are determined via the determinant of the
three by three principal submatrices of Y for indices 0 and 1 <i < j < n,

Yij > Yl — VYialis (L Yl — Yi — Yig) > —5

(3.17)
Yii < viYii + iy U+ vy — ya — v45) < 1.

The bounds are sharp for n = 3. Observe, that the integrality of y;; or y;; implies y;; = yi:y;;-

It turns out that the differences between the semidefinite relaxation of quadratic 0-1 program-
ming and max-cut are superficial. In fact, (QP) in n variables and (3.4) in n + 1 variables as well
as the corresponding relaxations (SQP) and (SMC) are equivalent as we will see in the following.

To prove the equivalence of (3.4) and (QP) consider the affine transformation y = te+ 1z of a
vector x € {—1,1}" to a 0-1 vector y € {0,1}". We homogenize this transformation by appending
an additional component (with index 0) of value 1 to both vectors, z = |1, :L"T]T and § = [1,y7] T
and obtain

1 0
g =Qx with = .
7=e o=[ 4 1]
Z corresponds to a cut vector with first component fixed to 1. We may interpret this as a normalized
representation of cut vectors. This normalization does not affect the optimal value of (3.4), because
7 and —Z induce the same cut (both yield the same matrix zz7).

Since @) is invertible,
1|1 0
Q7 = [ —e 2I, ] ’

the transformation is bijective. In words, the linear transformation yields y; equal to one if and
only if z; and zy belong to the same set of the partition, and y; equal to zero if and only if x; and
xo belong to opposite sets.



36 CHAPTER 3. SEMIDEFINITE RELAXATIONS

For §j = Qz there is a one to one correspondence between the vertices gy’ of the boolean quadric
polytope Pg and the vertices ZZT of the cut polytope Pg via the linear map g57 = Qzz’ Q7.
Therefore these polytopes are isomorphic.

Lemma 3.2.2 (De Simone [1989]) Pc for n + 1 variables is isomorphic to Pg = QPcQT for n
variables.

Proof. By Section 2.1.2, the scaling is an automorphism on M, 1 and, as observed above, the
vertices of Po are mapped to vertices of Pp. |

Likewise, this transformation establishes the equivalence of (SQP) and (SMC) via scaling by @ as
descried in Section 2.1.2. In Proposition 2.1.3 the matrix X is the relaxation of 227 and W has
to be replaced by Y, the relaxation of gy~ .

Lemma 3.2.3 Let Q € M, 11 be the matriz
1 0
=[5 1]
Then Y = QXQT bijectively maps feasible solutions of (SMC) (for n + 1 variables) to feasible
solutions of (SQP).

Proof. () is nonsingular, therefore X is positive definite if and only if QX Q7T is. The properties
concerning the diagonals are verified by direct computation. |

Moreover, the adjoint to the inverse of this transformation transforms constraints from the {—1,1}
representation into the {0, 1} representation without affecting the dual costs (see Proportion 2.1.3).
From a computational point of view it is important to note that the transformation preserves the
structure of the constraints (sparsity and low rank representations), as can be seen in the following
example.

Example 3.2.4 Consider the family of hypermetric inequalities (bbT,X) = bTXb > 1, for b =
[bo,bT]T € Z™+! with min {(lf)Tac)2 cxe {1, 1}"+1} = 1; these are valid for Pc. To obtain the
corresponding valid inequality for P we transform the coefficient matriz via

bo — eTb

QTbbTle[ " ][bo_eTb 277 .

The constraint
>1

T
[bo — eTb 2bT]}7[b0 ¢ b] >

2b
is valid for Pg. In the special case of a triangle inequality with by = 1, b; = 1, b; = 1, and all
other by, = 0 the inequality reads

1 —4yo; — 4yoj + 4yii + 4y +4yi; > L.

Ezploiting that yo; = yi and yo; = y;; for feasible Y this inequality simplifies to yij > 0. Likewise
we can transform and simplify all other triangle inequalities 3.14 and obtain

yij =2 0 (3.18)

Yij < Yii (3.19)

Yii +yi; < 14y (3.20)

Yik T Uik < Ykk T Yij (3.21)

Yij tyie Y yie +1 2 i + Y55 + Yrk (3.22)

for1<i,j,k<n,i#j,i#k,j#k. As the triangle inequalities define facets of Pc, inequalities
(3.18) to (3.22) define facets of Pg. The inequalities (3.18), (3.19), and (3.20) form a well known
linear relazation of (QP) which is commonly referred to as the roof dual.
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Table 3.1: Transformations between the {—1,1} and the {0,1} model.
MC — QP

QP — MC

T
ToT—| Y% Y
QXQ —{ y Y ]
Yo=Zo
y=5(z + zoe)
Y:%(X +zeT + exT + zoeeT)

T
1 H—-T__ Zo x
QTYQ —{ r X }
Z0o=Y0
z=2y — yoe
X=4Y — 2yoeT — Zeyg + yoeel

o-rag=| 0 Y |

bo=ag — 2eTa + eT Ae

T
ThNH—| @ G
S
ap=by +eTb+ ieTBe

b=2(a — Ae) a:%b+ iBe
B=4A A=1iB
T wo T _ V0
o= 7 | oro=| 7]
wo=v9 — eTy vo=wo + %eTw
w=2v v:%w
_| 1 0 a1 0
o[ 1] o= ]

For the convenience of the reader the transformations are provided in Table 3.1.

The results concerning the approximation algorithms for (3.4) are translated in the same way.
In particular, Theorem 3.1.6 implies that there is a (2 — ¢) approximation algorithm for (QP)
with B > 0. In the next example we construct the analogon of Corollary 3.1.9, which we will need
for max-2sat.

Example 3.2.5 To derive the analogon of Corollary 3.1.9 for quadratic 0-1 cost functions we
transform the coefficient matrices of T into 0-1 representation. Let v € R*™ withv; =1, v, =1
and zero otherwise, then T;]f = 90T, Likewise let w € R with w; = 1, w; = —1 and zero
otherwise, then T;; = ww?T. As in Ezample 3.2.4 these vectors transform to Q=T

and after simplification the corresponding terms read

0 and Q~Tw,

fori#jandi,je{l,...,

14 zg;
Nrgoxy = Em "
1+ x5
<sz=X>: 2” — L=y —yj + 2yi
A (3.23)
<TowX>: 20Z — 1—yi
11—z
—<TWX>= 2” «— Yii + Y5 — 2Yi;

In consequence of this example we may translate Corollary 3.1.9 into the 0-1 setting as follows.
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Corollary 3.2.6 Let ¢* be the optimal value of
maz (C,Y)

- 1 diag(Y)T
st. Y= [ diag(Y) v > 0,

with C € Spt1 and Y € Sy If there exist aij,bij € R fori < j € {0,...,n} such that, for all
feasible Y,

(C,Y) = > (aojyii +boj(1 — yis)) +
(aij (1 — yii — yj5 + 2ys5) + bij (yis + yj5 — 2yi5))

then there is an integral solution of value at least ac* and it can be computed (in approzimate
sense) in polynomial time.

In Section 3.4.1 this corollary will yield a performance guarantee for a semidefinite relaxation of
max-2sat.

Remark 3.2.7 In the rounding procedure for max-cut (Theorem 3.1.8) no direction is favored in
choosing the random hyperplane. This is reasonable, because any orthogonal transformation of the
vectors will keep the angles between the vectors the same and there is no property that justifies
directing more attention to a particular vertex. The situation is quite different in the case of
transformed 0-1 programming problems. Here, the artificial vertex 0 is the decisive element. If a
vector of vertex j points into roughly the same direction as the vector corresponding to vertex 0
then this is a strong indication that y; should be set to 0. Feige and Goemans [1995] exploit this
by rotating all vectors towards the straight line generated by the vector associated with vertex 0
and by rounding thereafter.

3.3 Constrained Quadratic 0-1 Programming

We now turn to constrained quadratic 0-1 programming where constraints may be linear and/or
quadratic,
(CQP)  max y"By
st. Ay <b

yT Ay < a; i=1,...,k

y €{0,1}",
where A € My, ,, b€ R™, and a; € R, A; € S, for i = 1,...,k. This setting is very general,
indeed, and many combinatorial problems can be expressed in this framework conveniently. In the
following we study semidefinite relaxations of two particular problems of this class, the independent
set and the quadratic 0-1 knapsack problem. This will illustrate how semidefinite relaxations can
be constructed in a routine manner.

3.3.1 The Independent Set Problem

The independent set or stable set problem is defined in terms of an undirected graph G = (V, E),
V = {1,...,n}, and asks for a maximal weighted subset S C V' of nodes with weights w € R}
such that no two are connected by an edge from E,

(1S) max {|S|: SCV,ij¢E Vi,jeS}.

We derive a semidefinite relaxation by formulating (IS) as a constrained quadratic 0-1 programming
problem. To this end we interpret y € {0,1}" as a incidence vector of a subset of V. For any
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incidence vector y of an independent set the product y;y; must be zero for all edges ij € E. This
leads to the following reformulation of (IS),

max yT Diag(w)y
s.t. yiy; = 0 Vij € E
y € {0,1}".

Note, that only quadratic constraints are present in this formulation. In line with the last section
an obvious semidefinite relaxation of this problem is (Lovész and Schrijver [1991])

(SIS) max (Diag(w),Y)
s.t. Yij = 0 VZ] eFE
Y — diag(Y) diag(Y)T > 0.

It is not difficult to show that (SIS) has a strictly feasible point, so (SIS) can be solved (in
an approximate sense) in polynomial time. It is, in fact, equivalent to the well known Lovész
Y-function (Lovész [1979]). We cite it in its eigenvalue formulation,

¥ G, w) = urenﬁfl|)‘max W +i]§3 uijEij | (3.24)

where W = \/E\/ET (the square root being applied componentwise), and E;; € S, has a 1 in

entries ¢j and ji and is zero otherwise.

Theorem 3.3.1 (Lovdsz and Schrijver [1991]) The semidefinite programs (SIS) and (3.24) have
the same optimal values.

Proof. Observe, that (3.24) is equivalent to the dual of the primal-dual pair of semidefinite
programs

max (W, X) min A
st. trX =1 Ve B
(SIP) r =0 VijeE (SID)  s.t. =W+ iien UijEij
XU>0 A€eERu € REI

For (SIP), X = I/n is a strictly feasible solution, and for (SID) choosing A large enough yields a
strictly feasible dual solution. By the strong duality Theorem 2.2.5, the optimal objective values
of both problems coincide and are attained. We can therefore prove the theorem by constructing
for any feasible solution Y of (SIS) a solution of (SIP) with greater or equal objective value, and
vice versa for feasible solutions of (SIP).

Let Y (see (3.15)) be a feasible solution of (SIS). Since Y > 0, we may factorize it into Y = VIV

with V = [dovo, .. nvn] where the v; € R**t! are unit vectors and d; € R for 4 = 0 to n. Then
Y,] = d;d;v; v] Smce Yoo = 1 and Yy; = Yj; for i = 1...n, we obtain dy = 1 and d; = vo v; for
i=1. (exp101t vIv; = 1). The objective value of this solution is 8 = Y w;(vv;)?. We

claim that scaling the principal submatrix Y of ¥ by S = Diag(y/w/8) yields a feasible solution
of (SIP) with greater or equal objective value. Indeed, the matrix SY'S has the same zero pattern
as Y and is positive semidefinite, since Y is. Furthermore,

n n ATy \2
H(SYS) = w, Y ie1 wi(vg v;)

—vovz v v; =
0

=1.
0

i=1

The objective value of (SIP) reads vw' SYSvw = wTYw/0 = wTVTVw/0. Let & = Vw =
> wi(vdvi)vi. Then vovg =< I, and W vy = 6 imply @ Iw > ®Twvordw = 6% Thus,

V' SYSyw > 8 = (Diag(w),Y).
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Now, let X be a feasible solution of (SIP) with § = \/ETX JVw. Factorize X = VTV with
V = [div1,...,dpvy] where v; € R are unit vectors and d; € Ry for i = 1,...,n. Define
vo = V/w/v/8, which is a unit vector, and V = [vp, V]. For the scaling matrix S = Diag(V vp) it
is not dlfﬁcult to check that ¥ = SVTVS > 0 is feasible for (SIS) (use z;; = v v; =0 for ij € E
and v; Ty; =1fori =0,...,n in verifying the constraints Yy; = Yj; for i = 1,... ,n). In order to
prove that the objective value of this solution is greater or equal 8, observe that

Z\/uTzd v; Vo = Z wleTVTV\/_T = \}a\/@TX\/E =0.

Using the Cauchy-Schwarz inequality and )" | d7 = tr X = 1, we obtain

i=1 =1

W, X)=60 = (i di\/sziTvo>

i=1

< (de) (Zw, vd v;) >
i=1
n
= Zw Y;; = (Diag(w),Y).
i=1
This completes the proof. |

The constraints y;; > 0 define facets of the boolean quadric polytope Pg. The underlying
combinatorial polyhedron of (SIS) is the convex hull of all vertices of Py that are contained in
the intersection of the facets y;; = 0 for all 45 € E. Thus this polyhedron is a face of Pg. The
polyhedron usually associated with the stable set problem is the projection of this face on the
diagonal variables,

Pg(g) = conv {y € {0,1}" : yy; =0 Vij € E}.

An important class of valid inequalities of Pg(¢) are the so called clique inequalities (they should
not be mixed up with the clique inequalities of max-cut). Clearly, an independent set of G may
contain at most one node from each clique in G. Let (C, E(C)) denote a clique in G and let ¢
denote the incidence vector of its node set, then the clique inequality

cTySI

is satisfied for all y € Pg(g). The polyhedron of nonnegative points satisfying all clique inequalities
is known as
Psca) ={y € R} : "y < 1,V (C, E(C)) clique in G} .

Optimizing over Pgc(g) is NP-hard (Theorem 9.2.9 in Grétschel, Lovész, and Schrijver [1988]).
The more it is amazing that all clique inequalities are satisfied on the diagonal of the feasible set
of (SIS).

Lemma 3.3.2 (Grdétschel, Lovdsz, and Schrijver [1988])
Pggy C {diag(Y) : yi;; =0 Vij € E,Y — diag(Y) diag(Y)T = 0} C Psc(a)

Proof. The left hand side inclusion is clear by construction. In order to prove the right hand side

inclusion let C' be a clique in G and let ¢ denote its incidence vector. Define a vector ¢ = [—1, cT]T
and let Y be a feasible matrix of (SIS). Exploiting (3.15) we obtain

0<élve=1-2c"diag(Y) + c!'Ye=1— ¢! diag(Y),

because cT'Ye = ¢ diag(Y) due to the feasibility of Y. [ |

Graphs satisfying Ps(q) = Psc(q) are called perfect. This definition is equivalent to the original
definition given by Berge [1961] which calls a graph G perfect if the chromatic number is equal
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to the size of the largest clique for all induced subgraphs of G (for a proof and further properties
of perfect graphs, the stable set problem, and the ¥-function see Grétschel, Lovéasz, and Schrijver
[1988], Section 9). Since by Lemma 3.3.2 the feasible set of the semidefinite relaxation is a subset
of Psc(q) it follows that the independent set problem can be solved (in approximate sense) for
perfect graphs in polynomial time.

3.3.2 The Quadratic 0-1 Knapsack Problem

The quadratic 0-1 knapsack problem is quadratic 0-1 programming with one linear constraint,

max y’ By
(QK) st. aTy<b
y €{0,1}".

Without loss of generality we may assume that 0 < a; < bfori=1,...,n. For a; < 0 we can flip
yi to 1 —y;, for a; € (b, 00) we can set the corresponding variable to zero. In addition, we assume
that a; < b, since a; = b allows to decompose the problem.

The crucial step in the design of a semidefinite relaxation for (QK) is the representation of the
linear constraint within quadratic space. We will present four different approaches and compare
their quality.

A natural first approach is to model the constraint on the diagonal, which is possible because
i =43,

(SQK1) max (B,Y)
s.t. (Diag(a),Y) <
Y — diag(Y )d1a,g( )T = 0.

We call this the diagonal representation.

A second representation exploits the following observation. If |ay| < b for all integral solutions
then alyyTa < b% is a valid inequality, as well. Replacing yy? by Y we obtain the square
representation (Helmberg, Rendl, and Weismantel [2000]),

(SQK2)  max (B,Y)
(aa®,Y) < b?
— diag(Y) diag(Y)? > 0.

In the third representation the inequality a’y < b is multiplied on both sides by a”y. This is
feasible because a’y > 0. Now,

osatvoi= [T [T [ 4]

Relaxing the middle dyadic product to Y, the corresponding relaxation reads (Bauvin and Goe-
mans [personal communication 1999])

(SQK3) max (B,Y)

<[ Al >

dlag d1ag

| V

Against our standard assumption that coefficient matrices should be symmetric we prefer not to
symmetrize this coefficient matrix in order to keep notation simple.

The last approach may be interpreted as a particular case of a more general technique. The
multiplication of any two valid nonnegative inequalities yields a valid quadratic inequality (Balas
[1975]; Sherali and Adams [1990]; Lovész and Schrijver [1991]). In 0-1 programming the standard
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candidates for multiplication with an arbitrary inequality b — a”y > 0 (no restrictions on the
coefficients are required in this case) are the box constraints y; > 0 and 1 —y; > 0,

yia"y <by; and  (1—y;)a"y <b(1 —y,). (3.25)

Replacing the mixed terms y;y; by y;; and the linear terms y; by y;; yields inequalities that we
refer to as y;-representation or (1 — y;)-representation of a”x < b. Using these representations we
can form a fourth relaxation. To improve on (SQK3) it suffices to include the y;-representations,
(SQK4) max (B,Y)
s.t. Z?:l a;¥i; < byi i=1...n
Y — diag(Y) diag(Y)T = 0.
There is a clear hierarchy between relaxations (SQK1) to (SQK4).

Lemma 3.3.3 (Helmberg, Rendl, and Weismantel [2000], Bauvin and Goemans [personal com-
munication 1999]) Denote by V1, Va2, Vs, and Vi the feasible sets of (SQK1), (SQK2), (SQK3),
and (SQK4), respectively. Then Yy O Vo D V3 O Vs.

Proof. We first prove that a feasible point Y € )» of (SQK2) is feasible for (SQK1). To this end
we introduce the positive semidefinite matrix Z =Y — diag(Y") diag(Y)T. Since

b >a"Ya=a"Za+ (a diag(Y))?,

and Z is positive semidefinite by the feasibility of Y it follows that (a” diag(Y))? < b%. This

proves V1 D V.
Next let Y € V3. Using Z = Y — diag(Y) diag(Y)T > 0 once more, we see that

0§<[_I’GHS]T,Y> — bal diag(Y) — a’Ya

ba™ diag(Y) — a” Za — a” diag(Y) diag(Y)Ta
[b— a” diag(Y)]a” diag(Y) — a” Za.

Because of —a” Za < 0 we obtain b > a” diag(Y) and therefore b> > a”Ya in the first row of the
equation above. Hence, V2 D V3.

Finally, multiplying each y;-representation of (SQK4) with a; (a; > 0 by assumption) and
summing over all ¢ yields

i i aiajyi; = (aa’,Y) < i baiyii =b-al diag(Y).

i=1 j=1 i=1
This is exactly the inequality of (SQK3), and so V3 D Vs. |

If there exist items ¢ and j with a; +a; > b then it is advisable to include the constraint y;; = 0.
These constraints improve the relaxation and guarantee that the dimension of the relaxed set is
equal to the dimension of the underlying combinatorial polyhedron. Again, there is no difficulty
in constructing a strictly feasible solution in the relative interior of the underlying combinatorial
polyhedron.

Example 3.3.4 To illustrate that the gap between the single inequality relaxations (SQK1) to
(SQK3) may indeed be quite large consider the following problem for k < n,

max yT(ee? —I)y (3.26)
st. ely<k
y €{0,1}".
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The optimal value of (3.26) is k(k — 1). Since the problem is invariant under permutations of
the indices, in any quadratic reloxation there exists an optimal solution such that every diagonal
element has the same value d and every off-diagonal element has the same value f, i.e., there is
an optimal solution of the formY =d-I+ f-(eeT —I). Thus, it suffices to compute the maximal
possible f for relaxations (SQK1) to (SQKS3).

First consider (SQK1). The diagonal representation of e’y < k is eT diag(Y) < k which
implies d < % Because of the positive semidefiniteness of Y we certainly cannot choose f larger
than d. For f =d =% we have Y — diag(Y') diag(Y)™ = (f — f?)ee” = 0 and so this choice of f
is optimal. The optimal value of (SQK1) for (3.26) is (n — 1)k. Asymptotically, for n — oo, this
bound is arbitrarily bad.

For (SQK2) the quadratic representation reads eTYe < k%. Again the largest possible f is
obtained by choosing f = d and e”Ye = n’f = k*. This leads to an optimal value of “=1k* and,
for k =2, to an asymptotic error factor of 2.

In (SQK3) the inequality requires that n(n — 1) f +nd < knd, or equivalently f < gfb:i; d. The
mazimal value of d is bounded by nd < k, see the proof of Lemma 3.3.3. The values d = k/n and

= %%)Lﬁ can be attained and yield the optimal value k(k — 1) which is ezxact.

It is also instructive to compare the semidefinite relaxations to the standard linear relaxation
in the special case of a linear cost function C' = Diag(c), i.e., C;; = 0 for ¢ # j. The natural linear

relaxation reads (here, we may assume that, in addition, a; >0 fori =1,...,n)
(LK) max cTy
st. aTy<b

0<y; <1 1=1,...,n.

The optimal solution to (LK) corresponds to the solution of a greedy algorithm that includes (even
fractional) items with best profit to weight ratio first. (SQK1) is equivalent to (LK), because for
any feasible y vector there is a feasible matrix Y having y as its diagonal. However, this is not
true for (SQK2).

Lemma 3.3.5 (Helmberg, Rendl, and Weismantel [2000])
Let Y* be an optimal solution of (SQK2) for C = Diag(c). If (LK) has a unique optimal solution
y* which is not integral then tr(Y*C) < cTy*.

Proof. Assume that y* is a unique, non integral, optimal solution of (LK). Since y* is not
integral, it must satisfy a’'y* = b, and, by uniqueness, it has exactly one element y; with 0 < y; < 1.
Consider a matrix Y satisfying diag(Y) = y* and Y —diag(Y") diag(Y)? = 0. By (3.17) yij = viiy;;
for i # j, because at least one of y;; and y;; is either one or zero. Therefore the only non zero
element of Z =Y — diag(Y') diag(Y)” is 23 = y; — y?. Obviously, a’ Za = a2z is strictly greater
than zero. Thus, a’Ya > (a¥y*)? = b? and Y is not feasible for (SQK2). Finally, the fact that
y* = diag(Y™*) is feasible for (LK) completes the proof. |

If the optimal solution of the linear program is not unique then it can be worked out that there
exists an optimal y that is the diagonal of a feasible Y of (SQK2) and (SQK3). In theory,
Lemma 3.3.5 indicates that for many linear 0/1 programming problems the canonical semidefinite
relaxation yields a slightly tighter relaxation then its linear counterpart. In practice, we expect
improvements to be far too lenient in comparison to the additional cost involved in solving a
semidefinite relaxation.

3.4 Modeling Techniques

In the following we discuss several other modeling approaches that appear in the literature. We
will start with extensions of the approximation algorithm of Goemans and Williamson to max-
2sat and continue with modeling approaches for max k-cut and coloring. The last application is
an approximation algorithm for the betweenness problem that uses a geometric interpretation of
semidefinite programming.
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3.4.1 Max-2Sat

An instance of max-2sat consists of a number of boolean variables {z1, ..., 2,} and a collection of
clauses. Each clause is the disjunction of at most two literals, where a literal is either a variable
z; or its negation Z;. The task is to find a truth assignment for the variables that maximizes
the number of satisfied clauses, i.e., the corresponding boolean expressions evaluate to true. The
following extension of the approximation algorithm for max-cut to max-2sat was described in
Goemans and Williamson [1995].

We first formulate the clauses as cost coefficients for a quadratic 0-1 programming problem. To
this end we introduce a vector y € {0,1}". Each component y; corresponds to a boolean variable
Zi, ¥y; = 1 corresponds to z; being true, and y; = 0 to z; being false. The clauses transform to

ziVz; = ZNZ; — 1-— (1 —y)(1 —yj) = Yit+Y;—Yiy;
ziVz; = zi Nz — 1—y(1- yj) = 1-y+yy; (327)
zZi V Ej = m — 1— YilYj,

having value one if the corresponding clause is true and zero otherwise. The cost function of the
(extended) quadratic 0-1 problem is formed by the sum of all the terms corresponding to clauses.
In order to obtain the performance guarantee provided by Corollary 3.2.6 we have to make sure
that the cost function belongs to the class required by Corollary 3.2.6, i.e., we have to express the
clauses as nonnegative linear combination of the terms in (3.23). Indeed, all clauses turn out to
be of the desired form,

1
i+ i~y = 5(Wa) + (W55) + Wi + 955 = 2945))
1
l—yu+yy; = 5((3/3’:’) + (1= yii — Y55 + 2vi5) + (1 — yii))
1
L-yij = 5((A=wi) + @ —ys) + i + 455 = 2y,,))-

Therefore we may apply Corollary 3.2.6 and obtain an (a — €)-approximation algorithm for max-
2sat.

3.4.2 f-Partitioning

The approach to label each vertex of the graph with a vector and to express relations between
the vertices in terms of the inner product of their associated vector labelings is a powerful tool for
modeling semidefinite relaxations. The concept first appears in Lovész [1979], where orthonormal
labelings are used to introduce the Lovasz ¥-function. To illustrate the importance of this tech-
nique we will sketch a natural generalization of the Goemans-Williamson approximation algorithm
for partitioning a graph into several components which was introduced independently by Frieze
and Jerrum [1995] and Karger, Motwani, and Sudan [1994].

In the max-cut case, we would like to match all vectors v; either with the vector e! or with its
opposite, —e! (instead of e! we could choose any other unit vector, since rotations of the whole
system do not change the angle vl v; between the vectors). Vertices whose associated vectors are
close to e! form one set of the partition, vertices whose vectors are close to —e! form the other.

We can take a similar approach for partitioning the vertices into three sets by trying to match
the vertices to three distinct unit vectors. In order to discern the three positions easily we would
like them to point as far apart as possible, i.e., the angles between the three vectors should be
as large as possible. Vectors satisfying this requirement are coplanar and their pairwise scalar
product is —1.

For partitioning into k sets we would like to find & unit vectors pointing as far apart as possible.
In the next lemma we prove that, for k£ unit vectors with all pairs of vectors enclosing an angle
of the same size, the value —1/(k — 1) is the smallest possible inner product (the largest angle)
between all pairs of vectors.
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Lemma 3.4.1 (Frieze and Jerrum [1995]) Let wy, .. ., wy, be unit vectors from R™ with 1 < k—1 <
n and let wlw; =6 fori #j,4,j € {1,...,k}. Then § > —%5. Furthermore, if § = —25 the
vectors wi, . .., wy are linearly dependent.

Proof. 0 < (wy+...+wg) (w1 +...+wg) = k+ k(k — 1)d, therefore § > —%5. For § = — 25

H -~

the norm of the vector Zle w; is zero, thus the vectors are linearly dependent.

This value can be attained.

Lemma 3.4.2 (Karger, Motwani, and Sudan [1994]; Frieze and Jerrum [1995]) For k > 2, there
exist k unit vectors wy,...wy, € R¥1 with wlw; = —725 fori #j, 4,5 € {1,...,k}.

Proof. The matrix A = 271, — 27ee” is positive semidefinite with diag(4) = e and e is the
only eigenvector to the eigenvalue 0. Therefore a factorization of A into WW? with W € My, j—1
is possible. The rows of W yield the desired vectors. |

Geometrically, the endpoints of the vectors form an equilateral ¥ — 1 dimensional simplex with
barycenter coinciding with the origin.

For a given undirected graph G = (V, E) max k-cut asks for a partition of the vertex set
V ={1,...,n} into at most k subsets such that as many edges as possible run between vertices
in distinct sets. In order to design a semidefinite relaxation for this problem we label each vertex
i with a unit vector v; € R™. In the “discrete” setting the v; are restricted to the set {wq,...,wy}
described above. The product v] v; may attain only two values, either 1, if vertices ¢ and j belong
to the same set, or —ﬁ if they belong to distinct sets. With edge weights a;; the “integral”
formulation of max k-cut reads

(k—1)(1—v] v;)
(MkC) max ., Qi o
st. v € {wy,...,wr} i=1,...,n.
The natural semidefinite relaxation yielding an upper bound on max k-cut is
k—1)(1—v] v;
max Y aij%
(SMKC) st. |will=1  i=1,...,n
viv; > -5 i<
Alternatively, one can use the Laplace matrix of G to formulate the same problem in matrix
notation,
max ’“Q;kl (L, X)
s.t. diag(X)=e
Tij > —2

k—1
X > 0.

(3.28)

Note that there is no corresponding statement to Lemma 3.1.1. Restricting the rank of X to at
most k — 1 does not guarantee that the vectors v; form a k — 1 dimensional simplex in general.
Before describing the approximation algorithm based on the semidefinite relaxation we con-
sider a simple randomized algorithm. If the vertices V are randomly partitioned into k sets, the
probability that both vertices of an edge belong to the same set is % Therefore the expected

weight of this simple random k-cut is

Za,-j(l — %)

i<j

For large k there is not much room for improvement.

Turning to the semidefinite relaxation, the decisive step in the approximation algorithm is to
replace the random hyperplane used in the rounding algorithm for max-cut in Section 3.1 by &
random vectors up, independently chosen from the standard normal distribution. Each vector up
represents one set of the partition. A vector v; is assigned to uj if the inner product v} uy is
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maximal for h. The probability that two vertices, i and j, are assigned to the same set depends
on the value of viTUj only. Let us denote this probability by P(U;-TU]-). Then for any feasible
configuration of the v; the expected value of a random k-cut is

> aij(1 = P(]'v;)).

i<J

The derivation of a bound for 1 — P(v}v;) is rather technical and quite involved. Therefore we
state the results only and refer the interested reader to Frieze and Jerrum [1995] for the proof.

Theorem 3.4.3 (Frieze and Jerrum [1995]) For k > 2 let

1 - P(vv;)

= min —_— .
k (k—1)(1—v7v;)
k

= <vTvi<1
Then ay, satisfies
1oag>1—¢;
2. ap — (1 — 1) ~ 2k ?logk;
3. ag > 0.87856, az > 0.8002, ay > 0.8503, a5 > 0.8742, a9 > 0.9266, and c19p > 0.9906.

As one would expect, for large k the improvement turns out to be marginal in comparison to the
trivial algorithm. Observe, that asy is exactly the value of the Goemans-Williamson algorithm.
The theorem says, that for a feasible set of vectors v; (in particular for the optimal solution of
(SMKC)) and for nonnegative edge weights a;; the expected size of a random k-cut is at least

Zaij(l - P(viTUj)) > o Zaij (k— 1)(;— ’UiTUj)’

i<j 1<J

so there must exist a k-cut of this size or larger. Again, a deterministic version can be constructed
by the method of Mahajan and Ramesh [1995]; this yields an (o — &) approximation algorithm
for max k-cut.

The same approach can be used to develop relaxations for the k-equipartition problem. Given
k, m, and G(V, E), equipartition asks for a partition of V, |V| = k- m, into k subsets of equal size
m such that the weight of the edges having their respective endpoints in distinct sets is maximized.
Stated with respect to an “integral” solution X of (3.28) each row of X should contain m elements

1

of value 1 and (n — m) elements of value —3=;. The row sum is zero for each row. This suggests

the following relaxation for k-equipartition,

3
s.t. diag(X) =
Tij > = (3.29)

This semidefinite program clearly has no strictly feasible solution since e is always an eigenvector
of X with eigenvalue zero. In order to compute a solution of this relaxation by an interior point
method, it is necessary to eliminate the eigenvalue zero by projecting the problem as described
in Chapter 2. In the case of £ = 2 it is again possible to derive an approximation algorithm
that has a better performance guarantee than the trivial randomized algorithm, we refer to Frieze
and Jerrum [1995]; Ye [1999a] for details. Karisch and Rendl [1998]; Karisch [1995] derive an
equivalent bound to (3.29) by another approach and relate it to a spectral bound of Donath and
Hoffman [1973], see also Wolkowicz and Zhao [1996].
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3.4.3 Coloring

The approximate graph coloring algorithm of Karger, Motwani, and Sudan [1994] is one of the
finest examples of this vector labeling technique. A detailed description of the algorithm is beyond
the scope of this text, we will only hint at the underlying idea. For the purpose of explanation
let us assume that we can color the graph with & colors. We represent the k colors by the vectors
{ws,...,wp}. Vertices that may be colored by the same color may be assigned the same vector.
Vertices ¢ and j that are connected by an edge ij € E must be assigned distinct labels w; and w;
with w]w; < —1/(k —1).

For coloring problems k£ is not known in advance. Therefore we introduce a variable x and
require that the relaxed vectors v; and v; corresponding to endpoints of an edge ij € E satisfy
vIv; < =1/(k = 1). Optimizing over & yields a lower bound on the number of colors needed,

min &

st. diag(X) =e
zij <——5 VijeE
X =0.

(3.30)

A graph is said to be vector k-colorable if k is not smaller than the optimal solution value of &
in (3.30). By the construction above every graph that can be colored by % colors is also vector
k-colorable (but not necessarily vice versa). k cannot become smaller than the largest clique
in G, because for a clique of size h the matrix X will have a principal submatrix of the form
—£-T, — —;ee” (at best) which is no longer positive semidefinite for & < h.

Relaxation (3.30) is the starting point for the approximate graph coloring algorithm of Karger,
Motwani, and Sudan [1994]. The central idea is based on using h > k random vectors representing
the colors. The vectors of the optimal solution of (3.30) are assigned to these vectors as in max
k-cut. h is chosen such that the probability that both endpoints of an edge are assigned the same
color is small enough such that at most |V'|/4, say, vertices will have conflicting assignments. For
these vertices the process is repeated using new colors. With careful parameter tuning and some
additional considerations one arrives at the following theorems.

Theorem 3.4.4 (Karger, Motwani, and Sudan [1994]) A vector 3-colorable graph G with n ver-

tices and mazimum degree A can be colored with O(min{Aé log% A,n%} -logn) colors by a poly-
nomial time randomized algorithm (with high probability).

Theorem 3.4.5 (Karger, Motwani, and Sudan [199]]) A vector k-colorable graph can be col-
ored using O(A'~%) or O(nlfk%l) colors by a polynomial time randomized algorithm (with high
probability).

3.4.4 Betweenness

Chor and Sudan [1995] propose a semidefinite relaxation of the betweenness problem that is based
on a geometric interpretation of semidefinite programming. The betweenness problem consists of
a set S of symbols s1,...,s, and a set B of m betweenness constraints (s;, sj,sx). A betweenness
constraint is satisfied, if for some specific total order < of the symbols s € S the middle element
s; is between s; and sy, i.e., either s; < s; < s or s; > s; > s;. The task is to construct a
total ordering of the s; satisfying as many betweenness constraints as possible. It is NP-complete
to decide whether there is an ordering satisfying all constraints. The maximization problem is
MAX-SNP-complete, so there exists an € > 0 such that it is NP-complete to decide whether there
is an ordering satisfying (1 — €)m constraints.

A simple random algorithm picks an arbitrary order. The expected number of satisfied con-
straints for this algorithm is m/3 since there are six possible orderings of three elements and two
of them are successful. On the other hand for the betweenness problem with three symbols a, b, ¢
and the constraints (a, b, ¢), (a,¢,b), and (b, a, c) at most one third of the constraints can be satis-
fied. So there can be no algorithm satisfying more than m/3 constraints for all problem instances.
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The algorithm to be described will either find an ordering such that m/2 of the constraints are
satisfied, or assert that it is impossible to satisfy all constraints.

Again we associate with each symbol s; a vector (or point) v; € R®. A feasible ordering of
the symbols can be thought of as an arrangement of the associated points on a straight line with
equidistant spacing between the points such that for any betweenness constraint (s;, s;,s;) v; is
strictly contained in the straight line segment with endpoints v; and vg. Several properties of
such feasible arrangements can be formulated as linear inequalities over the squares of distances
between the points. The square of the Euclidean distance between two points v; and v; is

iy = loi = 1> = (vi = v3)" (v = v3) = v v + ] v; — 20 v;.

Let X denote the Gram matrix of the vectors vy, ...,v,. Then the square of the distance between
the points v; and v; can be expressed in terms of the matrix elements of X,

d2

ij = Tii T Tjj — 2%45. (3.31)
A linear program formulated over the squares of distances of points can thus be cast as a semidef-
inite program with the points coded in a semidefinite matrix variable X.

A canonical way to specify a total order on n symbols is to assign a real number p; € R to
each s; (R is the straight line alluded to above, the p; are one dimensional realizations of the

v;). In particular it suffices to select the numbers from {0, Lo,...,2=2, 1}. For these values the
distances between any two points are at least ﬁ and at most 1. For a betweenness constraint

(si, s, sk) that is satisfied by an assignment p;, p;, pr the distances satisfy

(i = p;)* + (05 — pr)? < (pi — 1)
To strengthen this constraint we observe that the ratio of the left hand side over the right hand
side is largest for |p; — p;| = —7 and |p; — px| = 1 — —15 or vice versa. We denote this ratio by

(7 + (-2 <1 -

n—1 n—1

=:0p.

3=

Summing up, the squares of the distances of a feasible arrangement of the points must satisfy
the following system of inequalities,

df] + d,?k < 6"d12k V(si75j75k) €EB
(29)2<dy <1 1<i<j<n.

Using (3.31) the problem of finding points in R™ satisfying these constraints can be formulated
as the problem of finding any feasible solution of a semidefinite program. It is easy to convince
oneself that the corresponding semidefinite program has a strictly feasible solution if there exists an
ordering satisfying all constraints. Thus, if the algorithm is not able to produce a feasible solution
then there is no ordering satisfying all constraints. In the following we assume that v1,...,v,
is a feasible solution of the system above. From this feasible solution we construct an ordering
satisfying at least half of the betweenness constraints.

A total order is constructed by projecting the v; onto a random vector h € R™ chosen by the
standard normal distribution (which is spherically symmetric),

viTh<vah - 5; < 8 .

The probability that a constraint (s;,s;,s) is satisfied by this ordering depends on the vectors
v, v, and v;, only. In particular it depends on the angle 8 between the vectors v; —v; and v — vy,
as we know from the proof of Theorem 3.1.3,

arccos ( ( z;zf ) Z:::J: 9
b)) # s — o3y = oo (B ) =

™
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It remains to bound 6. Because v;, v; and vy, satisfy ||v; — v;||? + [Jve — v]|? < ||vi — vi||?, we
obtain

cos(8) = 1= all ok vyl — o~ el _
2lfei — vyl Tor = ] ’

and therefore § > 7. Note, that this bound is independent of the specific constraint. In conse-
quence each constraint is satisfied with probability at least one half proving the following Theorem.

Theorem 3.4.6 (Chor and Sudan [1995]) If the randomized algorithm is applied to a feasible set
of vectors v1,...,vn the expected number of all constraints that are satisfied is ot least 3.

Again it is possible to construct a deterministic procedure that yields a solution with at least this
expected value. For details we refer to Chor and Sudan [1995].

3.5 Remarks on the Literature

A comprehensive book about the max-cut problem is Deza and Laurent [1997], a concise survey
was written by Poljak and Tuza [1995]. Delorme and Poljak [1993] introduced the eigenvalue
bound for max-cut and established Theorem 3.1.13. They studied further properties of this re-
laxation in Delorme and Poljak [1991]. Implementational results with the eigenvalue bound are
described in Poljak and Rendl [1995b]. The equivalence of the eigenvalue bound to the semidefi-
nite formulation, that is due to Schrijver, is proved in Poljak and Rendl [1995a]. Poljak, Rend]l,
and Wolkowicz [1995] observed that the semidefinite relaxation turns up generically for various
relaxation approaches to quadratic {—1,1} programming. Laurent and Poljak [1995]; Laurent and
Poljak [1996b] studied the geometrical properties of the primal feasible set of this semidefinite
relaxation. The randomized approximation algorithm is due to Goemans and Williamson [1995],
it was derandomized by Mahajan and Ramesh [1995]. Karloff [1996] proved that the quality bound
equals the performance ratio. Nesterov [1998]; Ye [1997b]; Ye [1999b]; Ye [1997a] extended the
approach (with different approximation measure) to more general cost matrices and continuous
quadratic optimization problems. Zwick [1999] improved the approximation ratio for max-cut
instances where the percentage of edges in the cut is “small.” A detailed computational study of
the semidefinite relaxation within a branch and cut framework is given in Helmberg and Rendl
[1998]. A promising interior point approach that is able to exploit some structure was developed
by Benson, Ye, and Zhang [1998]. Homer and Peinado [1995]; Burer and Monteiro [1998] propose
special purpose projected gradient methods for (SMC). An alternative method based on eigenvalue
computations for solving the semidefinite relaxation without further side constraints is proposed
in Klein and Lu [1996]. In Chapter 5 a subgradient method will be discussed that combines, to
some extent, interior point methods with the structural advantages of eigenvalue computations.

The reference for polyhedral aspects of quadratic 0-1 programming is Padberg [1989]. De
Simone [1989] proved that the max-cut polytope and the boolean quadric polytope are isomorphic.
The primal semidefinite relaxation as presented seems to appear first in Lovasz and Schrijver [1991],
but Shor [1987] already used its dual form. The derivation of the primal as the intersection of
dyadic products of shifted vectors was proposed by Balas, Ceria, Cornuejols, and Pataki [1994].
The equivalence of the semidefinite relaxations of max-cut and quadratic 0-1 programming was
established in Helmberg, Poljak, Rendl, and Wolkowicz [1995]; Laurent, Poljak, and Rendl [1997].
The representation as a scaling transformation is due to Helmberg [2000].

The first semidefinite relaxation of a combinatorial optimization problem (in the form of a
semidefinite program) was introduced by Lovész [1979]. In fact, he introduced several semidefi-
nite relaxations for the independent set problem and proved that they are all equivalent. They are
referred to as the Lovdsz ¥-function. Grotschel, Lovasz, and Schrijver [1981]; Grotschel, Lovéasz,
and Schrijver [1984] proved that the ¥-function can be used to solve the independent set problem
on perfect graphs in polynomial time. The book Grétschel, Lovasz, and Schrijver [1988] includes
a comprehensive treatment of the ¥-function. A more recent survey is Knuth [1994]. The semidef-
inite relaxation presented here appears in Lovész and Schrijver [1991]. The paper also gives a
proof of the equivalence to previous formulations of the ¥-function. Our proof of Theorem 3.3.1
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is inspired by Lovész and Schrijver [1991] as well as Gr&tschel, Lovasz, and Schrijver [1988]. The
fact that the stable set polytope is a face of the boolean quadric polytope was observed in Padberg
[1989]. Further investigations with respect to the connection between the metric polytope and the
semidefinite relaxation can be found in Laurent, Poljak, and Rendl [1997].

The presentation of the quadratic 0-1 knapsack relaxations follows Helmberg, Rendl, and Weis-
mantel [2000]. The y;- and (1 —y;)-representations appear implicitly in Balas [1975], the technique
of obtaining quadratic inequalities from pairwise multiplication of valid linear inequalities is fully
developed in Sherali and Adams [1990]; Lovdsz and Schrijver [1991]. Relaxation (SQK3) and its
relation to the other relaxations was developed by Bauvin and Goemans (personal communica-
tion).

The approximation algorithm for max-2sat appears in Goemans and Williamson [1995], a
more involved algorithm including the triangle constraints with better performance guarantee is
sketched in Feige and Goemans [1995]. Using a similar technique Karloff and Zwick [1997] develop
an 7/8 approximation algorithm for max-3sat, it is optimal with respect to the approximation
guarantee. The work on approximation algorithms for max-sat variations has been continued in
Zwick [1998a]; Zwick [1998b]; Halperin and Zwick [1999]. de Klerk, van Maaren, and Warners
[1999] investigate possibilities to detect unsatisfiable instances by semidefinite programming.

The approach for max k-cut is due to Frieze and Jerrum [1995], the semidefinite relaxation
of k-equipartition is based on the same paper. For & = 2 the authors provide a randomized
rounding scheme that produces a feasible solution within 0.65 of the optimal semidefinite solution.
Ye [1999a] achieves a slightly better bound (0.699) by balancing the randomness of the rounding
scheme. Karisch and Rendl [1998]; Karisch [1995] arrive at an equivalent semidefinite relaxation for
k-equipartitioning by a different approach. They show a tight relation of their bound to spectral
bounds of Donath and Hoffman [1973]; Rendl and Wolkowicz [1995] and a bound of Alizadeh
[1995]. Computational experience with semidefinite relaxations of the equipartition problem can
also be found in Wolkowicz and Zhao [1996].

The approximation algorithm for coloring k-colorable graphs is due to Karger, Motwani, and
Sudan [1994]. For a result on coloring bipartite hypergraphs see Chen and Frieze [1996]. Chor
and Sudan [1995] developed the semidefinite approach to the betweenness problem.

Another topic that has received increasing interest in the semidefinite community is the
quadratic assignment problem, Zhao, Karisch, Rendl, and Wolkowicz [1998]; Lin and Saigal [1997];
Anstreicher, Chen, Wolkowicz, and Yuan [1998]; Anstreicher [2000]; Anstreicher and Brixius [1999].
In the field of scheduling the only reference (to the best of our knowledge) is Skutella [1998] who
constructed an approximation algorithm for parallel machine scheduling.

For further references on semidefinite programming and combinatorial optimization we recom-
mend the surveys Goemans [1997]; Goemans [1998].



Chapter 4

Interior Point Methods

In nonlinear programming many techniques have been developed to transform constrained opti-
mization problems into unconstrained problems. One approach to handle inequality constraints
consists in adding a barrier term to the cost function. In the case of minimization problems the
value of the barrier term is small in the interior of the feasible region but grows to infinity when
the boundary is approached. In a line search starting from the interior this prevents leaving the
interior. Furthermore, a descent direction in a point close to the boundary will automatically point
away from the boundary. Unfortunately, optima are usually located on the boundary. In order to
produce a sequence of iterates that converge to the optimum, a mechanism has to be provided that
reduces the influence of the barrier term as the optimization process continues. This is achieved
by weighting the barrier term and diminishing the weight successively. Under certain conditions
the minima of the sequence of barrier problems can be shown to converge to an optimal solution
of the original problem. This is known as the sequential unconstrained minimization technique
(Fiacco and McCormick [1968]) and forms the backbone of interior point methods. Typically,
the minima of the subproblems are not computed exactly but approximated by a few Newton
steps. Since Newton’s method exploits second order information and works particularly well on
the class of barrier problems associated with semidefinite programs, the algorithms converge very
fast. An approximately optimal solution is obtained within a polynomial number of iterations (in
the real number model of computation). On the other hand the computation of a single step is
computationally rather expensive and structural properties of constraints are difficult to exploit.
Within current technology this limits these methods to problems of moderate size, say, to about
7000 constraints.

In Section 4.1 we discuss the general approach and properties of the sequence of minimizers
of the subproblems. Then we explain the typical structure of so-called primal-dual interior point
algorithms. In the case of semidefinite programming the linear system for determining the step
direction differs slightly from the standard Newton system; this has led to the development of
several different search directions. We describe some of the more popular choices.

Section 4.2 is devoted to the semidefinite analogue of the primal-dual interior point algorithm
of Monteiro and Adler [1989a] for linear programming for the search direction of Helmberg, Rend],
Vanderbei, and Wolkowicz [1996]; Kojima, Shindoh, and Hara [1997], that was later rediscovered
by Monteiro [1997]. The analysis is an adapted version of the analysis of Zhang [1998] for his
infeasible primal-dual algorithm.

In Section 4.3 we investigate a skew-symmetric embedding for semidefinite programs. This
embedding guarantees a feasible starting point that is also the minimizer of the first barrier
problem. The optimal solution to the embedded problem yields optimal solutions of the original
problems if primal and dual problems are feasible and if there is no duality gap.

Implementational issues are considered in Section 4.4. We will investigate some efficiency
aspects, explain the so-called predictor-corrector approach, and give typical parameter settings.

51
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4.1 Barrier Problem, Central Path, and Search Directions

In Section 2.2 we investigated duality aspects and the existence of optimal solutions for the stan-
dard primal semidefinite program (2.1) and its standard dual (2.3). We recall their definition,

min (C, X) max (b,y)
(PSDP) st. AX =5 (DSDP) st. ATy+Z=C
X>0 yeR™, Z > 0.

By the strong duality theorem 2.2.5, a sufficient condition for the attainment of optimal primal and
dual solutions is the existence of strictly feasible (cf. Definition 2.2.2) primal and dual solutions. We
will see in Section 4.3 that a primal-dual pair of semidefinite programs can always be embedded in
a slightly larger self-dual semidefinite program that possesses strictly feasible solutions. Therefore
there is no significant loss in generality by working under the following assumption.

Assumption 4.1.1 There exzists a strictly feasible X° for (PSDP) and a strictly feasible pair
(y°, Z°) for (DSDP).

Interior point algorithms start within the cone of positive semidefinite matrices. In order
to avoid leaving this cone during the optimization process the task of minimizing the original
semidefinite program is replaced by approximately minimizing a sequence of auxiliary barrier
problems. The auxiliary problem contains an additional barrier term —ulogdet(X) in the cost
function, where p > 0 is the so-called barrier parameter and — logdet(X) is the barrier function.

min {C, X) — plogdet(X)

st. AX =0
X = 0.

By Assumption 4.1.1 and the proof of Lemma 2.2.3 the level sets {X = 0: AX =0b,(C, X) = d}
are bounded and closed for every d € R. The cost function is strictly convex by Lemma 1.4.2.
Therefore, the optimal solution exists and is unique.

Remark 4.1.2 Besides its strict convezrity —logdet(X) has a second important property. It be-
longs to the class of so-called strongly self concordant functions (see Nesterov and Nemirovskii
[1994]) which harmonize with Newton’s method. Intuitively, Newton’s method approzimates a
function by a quadratic model and solves the minimization problem exactly within this model. The
resulting descent direction is the better the less the function deviates from this quadratic model.
For strongly self concordant functions the change of the second derivative is locally bounded by a
Lipschitz condition, therefore the quadratic model is of good quality for comparatively large regions.

Since det(X) = [T;; Ai(X), we have —logdet(X) = — > | log A;(X) (in linear programming,
the matrix is diagonal, X = Diag(z) with 2 € R, and the barrier function reads — Y} ; log z;).
The barrier function grows to infinity if an eigenvalue of X tends to zero, i.e., if X approaches the
boundary of the semidefinite cone. In a line search along some search direction from inside the
semidefinite cone, the barrier term guarantees that the result is again a positive definite matrix.
Likewise, the optimal solution of the barrier problem is in the interior of the semidefinite cone.
The influence of the barrier function on the cost function is controlled by the barrier parameter p.
For a sequence of barrier problems with g — 0, the original cost function will eventually prevail on
the interior of the feasible set except within an e-distance of the boundary. Thus, we expect the
sequence of optimizers of the barrierproblems problems to converge to an optimizer of the original
problem.

We transform the barrier problem into an unconstrained problem for X > 0 by introducing a
Lagrange multiplier y for the the equality constraints,

‘CII(X7y) = <C7X> _Mlogdet(X) + <y7b_AX>

For given y € R™, the function £, (-,y) is a smooth, strictly convex function on S;, because it is
the sum of a linear and a smooth strictly convex function. For given X > 0 the function £, (X, ")
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is linear. Functions that are convex in one coordinate and concave in the other are called saddle
functions (Rockafellar [1970]). A point (X,,y,) € S x R™ is called a saddle point if

)i(r;fo*cu(X; yu) > »Cu(Xuayu) > sup »Cu(Xuay)-
= yER™

A saddle point yields correct Lagrange multipliers y,, and the optimal solution X, for the barrier
problem. Since for a saddle point (X,,y,) the point X, is a minimizer of £,(-,y,) and y, is a
maximizer of £,(X,,-), the partial derivatives of £,, with respect to X and with respect to y must
be zero in any saddle point. These first order necessary conditions (in our convex setting they
are also sufficient, see Rockafellar [1970]) are called the Karush-Kuhn-Tucker conditions (KKT-
conditions). Using (1.13) for the derivative of the barrier function we arrive at the system

VxL, = C—puX'-ATy=
VL, = b—AX =0.

In a primal-dual formulation we set Z = uX ! and rewrite the KKT-conditions in the following
form (starting from the dual barrier problem one would arrive at the same system).

AX = b, X0
Aly+Z = C, Z+0 (4.1)
XZ = ul

The first line requires primal feasibility and the second dual feasibility. For p = 0 the third line
would correspond to the complementarity condition XZ = 0; by (2.9), any solution to system
(4.1) would yield optimal primal and dual solutions. In this light we interpret the third line as
a perturbed complementarity condition. The solution of this system is unique with respect to X
and Z, but not necessarily for y. By Assumption 4.1.1, however, the system AX = b is consistent
and it is possible to eliminate all y-variables as explained in (2.4). The sole purpose of y is to span
the feasible set of Z. Therefore we will concentrate on the variables X and Z, and use y only if it
is convenient.

We denote the solution of system (4.1) for some fixed p by (X, Z,). X, is the unique optimal
solution to the primal barrier problem and Z, is the unique optimal solution to the analog dual
barrier problem. X, and Z, are feasible primal and dual points of the original problem with a
gap of (Z, X) = nu between the objective values, cf. (2.9). The set of solutions (X, Z,) for p > 0
forms the so-called central path which is a smooth curve (see, e.g., Kojima, Shindoh, and Hara
[1997)).

In the following we will show that for u — 0 the central path converges to a point (X*, Z*)
with X* an optimal solution of the original primal and Z* an optimal solution of the original dual
problem. The proof exploits the orthogonality of the affine subspaces spanned by the primal and
dual feasible sets.

Lemma 4.1.3 Let X', X" € {X € Sp,: AX=0b} and Z',2" € {C — ATy : ye R™}.
Then (X' — X", Z' — Z") = 0.

Proof. We have A(X' — X") = and AT(y' —y") = —(Z' — Z"). Therefore,
0= <X/ _ X”,.AT(y’ > — XII)ZI ZII) . |
Lemma 4.1.4 For a sequence py, > 0, k € N, with p, — 0, the corresponding solutions (X, , Z,,)

of (4.1) converge to a pair of optimal solutions (X*, Z*) of (PSDP) and (DSDP).

Proof. In order to prove that the sequence (X,,,Z,,) is contained in a compact set, we exploit
Assumption 4.1.1 together with Lemma 4.1.3,

0= (X — X% Zy, — 2% = (X, Zu) — (X 2°) — (X0, 2, ) + (XO, 2°).
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By (4.1) (X,,,Z,,) = npug, therefore

(X0, Z°) +(X°, 2, ) = npi + (X°, 2°).. (4.2)

122°8)

Lemma 1.2.4 implies
)\max(Xy,k))\min(ZO) + )\min(XO))\max(Zuk) S npg + <X0; Z0> .

Since Amin(Z°) > 0 and Apin(X°) > 0 the iterates remain bounded. Consequently there is a
convergent subsequence converging to some point (X*, Z*) which must be feasible with (X*, Z*) =
0. This proves optimality of the pair (X*, Z*). |

In linear programming the central path converges to a strictly complementary solution, i.e.,
a primal dual pair of optimal vectors x,z € R® with either z; = 0 or z; = 0 (but not both) for
i = 1,...,n. Does an analogous property hold for semidefinite programming? To answer this
we have to clarify what complementarity means in semidefinite programming. For any optimal
solution X of the primal and any optimal solution Z of the dual the inner product (X,Z) is
zero. By Lemma 1.2.3, (X,Z) = 0 implies that XZ = 0 and so X and Z are simultaneously
diagonalizable (Theorem A.0.3). The non-zero eigenvectors of any optimal primal solution X are
in the null space of any optimal dual solution Z and vice versa. In other words, the two minimal
faces of the semidefinite cone containing the respective convex sets of primal and dual optimal
solutions are spanned by orthogonal subspaces of R". This suggests the following definition (de
Klerk, Roos, and Terlaky [1997]).

Definition 4.1.5 A pair of optimal solutions (X*, Z*) is maximally complementary if X* and
Z* have mazimal rank among all optimal solutions.
An optimal pair (X*, Z*) is strictly complementary if rank(X*) + rank(Z*) =n

In contrast to linear programming the existence of strictly complementary solutions is not guaran-
teed. However, the central path gets as close to strict complementarity as possible. The point to
which the central path converges for p — 0 is maximally complementary. To prove this we need
a technical lemma.

Lemma 4.1.6 (de Klerk, Roos, and Terlaky [1997]) Let X,,, , k € N, denote a sequence of positive

definite matrices X, > 0 converging to a positive semidefinite matriz X* > 0 and let X>0bea
positive semidefinite matriz. If for some K € R

<X X>§K VkeN

M ?

then rank(X*) > rank(X).

Proof. For rank(X) = 0 the result is trivial. Let therefore r = rank(X) > 0. Using eigenvalue
decomposition we write X in the form X = PAPT with PTP = I, and diagonal matrix Ae S,
For the positive definite X, let X, = PyAp Pl with PI P, = I and diagonal matrices Ay € Sﬁ[ +
To show that X* has at least rank r we will prove that there is a subsequence of the X, such
that at least r eigenvalues of Ay are bounded away from zero.

(PTX 51 P) < tr(A APT X P) < Aman (A7) (X, X551 ) < ! k—&

In the following let Q = PkT P which again satisfies QkTQ r = I and let the row vectors qr; denote
the i-th row of Qf fori =1,...,n

n ; T. A~
x(PTX, P) = tr(QTA;'Qu) = Aq’“(i’;) <K.
i=1 "
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The numerator of each summand satisfies 0 < qkiq,?i < 1 and these terms sum up to r,

D arigh; = tr(Qr Q%) = tr(QF Q) =1

i=1

So at least r of the qkiq,g;. will be larger than some constant « > 0 independent of k (in fact, o =

m is the best choice). The r corresponding A;(Ag) cannot get smaller than % Eigenvalues
depend continuously on the elements of the matrix. Therefore at least r eigenvalues of X™* are
positive, because the X, converge to X*. This proves rank(X*) > rank(X). |

With this lemma the proof of maximal complementarity is easy.

Lemma 4.1.7 (de Klerk, Roos, and Terlaky [1997]) For a sequence u, >0, k € N, with p, — 0,
the corresponding solutions (X,,, Z,,) of (4.1) converge to a mazimally complementary, optimal
pair (X*,Z*) of (PSDP) and (DSDP).

Proof. From Lemma 4.1.4 we know that the sequence (X, , Z,, ) converges to an optimal solution
(X*,Z*). To show that this solution is maximally complementary we have to prove that for
arbitrary primal and dual optimal solutions X and Z

rank(X*) > rank(X) and rank(Z*) > rank(Z).

Replacing X0 and Z° by X and Z in (4.2) yields
<Xuk72> + <X7ZUJ¢> = nyg,

because <X’ .z > = 0. The perturbed complementarity condition X, Z,, = pxl implies X,, =
”kZ;;kl and Z, = HkX;kl, therefore

<Z;k1,2> + <X’,X;k1> =n.

We conclude that <Z;k1,Z> < n and <X,X;k1> < n and apply Lemma 4.1.6 to complete the

proof. |

In other words, this lemma states that the central path converges to a point in the relative interior
of the optimal face. This point is called the analytic center of the optimal face.
We would like to compute an approximate solution of (4.1), i.e., a solution to

AX -
F,(X,y,Z)=| Aly+Z-C | =0.
XZ — pe

Newton’s method computes a step direction (AX, Ay, AZ) by solving
F, + VF, - (AX,Ay,AZ)" =0.

Here, the step direction can be determined by the linearized system

AAX = —(AX —D) (4.3)
ATAy +Az = —(Ay+72-0) (4.4)
AXZ+XAZ = pul—-X2Z. (4.5)

Unfortunately, X and Z do not commute, X Z # Z X, and the same is true in the linearization of
the perturbed complementarity condition (quite in contrast to the case of linear programming).
In general we cannot expect that there exist symmetric AX and AZ that solve (4.3) to (4.5).
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Solving the system for square matrices AX, AZ € M, yields a symmetric AZ because of (4.4) but
(in general) an unsymmetric AX. Since the next iterate X +aAX has to be a symmetric positive
definite matrix this is a serious problem. A number of approaches have been proposed to get
around this difficulty. We present only three (see Todd [1999] for a survey on search directions).
The first approach (Helmberg, Rendl, Vanderbei, and Wolkowicz [1996]; Kojima, Shindoh, and
Hara [1997]; Monteiro [1997]) allows AX to be unsymmetric in order to guarantee that the system
is solvable. The skew-symmetric part of AX is then ignored and the symmetric part constitutes
the new step direction,
0 T
ARZ+XAZ=pl-XZ, AX= %. (4.6)
The second approach is based on the concept of self-scaled barrier functions which to explain is
beyond the scope of this text (see Nesterov and Todd [1997]; Nesterov and Todd [1998]). A special
scaling point W satisfying W-2XW~-2 = WzZW?2 is used to reformulate the complementarity
condition,
WIAXW '+ AZ =puX"' - Z. (4.7)

The (unique) scaling point reads W = X2(X2ZX2)~2X2. Any solution to this system is
guaranteed to be symmetric.

In a third approach (Alizadeh, Haeberly, and Overton [1998]) the complementarity condition
(4.5) is modified so as to allow for symmetric updates only. Consider the linearization of X Z +
ZX — ul,

AXZ +XAZ + ZAX + AZX =2ul — XZ — ZX. (4.8)

Symmetrization is implicit, the existence of symmetric solutions AX and AZ is guaranteed if X
and Z are “close” to the central path.

The three search directions presented can be generalized by introducing a symmetrization
operator (Zhang [1998])

1
Hp(M) = §(PMP_1 + (PMP~HT) (4.9)
with a given nonsingular matrix P € S,,. Symmetrizing the complementarity condition by this

operator yields
Hp(XZ+AXZ+ XAZ)=ul. (4.10)

The choice P = I corresponds to search direction (4.8). For P = Z3 it is equivalent to (4.6). It
can be worked out that (4.7) is obtained by choosing P so that PTP = W (see Todd, Toh, and
Tiitiincii [1998]).

The search directions (4.6), (4.7), and (4.8) are currently the most popular in practical imple-
mentations. Other interesting choices may show up in the future. The algorithmic framework for
all these methods or even hybrid methods is the same.

Algorithm 4.1.8

Input: A, b, C, and some starting point (X°,y°, Z%) with X° = 0 and Z° = O (usually this
starting point will have to satisfy some additional conditions).

1. Choose p.

2. Compute (AX, Ay, AZ) by solving (4.3), (4-4) together with a variant of (4.5).

3. Choose some a € (0,1] so that X + aAX and Z + aAZ remain positive definite.

4. Set (X,y,2) = (X +aAX,y+ alAy,Z + aAZ).

. If |AX —b]| and ||.ATy +Z - CHF and (X, Z) are small enough then stop, else goto 1.

D

In order to prove polynomial iteration complexity for a particular scheme of search directions,
rather strong restrictions must be imposed on the starting point and the specific choices of u
and a.
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4.2 The Feasible X/7—Method

In this section we give a proof of the polynomial iteration complexity using the X Z—search direction
(4.6) for a feasible starting point close to the central path. In the next section we will show how
such a starting point can be constructed. The line of argument and most of the proofs follow
Zhang [1998], who proved an infeasible variant; the arguments have been adapted to match the
feasible case and to parallel the analysis of the linear counterpart of Monteiro and Adler [1989a).
Instead of (4.6) we will work with the symmetrization operator Hp of (4.9) for P = Zz. We will
frequently exploit the following property of this operator.

Proposition 4.2.1 (X,Z) = (Hp(X Z),I)
Proof. (Hp(XZ),I) = L(tr(PXZP~! + (PXZP~1)T) = tr(X Z). n

We describe the neighborhood of the central path by the distance of the matrix H . (X 2) to its
projection onto the ray al. The projected point is

1 1 (X,2)
(X,2)

2=/ may be interpreted as the value of the barrier parameter corresponding to X and Z. This
value plays an important role in the analysis and we define
(X, 2)

wX,Z) = —

We say that (X, Z) is in the neighborhood of the central path if it satisfies
| #,,(x2) — (X, 21| <0u(x,2) (4.11)
for some constant 0 < # < 1. This condition is equivalent to requiring

|44 03 —pX D] < 0u(x, 2)

which implies that the eigenvalues of Z 2 X 77 are bounded by
(1—0)u(X,2) < X(Z2°XZ2) < (1 +0)u(X, Z). (4.12)

The algorithm proceeds as follows. It starts at a strictly feasible point (X,y, Z) in the neigh-
borhood of the central path and computes a step direction (AX, Ay, AZ) for a barrier param-
eter ou(X,Z) with ¢ < 1. o is the factor by which p is reduced in each iteration. We will
see that o and 6 can be chosen independent of the current iterate such that the new point
(Xt ,yt,ZT) = (X + AX,y + Ay, Z + AZ) is again a strictly feasible point in the same neigh-
borhood satisfying u(X*, Z%) = ou(X, Z). It remains to iterate till (X, Z) is small enough.
Algorithm 4.2.2
Input: A, b, C, ¢ and a strictly feasible starting point (X(© 4 Z©)Y which satisfies (4.11) for
appropriately chosen parameters 0 < 8 <1 and 0 <o < 1.

1. Set k=0.

2. Set i = (X8, Z®)Y /n,

3. Solve the following system for (AX, Ay, AZ).

AAX = 0 (4.13)
ATAy + AZ (4.14)
H_ 03 (AXZW + XWAZ) = opI — H 4y (XHZW) (4.15)

|
o



98 CHAPTER 4. INTERIOR POINT METHODS

4. (XEAD g kt1) 7)) .= (X*) 4 AX, y®) + Ay, ZH) 4 AZ)
5. If (X1 Z(+D)) < & then stop.
6. Set k:=k+1 and goto step 2.

We postpone the discussion on how to solve (4.13) to (4.15) to Section 4.4 and concentrate on
the correctness and polynomial iteration complexity of the algorithm. Correctness hinges on the
choice of 8 and 0. Can we find 0 < 8 < 1 and ¢ < 1 such that the next iterate is not only
feasible but again a point in the neighborhood of the central path? In the following we will derive
the conditions on ¢ and 6 from these restrictions on the next iterate. Once the existence of such
parameters is established the proof of polynomial complexity will be easy, because correctness
implies (see Lemma 4.2.3 below) that u(X®, Z(®)) and therefore (X®), Z(!)} is reduced by o
in each iteration.

As in the linear case we denote the current iterate (X*), y®) Z(*)) by (X,y,Z) and the
successor (X 1) y(k+1) Z(k+1)) by (X+,y+, Z1). In the same vein we speak of H(-) = H 4 (),
H+() = H(Z+)% ()7 m= //‘(X7 Z)7 and Ht+ = /},(X+,Z+).

We start with investigating some properties of (X T,y %, ZT). Obviously the new iterate satisfies
the linear constraints, because by strict feasibility of (X,y, Z) and equations (4.13) and (4.14),

AXT = AX + AAX =b
AT+ 2T = AT@) +Z+AT(Ay) +AZ =C.

We cannot expect that the nonlinear complementarity condition behaves as nicely, because the
linearization (4.15) ignores the bilinear term AXAZ. The next lemma shows that this nonlinear
part of the update is of no consequence for py = u(X™*,Z*) but has a considerable influence on
the distance to the central path.

Lemma 4.2.3
(AX,AZ)=0 (4.16)
X+, zZt
4+ = <+) =op (4.17)
H(XtZY)=pu, I+ HAXAZ) (4.18)

Proof. (AX,AZ) = 0is immediate from Lemma 4.1.3 and the feasibility of (X, Z) and (X*, Z7).
Now observe that

HXYZ")Y=H(XZ+AXZ+ XAZ)+ HAXAZ)=oul + HAXAZ)
and, using Proposition 4.2.1, the lemma follows from
(XT, 2%y =(H(X+Z7"),I) = (opl + HAXAZ),I) =nop+ (AX,AZ).
|

Looking at the characterization (4.18) of H(X ™ Z7) in this lemma it is tempting to use H(XtZ¥)
instead of Hy (X, Z7%) in (4.11). The task of establishing that (X*,Z7) is close to the central
path would then reduce to the condition

|HOCH24) = ] = 1HAXAZ) e < 0ps (4.19)

The following lemma states that this is indeed possible. More precisely, H, (Xt Z1) satisfies (4.11)
if H(X*Z%) does.
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Lemma 4.2.4 For arbitrary X,Y,Z € S}t

H_y(XZ)— (X, 2)I|| <|H_3(XZ)-uX,2)I| .
F F

2

Proof. To simplify the inequality we first examine ||[Hp(A) — |5 for nonsingular P € M,,
A € M, and some constant a > 0,

(Hp(A) —al,Hp(A) —al) = ||HP(A)||% —2a(Hp(A),I) + o’n.
Since 2 (Hp(A),I) = tr(PAP™!) + tr(P~TAT PT) = 2tr(A), it suffices to prove

2 2
HH l(XZ)H < HH l(XZ)H :
Z?2 F Y2 F

Rearranging and comparing the summands of the corresponding trace expressions this can be
further reduced to showing

2 2

HX%ZX% < H(Y%X%)X%ZX%(Y%X%)—IH .

F F

X2ZX7? is a positive definite matrix and on the right hand side the same matrix is subject to a
similarity transformation. Thus, the matrices on both sides have the same spectrum A. By the
Schur Theorem there is an orthonormal matrix ) € M, such that the right hand side matrix can
be written in the form Q(A + R)QT with R a strictly upper triangular matrix. We obtain

2 1 1|2
|+ R)Q [ = 1A+ RIE = IAIR + IRIE > AR = |3 2x%|
which is the desired result. u

Before proving the existence of § and ¢ such that |[H(AXAZ)||; < Opy is satisfied we show that
|[H(AXAZ)||p < Opy suffices to prove the positive definiteness of X+ and Z*. By (4.19) and
(4.12) the eigenvalues of Z(H)z X+ Z(H)z must be positive. Does this imply the positive semidefi-
niteness of X1 and Z1? Not yet, because both, Xt and Z*t, might have negative eigenvalues. To
exclude this possibility we need a technical lemma. It shows that if ||H(AXAZ)||p < uy holds
then (4.11) is not only satisfied for the point (X, ZT), but for all (X +aAX,y+aAy, Z+aAZ)
with a € [0, 1].

Lemma 4.2.5 Let X(a) =X +aAX and Z(a) = Z + aAZ. If
[H(X()Z () — p(X(a), Z(a)[lp < (X (a), Z(a))

is satisfied for o = 0 and a =1 then it is satisfied for all a € [0,1].
Proof. Using (4.15), (4.18), and (4.17) we first observe that

H(X(a)Z(a)) = H(XZ)+aH(AXZ+ XAZ)+*?H(AXAZ)
(XZ)+alopl —H(XZ))+o*(H(XTZT) — pyI)
= 1-®)H(XZ2)+ (a—a*)(oul —H(XZ))+a®?H(X+ZT)
= (1-a)H(XZ)+ (a—a*)oul + *H(XTZT).

H
H

From (4.16) it follows that u(X(a),Z(e)) = (1 — a)p + apy and together with op = py from
(4.17) we obtain for (0 < a < 1)

1H (X (2)Z(e)) — (1 — @)l — apyI|lg =

(1 = ) (H(XZ) = pI) + > (H(X*Z7) = pi D)

10— ) (H(XZ) — uD)|g + [l o*(H(X+2*) — py |5 +

2(1 - a)o? (H(X Z) — pI)" (H(X*Z*) — py 1)

(1- )0’y + a*0°p] +2(1 - a)o® |[H(XZ) — pl||p |H(XTZT) = py ||,
0°((1 — )+ apy)’.

IAN A
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This guarantees that
1H(X () Z(a)) — n(X (), Z(@)[lp < 6u(X(a), Z(a))

for all o € [0, 1]. [ ]

Lemma 4.2.6 Let X(a) = X + aAX and Z(a) = Z + aAZ. If |HAXAZ)||p < 0py then
(X (), y + aly, Z(a)) is strictly feasible for all o € [0,1].

Proof. We have to prove that X (a) and Z(a) are positive definite for all @ € [0,1]. By (4.19),
Lemma 4.2.4, and Lemma 4.2.5 it follows from (4.12) that

(1= 0 < Mi(Z(a)> X(2)Z(e)?) < (1+0) o (4.20)

fori e {1,...,n} and a € [0,1] with p, = p(X(a), Z(a)) = (1 — a)p + aps > 0. Recall, that X
and Z are positive definite and that eigenvalues depend continuously on matrix entries. Assume,
for contradiction, that there exists 0 < & < 1 such that X (&) or Z(&) are not positive definite
and let & be the smallest & > 0 of this kind. But then X (&) or Z(&) or both have an eigenvalue
zero. If Z(&) has a zero eigenvector v, then v is also a zero eigenvector of Z(&)2X(&)Z(d)?,
which is a contradiction to (4.20). If Z(&) is positive definite and X (&) has a zero eigenvector v,
then Z(&)~zv is a zero eigenvector of Z(&)2 X (&)Z(é&)2, which is again a contradiction to (4.20).
Thus, X (o) and Z(a) must be positive definite for all a € [0, 1]. |

Summing up, we have proved that the next iterate (XT,yT, ZT) is strictly feasible (Lemma

4.2.6) and satisfies (4.11) (Lemma 4.2.4 and (4.19)) provided we can find 0 < 1 and 0 < 0 < 1
such that

IH(AXAZ)|| < opb.

To bound ||H(AXAZ)||p in terms of o and § we will have to exploit (4.15). We start by multiplying
(4.15) from left and right with v/2Z2.

2ZAXZ + ZXAZ + AZXZ =2(opuZ —ZXZ) =:R (4.21)
Kronecker products allow to rewrite this as
2Z® Z)vec(AX) + (ZX @I +1® ZX)vec(AZ) = vec(R).
In order to simplify notation we define
E=2(Z®2Z) and F=ZX®I+1I® ZX. (4.22)

Together with Lemma 4.2.8 below the following lemma allows to bound ||[H(AXAZ)|| in terms
of the norm of the scaled right hand side of (4.11).

Lemma 4.2.7 For nonsingular1 matrices E,F € My, let x,z,7 € R* such that Ex + Fz = r. If
S =EFT ~ 0 then for D= S"3F

|D=Tal” + D2l + 2 4z,) = |5~

Proof. Multiply Ex + Fz = r with S~ 2 from the left and observe that (S~ 2E)D7T = I. Take
the 2-norm on both sides of D=7z + Dz = S~ 2. Squaring both sides completes the proof. H
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In particular, with E and F' from (4.22), S may be written as
S = 2Z02)(XZI+1®XZ)
= 22ZXZ®2Z)+(Z® ZXZ)
= E:(Z:XZ>@I+1® Z>XZ3)E>
= B}QeQUel+IoN) Q" eQ"E?,

with ) )
Z2X7Z7 = QAQT. (4.23)

In the remainder of this section A will always refer to the spectrum of Z 3XZ %, A; to its i-th
eigenvalue, and () to the matrix containing the corresponding eigenvectors. For later use we define

F=QoQAoI+IxA)QT2qQ") (4.24)

and have L.
ES 'E=E:FE-=. (4.25)
Since A®I+I®A is diagonal with diagonal elements A; +A;, Fis symmetric and positive definite

with eigenvalues A; + Aj. Consequently S is positive definite, as well. The orthogonality of AX
and AZ carries over to the vector representation,

(vec(AX),vec(AZ)) = (AX,AZ) =0.
Therefore Lemma 4.2.7 yields the important relation
L 2
|D~T vee(AX)|[* + [|D vee(AZ)||? = Hs—a vec(R)H . (4.26)

The next lemma establishes a bound on ||[H(AXAZ)||r in terms of the left hand side of this
equation. This will enable us to bound ||H(AXAZ)||p independent of AX and AZ via the right
hand side of the equation.

Lemma 4.2.8

1 [1+6 4, _
IHAXAZ) < 51/ 15 (||D T yee(AX)|” + ||Dvec(AZ)||2)

Proof. First we split [|[H(AXAZ)||p into two independent terms,

1
IH(AXAZ)|; = §HZ%AXAZZ—%Jr(Z%AXAZZ—%)TH
F
< |ztaxazzH|
= |Ztaxziz-tazzt
F
< |ztaxzi| |z-iazzi
F F

Recalling from the proof of Lemma 4.2.7 that D=7 = § -3 F we bound each term separately using
(4.24) and (4.25),

DT vec(AX)|® = vec(AX)TES 'Evec(AX)

vec(AX)TE2 F~'E7 vec(AX)

= 2vec(Z3AXZ3)TE 'vec(Z2AX Z7)
1 1 2

9L HZEAXZE

Amax (F) F

1
(1+0)u

A%

HZ%AXZ% ?
F

\Y
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The last line follows from Amax(F) = 2Amax(Z2 X Z2) which can be bounded by (4.12). Likewise

we obtain \

|DT vee(AZ)|” > (1= O)u Hz—%sz—%

F
Putting things together we get

[H(AXAZ)||g

IA

DT vee(aX)| D7 vec(aZ)]

1 /1+6

< 15 (1D vecdX)|* + | DT vec(a2)|[*).
The last inequality follows from the well known relation %(a — b) > 0. [ ]

2
In view of Lemma 4.2.8 and (4.26) it remains to bound HS_% vec(R)H to achieve our goal of
bounding ||[H(AXAZ)|| in terms of o and 6.

Lemma 4.2.9 Let \y,..., )\, denote the eigenvalues of Z%XZ%, then

|73 vee(m)|| = X:; L ;fm < “/tl__‘fg‘)ﬂlé.

Proof. By (4.21) and (4.23) we have
R=27%(opul — 23X 2Z%)Z% =2Z5Q(opul — A)QT Z3.
Applying the vec-operator and rule (1.8) for Kronecker products yields

vee(R) = V2E?(Q ® Q) vec(opl — A).

Therefore
2
HS_% vec(R) H = vec(R)TS!vec(R)
= 2vec(opl —NTART+IT®A) " vec(oul —A)
_ i (o — Ni)?
; Ao
=1
The inequality is obtained by bounding the smallest eigenvalue using (4.12). |

We are ready to specify for which choices of § and o the iterates remain feasible and close to the
central path.

Theorem 4.2.10 If the constants 0 < § < 1 and 0 < o are chosen such that

(1+6)3 2 2
———(6° +n(1 —0)*) < ob,
s 4l = o)) <
then ||Hy(XTZ1) — pyI||p < 8uy is satisfied in each iteration.
Proof. So far we know from Lemma 4.2.4 that

[ 429 = T < | HOC 25 =

and from (4.18), Lemma 4.2.8, (4.26), and Lemma 4.2.9 that

+ o+ _ )% 2
[HOC29) = Tl = W AXAZ) e < 5= A = ol
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To bound the right hand side we use Pythagoras and (4.11),

IA=opllly < A= pIllf + |uT — opl||;
< |H(X,2) - plllp + n(1 - 0)*p?
< (0 +n(1-0))’
The Lemma follows if we require that the right hand side is no greater than fopu. |

We substitute 1 — §/+/n for o and obtain the condition

K
Jn

One possible choice is # = § = 3.2. This yields the final result.

(1+6)2

). (4.27)

Theorem 4.2.11 Foro =1 — % with & > 0 satisfying (4.27) and a starting point (X°,y°, Z°)
satisfying (4.11) Algorithm 4.2.2 terminates in O(y/nlog({X°, Z°) [¢)) iterations.

Proof. The algorithm terminates when nyuy = no*puy < e. Wehave klno = kln(l—\/iﬁ) < —k%.

Therefore any k satisfying

k% > —Ine + In(nuo)
vn

is an upper bound for the number of iterations. Multiplication with ¥~ proves the theorem. M

Note, that in contrast to linear programming it does not make sense to give the required
precision in terms of the encoding length because of Example 2.3.2. It is surprising that the
number of iterations depends on y/n as in linear programming. In fact, the number of iterations
grows only with the fourth root of the number of variables, because in semidefinite programming
the number of variables equals (";1) (this is connected to the self concordancy parameter of the
barrier function — logdet(-), see Nesterov and Nemirovskii [1994]). We will see in Section 4.4 that

the computational cost of each step is considerably higher than in linear programming.

4.3 Centered Starting Points

Algorithm 4.2.2 requires a strictly feasible starting point that is close to the central path. In
general such a point is not known and may, in fact, not exist at all. Inspired by the self dual
skew-symmetric embedding for linear programming several authors have independently proposed
a skew-symmetric self-dual embedding for semidefinite programs. We follow the exposition by
de Klerk, Roos, and Terlaky [1997]. The embedding has a centered starting point and a trivial
optimal solution. The convergence of the iterates of an interior point algorithm to a maximally
complementary solution of the embedding can be exploited to detect whether the original problem
is well behaved. In this case the solution also yields the solution to the original problem.

We start with homogenizing the system of optimality conditions derived from strong duality
by introducing two artificial variables 7 and p.

AX —7b =0
- ATy +7C -7 =0
vy —(C,X) -p =0

X»=0, 7>0, Z+0, p>0.

This system is feasible since it is satisfied by the all zero solution. Assume that there is a solution
with 7 > 0. Then dividing X, y, and Z by 7 yields feasible primal and dual solutions. Furthermore
these solutions are optimal because the third constraint of the system above is equivalent to
bTy > (C, X) which is the opposite of weak duality. On the other hand we know that for feasible
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primal and dual solutions it is impossible that 5Ty > (C,X). Consequently the slack variable
p must be zero for any feasible solution. This system never has a strictly feasible point. To
obtain strictly feasible starting points while maintaining the skew-symmetry of the system two
more variables ¥ and o together with some new constants are introduced. This forms a new
semidefinite program.

min ¥4 s.t.
AX -0 +0b = 0
—ATy +rC  -9C  -Z = 0
by —(C,X) +da —p = 0
-bTy +(C,X) -ra -0 = —p
X»0, 7>0, 9>0, Z»0, p>0, o>0,
with
b = —AI+b
C = C-1I
a = (C,I)+1
B = n+2.

b, C, a, and B are chosen such that the point ° =0, X0 =20 =1, 70 = 9° = p° = 00 =1 yields
a strictly feasible point for this semidefinite program. Moreover, after some rearrangements the
dual to this program turns out to be exactly this program again. It is self-dual. In particular the
complementary semidefinite variable to X is Z and vice versa. The other complementary variable
pairs are 7 and p, and ¥ and o. Since the constraints are identical, the same starting point can
be chosen. Primal and dual variables will be updated in exactly the same way. Therefore it is
sufficient to keep just one set of variables. In the KKT system for primal-dual interior point
methods we only need the complementarity conditions in addition to the set of constraints above,

XZ = ul
™ = B
Yo = p.

The additional computational burden is therefore rather small. The strictly feasible point given
above satisfies these perturbed complementarity conditions for u = pu(X°, Z% = 1. Thus, it is a
point on the central path satisfying (4.11) and may be used to start Algorithm 4.2.2. Obviously
setting 0 = # and all other variables to zero yields an optimal solution. Why does it make sense
to solve this program? The interior point code will deliver a maximally complementary solution.
This maximally complementary solution renders this embedding useful.

Theorem 4.3.1 (de Klerk, Roos, and Terlaky [1997]) Let (X*,y*,Z*,p*,0*,7*,9*) be a maxi-
mally complementary optimal solution to the skew-symmetric embedding. Then the following cases
can be distinguished:

(i) T > 0 <= Both (PSDP) and (DSDP) are feasible, the duality gap is zero, the optimal values
are attained for both problems.

(i) T=0Ap>0<= At least one of the problems has an improving ray.

(i) T = 0 A p = 0 <> Fither both are feasible with strictly positive duality gap or the optimal
value is not attained for both problems or not both are feasible, none of the problems has an
IMProving ray.

Proof. As observed above setting o = 3 and all other variables to zero yields an optimal solution.
Hence 9* must be zero.
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(i) If 7* > 0, then dividing X*, y*, and Z* by 7* yields optimal primal and dual solutions.
Conversely, let X*, and (y*, Z*) be primal and dual optimal solutions. Set ¥ = p = 0 and let
X =7X*, 9y =71y* and Z = 7Z*. Obviously the first three constraints are valid for all choices of
7. The fourth constraint multiplied by —1 reads

(b—ALy)—{(C—-LX)+71(C,I)+1)+0=n+2.
Because of (b,§) = (C, X) and —AT§+ 7C = Z we get
(ILX)+({I,Zy+T+0=n+2.

This is feasible for 0 < 7 < (n + 2)/(1 + tr(X* + Z*)). Therefore any maximally complementary
optimal solution must have 7* > 0 in this case.

(ii) If 7* = 0 and p > 0 then AX* = 0, ATy* < 0 and b7y* > (C,X*). The last condition
implies that at least one of the conditions b7y* > 0 or (C, X*) < 0 must be true. At least one
of both problems must be infeasible. We show the other direction for a primal ray X > 0 with
AX = 0and (C,X) < 0 which is scaled such that (I — C, X) <n+ 2. For this X the constraints
are satisfied choosing fory =0, Z=0,7=9=0,p=-0(C,X),andoc =n+2- (I - C,X).
Since p > 0 any maximally complementary solution must have p > 0 as well.

(iii) follows from the previous equivalences. |

We point out that the fourth equality constraint of the skew-symmetric embedding is not only
needed for symmetry purposes. As can be seen in the proof it also serves to normalize 7. Without
this constraint 7 would either be zero or plus infinity.

For practical applications any problem not containing a strictly feasible point in both, primal
and dual, programs may be considered ill posed. Small perturbations of the data may lead to
large changes of objective value or to the existence of “strictly feasible” solutions. The absence of
strictly feasible solutions is usually an indication that the problem formulation is insufficient. In
this sense the skew-symmetric embedding offers everything that is asked for in practice. It yields
optimal solutions for well posed problems and gives a certificate for infeasibility in most relevant
cases.

4.4 Implementational Considerations

In this section we look at some practical aspects of interior point methods in semidefinite pro-
gramming, mainly drawing from our experience with combinatorial applications (Helmberg, Rendl,
Vanderbei, and Wolkowicz [1996]; Helmberg [1994]; Helmberg and Rendl [1998]; Helmberg, Rendl,
and Weismantel [2000], see also Chapter 6). We discuss how step direction (4.6) can be computed
efficiently and analyze its complexity for some typical settings. Practical algorithms do not stay
close to the central path, line searches are necessary to guarantee the positive definiteness of the
iterates. We present some empirical rules for implementing line searches and choosing u. With
reasonable computational effort the quality of the step direction can be improved considerably
by the predictor-corrector approach. Finally, we demonstrate how the algorithm is generalized
to several semidefinite variables of varying dimensions and show that it specializes to the interior
point code for linear programming if the dimension of each semidefinite variable is one.

In a slight abuse of notation, we will apply A(-) to arbitrary square matrices. The assumption,
that all coefficient matrices A; are symmetric, ensures that for any matrix M € M,

AM = AMT,

because the skew-symmetric part of M is mapped to zero. In order to compute (4.6) we would
like to solve the following system for AX € M,, Ay e R™, AZ € S,.

AAX = —(AX -b)=:F, (4.28)

ATAy+AZ = —(ATy+Z-C)=:F, (4.29)

AXZ+XAZ = pl-XZ. (4.30)
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We first express AX in terms of AZ using (4.30), then AZ is written in terms of Ay via (4.29).
Together with (4.28) this yields a system depending on Ay only.

AX = pZ'=X-XAzZzZ '
AZ = F;— ATAy
AXATAYZ™Y) = F,—AWpZ' — X+ XFZ7Y)=b— AuZ™ ' + XF,Z71)

Having solved this last equation for Ay we obtain the final step direction (AX, Ay, AZ) by back
substitution and setting AX = AX%AXT.
Before investigating the computational cost of determining the step direction let us examine

the matrix M = A(XAT(-)Z 1) in detail. Row i of My = A(X A¥(y)Z 1) is computed via

<Ai,X.AT(y)Zil> = <XA121,ZyJA]> = Zyz’ tI‘(XAz'ZilAj).

=1 =1

Therefore the ij-th element of M is equal to

Since A; is symmetric, tr(XA4;Z7'A4;) = tr(Z7'A; X A;) and consequently M;; = M;;. But M is
not only symmetric, it is positive semidefinite:

y'My = (y, AXANy)Z™")) = (ATy, XA (y)Z7")
= (X} z h xEATy)Z ) > 0.

If we assume that A(-) has full row rank (this can always be achieved) then M is easily seen to be
positive definite. In this case there is a unique solution (AX, Ay, AZ) of (4.28) to (4.30) yielding
a unique step direction (AX, Ay, AZ) (Zhang [1998] shows that even without this assumption the
system can be solved consistently if AX = b is consistent but we will not delve into this). It can be
worked out that (AX, Ay, AZ) is the same step direction as in Algorithm 4.2.2. In the following
we assume that M € S+,

Solving for Ay requires the factorization of M. Since M is positive definite this can be done
efficiently in m?/3 arithmetic operations using Cholesky decomposition (see Theorems 1.1.10 and
1.1.14). However, M has to be recomputed in each iteration. An efficient way to build one row of
M is to compute X A; Z~! in O(n?®) once and to determine the single elements via (X 4;Z7!, A;)
for O(n?) each. In total the construction of M requires O(mn?® + m?n?) arithmetic operations.
In general one assumes that m = O(n) and so the construction of M is by far the most expensive
operation within one iteration.

In many applications the constraint matrices A; have special structure that can be exploited
to speed up the computation of M. In particular in combinatorial applications many constraints
can be represented as positive semidefinite rank one matrices, i.e., 4; = vDvDT with v ¢ R"
for i € {1,...,m}. In this case it is more efficient to compute, instead of X A;Z~1, two temporary
vectors vy = Xv() and vz = Z '), and to determine the single elements via v} Ajux =
(vTvD) (v Tyx). This reduces computation time to O(mn? + m?n). If in addition the vectors
v® are sparse, the factorization of M is the most expensive operation within each iteration,
because we cannot expect M to be sparse. The necessity to store and factorize the dense matrix
M limits the size of problems solvable by interior point methods.

Benson, Ye, and Zhang [2000] propose a dual scaling algorithm that offers reasonable possibili-
ties to exploit structure in the dual slack matrix. Unfortunately, their approach cannot avoid that
M (in this case M;; = tr A;Z71A;Z~1') is dense, so it is again restricted to a moderate number
of constraints.

As in linear programming most practical implementations do not keep the iterates close to
the central path. It is therefore necessary to guarantee that the next iterate is again positive
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definite. This is usually achieved by a line search for X + aAX and Z + aAZ using Cholesky
decomposition. If Cholesky fails the matrix is not positive definite and « is diminished. Typically
separate step sizes are used for X and Z, the step size of the last iteration is used as an initial
guess. If the initial guess is good « is increased by a factor of 5/4, say, otherwise it is decreased by
4/5. This is repeated as long as the matrix is positive definite (and a < 1) or not positive definite,
respectively. In practical experiments it proved useful not to get too close to the boundary. If
a yields a positive semidefinite matrix that is “close” to singular then a step size of a - 9/10
seems advisable. Each check for positive definiteness involves n®/3 arithmetic operations and is
therefore rather expensive. A strong reduction of g may not only yield a poor step direction
but also decreases the predictability of the correct step size. This may slow down the algorithm
considerably. So far there is no good general strategy for choosing u. A rule on the save side is
to choose p/2 if the minimum of the last step sizes is below 4/5 and to choose p/10, otherwise.
Several authors prefer to determine the maximal feasible step length for X and AX (or Z and
AZ) via an eigenvalue computation (see Section 6.3.1) but we consider this computationally too
expensive.

Most search directions allow the application of the predictor-corrector approach. In a first
step, a search direction is computed for p = 0, the so called affine direction.

AAX = —(AX —b)
ATAj+AZ = —(ATy+2Z-0)
AXZ+XAZ = -XZ.

In a second step the information of the predicted point is included in a new right hand side and a
second step direction is computed for some choice of u yielding the so called centering direction.

AAX = 0
ATAG + AZ 0
AXZ+XAZ = ul—-AXAZ.

Afterwards both search directions are added for the final step direction

(AX + AX) + (AX + AX)T
2

(AX,Ay,AZ) = < JAG+AG,AZ + AZ) .

This step direction is usually of much better quality than then the canonical step direction. It is
not very expensive to compute because the same factorization of M can be used twice, only the
right hand side changes. However, its computation involves a few additional O(n?) operations and
therefore predictor-corrector should not be applied for small m, say, m < 2n.

Infeasible methods try to cope with infeasibility by including this information in the computa-
tion of the step direction. In theory this infeasible approach has polynomial iteration complexity
if the starting point satisfies a number of conditions and if p and a are chosen in conformity with
the decrease in infeasibility (Kojima, Shindoh, and Hara [1997]; Zhang [1998]). Infeasibility is
detected by observing that the norm of either X or Z gets too large. A precise definition of “too
large” is still missing, although there are some promising results in this direction (Nesterov, Todd,
and Ye [1999]).

Current comparisons of infeasible methods versus the skew-symmetric embedding show no
significant advantage of one above the other, see Toh, Todd, and Ttiinci [1998].

With respect to the different step directions some computational experience is at hand (see
Alizadeh, Haeberly, and Overton [1998]; Toh, Todd, and Titlinci [1998]). (4.6) is faster to
compute, but a considerable loss of accuracy is observed as the gap between primal and dual
solutions closes. Ususally, a relative precision of 1078 can be achieved. In most cases this suffices
for combinatorial applications. (4.7) is a bit slower than (4.6) and is comparable in terms of
accuracy. (4.8) takes about twice the time of (4.6) but may allow considerably more accurate
solutions (10712).



68 CHAPTER 4. INTERIOR POINT METHODS

Finally, we examine the case of several semidefinite matrix variables. Let the primal problem
be given as follows.

k
min Z<015X1>
iil
s.t. ZAz(X,) =b
i=1
X; € S:l,...,Xk (S S:_k

In this case the KKT-system (4.1) takes the form

k

ZAz’(Xi) = b

=1

Al +2z, = ¢ i=1,...,k

XzZz = NIn, ’L'Zl,...,k.

The linearization of this system can be solved in the same manner as for one semidefinite variable.
This leads to a generalized formula for M.

M= A(XATO)Z7Y).

i=1

Clearly, it is much faster to work with all variables separately than to glue them all together into
one big matrix. Although in principle it is possible to choose a different p for each variable, we
recommend to select one y for all variables so that all converge at approximately the same rate.

Note that if all variables have dimension one, n; = 1 for i € {1,...,k}, this is linear pro-
gramming. In particular for z,z € R¥ with z; = X; and 2z; = Z;, M takes the canonical form
ADiag(z) Diag(z71) AT, and the algorithm specializes to the canonical interior point approach for
linear programming.

4.5 Remarks on the Literature

A detailed account on the primal-dual interior point approach to semidefinite programming is
given in Sturm [1997] and on interior point algorithms in general in Nesterov and Nemirovskii
[1994]; Ye [1997c].

The first use of the logarithmic barrier function in context with convex programming is at-
tributed to Frisch [1955]. With the classical book of Fiacco and McCormick [1968] and their
SUMT algorithm (Sequential Unconstrained Minimization Technique) interior point algorithms
became a standard tool in nonlinear optimization.

Many developments in interior point methods for semidefinite programming are based on ap-
proaches developed for linear programming before. In 1984 Karmarkar published his seminal
paper “A new polynomial-time algorithm for linear programming” (Karmarkar [1984]), proving
polynomial complexity for a potential reduction algorithm for linear programming. Gill, Mur-
ray, Saunders, Tomlin, and Wright [1986] established the connection of Karmarkar’s algorithm to
Newton’s method and the classical interior point approach of Fiacco and McCormick. The ana-
lytic center of a polytope and the central path was introduced by Sonnevend [1985]. By staying
close to the central path Renegar [1988] achieved an iteration complexity of O(y/nL) for linear
programming. Megiddo [1989] paved the way for the primal-dual approach and Kojima, Mizuno,
and Yoshise [1989b] developed the first primal-dual algorithm with O(y/nL) iteration complexity.
Immediately afterwards the same authors Kojima, Mizuno, and Yoshise [1989a] and Monteiro and
Adler [1989a]; Monteiro and Adler [1989b] established an O(n3L) arithmetic operations bound
for this algorithm. Some aspects of the convergence proof presented here are based on Monteiro
and Adler [1989a]. The currently best bound in linear programming of O(n®L/logn) is due to
Anstreicher [1999].
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To the best of our knowledge the first interior point methods designed for semidefinite program-
ming were proposed by Nesterov and Nemirovskii [1994], Jarre [1993], and Alizadeh [1995]. The
book of Nesterov and Nemirovskii [1994] contains a special section on semidefinite programming.
They apply their framework of strongly self concordant functions to derive pure primal and dual
interior point algorithms. Jarre gives a pure dual algorithm using the theory of self concordancy
(Nesterov and Nemirovskii [1994]), Alizadeh shows a generic way of adapting pure primal or pure
dual interior point algorithms for linear programming to semidefinite programming (the paper also
includes a survey on combinatorial applications). Vandenberghe and Boyd [1995] combine a pure
primal and a pure dual step direction in one algorithm to achieve a primal-dual behavior.

The first primal-dual algorithms were independently proposed by Helmberg, Rendl, Vanderbei,
and Wolkowicz [1996] and Kojima, Shindoh, and Hara [1997]. Both use search direction (4.6),
Kojima et al. provide a proof of the polynomial iteration complexity for feasible and infeasible start
variants (in fact, they prove this for the class of semidefinite linear complementarity problems).
In the revision Kojima, Shindoh, and Hara [1997] generalize the approach to orthogonal skew-
symmetric subspaces for AX and AZ.

Search direction (4.8) was introduced in Alizadeh, Haeberly, and Overton [1994]. Monteiro
[1998] proved its polynomial complexity by proving the polynomial complexity of short step path
following algorithms for the family of directions (4.10). Other interesting properties of this search
direction have been established in Kojima, Shida, and Shindoh [1999]; Alizadeh, Haeberly, and
Overton [1998]; Monteiro and Zanjacomo [1997].

In Nesterov and Todd [1997] and Nesterov and Todd [1998] the authors develop a general
framework for self scaled cones. The step direction (4.7) for semidefinite programming is a spe-
cial case of this theory. It was rediscovered in an independent approach by Sturm and Zhang
[1999]. Todd, Toh, and Tiitiincii [1998] provide computational evidence that this approach is
computationally efficient by comparing it to the two other primal-dual methods.

Special cases of the extended version of step direction (4.6) were later rediscovered by Monteiro
[1997]; Potra and Sheng [1998b]; Lin and Saigal [1995b] and others. The somewhat simpler analysis
of Monteiro inspired Zhang [1998] to define the Hp operator with the corresponding step direction
(4.10). The paper includes a proof of polynomiality for an infeasible start method. This proof was
adapted here for the semidefinite version of the algorithm of Monteiro and Adler [1989a]. The Hp
operator is further investigated in Monteiro and Zhang [1998]; Monteiro [1998]. Todd [1999] gives
a survey on various search directions, including many more than cited here.

The concept of maximal complementarity was introduced by de Klerk, Roos, and Terlaky
[1997] (and independently by Goldfarb and Scheinberg [1996]). They prove that, for g — 0, the
central path converges to a point satisfying this property (our discussion in Lemma 4.1.4, Lemma
4.1.6, and Lemma 4.1.7 follows their work). In the same paper they propose the skew-symmetric
embedding for semidefinite programming and show Theorem 4.3.1 (this was independently also
proposed in Potra and Sheng [1998a]; Nesterov, Todd, and Ye [1999]; Luo, Sturm, and Zhang
[1996]). A more detailed analysis of the central path can be found in Goldfarb and Scheinberg
[1996].

The predictor-corrector approach has already been in use in Helmberg [1994]; Helmberg, Rend],
Vanderbei, and Wolkowicz [1996]. Proofs of polynomial complexity for predictor-corrector algo-
rithms are given in Kojima, Shida, and Shindoh [1998]; Lin and Saigal [1995b]; Lin and Saigal
[1995a]; Potra and Sheng [1996].
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Chapter 5

The Spectral Bundle Method

From a theoretical point of view, the interior point methods of Chapter 4 offer everything what
one can hope for. They work on all reasonably defined semidefinite programs, they exploit second
order information, and the order of the number of iterations is bounded by the fourth root of the
number of variables. Still, for practical applications with many constraints the price to pay in a
single iteration is often too high: The system matrix M (cf. (4.31)) that arises in computing the
step direction is in general a dense positive definite matrix of order m, where m is the number
of constraints. If the (m; 1) elements of M are stored explicitly and an explicit factorization
is computed (e.g., a Cholesky factorization requires m?®/3 arithmetic operations), then within
current technology the applicability of primal-dual interior point methods is limited to problems
with about 7000 constraints on a well equipped work station. This motivates the search for other
approaches, that are suitable for large m and allow to exploit problem structure. The spectral
bundle method, which we are going to describe in this chapter, offers these features for semidefinite
programs that can be cast as eigenvalue optimization problems, at the cost of a poor convergence
rate: it is only a first order method.

The spectral bundle method is applicable to eigenvalue optimization problems of the form

(E) min Apax(C — ATy) +b7y.
yeR™
In an extended variant, it allows for upper and lower bounds on y-variables. A large class of
semidefinite programs and, in particular, several important relaxations of combinatorial optimiza-
tion problems can equivalently be formulated as problems of this type, see, e.g., the eigenvalue
formulation of the max-cut relaxation (3.11) or the Lovasz 9d-function (3.24).

The maximum eigenvalue function Amax(-) is a nonsmooth convex function and we will employ
nonsmooth convex optimization techniques to solve (E). This necessitates the use of some basic
concepts and results from convex analysis; we have collected the relevant material in Appendix B.
The spectral bundle method is a specialized subgradient method and we explain briefly and infor-
mally the main components of such algorithms.

In smooth nonlinear optimization the gradient plays a dominant role. The corresponding object
in nonsmooth convex optimization is the subgradient of a convex function f. A subgradient at a
point 2 and the function value f(x) together describe a supporting hyperplane to the function in
the point z; in other words, they give rise to a linear function that minorizes f and touches f in
z. At a nonsmooth point of f several subgradients exist; the set of all subgradients at x forms
the subdifferential 8f(x) of f at z. An oracle returning f(x) and some subgradient s € df(z) for
given z is all the information needed by so-called subgradient methods for producing a minimizing
sequence for f (under some mild regularity conditions).

Subgradient methods for general convex optimization such as the bundle methods of Kiwiel
[1990] or Schramm and Zowe [1992] construct a polyhedral cutting plane model of the cost function
by maintaining a bundle of accumulated subgradient information. The spectral bundle method
improves on these methods by exploiting the semidefinite structure of the maximum eigenvalue
function and forms a semidefinite cutting surface model of (E).

71
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In the case of the maximum eigenvalue function, subgradients to Amax(-) in X = C — ATy
are determined by the eigenvectors to the maximum eigenvalue of X. Extremal eigenvalues and
eigenvectors of large structured matrices may be determined by iterative methods. These generate
a sequence of vectors converging to an eigenvector by a series of vector matrix multiplications;
examples are the power method or the more sophisticated Lanczos method (see, e.g., Saad [1992];
Parlett [1998]). If the structure of the matrices in C' — A%y allow the matrix vector multiplications
to be carried out quickly, then the oracle will be able to deliver function value and subgradient
quickly.

Typically, subgradient methods show fast initial convergence but a strong tailing off effect as
the iterates approach the optimal solution. The same can be observed for the spectral bundle
method. In several combinatorial applications the gap between the best integral solution and the
optimal solution of a relaxation is fairly large. In this case it is sometimes more efficient to improve
the relaxation than to compute its exact value. Fast initial convergence may be an advantage if
the rough guess of the optimal solution yields sufficient information to tighten the relaxation, e.g.,
by cutting planes.

The chapter is organized as follows. In Section 5.1 we show that eigenvalue optimization
problems of the form (E) are equivalent to the duals of semidefinite programs with bounded
feasible set; we also investigate the convex structure and subdifferentials of Apax(X) and the cost
function of (E). Section 5.2 starts with a description of the general approach of the proximal bundle
method of Kiwiel [1990]. We then specialize this method to eigenvalue optimization problems of
the form (E). Convergence of the method is proved in Section 5.3. Primal inequality constraints
give rise to sign constraints on the dual y-variables. Section 5.4 explains how such bounds on y
can be incorporated at negligible additional cost. In each iteration of the spectral bundle method
a small quadratic semidefinite subproblem has to be solved. For this we employ an interior point
method that we describe in Section 5.5. Due to the structure of the spectral bundle algorithm
it is not always necessary to compute the maximum eigenvalue exactly. This inexact evaluation
approach is theoretically save, as explained in Section 5.6, and can lead to considerable speedup
in practice.

5.1 Eigenvalue Optimization

A symmetric matrix X € S, is positive semidefinite if and only if the minimal eigenvalue of X
is nonnegative, Amin(X) > 0. Due to this property, semidefinite programming and eigenvalue
optimization over affine sets of matrices are tightly related. In this section we clarify this relation
and state a few simple properties of the maximum eigenvalue function.

Consider the primal-dual pair of semidefinite programs

max {C,X) min b7y
(P) st. AX =10 (D) st. Z=Aly-C
X >0, Z 0

and assume that the following holds:
There exits a § € R™ with I = A%g. (5.1)

This assumption allows to reformulate (D) as an eigenvalue optimization problem. In (D) we write
the constraint Z = 0 as 0 > —Amin(Z) = Amax(—Z) and lift it into the objective function by means
of a Lagrange multiplier a > 0,

min aAmax(C — ATy) + b1y. (5.2)
Y
Proposition 5.1.1 If A satisfies (5.1) then (D) is equivalent to (5.2) for a = max{0,b75}.

Furthermore, if (P) is feasible then all its feasible solutions X satisfy tr X = a, the primal optimum
is attained and is equal to the infimum of (D).
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Proof. Let j satisfy ATy = I. Then, for y € R™, the half ray {y + AT A > Anax(C — ATy)} is
feasible for (D), because

ATy +2p) —C = XATj+ ATy — C =\ — (C — ATy) > 0.

Now consider the cases b7g < 0 and b5 > 0.

If b7y < 0 then @ = 0 and the objective values of (D) and (5.2) tend to minus infinity along
any ray y + Ay with A — oo.

For 0 < b¥§ = a problem (5.2) is constant along directions Aj for A € R, because

aAmax(C — ATy + 29)) + b7 (y + Ng) =
= aAmax(C — ATy — M) + b7y + Aa = admax (C — ATy) + bTy.

The choice of A = Amax(C — ATy) ensures that Amax(C — AZ(y + Ay)) = 0. Therefore y + \j is
a feasible solution of (D) with the same objective value. Conversely, for any feasible solution y
of (D) we find that y + Amax(C — ATy)7 is also a feasible solution of (D) with identical objective
values in (D) and (5.2). This value is not greater than bZy, since Amax(C — Aly) = Anax(—2Z) <0
for feasible y. This proves the equivalence of (D) and (5.2).

Since (D) has strictly feasible solutions, it follows from the Strong Duality Theorem 2.2.5 that
the supremum in (P) is attained if (D) is finite. A feasible X of (P) satisfies AX —b = 0 and thus

0=(AX = b,5) = (X, ATg) - bvTy=(X, ) —a=tr X —a.
[ |

Observe that (5.1) holds for the dual of several of the semidefinite relaxations discussed in
Chapter 3, in particular for max-cut and therefore also for quadratic 0-1 programming (with
equality constraints) by means of the scaling of Lemma 3.2.3.

An appropriate dual satisfying (5.1) can, in theory, be set up for any primal problem (P) whose
feasible set is bounded. As we will show below, a bounded primal feasible set can be scaled so
that it has constant trace on the scaled primal feasible set. If tr X = a for all feasible solutions of
(P) then adding the redundant constraint (I, X) = a will produce the desired effect. The latter
addition may lead to changes in (D) only if I is not in the span of AT.

Proposition 5.1.2 Let X = {X = 0: AX = b} be a bounded set. Then there is a regular scaling
matriz Q such that tt W =a for sl W € {W = 0: AQWQT) =b} = {Q'XQT:X € X}.

Proof. Let X be a point in the relative interior of X, let P, € R¥ be an orthogonal matrix
spanning the nonzero eigenspace of X and let the columns of P, € R** be an orthonormal basis
of the null space of X. By Lemma 2.2.9 the set {P,V P! :V =0} is the minimal face of S;’
containing X. Consider the primal dual pair of semidefinite programs derived from the restriction
of (P) to this minimal face,

max (C,P,VPT) min b7y
(Pp,) st. APVPL =b (Dp,) st. U=PrAYy-C)P,
V = 0. U=0.

Problem (Pp,) is by construction strictly feasible (since there is a V = 0 with X = P,V P[') and
has a bounded feasible set by assumption. By Theorem 2.2.5 the dual optimal solution is attained
for all C. Choosing C = P, PT it follows that there is a g so that Pl (ATy — PLPT)P; > 0 and
therefore Pf ATyP, > I. Factorize Pf ATyP;, into BBT with B > 0 and observe that for all
X € X (X has a representation X = P,V PI with V > 0),

0= (g, AX —b) = (475, X) — 075 = (PTATyP, V) = bT5 = (BBT,V) - 03

Therefore, the scaling V = B-THB™! transforms (Pp,) into a problem in H > 0 satisfying
tr H = bTy for all feasible H. The direct projection from X € X to H is obtained from X =
P.B~THB~!'PI and can be extended to a scaling of the positive semidefinite cone X = QW QT >
0 by the matrix @ = [PlB_T, P2]. ]
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Corollary 5.1.3 Any problem (P) with bounded feasible set admits a dual that guarantees strong
duality and satisfies (5.1).

The construction outlined in the proof of Proposition 5.1.2 is only of theoretic interest. The
matrices X and g of the proof are not readily available in general and scaling typically destroys
the structure of the problem.

If a reasonable bound M > 0 on the trace of the primal feasible set is known then the following
approach may be computationally feasible. Introduce to (P) a slack variable s together with the

constraint
X 0
(Lo o ]r)=»

This ensures (5.1). Since Z will have the same block structure, the additional complexity is
neglectable. However, a large M may cause numerical difficulties in computing the optimum.
For simplicity we will assume in the following that a = 1 is the correct multiplier and consider
the function
() = Amax(C — -ATy) +b'y. (5.3)

We begin our investigations with the maximum eigenvalue function Amax(-)-

The most common variational characterization of the maximum eigenvalue of a symmetric ma-
trix uses the Rayleigh-Ritz ratio (see Theorem A.0.4), Apax(X) = max|j,| =1 v7 Xv. The maximum
is attained for eigenvectors to the maximum eigenvalue of X. Since v” Xv = (X, vv”) and the set

W={W=0:trW =1} (5.4)

is the convex hull of the set {vv? : ||v|]| = 1}, the maximum eigenvalue function may equivalently
be formulated as a semidefinite program,

Amax(X) = max{(X, W) : W € W}. (5.5)

This characterization of Apax(-) as the maximum over a family of linear functions implies that
Amax(+) is convex. Since W is bounded, Amax(-) is also Lipschitz continuous (in fact, it is the
support function of W and therefore sublinear). The subgradients of Amax(-) at X, i.e., the linear
forms W satisfying the subgradient inequality Apax(Y) > Amax(X) + (W, Y — X) for all Y € S,
are the matrices

W e Argmax {{(X, W) : W e W} = {(WeW:(X,W)=Anax(X)}

{PVPT .tV =1,V >0}, (56)

where the columns of P form an orthonormal basis of the eigenspace to the maximum eigenvalue

of X. We may also view the set of maximizers as the convex hull of the dyadic products of the

normalized eigenvectors to the maximum eigenvalue of X. Thus, any eigenvector to the maximum

eigenvalue of X gives rise to a subgradient of A,.x at X. The subdifferential of A\a.x at X is the

set of subgradients at X. It is denoted by OAnax(X) and is precisely the set described in (5.6).
Characterization (5.5) allows to reformulate f of (5.3) as

— _ AT, T, — -
Fy) = max (C - Ay, W) +b"y = max (C,W) + (b — AW, y). (5.7)
Since f is the max over the linear functions
fw(y) == (C, W) + (b — AW, y) (5.8)
the subdifferential of f at y is the set

of(y) {b— AW : W e W,(C — ATy, W) = Amax(C — ATy)}

{Viw : W € 0max(C — ATy)}.
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Observe that the set of all subgradients over all y is bounded because W is so. A point y, is a
minimizer of the convex function f if and only if 0 € df(y.), or equivalently,

Y« € Argmin f <= IW, € W: AW, = b and (C — ATy, W) = Amax(C — ATy.).  (5.10)
Replacing in (5.7) the set W by a subset w C W gives rise to a function minorizing f,

Fw(y) == max fw(y) < fw(y) = f(y) forall WC W,y € R™. (5.11)
wew

5.2 The Algorithm

The spectral bundle method is a specialization of the proximal bundle method of Kiwiel [1990] to
eigenvalue optimization problems of the form (E). We start with an intuitive explanation of the
general principle of this method.

The Proximal Bundle Method

The basic assumption in subgradient methods is that a convex objective function f is given by a
first order oracle, i.e., a subroutine that computes for an input point § the objective value f(7)
and a subgradient g € 8f(7). By definition, subgradients satisfy the subgradient inequality

fy) > f@)+G,y—9  VyeR".

They may therefore be used to construct a cutting plane model f of f minorizing f on R™. For
example, let y',...,y* denote a set of points for which the oracle has been evaluated to f(y¢) and
g' for i =1,... k, then a possible cutting plane model is

Fry) = max f(y") +{g",y —y').

=1,...
The linear approximations f(y*)+(g%,y — y*) of f will be of reasonable quality only in the vicinity

of y¢. Therefore we concentrate on a neighborhood around the last successful iterate §* and
determine the next trial point y**! as the minimizer of

. u B2
P =fw+5lv-9"
The quadratic term ||y — g)’“H2 ensures that the minimum of this augmented model is finite and
unique. The weight u > 0 allows to control to some extent the distance of y**! to the so called
stability center j* (u may also be interpreted as a Lagrange multiplier to a trust region constraint
112
ly = 9*[" < R).
If the function value f(y**!) at the new candidate shows reasonable progress in comparison
to the decrease predicted by the model value f*(y**1), i.e., for some parameter k € (0,1)

1@ = 16 > 6 [£@8) - PR

then we make a descent step by moving the stability center to §**! = y¥+1. Otherwise we improve
the cutting plane model by adding the new cutting plane f(y**')+{g"*!, - — y¥+1) but keep the
old stability center, g¥+! = §*. This is called a null step. These steps are iterated till the decrease
predicted by the cutting plane model is small relative to the function value.

In the following we specialize this general approach to problems of the form (E).
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The Oracle

The oracle is assumed to deliver, for a given matrix C — Ay*, the maximum eigenvalue and a
matrix

Wk € Argmax (C — ATy*, W) .
wew

In practice W# is typically computed by iterative methods (see Section 5.6) that deliver a nor-
malized eigenvector v* to the maximum eigenvalue. We will use the slightly more general W# for
the formal statement of the algorithm but assume Wg to be the dyadic product of an eigenvector,
Wk = vF(v*)T | in some updating formulas.

The Cutting Plane Model

The decisive step in exploiting the structure of (E) is the choice of an appropriate cutting plane
model for f. In view of (5.11), a cutting plane model may be obtained by restricting W to some
smaller set. Our particular choice for iteration k is

WE={P, VPl +aW,:trV +a=1,V € Sit,a >0}, (5.12)

where Py € M, ,, is an orthonormal matrix and W) € W. The corresponding cutting plane (or
rather cutting surface) model is f;. (cf. (5.11)). The character of this model is clarified in the
following proposition.

Proposition 5.2.1 For Wk of (5.12) and five defined as in (5.11)
Fon () = max {Amax (P (C — ATy) Py), (C — ATy, W)} + 0Ty < f(y). (5.13)

Proof. The right hand side inequality is the same as in (5.11). To prove the left hand equation
we exploit that the maximum of a linear function over a closed bounded convex set is equal to the
maximum over the extreme points of the set. Determining fiz; (y) for fixed y is a linear program

over the semidefinite set W* (cf. (5.11) and (5.8)). Since W¥ is the convex hull of W}, and the set
{P.VPl :trV =1,V = 0} we may consider these two sets separately and take the maximum of
the results. Now, f, (y) = (C— ATy, W) + b7y and

max = max C — ATy, P,VPTY + b7
We{P,VPT:trv=1,V>0} fw(y) {V0:tr v:1}< Y, gV I > Y
= pPr _ AT P, T

{Vtg}t%}lcx':l}< w (C— Aly)Pi, V) + b1y

= Amax(P (C — ATy)Pr) + b7y

where the last equation follows from (5.5) for the set W/ = {V > 0:trV = 1}. [ ]

The proposition shows that, for small r, the value of the cutting plane model can be determined
efficiently. It also hints at useful choices for Py: In order to obtain a large value of fy; in the
vicinity of the current candidate y*, the matrix P} should span the eigenspaces of the largest
eigenvalues of C' — ATy,

Without W, the set W* corresponds to a (";') dimensional face of the semidefinite cone
(Theorem 1.2.9), which might be too small to contain any W, of (5.10). The matrix W} allows
W to reach into the interior of S without significantly increasing the cost of computing the next
trial point.

The Augmented Model

It will be convenient to express the augmented model in terms of the augmented Lagrangian

LHy, W) = fw () + 5 ly = 35" = (= ATy, W) + 8Ty + Sy —g*[,  (.19)
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then
u k2
Fiy) = max L8y, W) = f(y) + 5 |y - 5°) (5.15)
Wewk
In the dual problem to min, f*(y),
max min L¥(y, W), (5.16)

wewk Y

the inner minimization over y is unconstrained. For fixed W € Wk the corresponding optimal y
can be determined explicitly,

. 1 . 1
Yin(W) := §* + L (AW =) = g* - V- (5.17)

General theorems about convex duality establish easily that strong duality holds for these duals,
but it is instructive to prove this fact directly via semidefinite duality.

Lemma 5.2.2 Let L* be as defined in (5.14). Then

min max L*(y, W) = LF(y**1 WH) = max min LF(y, W) (5.18)
Y wewk wWewk Y

with y*+t1 = yk . (W*H) unique, and W*+! an optimal solution of

min - ||b— AW — (W, C — ATg*) — b7k
st. W=DPVPL+aW,

trV+a=1

V >=0,aa>0.

(QSP)

Proof. By Proposition 5.2.1, fi, may be rewritten as

fan(@) = min A+ b7y st. X = PL(C — ATy)Py, A > (C — ATy, W).

In order to model % |ly — §||> = £(yTy — 2 (y,§) + §7§) we introduce a scalar d for the quadratic

term and use (2.7),

T
d>—yTy [;l gl]>0.

u

This allows to reformulate min, f*(y) as the dual semidefinite program

st. U=A+PI(ATy-C)P, =0
B=A+(Aly—C, W) >0
G [d yT]>0
y I |~

Denote by V, a, and H the dual variables to U, 8, and G, respectively, to obtain the primal
problem

max {(C,PVPI) +{C,Wi)a— 23 hyy + 45Ty

st. (LVy+a=trV+4+a=1
h11 =1
hi; = 3[b—uj — A(PyVPT) —aAW});  fori=2,...,n+1
V>=0,a>0,H>0.

Both primal and dual problems are strictly feasible, so strong duality holds by Theorem 2.2.5 and

hir hag ] of H must be

the optimal value is attained on both sides. The 2 x 2 submatrices [ 3 b
18 N



78 CHAPTER 5. THE SPECTRAL BUNDLE METHOD

positive semidefinite for i = 2,...,n+ 1 and therefore h;; > h?,. Because —h;; appears in the cost
function, and because the lower bound hfi is attained on all h;; simultaneously for H = hhT > 0
with h = [1, hya, ..., hln]T, it follows that h;; = h%i in all optimal solutions. Therefore H can be
eliminated from the primal problem and the primal cost function simplifies to

(C,PVPT +aWy) — L ||b— uj — APV ET +aWy)|* + %575 =
= — 55 b= AMW)II* = (b — AW),5) +(C, W),

with W = P, VPkT + aW}y,. The primal problem is now in the form that results from substituting
the expression for y*. (W) of (5.17) into (5.16). It remains to switch the optimization direction
and the sign in the cost function of the primal problem to obtain (QSP). Uniqueness of y*+!
follows from the strict convexity of (5.15). |

Observe that (QSP) is a quadratic semidefinite programming problem in small dimension if ry of
(5.12) is small. It can be solved efficiently via interior point methods (see Section 5.5) and the
optimal solution W**! gives rise to the new candidate point y*+1 = yk. (Wh+1),

Updating the Model

We add new subgradient information Ws = vv? € W to the model by adding the new eigenvector
v as orthonormalized column to P, thereby increasing the number of columns r. At the same
time it is important to keep r bounded so that (QSP) is still efficiently solvable. If r grows too
large, part of the subspace spanned by P has to be eliminated from P and its contribution to the
solution has to be incorporated in W.

‘Before we proceed to this aggregation step, we have to localize the “important” information
in W that has to be saved to WH+1. The decisive piece of information is W**! and the cutting
plane fy 41 induced by it (cf. (5.8)). Indeed, in Lemma 5.2.2, (5.18) implies that (y*+! Wk+1)
is a saddle point of L*,

max LF(y"1, W) < LF(y* 1, Whth) < min LF(y, W), (5.19)
wWeWwk Yy

Thus, if W*+! € WF+1 then the right hand side inequality ensures that after a null step the value
of the augmented value cannot decrease. This is true, because in a null step the stability center

§**t1 = §* remains unchanged, and therefore also L¥t!,

LE(y, Wkt = LEHL(y Wkt < fAH1(y)  for all y € R™ if g% = gF+L, (5.20)
We will see in the next section that
WL WEHT € WH with WHH! of the form (5.12) (5.21)

is all that is needed to guarantee convergence.

The minimal choice satisfying (5.21) for W&t = o*+1 (1) T is Wy 1y = WhH! and Ppyy =
v**1 50 rpy1 = 1 would suffice in theory. In practice we would like to preserve the “most
important” subspace within the subspace spanned by the columns of P in order to accumulate
the relevant eigenspace without recomputing the entire spectrum in each evaluation. It is not
possible to predict which subspace will be especially helpful in the future, but W*+! provides
some indication on the subspace that has been important in the last computation. Let V, and
a, denote the optimal solutions to (QSP) that give rise to W**! and let QAQT = V, denote an
eigenvalue decomposition of V, with Q7Q = I and A = diag(A1,..., Ary)s A1 > ... > A > 0.
Then

Wk = PV, PL + a W) = (PQ)A(PLQ)T + . W . (5.22)

We see that the first columns of P(), corresponding to the large eigenvalues of A, carry more
information about W*+! then the last columns. Taking this as an indication that the first columns
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of P, are more important for the optimization process, we split @) into two parts, @ = [Q1, Q2],
(1 carrying the eigenvectors to the large eigenvalues of V.. Analogously, we split A into two
smaller diagonal matrices A; and As. The new matrix Pyy; will hold an orthonormal basis of the
space spanned by the columns of P, and v¥+1,

Piy1 = orth [PyQq,v" ] . (5.23)

The orthonormalization operator orth could be implemented by a QR-factorization of the matrix
[PrQ1,v*1]. The remaining columns P,Q, are easily added to the new aggregate matrix,

(PeQ2)A2(PpQ2)" + a*Wk_

W —
kol tr Ay +

(5.24)

Proposition 5.2.3 For WEt! = o*+1(ok+1)T € W wpdate formulas (5.23) and (5.24) ensure
that Py11 is orthonormal, W11 € W, and that (5.21) is satisfied for W*t! of (5.12).

Proof. The first two properties follow from the construction, we show (5.21). Since the columns
of P41 form an orthonormal basis of the space spanned by P,Q; and v**!, there is a normalized
vector ¢ such that v¥™ = Pyi1¢. Then " (vF )T = P 1q¢" Pl € WHHL Now let V, =
Q1A QT +Q2A2Q5 and o, be as defined in the construction of the update formulas. Again, there
is an orthonormal matrix Q with PyQ; = P;1Q. Define the matrix V = QA;QT > 0 and the
scalar & = tr Ap+a, > 0. We have tr V+a& = tr A; +tr Ay +a, = 1 by the feasibility of (V, a.) for
(QSP) and WEHL 5 Pe VB, +aWiia = (PrQ1) A (PrQ1)" + (PrQ2) Ao (PrQ2)” + Wy =
PV, Pl + o, W), = Wk+L by (5.24) and (5.22). [ |

The Stopping Criterion

We would like the algorithm to stop if the objective value is relatively close to the optimal value
min, f(y). Unfortunately, no lower bound is available for this value. The cutting plane model
[ minorizes f, but we do not know its minimizer. In the augmented model the quadratic term
mimics a trust region constraint for the cutting plane model. Therefore we we may view y**! as the
minimizer of fy;. over a ball. If the weight u is reasonably small, then fi5. (y*) = fyyrsr (y**)
(cf. (5.19)) gives a lower bound on f over a ball of reasonable size. If the gap between f(§*) and
fwresr (yF1) is small,

F@*) = fwen (™) < (£ (@5 + 1), (5.25)

then we cannot expect good progress of the algorithm within the trust region and terminate.

We are now ready to state the algorithm.

Algorithm 5.2.4 (Spectral Bundle Method)
Input: y° € R™, ¢ >0, s € (0,1), a weight u > 0.

1. Set k=0, §° = y°, compute f(y°) and W°.

2. (Trial point finding). Compute WL and yF+t = yk. (WFHL) (Lemma 5.2.2).

3. (Stopping criterion). If f(§*) — fwresr(y*+') < e(|f(§*)] + 1) then stop.

4. (Bvaluation). Find WET" € Argmaxy, ¢y, (C — ATy*+Y W) and determine f(y**1).

5. (Descent test). If f(§%) — f(y*tY) > &[f(§*) — fyyesr (¥FFY)] then set §FTL = y*+1 (descent
step); otherwise set ¥+ = g% (null step).

6. (Model updating). Choose a WH' > {WrH1 WEHLL of the form (5.12).

7. Increase k by one and goto 2.
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Remark 5.2.5

1. In practice the weight u is adapted during the algorithm for efficiency reasons. For example,
a sequence of descent steps would indicate that u should be decreased in order to allow for
larger steps. Similarly, if each descent step is preceded by a long sequence of null steps
then a larger u might be more efficient. Such updates do not endanger convergence if u is
nondecreasing during null steps and nonincreasing as well as bounded from below by some
u > 0 for descent steps (see Kiwiel [1990]; this paper also includes the description of a
reasonable update rule).

2. The algorithmic approach may be interpreted in terms of the dual problem (D) of page 72.
Optimizing in (QSP) over a cutting plane model defined by W = PVPT,  V > 0 with
PTP = I corresponds to relaxing in (D) the constraint Z > 0 to PTZP > 0 while the
quadratic term ensures that the solutions remain bounded. The solution Zp of this modified
problem will usually have some negative eigenvalues. The corresponding eigenvectors are used
to update P. Thus the spectral bundle method may be viewed as a mechanism for updating
this relaxation till Z remains positive semidefinite and we may move on to the better y that is
now feasible. Within this framework, assumption (5.1) makes it possible to push the solution
of the relazation back into the feasible set of (D).

5.3 Convergence Analysis

We will prove convergence of Algorithm 5.2.4 for ¢ = 0. The proof is divided into the following
steps. After a technical lemma we prove optimality of the final y* if the algorithm stops after a
finite number of iterations. Then we show that for constant stability center § (if the descent test
is omitted) the algorithm converges to the optimal solution of miny, f(y) + %|ly — §||* and that the
gap between model value fy« (y*) and function value fwéc (y*) converges to zero. In the next step

this will imply that either a descent step is triggered after a finite number of iterations or §* is
optimal. Finally, we prove that in the case of an infinite number of descent steps the sequence of

the f(g*) satisfies f(g*) | inf, f(y).
The following two relations state, for L*, the simple facts that the linear part of a quadratic

can be removed by shifting the origin to the minimizer of the quadratic and that the minimum of
a function is smaller than an upper bound on one of its function values.

Proposition 5.3.1
Ly, W) = L (hin (W), W) + 5 |y = vhin ()] (5.26)
LEy* W) < f(g"). (5.27)
Proof. Using (5.14) and y*; (W) — §*¥ = L (AW —b) from (5.17) we obtain
LEy, W) = (C = ATy, W) + b7y + 5 ||y = ykin(W) + ylin (W) = *
= <Ca W) + <b - .A(W), y)
+g ly = yhan (|” = (b — AW,y — gl (W) + g [[4in (W) — g
u N u
2 |lmin (W) = 5 I+ 2 lly = Y W)|”.

The last line is the right hand side of (5.26). To see (5.27) we need Lemma 5.2.2 and (5.11),

| 2

LF (" W) = min L (y, W) < LEGE, W) = fnaa (%) < F@G5H).
Yy

Now we show that for € = 0 the stopping criterion identifies optimal solutions correctly.
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Lemma 5.3.2 f(§*) > fuwrt1 (FTY) and if f(§%) = fyyesr (y*T1) then §* is optimal.

Proof. Since W*+1 € Wk by step 6 of Algorithm 5.2.4, we have fyrs: (yF+!) < Fipe (WP <
T WF1) + %llyFtt — g2 = LE(yT, WhH) < f(§%) by (5.27). If equality holds then the
same relations imply [|y**! — §*||> = 0. Since y**! = yk. (WkFL) (5.17) and (5.9) yield

|

0=u(y** —§*) = —Vfwrr € 0f(y").

This handles the case of a finite number of iterations.

Next, we analyze the asymptotic behavior of null steps. The null step mechanism ensures with
its update strategy that the iterates converge to the minimizer of f(-) + %[/ - —§*||?. The proof
hinges on three basic observations. First, the minimal value of the augmented model is bounded
from above by f(§*) via (5.27). Second, the element W*+! € Wk+! forces the augmented model to
increase whenever it moves away from y**! by (5.26). Finally, the new subgradient W™ € Wh1
increases the value of the augmented model in y**! itself. In combination with the boundedness
of the iterates and the subgradients this will force fyx+1(y*t1) and fW;+1(yk+1) together, i.e.,
the model converges to the true function at the point of interest.

Lemma 5.3.3 Assume that, starting with iteration K, the algorithm is run without the descent
test, j = 9% =K+t = ... Then

er = fws (y*) — fwrr(y*) = 0 (5.28)
y* — argmin, maxy ey LF(y, W) = argmin,, f(y) + % [ly — §II” (5.29)
Proof. Note that the functions LK = LK+ = ... (5.14) and yX, = y5H = ... (5.17) are iden-

tical for all k > K. The y* = y& (W*) remain bounded for k¥ > K because maxwew ||[y%,(W)||
is bounded by the compactness of W (see (5.4)). Since W* € W* by (5.21) and W+l =

argmaxy, g LF(y*H1, W) by (5.19), we obtain from (5.26) and (5.27) for all k > K
L@ WA) + 3 o5 = o = LR W) < DR WAL ) < 1), (5:30)

So there exists an f. € R with L¥(y*, W*) 1 f. < f(§). In addition ||y*** — yk”2 — 0. By (5.21)
Wke WE and therefore (5.19) yields

Fwe (™) < max Fw @) = fwra (™). (5.31)

Then, using fyx (y*) > fwr(y*) by step 4 of the algorithm, the linearity of fwe, (5.31), Cauchy-
Schwarz, and the definition of L* (5.14), we find

0 <er = fux (V") — fur (0) = Fug W) = fun (0) + (Vg0 — 4**7)

< Sfwen () = fun(F) + HVfWSk |y — y*+|
— LK (R WY LK (k) — g ||yk+1 — 2y g Hyk _g 2y vawg ”yk _ yk+1|| _

From (5.30) it follows that L (y*+1, W*+1) — LK (y* W*) | 0. Furthermore, the last term satisfies
IV fwelllly* — y*+*{| = 0 because of the boundedness of V fiy (see (5.9)) and [[y*+* — y*||> — 0.
Finally, %|ly* — g[|*> — %[ly**! — §]|> = 0 because the y* are bounded and ||y*+* — y*||* — 0. This
proves fui (y*) — fu (y*) = 0.

In order to verify (5.29) let y. € R™ and W, € Argmaxyy ¢y LX (y., W) satisfy LK (y., W,) =

min, f(y) + ¥ [ly — glI”. Since the quadratic term is added to the convez function f, we have
F@R) + 3ly* = ll> = L% (y., W) + 3lly* — y.]”. On the other hand, y* =y, (W) yields

L¥(y., Wy) > L¥ (y., WF) > LE(y*, WF) = LK (y*, WE) — &4,
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We obtain u
PR+ 2 g~ g

Since L¥ (y*, W¥) = maxweyw LE(y*, W) = f(y*) + % ||y* - 1}“2, the claim follows from g, — 0.
|

PR WE) e > g [PA (5.32)

We proceed to the case that no descent steps occur in spite of the presence of the descent test.
By the previous lemma and the descent test this can only happen if the gap between f(j*) and
Fwrs1(y*t1) decreases to zero with the same rate as the gap between f(§*) and fW§+1(yk+1).

Because of the quadratic term in the augmented model this forces the y* to converge to §*.

Lemma 5.3.4 If in Algorithm 5.2.4 no descent steps occur starting with iteration K then §% €
Argmin f.

Proof. Let § = g% = §%+! = ..., By assumption the descent test of Algorithm 5.2.4 is violated
for all k¥ > K and therefore
FweW*) = fue(8*) > (1 = )£ (9) = fuwn ()] > 0, (5.33)

where nonnegativity follows from Lemma 5.3.2. By (5.28) this shows fyy«(y¥) — f(§). On the
other hand, W* € W, the definition of L* (5.14), and (5.26) imply

F@) > LEG,W*) = LHR W) + S (|5 — oF|* = a0 + u |5 — o*|[ -

5 |

Thus y* — §. Furthermore, by (5.17), V fy» = u(§ — y*) — 0. Now (5.9) yields for all y € R™
F@) > fwre ") + (Vwr,y —y*) = F(§) + {0,y —y*) = f(H).

This proves § € Argmin,, f(y). [ ]

In the following we may concentrate on the case of infinitely many descent steps. In order to
simplify notation we drop all iterates corresponding to null steps (indices k that do not satisfy
§* = y*) and equip the remaining iterates and the corresponding W* with a new index h so that
for all h

yht! Yoo (W), (5.34)
fo™ = fo"h

KLf (") = fwnea ("] > 0. (5.35)

If f(y*) | inf f then there is nothing to prove. Therefore we consider the case that the f(y")
remain bounded from below by f(y) for some § € R™.

\Y%

Lemma 5.3.5 If
f™ > f(@) for some § € R™ and all h (5.36)

then the y" converge to a minimizer of f.
Proof. By (5.36) and (5.11),

F@") 2 £@) 2 fwrns ") + (Vhwner, 5 =y,
and by (5.34) and (5.17),

V fwner = u(y" —y" ). (5.37)
Therefore the distance of y"*! to 7 can be bounded by
l7 -1 = g —o"+ 4" ="'
< ||gj _ yh”2 +2 <gj _ yh,yh _ yh+1> +2 <yh _ yh+1’yh _ yh+1>
= Jg—v"|" +2F - v, Ve fu)
< g =" + 2" = a6 ]
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Tterating this argument yields for h > H

oo

g =91 <13 = "7 + 2 D1 = fwses () (5.35)
i=H

Because the sum over all descents f(y") — f(y"*') cannot exceed f(y°) — f(¥), we obtain from
(5.35)

o0 o
&Y F@") = furen (0" < DA = F@] < FG°) - F@)- (5.39)
h=0 h=0
This together with (5.38) shows that the y” are bounded and have an accumulation point §. We
may replace § with § in (5.38) and choose H so that the right hand side of (5.38) is smaller
than some arbitrary € > 0. This shows that y* — § and, via (5.37), Vfyyrt1 — 0. Eq. (5.39)
implies f(y") — fwn+1(y"*1) = 0 and therefore fyyn+1 (") — £(§). Now f(y) > fuwn+r (y"1) +
(V fwn+1,y — y" 1Y = f(§) for all y € R™ completes the proof. [ |

We are ready to state the main theorem.

Theorem 5.3.6 Either j* — §j € Argmingcpm f(y), or Argmin,cpm f(y) =0 and ||| - oo. In
both cases f(§*) | infyerm f.

Proof. Lemma 5.3.4 shows §* — § € Argmin, f(y) for a finite number of descent steps, Lemma
5.3.5 does the same for an infinite number of descent steps satisfying (5.36). Otherwise there is
no g € R™ so that f9° > f(¢) for all k and thus f(§*) — inf f by the definition of inf. Since f is
continuous, boundedness of the y* would imply attainment of the inf and therefore (5.36). |

Remark 5.3.7 The proof of convergence illustrates that (5.21) is only needed to force the null
steps to produce a descent step over time. After the descent step, to §*+1 say, the algorithm could

be restarted with y° = y*+1 without endangering convergence.

It is instructive to relate the W* to the optimal solutions of the primal problem (P) via
Proposition 5.1.1.

Theorem 5.3.8 Let X, := Argmaxy {(C,X) : AX =b,tr X =1,X > 0} denote the set of op-
timal solutions of the primal semidefinite program corresponding to min, f(y) and assume that
Argmin, f(y) # 0. If k is finite with k = K on termination then WX*1 € X,. If there is an
infinite number of iterations and no descent steps occur after iteration K then all accumulation

points of W* lie in X,.. Otherwise all accumulation points of the W giving rise to descent steps
(see (5.34)) lie in X..

Proof. Following the proof of Proposition 5.1.1 it can be worked out that min, f(y) is equivalent
to the dual of the primal-dual pair of semidefinite programs.

max (C,X)

! min A+ by
ey 0 ALTh Dy st Z=M+Ahy-C
X >0 Zz0.

First consider the case of finite k& with £k = K on termination. By assumption, € = 0 and by step 3
of Algorithm 5.2.4, f(§%) = fwx+1(yE*!). Then the proof of Lemma 5.3.2 shows V fyyxs1 =
b— AWE+L = 0 and with WK+ € WK C W it follows from (5.4) that WX+ is feasible for (Py).
Furthermore, (C, W) = (C,W¥) + (b — AWEFL yBK+1) = (O — ATyE+H WEHL) 4 pTyK+1 =
S (FH) = (55), proving WEH € ..

Now assume that the number or iterations is infinite and there are no descent steps af-
ter iteration K. By (5.12) and (5.4), all W+l € W* C W and W is compact. There-

fore the W* have accumulation points and these are contained in Y. Denote by S a subse-
quence with W* -5 W, € W. The proof of Lemma 5.3.4 shows that y* = § € Argmin, f(y),
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Fwe (%) 5, f(@), and Ve = b— AW 5, 0. Then by the continuity of A it follows that
b— AW. = 0 and fys(y¥) = (C,WF) + (b— AWk y¥) =5 (C,WF) + (0,5) = f(§), thus
W, € Xs.

For an infinite number of descent steps observe that, by assumption, Argmin, f(y) # 0 and

therefore the setting of Lemma 5.3.5 applies. The proof can be completed as in the null step case.
|

Cutting Plane Models

In constructing WH+! from W¥, (5.21) is all that is needed to guarantee convergence. The minimal
choice within the framework (5.12) is W41 = W*+! and Pyyq1 = v**! where v**! is an eigenvector
to the maximum eigenvalue of C' — ATy**1. One should not, however, be tempted to believe that
aggregation is restricted to W.

In order to illustrate the power of aggregation in P let us consider a second extreme choice: Use
Py, exclusively and ignore W, (set a to zero in (5.12)). In this case we have to provide sufficiently
many columns r in P so that we can reconstruct W*+!. The trivial upper bound on 7 is n, but a
much better bound is available via Lemma 2.3.1 if m is small.

Lemma 5.3.9 If Wk = {P,VPT :trV =1,V € S}} with P, € M,,,, PTP, = I, and WEt* =
VR ()T then (5.21) can be ensured whenever r > T + 1 where ¥ € N is the largest number
satisfying ("1') <m + 1.

Proof. By Lemma 5.2.2 and the uniqueness of y*+1, all optimal solutions W*+! = P, V*PT of
(QSP) can be characterized as the set of optimal solutions of the following semidefinite program,

max (Pl (C — AT§*)P, V)

st.  APVPL) =b+uy* — k)
trV =1
V = 0.

The new constraint with respect to (QSP) is derived from the uniqueness condition on y*+1!,
yk. (Wkt1) = y*+1 (5.17), and replaces the quadratic cost term that is now constant. So the new
program has the same optimal solutions as (QSP). It is a linear program with strictly feasible dual
due to the constraint tr V' = 1 (Proposition 5.1.1), therefore the optimal solution is attained in a
face of dimension 0. The number of constraints is m + 1. By Lemma 2.3.1, the rank of matrices
contained in 0 dimensional faces of the feasible set is at most ¥ with ("5') < m + 1. Thus, the
program has an optimal solution V, of rank at most 7. Let Vi, = QAQT denote an eigenvalue
decomposition of V, with Q € M, and QTQ = I and A the diagonal matrix of eigenvalues
At >...> )\ > 0. Let Pyyq = orth [P,Q,v*]. Then Py has at most 7 + 1 columns and Whtt
contains W = PLQA(P,Q)T as well as v+ (v*+1)T by following the line of argument in the
proof of Proposition 5.2.3. This completes the proof. |

Various other choices of sets W¥ may turn out useful in particular applications. For example,
in the case of several primal matrices one may wish to use a model with several matrices V and

W such as

- ny ) ) W ey ny W
Wh = {Zp,zw(P,;)T—i—ZaiW;c : trZV,-%—Zai =1, V;>=0fori=1,...,ny,
i=1 i=1 i=1 i=1

aiZOforizl,...,nW},

with appropriately defined P} and W.

The main design criterion for a model will be the efficient computability of the corresponding
quadratic semidefinite subproblem. This will have to take into account the trade off between the
quality of the model, which strongly influences the number of iterations required to achieve the
desired precision, and the cost of evaluating f itself.
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5.4 The Spectral Bundle Method with Bounds

So far we have assumed that y is unconstrained. We have exploited this in (5.17) in computing
the unconstrained minimizer of min, L¥(y,W). The latter step made it possible to reduce the
number of variables in the subproblem (QSP) of Lemma 5.2.2 from m to ("%") (with r a choosable
parameter).

With respect to the primal problem (P) of Section 5.1, coordinate y; of y is unconstrained
if the i-th primal constraint is an equality constraint. Thus, the spectral bundle algorithm 5.2.4
is designed for primal equality constraints only. This restriction, paired with the requirement of
constant trace on the primal feasible set, rules out many applications of practical importance.
For example, several semidefinite relaxations contain inequalities in their basic formulation, e.g.,
quadratic 0-1 knapsack and max-k-cut. The standard technique of combinatorial optimization of
improving initial relaxations by cutting planes relies on primal inequality constraints.

In this section we will show how the spectral bundle method can be extended to primal in-
equality constraints (we cannot do without assumption (5.1), though). In the eigenvalue problem
this corresponds to requiring y; > 0 for some of the coordinates. In order to keep notation simple,
we assume in this section only that y € Y = R, but it is not difficult to extend this approach
to a combination of unconstrained and bounded variables (bounded in the sense that I; < y; < u;
with 1;,u; € R). In particular, we develop the approach for the problem

min Amax (C — ATy) +b7y.
y>0

Restated in terms of f (cf. (5.3)) and the indicator function 72y of ¥ (1y(y) = 0if y € Y, o0
otherwise), the problem reads

Join fy  with fr(y) == fy) + v ()

Again, we set up linear minorants for fy,
fwa(y) = (C = ATy, W) + (b —n,y) (5.40)

where W € W, with W as in (5.4), are the subgradients of Apnax(-) and n € R are the Lagrange
multipliers to the nonnegativity constraints on y (or subgradients of 72y). With this notation and
(5.5),

fyr(y)= sup  fwy(y).
WEW,neRT

The subdifferential of fy at y € Y is

Ofv(y) = {Viwy: WeW,neRY, fwnly) =f(y)}. (5.41)

Similar to (5.11) we describe cutting plane models of fy by

T ®) = max fua(y) < fr(y)  foral WCW,neR,yeR™. (5.42)
S

For reasons that will become clear soon, we do not extend 7 into a set in fi3; . We employ WF of
(5.12) and define, as in (5.14), the augmented Lagrangian with respect to §* € Y,

u N

LE(y; Won) = fwa () + 5 |y — *| (5.43)

Following the unconstrained case, we would like to compute the next trial point y*t! as the
minimizer of the augmented problem

min sup Lk (y; W,n) (5.44)

VER™ ek per
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via the dual problem

max min L¥(y; W, n) (5.45)
WeWk neRp YER™

by exploiting the unconstrained inner minimization over y in 5.45,

Yoin(Tom) 1= 4 (AW b4 7) = §* — - Vi, (5.46)
Indeed, a saddle point exists for (5.44) and (5.45)!, but (5.45) still contains more than m variables
due to 7, so the advantage in efficiency is lost.

We regain efficiency by following a slightly weaker approach. Instead of solving (5.45) directly,
we approximate its solution by a sequence of “coordinatewise” optimization steps. First, fix 7 and
solve

max min L*(y; W,7) (5.47)
wewk yER™
for an optimal W*. The latter step is identical to the situation described in Lemma 5.2.2 with b
replaced by b — 7. Rewritten with 7 the Lemma reads

Lemma 5.4.1 Let L* be as defined in (5.43) and fj € RT, then

min max L¥(y;W,4) = L*(y*2;W*,7) = max min L*(y; W, 7) (5.48)
Yy wewk wewk ¥

with y+= = y* _(W+,5) unique, and W+ an optimal solution of

min o5 [|b =i = AW = (W, C — ATg*) — (b —,§")
st. W =PVP! +aW,

(QSPy) trV+a=1
V>=0,a>0.
Proof. Replace b with b — 7 in Lemma 5.2.2. ]

Next we keep W fixed and solve

max min L*(y; W+, n) (5.49)
neERY y

for an optimal 5. For this problem the optimal solution is particularly easy to compute.

Lemma 5.4.2 Let LF be as defined in (5.43) and let W+ € W. Then

min sup L*(y,W+,n) = LF(y*, W*,n") = max min LF(y, W, n) (5.50)
YER™ perm nERT ycR™
with
1
nt =k (WF) := max {0, —u [g}k + E(AW+ - b)] } (5.51)

and (cf. (5.46))
yt=yEan(WHnt) >0  satisfying  (y*,nt) =0. (5.52)

Proof. We first show that (y*,WT,n7) is a solution of the right hand side problem of (5.50).
Substituting y*. (W,n) of (5.46) for y in (5.49) we obtain

o1 . 1 . 1 2
Q) min gl + (3% + LA =0).0) = (W) = (b= AW.#) + 52 b= AW

neRY

1See Rockafellar [1970], Theorem 37.6.
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This problem is separable convex in 7, i.e., the optimal solution is obtained by solving (QP) for
each coordinate of 7 independently. The unconstrained first order optimality conditions for 7;
read

1 1
—ni + 9% + = (AWT —b) = 0.
u u

In combination with the sign constraint n; > 0 and the convexity of the cost function of (QP) this
yields (5.51). Now (5.52) is easily verified by direct computation.

In (5.50) the value of the left hand side problem is at least the value of the right hand side
problem because the infy of the sup, is always greater or equal to the sup, of the inf,. Thus it
suffices to exhibit a solution y for the left hand side that attains L(y™, W+, n*). This solution is
yT: Since yT > 0, the inner sup is attained for any 7 with (y*,#) = 0 and in particular for n*. B

In general the point (W™, ") will not be the optimal solution of (5.45) because W is usually not
the best choice within W* for the new . The gap S gt () = fw+ y+ (yT) is easy to compute
(see Proposition 5.2.1) and provides a good indicator for the quality of this approximate solution.

Lemma 5.4.3 Let yt, W, and n™ be given as in Lemmas 5.4.1 and 5.4.2. Then fy+ +(y) <
St (yT). If equality holds then (y*, W+ ,n%) is a saddle point of (5.44) and (5.45).

Proof. The inequality follows from W+ € W* (sce Lemma 5.4.1) and the definition of Tie ot
in (5.42). If equality holds then L*(y*, W+, ,nt) = L¥(yk . (W*,nT),W+,nt) is a lower bound
for (5.45). In order to see that it is an upper bound for (5.44) observe that the inner sup is
separable into sup, and maxy, . The supremum over n € R is attained for nt because yT > 0

and (y*,n") = 0 (cf. (5.52)). The maximum over W € W is attained for W+ by assumption. W

If this gap is relatively large, say, for some parameter ks € (0, 00]
Ty e UH) = Ft it ) = waa[F@G*) = e e )], (5.53)

then we iterate these coordinatewise maximization steps by setting 7 = ™ and continue with
(5.47). Otherwise we set y**! = ¢+ W+l = W+ and n**! = 5T and continue as in the
standard spectral bundle method.

Algorithm 5.4.4 (Spectral Bundle Method with Bounds)
Input: y° € R*, € >0, s € (0,1), ks € (0,00], a weight u > 0.
1. Set k=0, §° = 4°, compute f(y°) and ]7\70, set n° =nl . (W) for some W € wo.
2. (Trial point finding). Set i) = n*.
(a) Find W+ € Argmax;, 5, min,cgm L¥(y; W, 1) (see Lemma 5.4.1).
(b) Set 't = nk (W), y = ylin(WH,n%) (see Lemma 5.4.2).
(c) (Stopping criterion). If f(§*) — fw+ .+ (") <e(|f(G*)] + 1) then stop.
(@) IF () = Foe e ) > Bt F55) — e e (4] then set = 1+ and goto (a).
(e) Set yk+! =yt, Whtl = W+, phtl =yt

3. (Bvaluation). Find W' € Argmaxyy ¢y (C — ATy*+1 W) and determine f(y*+).

4. (Descent test). If f(§*) — f(y*™") > k[f(§*) = fwrsr gprr (y*T)], then set gFH! = y**1,
nttl = gkt L(WETY) (descent step); otherwise set %1 = g% (null step).

5. (Model updating). Choose a Wh+t 5 {Wk"'l,WgH} of the form (5.12).

6. Increase k by one and goto 2.
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Remark 5.4.5

1. Observe that we allow kpr = 00. For this choice the inner loop in step 2 is executed exactly
once. We will show below that just one update of the Lagrange multipliers n suffices to
guarantee convergence. In practice, kpr should be selected smaller than 1—k in order to avoid
null steps due to model imprecision. Indeed, suppose y*+1 =yt is accepted as candidate even
though fype - (y+) — fws () > (1= W) = furs g (y*)]. Then the value of cutting
plane model fi.(y™) (a lower bound on f(y*)) ensures a null step in step 4.

2. With respect to the primal semidefinite program (P) of Section 5.1, the Lagrange multipliers
1 may be interpreted as primal slack variables that transform inequalities (A;, X) < b; into
equalities (A;, X) +n; = b;.

3. With respect to Remark 5.2.5, 2, the slack variables n;, together with X, form a larger block
matriz that does not satisfy (5.1) in the dual. However, due to the special structure, it is
still possible to find back into the feasible region via Lemma 5.4.2.

The proof of convergence follows the same line of argument that was used for the standard
spectral bundle method. The first technical result matches Proposition 5.3.1.

Proposition 5.4.6

u 2

LE(y; Won) = L (yonin(Wom), Wom) + 5 [ = e (W) (5.54)

LEM W M) < £ () (5.55)

Proof. Analogous to the proof of Proposition 5.3.1. |

We show that for £ = 0 the stopping criterion identifies optimal solutions correctly.

Lemma 5.4.7 f(§*) > fur+r o1 (y*T) and if f(§%) = firsr pora(yFFL) then g% € Y is opti-
mal.

Proof. Together with y*™! >0 and (nF+1,y**+1) =0 (cf. (5.52)) the proof may be completed as
for Lemma 5.3.2. [ ]

We first prove the lemma, corresponding to Lemma 5.3.3 for ks = oo, i.e., the inner loop in step 2
is executed exactly once per outer iteration. The proof is identical to the proof of Lemma 5.3.3 up
to the fact that we consider basically two subgradient steps in one. Once this result is established,
the proof for general ks € (0, 00] will follow easily.

Lemma 5.4.8 Let kpy = oo and assume that, starting with iteration K, Algorithm 5.4.4 is run

without descent steps, §j = % = g5t =.... Then
€ 1= fwg,nk (Z/k) — fwr g (Z/k) -0, (5.56)
y* > argmin | max LMy W) = argmin £0) + 5 ly = 91 (5.57)
Proof. Note that the functions LX = LE+1 = .. (5.43) and yX, = yXt! ... (5.46) are identical

for all Kk > K. The n¥ = nk_ (W*) (5.51) and therefore also the y* = y& (W¥ n*) remain
bounded for k¥ > K because of the compactness of W (see (5.4)). Since Ky = o0, the inner
loop in step 2 of Algorithm 5.4.4 is executed only once, and so § = y* and yt = yF*!. Let
ykts = yK (W1 1k) denote the intermediate y after computing W*+1, but before computing
nk+1. Since Wk € WE by (5.21) and Wk+! = argmaxy, . L* (y¥+2, W,n¥) by (5.48), we obtain
from (5.54) for all k& > K

u 1 2 1
LE(y*, Wk, n*) + 2 Hy’““ —y’“H = L¥(yFr=2, Wk g
< LK(yk"'% WhH k).

(5.58)
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Likewise, n* € R and n**+! = argmax, cgm LE(y*+1, Wkt ) by (5.50) imply via (5.54)

2
= LK@, Wb

LE (gt Wkt pktly < f(5).

1 u 1
LE (™2, W nf) + 5 Hy’““ —ytts

(5.59)

IN

The last inequality L (y*+! Wkt pk+l) < £(3) follows from (5.55). So there exists an f, € R
with LE (y*, W* n¥) 1+ f. < f(4). In addition, ||y’“+1 —y’“”2 — 0. By (5.21) Wk € Wk, and
therefore (5.48) yields

Fwi e FFE) < max fu (yFTE) = fraen g (yhHE). (5.60)
s Weivk

Then, using fiyx ;- (y*) > fwr g (y*) by step 3 of the algorithm, the linearity of fwi e (5.60),
Cauchy-Schwarz, and (5.43), we find

0<er := fW;f,n’“ (yk) - fW’“,n’c (yk)
1 1
= Swrar W) = e 0F) + (Vg ot =y

1 1
< Sfwrerge U2) = o e (0F) + ||V o || [0 — 2
S

= LK( k+3. kel By — LK (yk W k)_E ki - 2"'9” k_AHZ
= Y ; 7 Yy > 2 Y Y 2 Y Y

Hyk _yk+%

+ HVfWg,nk

From (5.58) and (5.59) we obtain L (yk+1; W+l nk) — LE (yk; Wk nk) | 0. Next, observe that
||VfW§’,,k||||yk — y**3|| - 0 because of the boundedness of Vfwe (due to the boundedness of
n* and W) and [y**+z —y*||> - 0. Finally, 2lg* — 9[> — 2[ly*+2 — §||> — 0 because of the
boundedness of y* and ||y**2 — y*||2 — 0. This proves fwt e W) = fwr e (¥*) — 0.

In order to verify (5.57), let y. € Y and W, € Argmaxyy ¢y, LE (y., W, 0) satisfy LE (y., W,,0) =
minyey f(y) + %|ly —§||>. By the quadratic term added to the convex function f, we have
")+ 5lly* = 9I1> > L¥ (s, W.) + §ly* — y«|*. On the other hand, y* =y, (W*, n*) implies

L¥(y., Wi, 0) > L (y., WF,0) > LE (y,,, W¥,0%) > LE (y*, W*,0*) = LE (%, Wh,n*) — &4

We obtain u ) u R

FON + 5 " =all” = L5068 Wen®) e 2 5 " - we|”
Since LK (y¥, Wk, n*) = maxwew L¥ (W%, W,n¥) = f(u*) + % ||v* -9 ? the claim follows from
Ep — 0. |

Next, for kpr € (0, 00], consider the case that the inner loop in step 2 is infinite.

Corollary 5.4.9 If, for kyr € (0,00], in iteration K Algorithm 5.4.4 always proceeds to 2(a) in
step 2(d), then the sequences fg. , (y*) — fw+y+ = 0 and y* — argmin ey fim + 5y — T |
In this case § € Argmin fy and fw+ .+ ") = f(G*).

Proof. Observe, that the behavior of this algorithm is the same as if ey = oo, no descent
steps are accepted, the set W is set to W, and in the model updating step 5 the set WF is
left unchanged. In this situation the proof of Lemma 5.4.8 applies verbatim. This shows y™ —
argming ey fype + 5lly —§*(1” and fizu 4 (4F) = fw+y+ — 0. The convergence of the latter proves
fw+n+ — (%) by the condition in step 2(d) of the algorithm with x, > 0. But (5.54) implies

. . R 2 . 2

F@) 2 LK@, W) = LX@H WHnt) + § 115 -y I” = fwe e G + ullg —y*||" and
therefore y*+1 — 4. [ |

Finally, it remains to show (5.56) and (5.57) in the case that all inner loops of step 2 are finite.
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Corollary 5.4.10 If kpr € (0,00] and k — oo then (5.56) and (5.57) hold.

Proof. In the proof of Lemma 5.4.8 use instead of indices k + % and k + 1 the data of the first
iterate of the inner loop in iteration k + 1. |

The necessary modifications in lemmas 5.3.4 and 5.3.5 are straight forward. Therefore, Theorem
5.3.6 also applies to Algorithm 5.4.4.

5.5 The Quadratic Semidefinite Subproblem

In every iteration of the spectral bundle algorithm 5.2.4, the quadratic semidefinite subproblem
(QSP) of Lemma 5.2.2 has to be solved (necessary modifications for inequalities are discussed at
the end of this section). We do this in two steps. For implementational efficiency, we eliminate W
in (QSP) and express the quadratic cost function in terms of V' and a. The computation of these
cost parameters is the first step. In the second step we solve the reduced quadratic semidefinite
programming problem by an interior point approach. e

In order to simplify notation, we drop the indices k of P, W, 4, 7, W, L, ymia(-), etc., in this
section. After the substitution of W by PV PT + oW the quadratic cost function of (QSP) reads

1 — 1 — 1
— APV PT + a)|* + — [Ib]]* + ( PVPT + oW, AT(§ — =b) — C ) — b7§.
2u 2u u

Using the svec operator of Section 1.3, we obtain a reduced problem in V' and «,

min l[svecV ]T [ Qu  qi2 ] [svecV ] . [ ¢ ]T [ svecV ] +d

2 a afy a2 a ) a
st. a+sfsvecV =1 (5.61)
a>0,V >0,
where, after some technical linear algebra,
Q11 Ly svec(PT A;P) svec(PT A; P)T
Q12 L svec(PT AT(AW)P)
g2 = L(AW,AW)
o = —svee(PT[AT(Lb—§) + C]P) (5.62)
o = —((tb—9,AW) + (C,W))
d = (b30-9)
sy = svecl,.

Several remarks are in order.

Remark 5.5.1

1. This problem in (T'gl) +1 variables can be solved efficiently by interior point methods provided

r s not too large, say, around 30. Since convergence is guaranteed even for r = 1, the spectral
bundle algorithm can be run for problems with a huge number m of variables (or constraints
in terms of the primal problem (P)).

2. If storing W as a matriz is impossible due to memory restrictions, then it suffices to store
and update the m-vector AW and the scalar <C’, W) Indeed, only these terms appear in the
computation of the cost coefficients. Due to the linearity of A and (C,-), the update of AW
and (C,W) corresponding to (5.24) is straight forward.
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3. Almost all calculations involve the projected matrices PTA;P € S,.. They are computed only
once for each solution of (5.61), and only one such matriz must be kept in memory if the
values of Q11 to ¢co are accumulated.

4. The most expensive operation in computing the cost coefficients is the accumulation of Q11,
which involves the summation of m dyadic products of (T‘gl) -vectors in O(mr*) operations.
For rather small v but sufficiently large m, this operation needs more time than solving the
reduced quadratic semidefinite subproblem.

Like in standard convex quadratic programming we may construct a dual to (5.61). To this
end we introduce a Lagrange multiplier A for the equality constraint, a dual slack matrix U > 0
as complementary variable to V', and a dual slack scalar 8 > 0 as complementary variable to a.
The dual to (5.61) reads

T
max _%[svecV] [Qn q12][svecV]_)\+d

a dly g2 a
ot svecU _ Q%l q12 svecV el (5.63)
g di2 422 «Q c2 1
U>=0,8>0.

Although the cost function does not look too familiar, it turns out to be (the negative of) the
value of the augmented model at ymin (W) with W = PVPT + oW, i.e., — L(ymin(W), W), if X is
chosen as small as possible. For later reference we use the iteration index & within the statement
of the lemma.

Lemma 5.5.2 Let, for iteration k of Algorithm 5.2.4, (V,a) be a feasible point of (5.61) and
(V,a, ) a feasible point of (5.63). Denote the negative of the primal and dual cost functions by

£ (V,a) = 1 [ svecV ]T [ Q11 qi2 ] [ svecV ] 3 [ 1 ]T [ svecV ] g (5.64)

2 o aty g2 a o a
and v
1| svecV Q q svecV
k 11 12
V,a,\) i= = A—d. 5.65
qd( , O ) 9 [ a :| [ qﬂ go2 ] [ a :| + ( )

Then, for W = PIV P, + oW}, and § =y, (W),

@t (V,a) = L¥(§,W) < max LF@§, W) < ¢§(V,a, \) (5.66)
Wewk

and g5 (V,a) = ¢5(V,a, \) if and only if (V,a) is an optimal solution of (5.61) and (V,a, \) is an
optimal solution of (5.63).

Proof. For notational convenience we work without iteration counters. The left hand side equality
in (5.66) follows by the equivalence of (5.61) to (QSP) of Lemma 5.2.2 and the construction of
(QSP) there. The middle inequality follows from W € W and the choice of §. By the definition

of L (5.14), the right hand side inequality is equivalent to
. U, . .
w@ + 5115 - JlI” < qa(V, 0, \). (5.67)

By expanding the coefficients of (5.62) in the slack variable U of (5.63) and by rearranging terms,
we obtain with the definition of ymin (5.17),

U=-pPT [C+AT(Q+%(b—AVT/))]P+/\I:—PT [C + AT§] P+ A = 0.
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Thus, by the feasibility of (V, a, A)
A > Amax(PT [C + ATg] P). (5.68)
Likewise, the feasibility of slack variable 8 yields
A>(C—AT§,W). (5.69)

The quadratic and the constant term of the cost function g4 expand to

o A0 = (o -3) -
= (bi+] <Aw_b>>+_|\A H (i)t 6

0.3) + 5 b - 407 = 5 7 =3l

where the last equation follows from (5.17) with § = ymin(W). Thus, by (5.70), (5.68), and (5.5),
. . T - u, . .
Qd(V,a, A) Z max {)‘maX(PT [C + ATy] P); <C - AT 7W>} + <b7 y) + 5 ”y - y”2 .

Comparing this to (5.13) we see that (5.67) holds and therefore (5.66) is proved. Finally, the
equivalence of ¢,(V, ) = ga4(V, @, A) to optimality is due to the duality result of Lemma 5.2.2. W

We solve (5.61) by a primal-dual interior point method (see Chapter 4). For a barrier parameter
p > 0, the system reads

Fy = QiuisvecV + qoa + ¢ + Asy — svec(U) = 0

Fz = q1T2 svecV 4+ guma + c2 + A - B =0

F, = —sf svecV — a + 1 =0
v = ul
af = U.

A step direction (Aa, AB, AU, AV, AX) may be determined via the linearized system

@11 svecdV  + q2Aa — AXs; — svecAU = -—Fy
qiysvecdV  + golAa — AN — AB = -Fp
—sFsvecdV - Aa = —-FK
(U ®s V1 svecdV + svecAU = psvecV ! —svecU
(Bla)Aa + A = pa ' =B

In the current context we prefer the linearization (U ®5 V1) svec AV + svec AU, because for this
choice the system is easy to solve for AV with relatively little computational work per iteration.
The final system for AV reads

(Qu +U e, V! + (g + qo2)s187 — quast — srqly) svecdV = (5.71)
= psvec(V'1) —svec(U) — Fy — Fiqio — (pat — g — gFl — qooF1)sy

It can be worked out that the system matrix is positive definite (because U ®, V! = 0 by Propo-
sition 1.3.3, 6, it suffices to show that Q11 + gaasrsT — qi2sT — s1qi5 = 0 using [ 311 le ] > 0).
12 g22
3
The main work per iteration is the factorization of this matrix (with V € S, this is ("}')"/3) and
it is not possible to do much better, since ()11 has to be inverted at some point. Because of the
strong dominance of the factorization it pays to employ a predictor corrector approach, but we
will not delve into this here.
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For V € S, a strictly feasible primal starting point is

VO = I/ir+1)
a® = 1/(r+1).

A strictly feasible dual starting point can be constructed by choosing A° sufficiently positive such
that

U° = svec }(Qr1svec(V?) +a’qia+c1) +X°T =0 (5.72)
B gigsvecV + gosa +c2 + A° > 0. (5.73)

By carefully choosing the barrier parameter and the step length in the line search, it is possible
to set up a feasible primal-dual interior point algorithm that provably converges in polynomial
time to a prespecified relative precision with respect to the gap in the starting point (see Kojima,
Shindoh, and Hara [1997]). Here, we prefer to state our implementational choices. For the strictly
feasible primal-dual starting pair we compute the first u = ((U,V) + af)/(r + 1), compute the
step direction (Aa, AS, AU, AV, A)) as indicated above , perform a line search with line search
parameter 0 < & < 1 so that (a + dAq, B + JAB,U + AU,V + AV, A + 0A)) is again strictly
feasible, move to this new point, compute a new u by

, UV)+a . 1 if § <1
u:mln{uold,yu} Wlth’y:{ 5 : ;i
5

r+1 E—%62 1f(5

and iterate.

The choice of the stopping criterion requires some care. Observe that all iterates of the interior
point algorithm satisfy the requirements of Lemma 5.5.2 and thus (5.66) is valid throughout.
Denote the optimal value of the augmented problem by

l. = max LF(y(W),W) (5.74)
Wewk

In computing the solution of (QSP) we should guarantee two properties. First, the accuracy has
to be reasonable with respect to the gap between f(§) — l. (which is nonnegative by (5.27)). We
can model this by requiring that gq — gp < £4(f(9) — gp) for some appropriately chosen ¢, € (0,1).
And second, for the proof of convergence it is of vital importance that (5.30) and (5.31) hold after
a null step. Verifying these two conditions directly is computationally too expensive. However,

with . k
— —o0 Ly =y
Fora = { L(y*,W*)  otherwise, (5.75)

testing for gq — gp < %(qd — lo1g) will have a similar effect.
Lemma 5.5.3 Given the same assumptions and definitions as in Lemma 5.5.2. If §* # y* and
2;(V,a,N) =gy (V,a) < 5 [a5(V,a, N) = LE(y*, WH)], (5.76)
then W = PyVPI + oW}, and §j = yk, (W) satisfy
LEWR Wh + 1 5 —o*|* < 25, W) (5.77)
and B
fwe (@) < i @) + LMG, W) = L*(y*, W), (5.78)

Proof. Let g, = ¢f(V,a) and g4 = ¢5(V, o, X). We first prove (5.77). By (5.26), W* € Wk, and
(5.66),

U .- 2 - ~
LRy" Wh) + 5 l5—of | = L* (@, W) < max LG, W) < ga.
Wewk
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Condition (5.76) implies g, > 3[qq + L*(y*, W*)] and so (5.77) follows from (5.66) and

2LHWR W) + 3 5= v*|* < qa+ LA, WF) < 2q, = 2255, W).
Now we turn to (5.78). Observe that by (5.66), (5.14), and W¥ € W,

qa —ap > max LG, W) - LHG,W) = max fw(§) - fw (@) > fws (@) — fw (@)
Wewk wewk
Since, by (5.76) and (5.66), g4 — qp < qp — L*(y*, W*) = L*(§j, W) — L*(y*, W*), this proves
(5.78). m

The next lemma proves that appropriate (V, a, A) can be found in finite (for interior point methods,
polynomial) time if f(g§*) > I¥.

Lemma 5.5.4 Lete, € (0,1), I¥ and %, be as defined in (5.74) and (5.75). Suppose that in step
2 of Algorithm 5.2.4 we use a routine that generates a sequence (V" ol A\), feasible for (5.61)
and (5.63), with qg(Vh,ah) — I¥ and gk(Vh ol AY) — 1k where qg and g% are as defined in
(5.64) and (5.65). Then there is a finite index h with

qg (Vha aha )‘h) - qzk):(vh’ ah) S min {Eq[f(gk) - QS(V’I, ah)]a % [qg:(vh’ aha )\h) - l(l;:ld)]} ) (579)
unless f(j*) =15, In the latter case §* € Argmin, ¢y f(y).

Proof. In order to simplify notation, we fix k& and drop this iteration index where possible. Denote
by ¢h = ¢f(V",a") and ¢} = ¢k(V",a", X"). By (5.66), ¢ < 1. and ¢} > I.. We first show

Lota < 1. (5.80)

For y* = §* it holds by definition of l,;4 (cf. (5.75)). For y* # §* this follows from l,;q = L*(y*, W¥*)
(by definition of lq), (5.30) and LF(y*, Wk) > L(y*,W*). To see the latter, observe that
LE(yk Wk) < L(y*, W¥) would have resulted in a descent step in iteration k — 1 by step 5 of
Algorithm 5.2.4 and the definition of L* (5.14).

Now we investigate the case f(§) > l.. First, e,[f(§*) —q] > e4[f(§*) — 1] =: &1 > 0, because
qP < L. Next, g} —loaa] > 5[l —1%,] =: €2 > 0, because ¢} > I.. Since ¢/} — ¢! — 0, there is
an index h so that - qz’,‘ < min {e1,e2}.

Finally, consider the case f(§) = l.. We first show optimality. If I, = f(§*) then for
W. € Argmaxy, g L(yk;,(W), W) (5.26) and (5.27) yield yf;, = §* and by (5.17) we con-
clude V fiy» = 0. We proceed to the failure of the stopping criterion. Since qg > [, we have
qh — g > f(9*) — ¢* and the first term of the min in (5.79) cannot be satisfied for any h. In order
to satisfy the second term we need 3(g% — loia) > g% — ¢} but because ¢} > 1, = f(§*), we obtain
qi — q@ > g4[f(¥*) — ¢] and in this case the second term is never satisfied if the first is not. M

Of course, the infinite loop in the case f(§*) = I¥ could be avoided by some theoretic construc-
tion, but practical implementations of such methods include several other termination criteria that
take care of this situation as well, e.g., they terminate when some maximum precision is reached
or a certain iteration limit is exceeded.

Theorem 5.5.5 Assume that in step 2 of Algorithm 5.2.4 we use a method for computing Wk+1
that satisfies the assumptions of Lemma 5.5.4 and uses the stopping criterion (5.79). Then The-
orem 5.3.6 holds.

Proof. We only have to verify (5.28), all other results follow from (5.28) as before. Eq. (5.28)
depends on (5.30) and (5.31). Replacing these two by (5.77) and (5.78), respectively, the proof of
(5.28) can be completed by the same steps as before. |



5.6. EIGENVALUE COMPUTATION AND INEXACT EVALUATION 95

Remark 5.5.6

Note that the termination criterion (5.79) provides an efficient automatism for ensuring the re-
quired precision in the model computation. If the cutting plane model still changes a lot then the
precise optimizer is not needed, a rough guess is sufficient. This strategy may significantly reduce
the time spent in the interior point code.

In practice, the interior point method turns out to be numerically robust and allows to compute the
solution almost to machine precision. Due to the update rule for Py (5.23) (and the small number
of columns in comparison to the number needed) the minimal eigenvalue of V is typically well
bounded away from zero in the optimal solution. Then the inversion of V' and the factorization in
solving (5.71) involve positive definite matrices with bounded condition number and are therefore
numerically stable.

Inequality Constraints and Inner Iterations

The Lagrange multipliers 7 of the sign constraints on y are easily included in the interior point
method above. Indeed, by replacing b with b—14, (QSP) of Lemma 5.2.2 allows to compute (QSPj)
of Lemma, 5.4.1. It is therefore not surprising that all results on computing (QSP) can be extended

The inner iterations in step 2 of Algorithm 5.4.4 offer further possibilities for increasing effi-
ciency. Note that repeated inner iterations do not affect P but only 7. The changes in 7 influence
the linear (but not the quadratic!) coefficients ¢1, co, and d of (5.62), because they contain b.
They can be updated efficiently. If the inner iteration yields rather small changes in 7}, then the
optimal solution will also change only slightly. This can be exploited in restarting strategies.

A restart procedure for reoptimizing (5.61) in the inner loop might do the following. Let
(V,&, U, B,/A\) be the solution of the latest subproblem, and let Ac; and Acy be the increments
of ¢; and ¢, due to the change in 7. Choose a starting point (V°,a%, U, 8%, \%) as follows. Since

V,a) = Til (I,1) is the analytic center of the primal feasible set, any point on the line segment

EV,a) + (1 - 5)%(1, 1) with £ € [0,1] is primal feasible. Moreover, it should be close to the
central path if the new solution is relatively close to the old one. We choose £ by projecting
(1- W)l/z on [0.9,0.99999]. The change from (V,a) to (V°,a0) in (5.72) and (5.73)
determines the changes in the dual variables up to a diagonal shift that can be applied through .
This shift is chosen so that the changes in U and j are positive definite. Thus, U? (3°) is positive
definite, but not too far from U (B) Numerical experiments reveal that this restarting heuristic
reduces the number of iterations by one third up to one half, depending on the size of the changes
in 7.

5.6 Eigenvalue Computation and Inexact Evaluation

Assume that the structure of a symmetric matrix A € S™ (the matrix we have in mind is Z =
C — ATy) is such that the product of the matrix with a vector can be computed quickly. As of
today, the best approach for computing a few extremal eigenvalues of such a matrix is the Lanczos
method. A detailed description of this method is beyond the scope of this text, we will outline
only the main ideas (the reader is referred to Golub and van Loan [1989] for an introduction and
to Saad [1992]; Parlett [1998] for an in-depth treatment of Lanczos methods).

We start with a much simpler method, the power method. For a given (normalized) starting
vector q; it generates in step i the vector v; = Av; | = A lq; (i = 1,2,..., and A° = I). If
[Amax(A)| > |Amin(A)| and g1 has some component in the eigenspace of the maximum eigenvalue
of A (a random vector from R™ satisfies this requirement with probability one), then the sequence
of normalized vectors v;/ ||v;|| has an accumulation point in the eigenspace of A. To see this, let
A = PAPT denote an eigenvalue decomposition of A with PTP = I and A = diag(A1,...,A\n),
Amax(A) = A = - Ap > Apg1 > -+ > Ay Then AP = PAPT and since Apax(A4)? grows faster
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than any other eigenvalue of A, any component of ¢; in the direction of the maximal eigenspace
will dominate in v; eventually.

In contrast to the power method, the Lanczos method produces in iteration ¢ (i = 1,...,n)
the normalized vector v; that maximizes v” Av/ [[o||® for vectors v in the subspace spanned by the
vectors A7 1¢q; for j = 1,...,4. This subspace is called Krylov subspace and is denoted by

’C(A,ql,i) = Span {(I1,ACI1, .. .7Ai_1ql} .

In order to find this best vector efficiently, the Lanczos method constructs a special orthonormal
basis Qr = {q1,.--,¢} of K(A,q1,%) as follows. Let Q; = [q1,-..,q;]- Conceptually, the basis
vector g; 1 is computed by orthonormalizing Ag; with respect to all previous vectors,

qiv1 = ”ZHl” with @11 = Ag; — QiQ7 Ag; € K(A, q1,i + 1). (5.81)
1+1

In fact, for i > 3, the projection step Q;QF Ag; of the orthogonalization involves only the two
vectors ¢; and ¢;_1: ¢; is in the orthogonal complement of (A, q;,i — 1) which contains quT
for j = 1,...,i — 2, hence q] Ag; = 0. For the two remaining terms we set a; = ¢ Ag; and
Bi—1 = ql_;Ag;. The 3; may be computed by multiplying the right equation of (5.81) from the
right by ¢/,,. Since ¢}, ,Q; = 0 this yields 8; = ¢}, A¢; = ¢}11T@i+1 = [|@i41]|- Thus, the vectors
qi, called Lanczos vectors, can be computed by the following algorithm.

Algorithm 5.6.1
Input: the starting vector qi, a routine for computing Av for some v € R".

1. Setfo=1,q0=0,i=1.
Compute w = Ag;.
Set a; = wlq;, Giy1 = w — g — Bic1Gi—1, Bi = |Gt |-

If B; = 0 then stop.

Set giv1 = Gi+1/Bi, increase i by 1, and goto 2.

The projection of A onto the Krylov subspace K(A, ¢,1) gives rise to the tridiagonal matrix

" B 0 - 0
B ax P . :
T, =QFAQ;=| o Bo az - 0 € S;.
[ 0 -+ 0 Bi1 i

For this tridiagonal matrix an eigenvalue decomposition T; = Q;A;Q; can be computed in O(i2) by
the Symmetric QR Algorithm (see Golub and van Loan [1989], Algorithm 8.2.2). The eigenvector
¥ of Amax(T}) yields the vector v; = Q; maximizing vT Av/ ||v]|* for v € K(4, q1,7).

In order to study the convergence properties of this value, observe that v € K(A4,q1,7) is
equivalent to v = Zj.:l m;Ai~1q for mj € R, j = 1,...,i, in other words, there is a polynomial
p(-) of degree i —1 so that v = p(A)q;. With A = PAPT as above, we may write p(4) = Pp(A)P7.
Hence, the vector v; corresponds to a polynomial of degree i — 1 that maximizes

vITw _ gFp(A)Ap(A)g _ ¢l Pp(A)?APTq _ iy Aip(N)* (Phar)”
vy 4 p(A)?q q¢{ Pp(A)2PTq e p(A)2(PLqn)?

This expression equals the maximum eigenvalue, if the coefficients p()\j)2(P_5q1)2 of \; are positive
for some of the Apax(4) = A1 = --- = Ay and zero for A\p41,...,A,. Therefore, a starting vector
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¢q1 whose component within the maximal eigenspace is large will help to speed up convergence.
Furthermore, a polynomial whose value is large in Apax(A) = A; = --- = A, but small on the
interval [A,, Ap+1] will be available for small ¢ if the spread Ap; — A, is small in comparison to
the separation Apax(A) — Apy1, i-€., a few matrix vector multiplications will suffice to produce
reasonable approximations to Amax(A) and its eigenvector.

After at most n matrix vector multiplications the Krylov subspace spans an invariant subspace
(further multiplications with A will not enlarge it). If the starting vector ¢; has some component
in the maximal eigenspace of A, then, in theory, the method stops with Apax(A4) after at most n
iterations. In practice, however, the number of columns of @); has to be kept small for reasons of
computational efficiency. This is usually achieved by restarting the process after a certain number
of iterations. Various strategies for restarting are available, e.g., one might use the vector Q;7,
where 7 is the eigenvector to Amax(73), as a new starting vector (Saad [1992]) or employ the implicit
restarting approach of Sorensen [1992]. The restriction of the number of columns of @) together
with numerical difficulties due to generic cancellations appearing in the Lanczos algorithm may
lead to iteration numbers much larger than n if the maximum eigenvalue is not well separated.

In the first few iterations of the bundle algorithm the maximum eigenvalue is in general well
separated and the maximum eigenvector of the previous iterate is a reasonable starting vector. As
the algorithm proceeds, more and more eigenvalues cluster at Ayax(A4). This clustering is a generic
property of optimal solutions in semidefinite programming which is due to the facial structure of
the semidefinite feasible set described in Lemma 2.3.1. In consequence, it gets more and more
difficult to compute good approximations via the Lanczos method. At this stage the eigenvalue
routine often is the bottleneck of the algorithm.

The situation can be improved somewhat by stopping early in the case that the current estimate
v} T;v; ensures a null step in Step 5 of Algorithm 5.2.4. Essentially, the Lanczos method produces
successively better lower estimates

)\max(Ti) S )\max(A) = )\max(c - -ATy)

for the maximum eigenvalue and therefore for the true function value Apax(C — ATy) + bTy. If
the current estimate Amax(T;) is already good enough to prove that the current y will result in
a null step, then the corresponding (normalized) eigenvector v of Ayax(T;) gives rise to a cutting
plane via W§+1 = vvT that improves the cutting plane model sufficiently. This may lead to
considerable speed-up, because in iterative methods eigenvalues may converge significantly faster
than eigenvectors, see del Corso [1997]. The true eigenvectors of A are only needed if we have to
prove that Amax(T;) is indeed close to an eigenvalue of A. We provide a rigorous analysis of this
inexact evaluation approach for Algorithm 5.2.4, but the analysis can be extended to Algorithm
5.4.4 by the same arguments.
For some parameter & € (k,1) suppose that in Algorithm 5.2.4 steps 4 and 5 are replaced by

4. (Descent test). Find WET! € W such that either
(a) F(I*) = fyrns () SR [FHF) = fwrnn ()], or
(0) fyrer (W) = FGMY) and F(5%) — F*) 2 6 [F55) — farn ("]

nk+1

In case (a), set G¥t1 = g% (null step), otherwise set §*+1 = yk+1 (descent step).

Observe that the threshold for accepting null steps in (a) is lower than the threshold for
rejecting serious steps in (b). The purpose of this interval is to ensure finite termination in the
eigenvalue routine.

Lemma 5.6.2 Let A = )\max(q — ATy) and suppose that the eigenvalue routine produces sequences
vl (C — ATy)v; = X, = X and Ay = X with \; < X< X\; for i = 1,2,.... Suppose further that for
WEH = vl the condition fyier = F(y**1Y) is considered true if, for some parameter € € (0, 1),
the gap X — \; < ex(R — k)[f(§%) — fwr+1(y*H1)]. Then there is a finite i so that Wit = vol
satisfies (a) or (b) of step 4.
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Proof. Let u = f(§*) — % [f(9*) — fwr+1 (y¥+1)] — bTy**1 denote the lower bound on the eigen-
value estimate for being accepted as null step and let m = f(§*)—k [f(§%) — fir+r (yhT1)] —bTyF+?
denote the upper bound, above which no descent steps are accepted. Then step 4’ (a) is satisfied
if A; > p and 4’ (b) is satisfied if A\; — A; < ex(@@ — p) and A\; < 7. Because of the stopping
criterion in step 3 of Algorithm 5.2.4 we obtain f(§*) > fye+1(y¥+*) and therefore  — pu > 0.
Since A; — A; — 0 by assumption, there exists an i so that A\; — A; < ex(@ — p). Furthermore
A > por X < &, because otherwise X — A; > @ — p yields a contradiction to the choice of i. W

In the case of a descent step one has to set f(y**!) := X; + bTy*t! (instead of the value
fW§+1 (y**1) generated by W;H = v;v;) in order to ensure correctness of the algorithm. If 4’ (a)
and 4’ (b) are satisfied simultaneously, the descent step is selected.

Unfortunately, the Lanczos method itself does not produce an upper bound X;. Such a bound
could, in theory, be guessed and verified by Cholesky decomposition, but for practical applications
this is computationally too expensive. The finite termination property for this class of eigenvalue
routines should not hide the main purpose of the approach, namely to save time by stopping
eigenvalue computations early in the case of null steps.

Turning to the proof of convergence we note that Proposition 5.3.1 and Lemma 5.3.2 are not
affected by the changes, since f(§*) is the result of a descent step.

For Lemma, 5.3.3 the proof remains valid till (5.32) with (5.32) included. To complete the proof
assume that L (y*, W¥) < maxwew L (y*, W) for infinitely many k. We will show that in this
case § € Argmin f (and therefore also § € argmin f(y) + ¥ |ly — §|I°) with y* — §. By step 4’(a)
and Lemma 5.3.2,

Fwe ") = fa(6*) > A = R)F(9) — fwr (¥*)] > 0
is true for an infinite number of steps. Thus, the proof can completed as in Lemma 5.3.4. This
proves (5.29) for inexact evaluation.

The proof of Lemma 5.3.4 remains unchanged except for replacing k by &. With respect to
Lemma 5.3.5 we note that (5.35) is valid in the new setting as well, because fW§+1 (y**h) = f(g*tY)

in the case of a descent step y*+1 = §*¥+1 and descent steps satisfy f(§%) — f(y**1) > &[f(9*) —
fwr+1(y*+1)] as before. Therefore no changes are required in the proof of the lemma.

We conclude that Theorem 5.3.6 remains valid for inexact evaluation, with steps 4 and 5 of
Algorithm 5.2.4 replaced by step 4.

Theorem 5.6.3 For Algorithm 5.2.4 with steps 4 and 5 replaced by step 4’ the following holds.
Either §* — § € Argmin ey f(y), or Argmin,cy f(y) = 0 and [|g]] — oo. In both cases

f(gk) Linfyey f.

The Lanczos method offers further useful information. Typically, all of the large eigenvalues
of T; are close to large eigenvalues of A. Thus, in addition to the eigenvector to Amax(7;) the
eigenvectors to the other large eigenvalues of T; can also be used to construct good cutting planes
for the model at no extra cost.

5.7 Remarks on the Literature

Lewis and Overton [1996] is an excellent survey on eigenvalue optimization. The general refer-
ence for convex optimization with subgradient methods is Hiriart-Urruty and Lemaréchal [1993a],
Hiriart-Urruty and Lemaréchal [1993b].

The spectral bundle method builds on the framework of the proximal bundle method of Kiwiel
[1990] which employs aggregation of linear cutting planes to a linear aggregate cutting plane as
suggested by Kiwiel [1983]. The bundle trust method of Schramm and Zowe [1992] is a related
but different general convex minimization method in that it uses a trust region approach instead
of the weight u.

The spectral bundle method was introduced in Helmberg and Rendl [2000] and marks the first
use of a nonpolyhedral cutting plane model in bundle methods. This also applies to the conic
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aggregation step, that makes full use of the nonpolyhedral structure of the cutting plane model.
The spectral bundle method was extended to include bounds and inexact evaluation by Helmberg
and Kiwiel [1999]. A similar simple updating scheme for Lagrange multipliers was, to the best
of our knowledge, not in use in bundle methods before. Kiwiel [1995] suggested inexact function
evaluation and subgradient computations; the criterion used here differs slightly from Kiwiel [1995]
and exploits the special structure of the problem. The exposition of the chapter follows Helmberg
and Kiwiel [1999] and profits from connected discussions with K. C. Kiwiel. In particular, the
inexact stopping criterion for the subproblem of Lemma 5.5.3 ensuring finite convergence of the
interior point method and the associated proof of convergence of Lemma 5.5.4 is published here
for the first time.

Specialized routines for eigenvalue optimization first appeared for a restricted class of problems
in Cullum, Donath, and Wolfe [1975]. This was later generalized by Polak and Wardi [1982] and, in
more implementable form, by Kiwiel [1986]. These ‘classical’ algorithms require in each iteration
the computation of all eigenvectors to eigenvalues within an e-distance of the maximum eigenvalue
and use these to construct an enlargement of the subdifferential. Close to the optimal solution
the number of eigenvalues is at least as large as the multiplicity of the maximum eigenvalue in the
optimal solution. The approximation to the element of minimal norm within these enlargements
is again computed by a subgradient method.

Inspired by the work of Fletcher [1985], Overton [1992] developed a quadratically convergent
method. Each step is computed from a complete spectral decomposition of the matrix and a guess
of the exact multiplicity of the maximum eigenvalue in the optimal solution. The information
is used to construct a tangential approximation to the smooth manifold of matrices having the
same multiplicity of the maximum eigenvalue and employs a quadratic model within this affine
subspace. The final system is closely related to the system for determining the step direction in
primal-dual algorithms. The analysis of the method was completed independently by Overton and
Womersly [1995] and Shapiro and Fan [1995].

In recent work, Oustry [1999a] reinterprets the algorithm of Overton within the framework of
the U-Lagrangian introduced by Lemaréchal, Oustry, and Sagastizdbal [2000]. In these terms, the
smooth manifold corresponds to the ridge of the convex eigenvalue function and the second order
method uses a quadratic model of the ridge along the tangent direction of the ridge in the current
point. Qustry [1999b] embeds the second order method in a first order method to ensure global
convergence. Again, for global convergence the approach relies on the spectrum of all eigenvalues
within e-distance of the maximum eigenvalue to construct an enlargement of the subdifferential
and makes use of the entire spectral information to obtain local quadratic convergence. As in the
classical methods, the element of minimal norm within the enlargement of the subdifferential is
computed by a subgradient method and a polyhedral cutting plane model is used. Helmberg and
Oustry [2000] present an overview over these methods and discuss some possibilities for combining
the approaches.
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Chapter 6

Cutting Plane Algorithms
in Semidefinite Programming

In linear programming, cutting plane methods belong to the most successful techniques for solving
combinatorial optimization problems. Given a linear cost function and a set of feasible integral
points, one computes an optimal solution of a linear relaxation of the convex hull of this set. If
the solution is not feasible for the convex hull, the separation problem must be solved, i.e., find
inequalities that are valid for the convex hull, but cut off the current point. Upon success, the
process is iterated for the tightened relaxation. The approach requires a profound understanding
of the relevant polyhedral structure and hinges on the availability of good separation routines as
well as a method that is able to solve a sequence of related linear relaxations efficiently. There is a
vast literature on cutting plane methods; a bibliographic overview on implementational approaches
is presented by Caprara and Fischetti [1997], for polyhedral studies see Aardal and Weismantel
[1997]. Linear programs arising from combinatorial applications may be extremely large scale,
having up to several millions of variables. For some problems cutting planes are hard to find, for
others there are way too many to include all of them. In the second case one is faced with the
problem of selecting a “good” subset. The latter problem is not well understood and it seems
likely that there is no satisfactory answer. In the design of cutting plane algorithms algorithmic
decisions are therefore often based on heuristic considerations involving the problem at hand.
These decisions may work well in one case but may fail for a slight modification of the problem
data.

In semidefinite programming, cutting plane algorithms are still a rare sight, even though theory
indicates superior quality of semidefinite over linear relaxations for several problems of practical
interest. One reason for this lack of interest is, that for the main tool for solving semidefinite
relaxations, interior point methods, it is neither known how to make efficient use of structural
properties of a given problem, nor is there a convincing warm-start strategy that allows to re-
optimize a slightly changed problem quickly. Therefore, current computational studies based on
interior point methods are restricted to small problems of moderate practical relevance.

With the development of the spectral bundle method an algorithm is available that is capable
of exploiting structural properties of given problem data. Furthermore, it offers attractive possi-
bilities for warm-starts. Even though the final convergence rate of the spectral bundle method is
poor, its strong initial convergence may render it an attractive choice for problems that do not
require solutions of high accuracy.

In this chapter we discuss, on basis of particular case studies, some possibilities for implement-
ing cutting plane algorithms for semidefinite relaxations with interior point methods (Section 6.1)
and the spectral bundle method (Section 6.2). In both cases, the underlying methods are still un-
der development and computational experience is limited. Cutting plane methods in semidefinite
programming are faced with the same difficulties as in linear programming concerning algorithmic
decisions such as the separation and selection of cutting planes. It is therefore impossible to ar-
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rive at definite conclusions, but we try to locate potential advantages and disadvantages of these
approaches. In addition, we present computational results' in order to illustrate the practical
behavior of our algorithms as well as the quality of some of the semidefinite relaxations described
in Chapter 3.

On basis of sensitivity analysis of the optimal solution of a relaxation it is sometimes possible to
determine the correct value of an integral variable in all optimal integral solutions. This technique,
called fizing of variables, is of high importance in branch and cut approaches. In semidefinite
relaxations some bounds on variables are implicitly contained in the semidefiniteness constraint.
The sensitivity analysis has to recover the dual information corresponding to these bounds from
the dual semidefinite matrix variable. This is the topic of Section 6.3.

6.1 An Interior Point Approach

In developing an interior point cutting plane algorithm numerous algorithmic decisions have to be
made. The most prominent are

e the choice of an initial relaxation of the combinatorial optimization problem,

the cutting planes to separate and the separation algorithms to use,

the selection of a subset of inequalities if too many violated inequalities have been found,

the warm-start strategy after the addition of inequalities,

the elimination of inequalities that are not tight,
e and the selection of an interior point method.

These decisions are typically problem dependent, they strongly influence each other, and it is
often impossible to justify them by theoretical arguments. None the less the decisions have to be
made and we hope that sharing our experience on two particular problems will help to facilitate
these decisions in future applications. The algorithmic approaches should not be understood as
recommendations, but rather as a discussion of alternatives that may be helpful in one case but
may fail in another. The two algorithms are the cutting plane algorithm for max-cut as described
by Helmberg and Rendl [1998] and the cutting plane algorithm for the quadratic 0-1 knapsack
problem of Helmberg, Rendl, and Weismantel [2000], see also Helmberg and Weismantel [1998].
The two combinatorial problems are closely related, because the quadratic 0-1 knapsack problem
can be interpreted as the simplest case of a constrained max-cut problem, i.e., max-cut with one
linear constraint, see Section 3.2. Yet the underlying polyhedra differ substantially: the structure
of the max-cut polytope is determined by the dimension only, whereas the quadratic 0-1 knapsack
polyhedron depends, in addition, on the data of the linear constraint. For our algorithms this
rendered several successful approaches for max-cut useless for quadratic 0-1 programming.

Since both algorithms use the same interior point code, we discuss this choice and some of
its consequences in advance. Then we will turn to the cutting plane algorithm for max-cut and
report on our choices with respect to the issues listed above. Finally, we will do the same for the
quadratic 0-1 knapsack problem.

The Interior Point Method

Both algorithms use the same feasible primal-dual interior point method employing the X Z-step
direction (4.6) that is implemented as described in Section 4.4. A primal-dual method was selected
because at that time numerical experiments indicated better convergence properties of the primal-
dual approach in connection with inequalities. Due to the special structure of the max-cut and the
quadratic 0-1 programming problems the use of feasible methods is possible. Since, in addition, the

LAll times are computed on a Sun Ultra 10 with a 299 MHz SUNW,UltraSPARC-IIi CPU.



6.1. AN INTERIOR POINT APPROACH 103

currently best bounds on the number of iterations are known for feasible path-following methods
the choice of a feasible method seems natural.

The convergence theory of feasible primal-dual path-following interior point methods requires
the iterates to remain in “the neighborhood” of the central path (cf. (4.11)), hence the name
path-following. The central path is a smooth curve from the analytic center of the feasible set to
the analytic center of the optimal face of the feasible set. The neighborhood is a wide region in the
vicinity of the analytic center and shrinks along the central path to a single point in the optimal
solution. In cutting plane algorithms it is of fundamental importance that the basic operation,
adding a few cutting planes and reoptimizing, can be carried out in reasonable time. A new
inequality, cutting of an almost optimal iterate X, close to the central path, causes the central
path to “jump” to a new location, because the optimal face changes its place. This renders X, a
poor starting point; it is both infeasible and far away from the new central path. As we will explain
below, we were, to some extent, able to construct a reasonable point for restarting in max-cut,
but did not succeed for the quadratic 0-1 knapsack. In the latter case we had to recompute the
relaxation from scratch. In view of the fact that this required typically only about 30 iterations of
the interior point code, this could be acceptable. Unfortunately, the main drawback of primal-dual
interior point methods in semidefinite programming is the long computation time per iteration.
In each iteration, a system M Ay = ... has to be solved for Ay € R™ where m is the number
of constraints of the semidefinite program and M is a dense positive definite matrix of order m
(see Section 4.4). Factorizing M needs m?®/3 arithmetic operations and storage requirements are
O(m?). Since m grows quickly in the case of cutting plane algorithms, storing and factorizing
M is the bottleneck in our algorithm. On our machine, memory requirements limit the number
of cutting planes to roughly 5000, but computation time of the factorization is prohibitive even
for m = 3000, because we would like to modify and recompute the relaxations repeatedly. In
comparison to linear programming relaxations with millions of constraints, such problems would
be considered to be of small size.

6.1.1 Max-Cut

The max-cut problem (MC) (page 27) and its semidefinite relaxation (SMC) (page 28) have been
described in detail in Section 3.1, but we repeat the most important definitions and facts for the
convenience of the reader. For an undirected graph G = (V, E) with node set V = {1,...,n},
edge set £ = {ij : i < j, i,j € V}, and weighted adjacency matrix A = [a;;], denote by 6(S) for
S C V the set of edges that have one endpoint in S and the other endpoint in V' \ S. Then the
max-cut problem is defined by

(MC) mc(G):rglgac Z aij.

By (3.3) it may equivalently be formulated as a quadratic {—1, 1} programming problem with cost
matrix C' = }(Diag(Ae) — A) (e denotes the vector of all ones, Diag(-) transforms a vector in R"
to a diagonal matrix in S,,),

max z!Cxz.
ze{-1,1}"

The Initial Semidefinite Relaxation

Since 27Cz = (Cz,2) = (C,2zz") and the matrix zz” is positive semidefinite with diagonal
entries equal to 1, relaxing zzT to X > 0 gives rise to the semidefinite relaxation (diag(-) extracts
the diagonal of a symmetric matrix)
max (C,X) min ey
(SMCQ) s.t. diag(X) =e s.t. C+ Z — Diag(u) =0
X >0 7+ 0.
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Primal and dual feasible sets contain strictly feasible solutions, so optimizers X, and (u«, Z) exist
and satisfy (C, X,) = (b,u,) (Theorem 2.2.5). Its primal feasible set is a relaxation of the cut
polytope (3.12)

Pc = conv {zz’ : z € {-1,1}"}.

The primal feasible set and Pc have the same vertices and enjoy invariance under the “flipping”
operation, i.e., let y € {—1,1}", then for 2’ € P the flipped element zz? oyy? = (zoy)(zoy)?
is also in Po and for X € {X > 0 : diag(X) = e} the flipped matrix X o yy’ is again primal
feasible because of the Schur product theorem 1.2.11 (Laurent and Poljak [1995]). Therefore we
can expect that the primal set wraps P in a symmetric way.

Symmetry considerations prove that the identity X = I is the analytic center and the center of
gravity of the primal feasible set of (SMC) and of Pc. The identity X = I is, thus, the ideal primal
starting point, because it is on the central path for all cost matrices C'. For the dual starting point
it suffices to choose u = Ae with X large enough so that Z = Diag(u) — C is diagonally dominant
(Theorem 1.1.12) (the dual analytic center is approached for A — c0).

Remark 6.1.1 In linear programming the natural relaxation of max-cut for a not necessarily
complete graph G = (V, E) introduces variables x;; only for ij € E. For example, for toroidal grid
graphs that arise in modeling Ising spin glasses, C is extremely sparse, |E| = 2n. On these special
graphs, instances with several thousand nodes have been solved using linear cutting plane methods
(see Jinger and Rinaldi [1998] and references therein). In semidefinite primal-dual algorithms
we cannot make use of this structure because X is dense; our primal-dual approach is definitely
not competitive for sparse problems. The dual method of Benson, Ye, and Zhang [2000] is able to
exploit the sparsity of the dual variable Z, but the system matrixz for computing the step direction
is again in general o dense positive definite matriz of order m. FExploiting sparsity to full extent
should be possible by using the spectral bundle method, see Section 6.2.

Cutting Planes and Separation Algorithms

We employ separation heuristics for the following classes of valid inequalities. For b € Z™ with
min {(b"2)? : z € {—1,1}"} = 1 the inequalities b7 Xb > 1 are called hypermetric (see (3.13) and
thereafter). They specialize to the facet-defining clique inequalities for b € {—1,0,1}" with an odd
number of nonzero entries (Barahona, Grotschel, and Mahjoub [1985]). Clique inequalities with
three nonzero elements are called triangle inequalities (3.14).

For a given primal feasible X, (the current iterate in the interior point method) we employ
three different strategies for separating inequalities which are violated by X.. First, we enumer-
ate all triangle inequalities. This requires O(n®) arithmetic operations and is comparable to or
significantly cheaper than an interior point iteration, depending on the number of constraints in
the relaxation.

Second, we try to extend clique inequalities which have already proven to be important (the
corresponding dual cost is “sufficiently large”) by adding two more nodes. The two nodes and
their signs are determined by complete enumeration over the zero components of the old inequality
(O(n?) for each old inequality). The best two nodes with respect to a geometric criterion (see
below) yield the candidate.

Finally, we employ a very simple heuristic to construct general hypermetric candidates. We
are looking for integer vectors b with the following three properties. The sum of the elements of b
is odd, b7 X.b is close to zero, and | {b,c) | = 1 where c is the currently best cut vector obtained by
applying a simple rounding and exchange heuristic to the rows of feasible primal matrices. The
third property is motivated by the idea that the new inequality should be tight for the optimal
solution. We start with a vector that satisfies the first and third property (we use e;). Then we
try to decrease bT Xb while maintaining these two properties. Iteratively, we run through indices
j from 1 to n. For each index j, we construct for each k # j the vector

ko ej+e, ifl-ci+1-¢,=0
b _b+{ej—ek if1-¢;+(—=1)-cx =0.
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The case distinction guarantees that the third property is maintained. Let k be the index so
that (b*)T X b* is minimal. If (8*)TX.b* < b7 X,b then we replace b by bF otherwise b remains
unchanged for this j. Continue with the next j. The iteration over all j is repeated till all indices
were tried without further progress. If in the end b7 X /b < 1, then this is a violated inequality.

Remark 6.1.2 The simple nature of the separation routines is due to the fact that we are work-
ing on the complete graph. On a sparse graph the inequalities corresponding to the projection of
the triangle inequalities are the so-called odd cycle constraints (Barahona [1993]), these would be
significantly more laborious to separate (even though the order of complexity remains O(n?)). In
linear programming, separating outside the support does not make much sense, in semidefinite
programming it does. Including all triangle inequalities yields a slightly better relazation than sep-
arating odd cycles on the support (see Gruber and Rendl [1999]). The semidefiniteness constraint
provides a global link between all matrix elements.

Selecting A Subset of Violated Inequalities

In our numerical experiments the separation routines generated a lot more violated inequalities for
a given feasible X, than we were willing to include in our relaxation, because adding k inequalities
implied that each Newton step required O((m + k)2). To keep the code reasonably efficient it
was important to select just a small number of promising inequalities from the vast set of violated
inequalities.

The first criterion that comes to mind is the amount of violation. This was a satisfactory cri-
terion as long as triangle inequalities were used exclusively. For general inequalities, we got better
results by the following geometric criterion. For a violated inequality compute the intersection of
the straight line segment between X. and I, the barycenter of the primal feasible set. We prefer
inequalities with small distance of this intersection to I.

During the separation process we maintain a heap of the best inequalities with respect to the
geometric criterion. The heap offers room for a certain number of inequalities. If the heap is full,
a new inequality is added to the heap only if it is better than the worst inequality in the heap. In
this case the worst is replaced by the new inequality.

In the following we assume that m — n cutting planes of hypermetric type have been added to
the initial relaxation. We code these in the linear constraints AX — s = e, where s € Rl"™" is a
vector of slack variables. Then the semidefinite relaxation reads

min (C, X) max (e, uq) + (e,u4)
st diag(X)=e ~ st. C+Z =Diag(ug) + ATuu
X=0,5>0 Z+0,t>0.

The variables ug € R” and u4 € R™~" are the Lagrange multipliers corresponding to the diagonal
and the cutting plane constraints, respectively. The slack variables s € Ry'™" and ¢t € RY"™" will
turn out to be convenient for our warm-start heuristic.

Warm-Start

In cutting plane algorithms it is of fundamental importance that the basic operation, adding a few
cutting planes and reoptimizing, can be carried out in reasonable time. Since the new inequalities
are separated with respect to the current iterate X, this point is infeasible after addition of the
cutting planes. Therefore we have to construct a new feasible primal point X T for restarting the
method. The interior point algorithm will work better if this point X+ is in the neighborhood
of the central path. We have considered the following two heuristic approaches for constructing
X (see Mitchell and Borchers [1996] for similar approaches in linear interior point cutting plane
methods).

e Backtracking along iterates. Store all previous iterates and restart from the last iterate that
is feasible with respect to the new inequalities. This point is, hopefully, reasonably close to
the new central path.
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e Backtracking to the analytic center. Backtrack towards I along the straight line between
last iterate X, and I. We hope that this straight line is reasonably close to the central path.

Both alternatives exhibited similar performance, so we decided in favor of the second approach
because it required less memory. The new primal slack variables are determined by feasibility, see
(SMC’).

For the dual variables we did not succeed in constructing a good direction into the interior.
Therefore we simply set the new wu;-values corresponding to the new inequalities to zero, and
the corresponding t;-values (the counterparts to the slack variables s;) to one. This results in
an infeasible dual point because feasibility requires t; = —u;. None the less the dual objective
function value remains a valid upper bound as long as the u; do not get positive. Due to the line
search in the choice of the step size of the interior point algorithm, the ¢; cannot get negative and
since the Newton direction tries to satisfy ¢; = —u;, a positive y; should be a rare event. As a
safeguard, we iterate till a full dual Newton step is performed, this removed infeasibilities after
roughly three iterations.

The restarting heuristic worked successfully if both, primal and dual solutions were still well in
the interior of the semidefinite sets at the time of separation. It failed for the optimal solutions of
the relaxations, i.e., there was no advantage as compared to restarting from scratch. A heuristic
explanation for this fact is that the location of the optimal solution may change considerably
with the addition of cutting planes, so that the current primal-dual pair is far away from the
neighborhood of the central path. The matrix X, has to be modified significantly to obtain
feasibility, thereby making it a bad match for the almost singular dual variable, which has not
been changed. Our heuristic attempts to modify the dual variables appropriately failed, as well.

In connection with this warm-start procedure it turned out to be advantageous to check the
violation of triangle inequalities in every iteration. When a triangle inequality is violated we
continue the interior-point algorithm for two more steps in order to ensure that a significant
amount of violated inequalities is available and then invoke all separation routines on this iterate
X.. We call this approach early separation.

Empirically, this resulted in significantly faster improvements of the bound in comparison to
separating with respect to the optimal solution of the relaxation. We do not have a theoretically
sound explanation for this phenomenon but can offer some heuristic arguments. Usually, the
central path starts off from the center into the direction of the cost function and later bends
towards the optimal solution of the relaxation. The early separation approach stops the algorithm
as soon as it leaves the metric polytope (the set of points satisfying all triangle inequalities). One
hopes that X is still close to P and that all inequalities violated at X, are squeezed between Pg
and X so that they cover the face of Po that is traversed by the central path on its way out of Pg.
Then the barrier terms of the slack variables of the new inequalities will push the new central path
into a quite different direction, to the effect that the separation process seems to cover different
regions of P in the direction of the cost function within a short time.

Elimination of Inequalities

We have already pointed out the negative influence of a large number of inequalities on the running
time of a single interior point iteration. In order to keep the number of constraints as small as
possible we remove cutting planes that are not tight in the optimal solution of the relaxation. In
the simplex method of linear programming superfluous cutting planes can be recognized by their
positive slack variables. In interior point methods the primal slack variables may converge to zero
but they never reach zero. Therefore we prefer to eliminate inequalities whose dual variables are
close to zero. Sensitivity analysis asserts that this cannot worsen the relaxation by much and we
do not mind removing slightly more inequalities than necessary in order to speed up the Newton
steps.

Repeated early separation and restarting prevents the dual and primal iterates from converging.
This makes it impossible to recognize superfluous inequalities. At the same time, early separation
increases the number of constraints so that the single iterations become computationally expensive
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Table 6.1: The interior-point cutting plane algorithm for a max-cut problem of type G.5
with n = 70. The maximum cut value is 708. Iter refers to the number of interior point
iterations, hh:mm:ss gives the time in hours:minutes:seconds, ubd lists the optimal value
of the current relaxation, m displays the number of constraints. The first row gives the
value of (SMC), each further row is the result of separating m inequalities with respect
to the solution of the previous relaxation plus separating ten times n/3 cutting planes upon
violation of triangle inequalities by an iterate. The increase in computation time per iteration
in dependence on the number of constraints is clearly visible.

Iterations  h:mm:ss ubd m
11 1 726.71 70

59 19  715.58 370

111 3:55  713.34 667

166 18:34  712.08 918

219 50:06 711.45 1124

277 1:58:47 711.06 1345

quickly. Therefore we compute the exact value of the relaxation from time to time in order to
reduce the number of constraints and to check whether the integrality gap is closed sufficiently.

Numerical Results

After extensive numerical experiments we decided to use the following parameter settings. First
we solve the initial semidefinite relaxation (SMC) to optimality without early separation. With
respect to its optimal solution we separate and select n cutting planes. Then we restart from
the center, perform 10 early separation and restarting steps (each separating and selecting n/3
inequalities), after this we compute an optimal solution of the current relaxation and eliminate
inequalities with small dual costs. With respect to this solution we again separate and select n
cutting planes, restart from scratch and continue with ten early separation steps, and so on, till
the exact solution is found or a time limit is reached. After this time limit the code computes the
solution of the current relaxation without calling the separation procedures and stops.

We illustrate the behavior of the algorithm on six classes of random graphs (the same instances
were used in Helmberg and Rendl [1998]). G 5 consists of unweighted graphs with edge probability
1/2, G_1/0/1 of weighted (complete) graphs with edge weights chosen uniformly from {-1,0,1}.
G, is a class of almost planar graphs with edge weights 1, in G4, the edge weights of the same
graphs are chosen randomly from {—1,1}. Q190 and Q1go,.2 were used by Williams [1985]; Bara-
hona, Jiinger, and Reinelt [1989]. Formulating Q190 with respect to (QP)(see Section 3.2), the
lower triangle of B is set to zero, the upper triangle (including the diagonal) is chosen uniformly
from {—100,...,100}. The diagonal takes the role of the linear term. Q19¢,.2 represents instances
with a density of 20%.

We start by looking at a particular instance of G 5 in Table 6.1. The columns are explained
in the caption. The first row corresponds to (SMC), each further row is the result of a full phase
of adding inequalities (n 4+ 10 - n/3). Each phase takes about 50 interior point iterations, but
computation time is increasing dramatically with the number of constraints (from 20 seconds for
the first phase to one hour for the last phase listed). We point out that the results of Table 6.1
exhibit the typical tailing off effect often observed for cutting plane methods; the most significant
improvement of the bound is achieved in the first phase.

Table 6.2 lists average results of the cutting plane algorithm when applied to the six random
classes of cost matrices described above. All the problems listed can be solved exactly by employing
a branch and bound approach, see Helmberg and Rendl [1998]. Partial results are also listed in
Table 6.13 of Section 6.3. Before interior point methods for semidefinite programming became
available, problems on complete graphs with 40 nodes were considered unsolvable, see De Simone
and Rinaldi [1994] (they give results on at most 25 nodes). Here, the combination of interior point
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Table 6.2: Average results by using the interior cutting plane algorithm for randomly
generated max-cut examples with a time limit of two hours. n is the dimension, nr gives the
number of instances, h : mm : ss lists the average computation time in hours:minutes:seconds,
solved displays the number of max-cut instances solved to optimality, gap gives the average
relative error over the unsolved instances in percent.

n  nr h:mm:ss solved gap(%) h:mm:ss solved gap(%)
G5 G_1/0/1
40 10 14 10 0 8 10 0
50 10 1:38 10 0 1:55 10 0
60 5 54:20 4 0.4 30:12 4 1.2
70 3 1:37:23 1 0.3 52:52 2 1.5
80 2 1:58:44 1 0.4 2:15:30 0 1.7
90 1 2:19:51 0 0.5 2:18:23 0 5.5
100 1 2:18:30 0 0.8 2:23:56 0 5.4
Gp Gip
40 10 4 10 0 1 10 0
50 10 29 10 0 6 10 0
60 5 2:40 5 0 45 5 0
70 3 4:10 3 0 2:50 3 0
80 2 46:42 2 0 2:29 2 0
90 1 7:02 1 0 17:49 1 0
100 1 2:20:45 0 0.9 48:23 1 0
Q100 Q100,.2

41 10 27 10 0 2 10 0
51 10 1:33 10 0 13 10 0
61 5 3:13 5 0 1:03 5 0
71 3 8:39 0 7:37 3 0
81 2 18:51 2 0 3:54 2 0
91 1 6:28 1 0 5:31 1 0
101 1 1:54:49 1 0 9:51 1 0

methods and cutting planes certainly helped to push the boundary. Unfortunately, most max-cut
instances of practical relevance are much larger and sparse.

6.1.2 Quadratic 0-1 Knapsack

The quadratic knapsack problem (QK) and various semidefinite relaxations, (SQK1) to (SQK4),
are introduced in Section 3.3.2. For the convenience of the reader we restate them here. The
quadratic 0-1 knapsack problem reads

max y’ By
(QK) st. aTy<b
y e {0,1}".

The elements of a are called weights, the right hand side b is called capacity. Without loss of
generality we assume that 0 < a; < b fori =1,...,n. In addition, we assume that a; < b, since
a; = b allows to decompose the problem.

In applications, the quadratic knapsack problem usually appears as the subproblem of modeling
each single inequality of a larger system of linear constraints. Therefore, our goal is not so much to
solve the quadratic knapsack problem efficiently (specialized branch and bound routines are much
faster, see Caprara, Pisinger, and Toth [1999]), but to develop separation techniques that are of
practical value also in the case of several constraints. The discussion is based on the cutting plane
algorithm for the quadratic knapsack problem that was used by Helmberg, Rendl, and Weismantel
[2000]. Here, we follow the more detailed description given by Helmberg and Weismantel [1998].



6.1. AN INTERIOR POINT APPROACH 109

The Initial Semidefinite Relaxation

Like in the relaxation of max-cut, observe that y"By = (By,y) = (B,yy"). For j = [;] the

matrix gy’ is positive semidefinite and the first column equals the diagonal. We relax g5’ to

. 1 diag(Y)T
Y=1 diagy) v = 0,
which is equivalent to ¥ — diag(Y") diag(Y')" = 0 by the Schur complement, theorem 1.1.9. It is
convenient to define the index of the first row and column of Y to be zero. With this we may set
up the following four basic relaxations (Section 3.3.2).

(SQK1) max (B,Y) (SQK2) max (B,Y)
s.t. (Diag(a),Y) <b . {ad”,Y) < b?
Y — diag(Y) diag(Y)T =0 Y — dia g(Y)diag(Y)T =0
(SQK3) max (B,Y) (SQK4) max (B,Y)
st <[ _b > >0 s.t. Zla]y,] <by; i=1.
Y — dlag dlag Y — diag(Y) diag(¥)" > 0.

In Lemma 3.3.3 we proved that the feasible sets of Y-matrices Y; of (SQKi) for i = 1,...4 can be
ordered with respect to set inclusion,

Y1 2V2 2 V32 Vs (6.1)
For all four problems, ); is a relaxation of the polytope
Por = conv{Y =yyT : y € {0,1}" ,aTy < b}, (6.2)

which we call the gquadratic knapsack polytope. If a; + a; > b for some i # j then Y;; = 0 for all
Y € Pyk; therefore we add the constraints Y;; = 0 to the semidefinite relaxations for all such
and j. The matrices Y generated by the zero-element, the one-element, and feasible two-elements
solutions (here, a k-element solution refers to a vector y € {0, 1, }™ with k ones and zeros otherwise)
form an affinely independent set in Pgg and therefore their arithmetic mean Yy is in the relative
interior of Ppk.

In our cutting plane method for max-cut we have used the identity I as the reference point
in a geometric criterion for selecting violated inequalities. Generalizing heuristically, we would
expect this criterion to work reasonably well for several cost matrices if the reference point is well
centered inside the underlying combinatorial polyhedron. The identity is certainly well centered
in the max-cut polytope Pc. The point Y4, however, is not likely to be well centered in Py,
because it is inside the convex hull of the solutions with small support. We hope to improve the
quality of the reference point and the starting point by including solutions with large support as
well. Without attaching too much importance to this heuristic, we construct solutions with large
support by starting from any solution of one or two elements and by iteratively adding elements
with cyclically increasing indices that fit into the remaining capacity. We hope that this generates
solutions with reasonable spread of the support. The arithmetic mean of these solutions and the
previous solutions of small support gives rise to the point Yg that is again in the relative interior
of PQK.

It is not difficult to check that the matrix Ys — diag(Ys) diag(Ys) is positive definite. We use
Ys as the primal starting point for the interior point method, because Ys € relint Pox ensures
that it remains strictly feasible throughout the cutting plane algorlthm By an appropriate linear
combination of the coefficient matrices corresponding to the constraints Yy = 1 and Yy; = Y;; we
can construct a diagonally dominant dual feasible Z for the respective dual problem; this yields a
strictly feasible dual starting point. Is this point well centered with respect to the central path?
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Unfortunately, the analytic centers of the relaxations (SDP1) to (SDP4) cannot be expected
to be contained in Pgg in general (in our numerical experiments it was outside Pgox for several
examples). In fact, if the analytic center is not contained in Pk then each hyperplane separating
the analytic center from Py gives rise to a cost matrix B so that the associated central path
cannot touch Pyk. Thus, in general we cannot hope to find a starting point in the relative interior
of Pgk that is close to the central path.

Cutting Planes and Separation Algorithms

We now consider the separation problem for a given primal feasible Y.. We present the inequalities
that we use in three groups. The first group are generic inequalities that can be used without
the need to understand the polyhedral structure of the knapsack problem and without restrictions
on the coefficients of the linear constraint. The second group, linear cutting planes, makes use of
cutting planes for the linear knapsack problem which are then lifted into quadratic space. Finally,
the third group, gquadratic inequalities, consists of cutting planes developed for the quadratic
knapsack polytope Pox .

Generic Inequalities. A generic way to improve the initial relaxations is to add valid inequalities
for unconstrained quadratic 0-1 programming. These are certainly valid for constrained cases as
well. In our implementation we include the constraints corresponding to the triangle inequalities
in the max-cut setting (see Example 3.2.4),

Yy > 0
Yij < Yii
Yii ¥ < 14y
Yik + Yik < Ykk + Yij
Yij t Yk T Yik +1 > Yu +Yi; + Yrk-

We separate them by enumeration.

In addition, we check for violated y;- and 1 — y;-representations of a”y < b (see (3.25)). They
correspond to multiplying the linear inequality by y; or 1 — y; for some index ¢ € {1,...,n} and
then linearizing the terms y;y; to Y;;. In order to be able to exploit their low rank structure, we

add them in the form
T
([2]02]7)
—a €;

([T )

These are again separated by enumeration. Observe, that (SQK4) already contains all inequalities
of type (6.3).
Linear Cutting planes. For a € N, b € N, let

\Y%
A

(6.3)

v
o

(6.4)

Prg := convgy € {0,1}": Z a;y; <b
ie{l,...,n}

be the linear knapsack polyhedron. A first class of inequalities, that is valid for Pk, is constructed
by choosing a subset T of all elements that fit into the knapsack. These retain their weights as
coefficients. Each remaining element is assigned, as a new weight, the amount by which the weight
of the item and the subset exceeds the knapsack capacity (this value coincides with the coefficient
that one obtains from lifting the inequality ), ; a;y; < ) ;o a; according to any ordering of the
items not contained in T').
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Lemma 6.1.3 (Weismantel [1997])(weight inequalities)
LetT C{l,...n} withr:=b—3, ;a; >0 be given. The weight inequality with respect to T

Yoagi+ Yy, max{0,(a-r}y<) a
ieT i€{l,...n\T ieT
is valid for Prk.

The idea of weight inequalities can be extended to more general cases. Instead of working with
the original weights of the items, we introduce “relative” weights and derive an analogon of weight
inequalities for these relative weights.

Lemma 6.1.4 (Weismantel [1997])(extended weight inequalities)
Let I and T be disjoint subsets of {1,...n} satisfying ax < a; < >
ri=b—3 ,crur @ > 0. Define relative weights

jer @j forallt € T,i € I and

we=1 VteT,
wi=min {|S]: SCT,Y,cqat >a;} Viel.

For z e {1,...,n}\ (T'UI) with lifted coefficient

w, :min{Zws: S C (TUI),Zas Zas—r}

seS sES

the extended weight inequality with respect to T U T U {2z}

Z wiy; < Z w;

ie(Tulu{z}) ie(Tul)
is valid for Prk.

This inequality can be extended by standard lifting techniques. For a given ordering of the items
in{1,...,n}\ (TUIU{z}) one can compute, step by step and in polynomial time, the maximum
coeflicient so that the lifted inequality remains valid.

The most difficult part in the separation process is the construction of promising sets T' (and
I). Once these are fixed the coefficients can be computed by a lifting procedure. Each of these
inequalities can be represented in the quadratic space by the techniques discussed in Section 3.3.2.
On account of Lemma 3.3.3 it suffices to consider the representations (6.3) and (6.4) arising from
multiplication with y; or 1 — y;.

It is quite unlikely that quadratic representations of weight or extended weight inequalities
are violated by Y. if all the variables in the support of the inequality attain small values. This
motivates the search for inequalities whose support is contained in the set of variables with large
Y;j-values. In a first step we interpret the variables Y;; as variables y1,...,y, of a linear problem,
see lemmas 6.1.3 and 6.1.4. We sort them by value in nonincreasing order. For later reference we
denote this order by the symbol =4. We first determine the maximal number ko such that the
first ko elements (with respect to >=¢) have weight not greater than b. These ko indices form the
set T of a weight inequality.

In order to construct extended weight inequalities we choose for every k > ko the k first
elements with respect to =,4. This forms the set J;. We sort the elements of J; with respect to
nondecreasing weights and determine the maximal number A such that the first h elements have
weight not greater than b. This defines the set J-. If k > ko + 1 and JS is contained in J ;, we
proceed to index k + 1. Otherwise every partition of J into feasible sets T and I according to
Lemma 6.1.4 gives rise to an extended weight inequality: We lift the elements not in J- following
the order >4; the item z is the first element of this order.

To generate promising starting sets for y;-representations of linear knapsack inequalities it
seems reasonable to work with variables Y;; rather than Y;;. The procedures outlined before can
be easily adapted to this situation. One replaces >4 by an appropriate order.
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Quadratic cutting planes. The linear knapsack polytope Ppk is a convenient starting point
for deriving cutting planes because it is well studied in the literature. However, the ultimate goal
of a cutting plane algorithm is to arrive at the convex hull of all feasible integral solutions, the
quadratic knapsack polytope Pgx of (6.2). The following lemma introduces a family of polytopes
which are relaxations of Py .

Lemma 6.1.5 (Helmberg, Rendl, and Weismantel [2000])

Let Ny, ..., Ny be a partition of {1,...,n}. For every v € {1,...,k} we choose a spanning tree
(Ny,Ty) in the complete graph K(N,) on the node set N,. By deg? we denote the degree of node
i in the tree (Ny,T,). The polyhedron

k
conv{ Y €S, : y;; € {0,1},2( Z a;)[ Z Yij + Z (1 —deg;)yii] <b

v=1 ieN,  ij€eT, iEN,
contains all the feasible points of Pk .

These polytopes may be interpreted as linear 0-1 knapsack polytopes defined over the upper
triangle of Y. Hence we can use the same machinery as in the linear case to derive valid inequalities
for any of these polytopes. Since these polytopes are relaxations of Pgx , their valid inequalities
remain valid for Pgk.

In the special case when the sets N; of Lemma 6.1.5 contain either one or two elements, we
may associate every spanning tree with an isolated node or an edge. Collecting all isolated nodes
in the set V and all edges in the set E, the inequality of Lemma 6.1.5 reads

> (ai+aj)yi; + Y aiyii < b. (6.5)

ijeE =

We call an inequality of this form a matching knapsack constraint.

Our implementation includes only a separation routine for matching knapsack constraints. It
uses the following ingredients: We compute a maximum weight matching? on a principal submatrix
of Y. The support of the principal submatrix is determined by the indices in Jy, k > kg, see the
separation routines for linear cutting planes. For each Ji, k > ko, our routine returns the maximum
weight matching in form of sets E and V of (6.5). This defines the knapsack polyhedron

conv { z € {0,1}/EI+IVI . Z (ai + aj)zij + Zaia:i <b
ijeE iev

We apply the separation routines for weight and extended weight inequalities for the point with
components Y;;, ij € E and Yy;, 1 € V.

Selecting a Subset of Violated Inequalities

For a given iterate Y, our separation routines delivered large quantities of the generic triangle
inequalities and from time to time linear or quadratic cutting planes. For choosing a subset of
these we use, with respect to Yg, the same geometric criterion that we described for the max-cut
cutting plane algorithm.

Warm-Start

We tried to employ the same early separation and warm-start techniques that were rather successful
in the max-cut case. Unfortunately, these approaches did not work at all for our quadratic knapsack
examples. In the following we report on our observations during these experiments.

2We solve the maximum weight matching problem using routines from the LEDA package of Mehlhorn, Niher,
Seel, and Uhrig [1999].



6.1. AN INTERIOR POINT APPROACH 113

Table 6.3: Comparison of relaxations (SQK1), (SQK2), (SQK3) and (SQK4). The instances
are based on compiler design problems taken from Johnson, Mehrotra, and Nemhauser [1993].
dim is the number of 0-1 variables, each problem was examined for the three capacities
of column rhs. feas. gives the best solution we know. The relative gap is computed via

to0. (g bound

relative gap (%)
dim  rhs feas. SQK1 SQK2 SQK3 SQK4
30 450 1580 41.0 17.3 14.5 13.5
512 1802 38.9 19.6 17.1 16.7
600 2326 23.9 12.0 10.6 10.6

45 450 2840 15.6 8.7 8.5 8.4
512 3154 29.4 12.7 12.7 12.7
600 3840 21.7 8.2 8.2 8.2

47 450 1732 6.7 5.9 5.9 5.8

512 1932 29.7 11.9 11.6 11.6
600 2186 30.8 17.7 17.5 17.4

61 450 26996 3.7 2.4 2.4 2.4
512 29492 2.9 2.0 2.0 2.0
600 32552 2.6 1.9 1.9 1.9

As we have mentioned in the discussion on the choice of the starting point on page 110, we
have repeatedly observed in our numerical experiments, that the analytic center of the initial
relaxation is not contained in the quadratic knapsack polytope Pgk. Indeed, we suspect that in
several of the examples the central path does not even touch Pgg (we have not tried to verify this
computationally). After starting the interior point method from Yg, the first few iterations were
needed to obtain a primal-dual pair of reasonable quality. During this time the barrier parameter
was rather large and the primal iterates moved towards the corresponding point on the central path.
The direction of movement had little to do with the actual objective function. If the separation
algorithms were called for these iterates, then a large number of inequalities was delivered but
almost all of them were not tight in the optimal solution of the relaxation. The restarting strategy
had the effect that the primal iterate was thrown out of the neighborhood of the central path
and the same phenomenon occurred again. Due to the sharp increase in computation time and
memory consumption for a growing number of inequalities it was computationally infeasible to
keep all these cutting planes with the sole purpose to control the location of the central path.
Solving the relaxation to optimality and separating with respect to the optimal solution led to
faster progress.

Elimination of Inequalities

Like in the algorithm for max-cut we eliminate inequalities with small dual variables whenever an
optimal solution of a relaxation has been computed.

Numerical Results

We start with comparing, in Table 6.3, the initial relaxations (SQK1) to (SQK4) with respect
to instances based on compiler design problems taken from Johnson, Mehrotra, and Nemhauser
[1993]. In these examples, the effect of the hierarchical structure of the feasible sets (6.1) is clearly
visible. From a computational point of view, the remarkable quality of (SQK3) is important. It
is significantly better than (SQK1) and slightly better than (SQK2), while being comparable in
computation time. In comparison to (SQK4), (SQK3) is almost as good in quality, but signifi-
cantly faster to compute, because it is formed by just one constraint as opposed to n constraints
for (SQK4). Computational experiments reveal that the addition of a few y;-representations to
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Table 6.4: Improvement of the bound by adding cutting planes for the examples of Table
6.3. The initial relaxation is (SQK3). For each solution we eliminate inequalities with small
dual variables, add n violated inequalities, and iterate. Relative gaps refer to the bound
after 30 minutes of computation time. If the relative gap was closed to 5 - 10~ within
this time limit, we mark this by > and give the computation time instead. In gen. ineq. the
generic inequalities are used as cutting planes. In lin. cuts the knapsack specific linear cutting
planes are separated as well. In matching we consider all inequalities together, including the
matching constraints.

dim  rhs feas. SQK3 gen. ineq. lin. cuts matching

sol. %  %/mm:ss  %/mm:ss  %/mm:ss
30 450 1580 14.5 0.23 > 0:03 > 0:03
512 1802 17.1 5.60 0.20 0.20
600 2326 10.6 2.64 > 0:24 > 0:13
45 450 2840 8.5 2.88 > 0:12 > 2:00
512 3154 12.7 3.06 1.48 1.48
600 3840 8.2 > 3:32 > 0:29 > 0:29
47 450 1732 5.9 2.55 > 4:03 > 3:08
512 1932 11.6 1.28 > 1:22 > 2:10
600 2186 17.5 8.89 3.12 3.51
61 450 26996 2.4 0.36 > 0:40 > 0:36
512 29492 2.0 1.28 > 7:44 > 5:14
600 32552 1.9 1.04 0.23 0.28

Table 6.5: Cutting planes used. The numbers correspond to the solution given in column
matching of Table 6.4. knapsack refers to y;-representations of the original knapsack con-
straint. triangle gives the number of triangle inequalities. weight is the number of weight
inequalities in y;-representation. ext. weight refers to the y;-representations of extended
weight inequalities, and matching to the number of matching inequalities.

dim rhs knapsack triangle weight ext. weight matching

30 450 0 69 4 5 0
512 4 557 7 13 0
600 4 81 5 6 2
45 450 0 160 10 20 6
512 9 589 11 36 1
600 2 96 7 5 0
47 450 1 143 4 39 7
512 5 158 9 23 1
600 12 371 6 9 7
61 450 0 105 1 3 2
512 4 274 6 13 0
600 3 399 8 15 1

(SQK3) suffices to achieve the quality of (SQK4). Therefore, our cutting plane algorithm uses
(SQK3) as initial relaxation.

Because of the lack of an acceptable warm-start heuristic, the structure of our cutting plane
algorithm is simple. Start from Ys with relaxation (SQK3). Solve the current relaxation to
optimality, eliminate inequalities with small dual costs, separate n inequalities with respect to the
optimal solution, and iterate by restarting from Yg. We selected the rather small parameter n,
because many initial cutting planes turned out to be superfluous at a later stage of the algorithm. A
larger number than n only led to slower interior point iterations without comparable improvements
in objective value.

In Table 6.4 we present the computational results of four different runs of the cutting plane
algorithm. Starting from (SQK3) we include in each run a further class of cutting planes. First we
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separate only generic inequalities, then we add the linear cutting planes, and finally the quadratic
cutting planes.

The generic inequalities already led to considerable improvements with respect to the initial
relaxation, see column A-ineq. of Table 6.4, but they rarely sufficed to close the gap between
feasible solution and upper bound. With the separation of the problem specific linear cutting
planes the algorithm succeeded in proving optimality for most of our examples, see column lin.
cuts. With respect to matching constraints the computational results are ambivalent, see column
matching. Sometimes the code was faster with matching constraints, mostly it was slower due to
the expensive computation of maximum weighted matchings. Table 6.5 lists the various cutting
planes that were active at termination of the code.

Again, the examples we could attack with our semidefinite interior point cutting plane methods
are tiny. None the less, interior point methods form an excellent test bed for the development
of separation routines and help to provide some intuition on the importance of certain classes of
cutting planes.

6.2 A Spectral Bundle Approach

The spectral bundle method of Chapter 5 is designed for eigenvalue optimization problems of the
form min, Amax(C — Aly) + b7y and may be employed to solve the dual of most semidefinite
relaxations described in Chapter 3. In particular, the duals of relaxations whose primal feasible
matrices have constant trace may equivalently be written as eigenvalue optimization problems of
this form (Proposition 5.1.1). For the semidefinite relaxation of max-cut the transformation is
given explicitly in Lemma 3.1.11. The same transformation applies to the semidefinite relaxation
of max k-cut which only differs in additional inequality constraints. For constrained quadratic 0-1
programming the scaling of Lemma 3.2.3 to max-cut shows that it also falls into this class.

The main advantage of the spectral bundle method is the possibility to exploit structural
properties of the cost and coefficient matrices, such as sparsity or low rank representations. Its
memory usage can be kept at the same order of magnitude as the input data. The order n of the
feasible matrices and the number m of constraints is usually not a limiting factor.

Its main disadvantage is that it is a first order method. Initially, the objective value improves
quickly, but convergence slows down dramatically as the optimum is approached.

In combinatorial applications the goal is to obtain a good bound quickly. Often there is no need
to compute the precise value of a relaxation. On some occasions one is satisfied with a reasonable
quality guarantee for an available feasible solution, in other cases faster progress can be achieved
by improving the relaxation itself, e.g., by means of cutting planes.

In the following we present some conceptual ideas, how the spectral bundle method could be
combined with a cutting plane approach. In particular, we discuss possibilities for separating
inequalities (Section 6.2.1) and restarting (Section 6.2.2). In order to illustrate some of these ideas
we also present tentative implementations for max-cut (Section 6.2.3) and max k-cut (Section
6.2.4) and include preliminary computational results.

We first recall the main steps of the spectral bundle method.

In iteration k the spectral bundle method with bounds (Algorithm 5.4.4) solves a small
quadratic semidefinite program of the form (see (QSP,) of Lemma 5.4.1)

1
max (C,W) + (b— i) — AW, §*) — — [|b—n — AW|]*. (6.6)
Wewk 2U

The variable W corresponds to the primal matrix variable X of a primal maximization problem
whose feasible matrices X all have the same trace; without loss of generality we assume tr X = 1.
The Lagrange multipliers | g* are the dual variables. 7 may be interpreted as a vector of primal
slack variables. The set W* is a small convex subset of {X = 0: tr(X) = 1} (see (5.12)),

Wr={P,VBT +aW): tV+a=1VeS;

Tk’

a>0},
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with orthonormal P, € M,, ., and Wy, = 0 satisfying tr(Wj) = 1. The columns of the matrix Py
are called the bundle, the matrix Wy, is referred to as the aggregate, and the number ry, of columns
of P is the bundle size. In general, the set W* does not contain feasible matrices of the original
problem. The quadratic term ||b — /) — AW||” in (6.6) penalizes deviations from feasibility and the
weight u controls the influence of this penalty. The optimizer

W = PV, PT + o, W}, € WF,

of (6.6) gives rise to a new test point y*+1 for the cost function Apax(C — ATy) + bTy. If the
test point yields “sufficient” improvement, the algorithm sets §*+1 = y**1; this is called a descent
step. Otherwise it continues with §**1 = ¥, a null step, but ensures long term progress in the
update to Pjy1, W1, and 7). In this update, at least one eigenvector of Amax(C — ATy**1) (or
a sufficiently good approximation to it, see Section 5.6) is incorporated in the new bundle, while
some old bundle information may be removed by aggregating it in W, (Proposition 5.2.3). It is
important to note, that the algorithm does not need W, itself, but only the scalar <C, Wk> and

the vector AW}, € R™, that can be updated without forming W, explicitly (see Section 5.5).

6.2.1 Separation of Inequalities

The spectral bundle method is a pure dual approach for possibly bounded y € R™. Thus, a feasible
primal matrix is not available. However, under mild regularity assumptions, the spectral bundle
method implicitly generates a sequence of matrices converging to a primal optimal solution. All
accumulation points of the subsequence of the W* that give rise to descent steps are optimal
solutions of the primal maximization problem (see Theorem 5.3.8).

In the following we drop all iteration indices and denote the optimal solution of (6.6) by
W = PVPT 4+ aW. If its deviation from feasibility || .[AW +n — b|| is reasonably small, then W
may be regarded as an acceptable approximation of the primal optimal solution. Although P,
V, and a are easily stored explicitly, this may not always be possible for W € S;} if n is large.
Depending on what information is available with respect to W, the matrix W offers different
possibilities to employ separation procedures.

Separation if W is available

If all elements of the matrix W have been stored, then W is available in full, as well. The same
separation routines may be used as in primal-dual interior point methods.

Separation with respect to PV PT

If W is too big to be formed explicitly, and only AW and (C,W) have been stored, then it is
not possible to reconstruct W completely. If, however, « is relatively small, then PV PT holds
sufficient information to be useful for separation. Sometimes the special structure of PV PT may
even come in handy in the design of efficient separation routines. Indeed, let B = PVz € My,
then BBT is a low rank Gram approximation of . In many relaxations row i of B may be
interpreted as a vector labeling of the i-th discrete variable (see Section 3.4.2). These vectors may
be used to search for violated constraints over n low dimensional vectors geometrically rather than

over (”;’1) real variables. An example of this approach will be given for max-cut below.

Separation with respect to the support

For combinatorial optimization problems defined on sparse graphs or by sparse cost matrices, our
matrix notation is somewhat misleading in that it suggests that the problem is defined over ("3?)
variables. In fact, the problem definition only requires the variables corresponding to the support
of the cost function. A natural object to study in the design of relaxations is therefore the convex
hull of the feasible integral solutions in the support space. Since this yields typically the smallest
integer programming formulations, this is the prevalent approach in polyhedral combinatorics and
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there is a vast literature on polyhedral investigations for various support structures. We refer to
Deza and Laurent [1997] for a survey on polyhedral results for max-cut and max k-cut polytopes.

We can follow a similar approach in the spectral bundle method by storing, in addition to
AW and (C,W), the same elements of W that are in the support of C. In this case, W can
be reconstructed on the support of C and all separation routines developed for the respective
polytopes can also be applied to this solution. In addition, this approach has the advantage that
the separation routines generate cutting planes whose support is again restricted to the support
of C. So the sparsity pattern of the matrix C' — ATy will not change. This may help to exploit
structure in the eigenvalue routine.

6.2.2 Warm-Start

Adding and deleting cutting planes in the primal problem corresponds to adding and deleting
variables in the dual problem. For general bundle methods it is unfavorable to increase the
problem dimension, because usually old subgradients cannot be updated in the new coordinates.
The subgradient model of the function is lost. .

The situation is much better in the case of the spectral bundle method. Here, a matrix W € W
and a slack vector 7 give rise to the linear minorant (C,W) + (b —n — AW, -) of the objective
function. The pointwise maximum over all these linear functions for W € W forms the model
function minorizing the objective function (see Iwn (5.42)). If W of W is stored explicitly, or at
least on the support of the new inequalities, then the entire model information is independent of
changes in the dimension of y. On the other hand, if instead of W only AW and {(C, W) are stored
as suggested in Remark 5.5.1, 2, then at least the part of the model formed by P is preserved.

The convergence analysis of the spectral bundle method demonstrates, that one has to be
careful with changes in the model during consecutive null steps. But after a descent step, the
method may start with the new point from scratch without endangering convergence (cf. Remark
5.3.7).

Therefore, descent steps are the appropriate place to call separation routines and to add new
variables. By setting the new y variables to zero, the current objective value remains unchanged,
i.e., the algorithm continues exactly from the point where it stopped, except that some additional
freedom has been added in the cost function.

Inactive inequalities, that are currently not tight with respect to the primal approximation,
are characterized by the value of the dual variable being zero, say y; = 0, and the corresponding
Lagrange multiplier (or primal slack variable, see Remark 5.4.5) being greater than zero, n; > 0
(see Lemma 5.4.2). They contribute neither to the current matrix C' — Ay nor to the objective
value Amax(C — ATy) + b7y and may, therefore, be deleted without further consideration. This
causes no changes in the cutting plane model, except that the corresponding coordinates of AW
have to be eliminated.

6.2.3 Max-Cut

Reformulating the dual of the basic semidefinite max-cut relaxation (SMC) (see page 28) as an
eigenvalue optimization problem yields (compare this to (3.11) and Lemma 3.1.11)

min nAmax(C — Diag(y)) + eTy.

yER"
It seems reasonable to choose, as a starting point, the diagonal entries of C' — Diag(y) so that all
diagonal elements have the same value (for max-cut problems on random graphs this is motivated
by Theorem 3.1.13). Indeed, we may assume, without loss of generality, that C itself has this
property, because changes in the diagonal entries of C' that sum up to zero do not influence the
value of the primal problem. Under this assumption we start with y° = 0.

Our numerical experiments are performed on sparse weighted graphs that were generated

with rudy, a platform independent graph generator written by Giovanni Rinaldi; the arguments
corresponding to the graphs are given in Appendix C.
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Table 6.6: Comparison of the primal-dual interior point (PDIP) and the spectral bundle
(SB) code for (SMC) applied to some sparse weighted graphs on 800 nodes. sol gives the
computed bounds (dual objective value for interior points and objective value of spectral
bundle) and time displays the computation time.

PDIP-sol PDIP-time SB-sol  SB-time
G1 12083.20 44:15 12083.287 1:25
G2 12089.43 44:38 12089.518 1:14
Gs 12084.33 48:18 12084.407 2:45
Gy 12111.45 46:58 12111.500 1:03
Gs 12099.89 46:48  12099.981 1:06
Ge 2656.160 47:24  2656.1742 1:03
Gr 2489.263 49:12  2489.2829 55
Gg 2506.934 45:55  2506.9537 1:19
Gy 2528.733 48:29  2528.7462 1:03
G1o 2485.063 47:14  2485.0825 1:31
G11 629.1648 49:44  629.18528 3:41
G2 623.8744 52:41 623.88997 1:41
Gi13 647.1365 54:50 647.14802 1:10
G4 3191.567 1:08:49 3191.6093 1:.07
G135 3171.558 1:17:36  3171.5907 1:31
Gi6 3175.017 1:12:56 3175.0431 1:19
G117 3171.327 1:12:30 3171.3616 1:02
Gi1s 1166.010 1:36:34 1166.0343 1:11
Gi9 1082.010 1:41:48 1082.0216 1:03
Gao 1111.393 1:44:17 1111.4008 1:18
Ga1 1104.284 1:45:03 1104.2903 1:14

Table 6.6 compares the computation times of the primal-dual interior point code of Section
6.1.1 and the spectral bundle code for some weighted graphs on 800 nodes. Whereas the primal-
dual interior point code needs roughly from three quarters up to two hours, the spectral bundle
method requires one to four minutes. Recently, a pure dual interior point code has been proposed
by Benson, Ye, and Zhang [1998] that exploits the sparsity of the dual slack matrix Z in forming
the system matrix and in the line search. For the examples of Table 6.6 and Table 6.8 below they
report comparable results. Unfortunately, the system matrix remains dense in their approach,
in general; so the number of constraints is the limiting factor as in primal-dual interior point
methods.

Table 6.7 gives more details on the numerical results of the spectral bundle code for the
examples of Table 6.7, and Table 6.8 list some examples of graphs on 2000 nodes. In all these
examples we set the termination criterion to € = 10~° and work with a bundle size of at most 25
columns in P, where up to 20 columns are kept from the last iteration, and 5 columns are filled
with new Lanczos vectors (see the description of the bundle update on page 79). In all examples
mentioned so far, the bundle is large enough to keep the coefficient a of the aggregate matrix W
at negligible small values. Indeed, the high iteration numbers for the grid graphs G11-G13 and
G32-G34 are not a consequence of the bundle size (the full bundle size was never reached), but
seem to be due to the flatness of the particular cost functions.

Since the computation of the cost coefficients is increasingly time consuming for larger n, m,
and a larger bundle size (the latter also governs the solution time of the quadratic semidefinite
subproblem), it may well be worth to reduce the bundle size for larger instances, if the eigenvalue
computation is comparatively cheap. We illustrate this in Figure 6.1 for a graph on 10,000 nodes.
Even though the plot only shows descent steps, it should be clear that the number of iterations
increases significantly as the bundle size decreases. The plot nicely illustrates the strong tailing
off effect which is even more articulate for small bundle sizes. Indeed, one hour of computation
time seems to yield sufficiently accurate results for most problems up to this size. See Table 6.9
for examples computed with a bundle size of 12 with respect to graphs on 5000 to 10000 nodes
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Table 6.7: The spectral bundle code applied to the max-cut relaxation (SMC) for sparse
weighted graphs on 800 and 2000 nodes. Instance lists the name of the graph described in
Appendix C, f* shows what we regard as the true optimum, rel_acc is the relative accuracy
of the value at termination with respect to f* in percent (¢ = 10~% is set as termination
criterion), time gives the computation time in minutes:seconds, A-% is the percentage of
time spent in the eigenvalue computation, k displays the number of iterations (including
null steps), descent lists the number of descent steps, ||V fy|| gives the norm of the final
subgradient of the model.

Instance f* rel.acc time A% k descent ||Vfyll
G1 12083.19 8.0-10-% 1:25 64 28 20 0.12
G2 12089.42 8.3-10-% 1:14 63 27 18 0.16
G3 12084.33 6.4-10~6  2:45 83 27 18 0.15
Gy 12111.44 5.0-10~%  1:03 60 23 16 0.14
Gs 12099.88 8.1-10=%  1:06 69 25 18 0.17
Ge 2656.157 6.3-10%  1:03 54 28 19 0.06
Gy 2489.260 9.0-10—6 55 60 26 18 0.08
Gs 2506.932 8.5-10~6 1:19 64 31 22 0.07
Gy 2528.730 6.4-107% 1:03 65 25 20 0.08
G1o 2485.061 8.4-10~% 1:31 63 36 25 0.08
G11 629.1645 3.3-10~5% 3:41 83 221 74 0.32
G12 623.8742 2.5-10~5% 1:41 75 102 50 0.28
G13 647.1360 1.9-10~5 1:10 72 92 42 0.24
G14a 3191.562 1.5-1075 1:07 54 42 27 0.26
G1s 3171.557 1.0-10~% 1:31 55 52 31 0.24
G1s 3175.017 8.1-107% 1:19 47 49 27 0.15
G17 3171.325 1.2-:1075 1:02 56 42 25 0.25
G1s 1166.009 2.1-107% 1:11 65 52 32 0.15
G1g 1082.010 1.1-.107% 1:03 68 53 29 0.08
Gao 1111.392 8.1-10-6 1:18 75 63 31 0.07
Go1 1104.283 6.4-10-6 1:14 71 56 29 0.06

Table 6.8: The spectral bundle code applied to the max-cut relaxation (SMC) for sparse
weighted graphs on 2000 nodes. The columns are described in Table 6.7.

Instance f* rel.acc  time A% k descent ||V fi|l
Ga2 14135.94 5.7-1076  4:43 40 38 23 0.20
Gaa 14145.50 9.0-1076  4:12 43 39 23 0.25
Gaa 14140.85 7.4-107%  4:25 41 38 28 0.25
Gas 14144.24 7.0-1076  3:49 39 34 22 0.27
Ga6 14132.86 7.0-10=6  4:09 41 35 24 0.27
Gar 4141.658 6.8:10%  4:37 44 37 23 0.15
Gag 4100.788 6.1:107%  7:12 41 43 28 0.12
Gag 4208.887 7.9-107%  3:52 40 38 25 0.17
G3o0 4215.380 8.9-107%  4:05 39 39 22 0.14
G31 4116.680 9.0-10~%  5:27 40 42 26 0.14
G32 1567.638 2.3-10~5 15:10 76 285 81 0.42
Ga3 1544.312 7.7-107% 13:24 78 227 105 0.78
Gay 1546.687 4.5-1075  8:13 75 166 78 0.59
Gss 8014.738 1.6-1075 11:28 58 80 44 0.43
G3g 8005.958 7.9-10-6 14:37 53 90 38 0.21
Gar 8018.620 1.9-1075 13:43 57 94 49 0.44
G3s 8014.967 2.3-1075 12:28 62 80 46 0.44
Gag 2877.645 1.1-1075 10:33 67 94 40 0.14
Gao 2864.787 2.1:1075  9:34 69 99 42 0.16
Ga1 2865.218 2.1-1075 11:22 72 86 52 0.20

G2 2946.250 2.9-107%  9:34 65 79 47 0.22
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Figure 6.1

The values of the descent steps of the spectral bundle method are plotted versus
the time in seconds for bundle sizes 45 (marked by V), 25 (), and 5 (o). In the
example, the semidefinite relaxation (SMC) of max-cut is solved for a graph on
10,000 nodes. The relative precision reached after one hour is roughly 10~4.

(these graphs were first used by S. Benson [personal communication] in a preliminary version of
Benson, Ye, and Zhang [2000]).

Usually, there is no need to wait for the convergence of the algorithm. The bound can be
improved faster by adding further freedom in the form of primal cutting planes such as the triangle
inequalities (3.14). But already for graphs on 800 nodes the separation of triangle inequalities via
complete enumeration in O(n?) is too expensive in comparison to the running time of the spectral
bundle method. Instead, we employ the row vectors of B = PV3 (see Section above) in order to
devise an O(n?) separation heuristic.

By Theorem 5.3.8 the matrix W approximates a primal optimal X, and W itself is approxi-
mated by BBT. Denoting column i of BT by v; we may therefore approximate z;; by v} v;. The
hypermetric inequalities (see (3.13) and thereafter) allow an intriguing representation in terms of
these v;. We illustrate this for the triangle constraint z;; + s + ;5 > —1 (3.14). This inequal-
ity is equivalent to bTXb > 1 with b; = bj = by = 1 and b, = 0 otherwise. Replacing X by
BBT we obtain (b B)(BTb) = ||v; + v; + vi||° > 1. Thus, finding a violated triangle inequality
corresponds to finding v;, v;, and vy that sum up to a vector of small norm.

In order to find reasonable candidates for such vectors quickly, we employ a simple form of
geometric searching (see Preparata and Shamos [1985] for more serious applications of geometric
searching). We project the row vectors onto a smaller random subspace, say 5-dimensional (in the
implementation the number depends on n), and partition the space symmetrically around zero
into five sections per coordinate axis, forming 5° cells. Each cell is assigned the list of vectors
whose projections fall into this cell. Now we test for any pair of vertices whether the cell matching

the projection of the negative of their sum contains a vector, so that all three vectors sum up to
almost zero. If the number of cells is selected so that the expected number of vectors assigned
to each cell is a small constant in average, then this heuristic runs in roughly O(n?) time. The
heuristic seems to work reasonably well as long as the contribution a, W to W is small, i.e., B
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Table 6.9: The spectral bundle code applied to the max-cut relaxation (SMC) for sparse
weighted graphs on 5000 to 10000 nodes with a time limit of one hour. The columns are
described in Table6.7. In each iteration the bundle consists of 4 aggregated columns and 8
new vectors.

Instance f* rel_acc time A% k  descent ||Vl
Gss 12869.94 4.1.10~° 30:22 79 279 41 2.00
Gse 4760.070 1.2-107% 1:00:11 81 523 47 0.72
Gsr 3884.376 8.3-10% 1:00:01 77T 714 46 0.45
G5 20136.18 1.4-10~* 1:00:28 90 230 36 0.77
G 7312.325 7.3-10~% 1:00:09 88 286 41 0.61
Geo 15222.43 1.3-1075 1:00:01 7T 424 41 2.36
Geg1 6828.456 7.5-107% 1:00:05 78 404 39 1.70
Ge2 5600.282 1.6-10~% 1:00:07 74 557 49 0.80
Ge3 28244.39 2.4-10~* 1:01:00 88 188 36 1.50
Gea 10465.89 1.0-10~3 1:00:32 87 196 37 1.56
Ges 6214.986 2.1-10~%  1:00:02 74 485 48 0.77
Ges 6967.231 2.5.107%  1:00:04 74 429 50 1.17
Ger 7744.428 2.9-107%  1:00:04 74 376 50 1.34

Table 6.10: The max-cut relaxation (SMC) improved by triangle cutting planes for sparse
weighted graphs on 800 nodes. Column no cuts gives the same objective value and compu-
tation time in minutes:seconds as in Table 6.7. Starting, at every second descent step, the
separation routine when the stopping criterion indicates a relative precision of 0.5% yields
after one minute the results of column cuts, I min, and after ten minutes column cuts, 10

min.
no cuts cuts, 1 min cuts, 10 min

Instance f  time f time f time
G 12083.29 1:25 12074.15 1:05 12043.29  10:07
G2 12089.52  1:14 12077.12  1:04 12049.14  10:12
G3 12084.41 2:45 12069.81 1:06 12042.52  10:00
Gy 12111.50 1:03 12105.65 1:01 12067.36  10:12
Gs 12099.98 1:06 12082.89 1:12 12055.14  10:08
Ge 2656.174 1:03 2640.480 1:06 2611.760  10:12
Gr 2489.283 55 2472.192 1:05 2444.222  10:10
Gs 2506.954 1:19 2490.083 1:02 2464.143  10:06
Gy 2528.746  1:03 2512.633  1:04 2486.013  10:03
G1o 2485.082  1:31 2473.997  1:06 2447.028  10:06
G11 629.1853  3:41 624.0085  1:03 604.1985  10:00
G2 623.8900  1:41 618.6955  1:01 595.7278  10:05
G13 647.1480  1:10 641.3670  1:02 618.2381  10:07
G4 3191.609  1:07 3190.286  1:02 3177.571  10:10
Gis 3171.591 1:31 3169.741 1:07 3158.108  10:11
Gie 3175.043  1:19 3175.331  1:03 3163.338  10:07
Gir 3171.362  1:02 3173.060  1:02 3157.657  10:04
Gis 1166.034 1:11 1157.574 1:07 1138.837 10:11
Gio 1082.022  1:03 1076.057  1:03 1057.156  10:07
G20 1111.401 1:18 1105.598  1:00 1086.020  10:06

G21 1104.290 1:14 1101.117 1:05 1080.284  10:02

121



122 CHAPTER 6. CUTTING PLANE ALGORITHMS

contains most of the information of W. See Tables 6.10 and 6.11 for some tentative results on the
examples of Tables 6.7 and 6.8.

Unfortunately, the heuristic is only successful for graphs with up to, say, 5000 nodes, for two
reasons. First, our separation routine is already too slow for larger sizes, and second, the necessary
bundle size to represent W in sufficient accuracy by B alone grows too large to be computationally
efficient. For graphs beyond 5000 nodes other techniques may be required, e.g., heuristics or exact
methods separating cutting planes with respect to the support of the cost matrix.

6.2.4 Max k-Cut

For a given undirected, possibly weighted graph G = (V, E), max k-cut asks for a partition of the
vertex set V' = {1,...,n} into at most k subsets such that the sum of the edge weights of edges in
the k-cut (the set of edges whose endpoints belong to distinct sets) is maximized. The semidefinite
relaxation of max k-cut has been described in Section 3.4.2, its representation (3.28) differs from
(SMC) by an additional constraint z;; > —ﬁ for each offdiagonal entry of X,

max {C,X)
s.t. diag(X)=e
zi; > - for1<i<j<n (6.7)
X > 0.
In the discrete setting, x;; = 1 corresponds to ¢ and j being in the same set, and if x;; = —lel

then 4 and j belong to distinct sets. Note, that the number of constraints grows quadratically in
n.

An application of max k-cut is the computation of lower bounds on co-channel interference
in cellular networks (see, e.g., Borndorfer, Eisenblitter, Grotschel, and Martin [1998]). Given
n antennas, k frequencies (k € {50,...,100}), and the amount of interference between pairs of
antennas if they are assigned the same frequency (co-channel interference), the task is to assign to
each antenna a frequency so that the sum of the co-channel interferences is minimized. We assume
that the interference is given by a nonnegative adjacency matrix A corresponding to an undirected
weighted graph. For this graph we want to find a partition of the node set (the antennas) into
k different sets (the frequencies) so that the sum of the edge weights of edges running between
distinct sets is maximized. The appropriate cost matrix for (6.7) is C = £-1(Diag(de) — A)
(see Section 3.4.2). Lower bounds on the minimal interference are obtained by subtracting, for a
feasible solution of the dual to (6.7), the dual objective value from the sum of all edge weights.
Additional constraints arise if certain pairs of antennas must be assigned distinct frequencies
because of quality restrictions, i.e., the corresponding edge must be in the k-cut. The latter
restrictions are easily incorporated into (3.28) by requiring z;; = —klj for each such pair ¢j of
antennas.

The basic relaxation (3.28) lists (Z) constraints, but there is no need to include all of them.

Note, that the dual of (3.28) is a valid upper bound on the size of a maximal k-cut for any subset
of the constraints z;; > _ler In order to guarantee at least the trivial bound (all edges in the
cut) we have to include the offdiagonal constraints corresponding to negative elements of the cost
matrix. Computational experiments indicate that for our algorithm it is more efficient to start

with the diagonal constraints only and to separate z;; > —ﬁ successively than to include all

constraints at once, even if the final number of active inequality constraints is close to (72‘)

In our numerical experiments, we compute lower bounds for co-channel interference incurred
by frequency plans for GSM-networks. The data is supplied by A. Eisenblitter and originates in
realistic planning problems provided by E-Plus Mobilfunk GmbH.

For these problems he was able to find presumably good feasible solutions. Efforts of proving a
lower bound by a linear cutting plane approach did not succeed; the lower bounds remained close
to zero (A. Eisenblitter [personal communication]).

The number of antennas n ranges between 100 and 4000 and the number of available frequencies
k is either 50, 75, or 100. Typically, a single co-channel interference (a single edge) has a weight
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between zero and one half, but sometimes it may be larger than one. Depending on the size of the
instance (and the number of frequencies), the sum of all edges ranges between 1000 and 50000.
The total interference in a good assignment sums up to a value between 0.1 and 10, i.e., almost
all edges end up in the k-cut. Therefore, any reasonable bound will have to be computed to high
relative precision, which is an unfavorable situation for the spectral bundle method.

Since the matrix sizes range between 100 and 4000, it is possible to store the full aggregate W.
Updating W is an n? operation and slows down the algorithm for larger n, say n > 1000, but in
return the separation procedure is efficient and independent of the bundle size. Furthermore, the
algorithm can be restarted after the addition or deletion of constraints without loss of quality in
the model.

In our current implementation (it is still changing a lot) we start the separation routine if the
relative gap between objective and model value is below 1%, and then repeatedly after at least
three further descent steps. Each time, we delete all inactive inequalities and select the 20n most
violated inequalities with respect to the last solution W of the quadratic semidefinite subproblem.
The termination criterion is set to a relative precision of 10~® with respect to the objective value
of the dual to (6.7).

Table 6.12 presents first results for some of the smaller examples of A. Eisenblétter. The
quality of the lower bounds seems to be unmatched as of today. We do not expect that our
reported bounds are very accurate estimates of the true optimal solution of relaxation (6.7); the
accuracy of the lower bounds given in the table will be one or two digits at most due to the
following three reasons. First, the termination criterion works with formulation (6.7), thus the
relative precision is determined with respect to the sum of the edge weights. Second, in our
experience the termination criterion usually stops somewhat short of the desired relative precision
(in this case it may amount to a relative precision of only 5-1075 with respect to numbers greater
than 1000). Finally, the cutting plane algorithm works with respect to an infeasible approximation
to the optimal primal solution; typically, several constraints are still not satisfied by this matrix.
Considering example FAP10, the last separation before termination detected inequalities violated
by 0.02. It is therefore not surprising that the computed bound may stay below the trivial 0 as in
FAP10. In view of this it is not possible to judge the true quality of (6.7) for examples FAP10 to
FAP12 from our computations. However, the sum of the edge weights minus the lower bounds of
Table 6.12 are certainly upper bounds on the dual optimal solution of (6.7).

We interpret the high computation times as a consequence of the interaction of two tailing off
effects. The spectral bundle method and the cutting plane method both show a strong tailing off
effect as the optimal solution of the respective problem is approached. In principle, it is possible
to improve (6.7) with further cutting planes, see Grotschel and Wakabayashi [1989]; Grétschel and
Wakabayashi [1990]; Deza, Grotschel, and Laurent [1991]; Chopra and Rao [1993]; Chopra and
Rao [1995], but we have not yet experimented with these possibilities. Currently our approach is
too slow to be used as a subroutine in a planning tool. Still, the availability of good lower bounds
is of importance for judging the quality of faster heuristic approaches.

6.3 Fixing of Variables

The task of solving hard combinatorial problems to optimality leads naturally to branch and
bound (or branch and cut). In the branch and bound approach a bound on the optimal solution
is computed by solving a tractable relaxation of the combinatorial problem. If the bound is not
tight enough to prove optimality of the best combinatorial solution found so far, then, in the
so-called branching step, the problem is split into two or more subproblems by partitioning the
space of combinatorial solutions, e.g., by setting a {0, 1} variable to 0 in one subproblem and to 1
in the other. The same scheme is then applied recursively to the subproblems. The nature of this
enumerative approach is best visualized by a, in graph theoretic terms, rooted tree (the branch
and bound tree) with the root node corresponding to the original combinatorial problem, the arcs
corresponding to the decisions, and the nodes corresponding to the subproblems. Subproblems
that have not yet been solved are located in the end nodes (leaves). The decisions taken along a
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Table 6.11: The max-cut relaxation (SMC) improved by triangle cutting planes for sparse
weighted graphs on 2000 nodes. Column no cuts gives the same objective value and compu-
tation time in minutes:seconds as in Table 6.8. Starting, at every second descent step, the
separation routine when the stopping criterion indicates a relative precision of 0.5% yields
after ten minutes the results of column cuts, 10 min, and, after 30 minutes, column cuts, 20

min.
no cuts cuts, 10 min cuts, 30 min

Instance f time f time f time
G2 14136.02 4:43 14121.32  10:05 14098.40  30:19
Gas 14145.63 4:12 14128.98  10:04 14105.58  30:12
Gag 14140.95 4:25 14129.07 10:34 14103.67  30:17
Gas 14144.34 3:49 14125.59  10:11 14102.45  30:17
Gag 14132.96 4:09 14114.31  10:07 14094.54  31:05
Gar 4141.685 4:37 4119.570  10:40 4103.103  30:01
Gog 4100.813 7:12 4085.120  10:11 4066.122  30:23
Gag 4208.921 3:52 4185.959  10:34 4166.341  31:05
G3o 4215.418 4:05 4192.520 10:34 4176.569  30:01
G3a1 4116.717 5:27 4095.326  10:06 4079.510  30:18
G3a 1567.675  15:10 1558.093  10:38 1527.607  31:17
Gs3 1544.430 13:24 1528.904  10:06 1502.231  30:01
G34 1546.757 8:13 1524.249  10:12 1496.889  30:21
Gss 8014.868  11:28 8014.810  10:12 7995.954  30:05
G3e 8006.021  14:37 8005.810  10:05 7990.340  30:16
Gsr 8018.772  13:43 8019.308  10:02 8001.319  30:18
G3s 8015.154  12:28 8013.450  10:08 7998.240  30:12
G3g 2877.678  10:33 2867.089  10:07 2841.002  30:18
Gao 2864.848 9:34 2852.139  10:04 2829.115  30:17
Gau 2865.278  11:22 2848.303  10:02 2821.780  30:05
Gao 2946.336 9:34 2929.661  10:04 2901.910  30:01

Table 6.12: Frequency assignment examples for minimizing co-channel interference. n is
the number of antennas, k the number of frequencies, > refers to the sum over all weights,
Interf. shows the value of the best solution known (computed by A. Eisenblitter), lbd gives
the lower bound on the minimal amount of interference obtained by the objective value of
the relaxation, ¢time is listed in hours:minutes:seconds, # eq. gives the number of (diagonal
and offdiagonal) equality constraints, # ineq. refers to the number of inequality constraints
T;j>_1 in use at termination, # 4. displays the number of function evaluations. We used a
bundle of five new vectors per iteration (no aggregate columns), and a termination criterion

of e = 1075.
Instance n k 5> Interf. Ibd time # eq. #ineq. # it
FAP06 93 50 811.073 0.5264 0.4527 3:06:22.02 374 3758 73101
FAPO7 98 50 1205.26  2.4857 2.0905 4:19:09.88 712 3599 93737

FAPO08 120 50 1309.66  2.8132 2.4260 6:12:23.66 592 5938 81881
FAPO09 174 50 2862.86 12.245 10.764 8:49:53.57 1200 11174 69358
FAP10 183 75 2001.45 0.0370 -0.0015 14:02:13.94 725 14794 90642
FAP11 252 75 3123.25 0.1357 0.0073 42:57:55.05 1017 26777 155855
FAP12 369 50 4481.76 0.8074 0.2210  131:05:31.78 2052 33805 326105
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path (or branch) starting at the root node successively reduce the set of feasible solutions of the
subproblems on this path. If the bound on a subproblem indicates that no better combinatorial
solution can be found in the subproblems feasible set, then the node may be fathomed, i.e., the
recursion can be stopped for this branch of the tree. The problem is solved when all leaves of the
branches have been fathomed. Branch and cut refers to branch and bound approaches where for
each subproblem the bounding procedure is a cutting plane algorithm.

In this setting the efficiency of an expensive bound hinges on the tradeoff between the number
of branch and bound nodes and the computation time needed for each node. If the bound is
derived from the dual of a relaxation and its value is sufficiently close to an integral solution then
it is often possible to reduce the number of branch and bound nodes by fixing variables, i.e., by
proving that better solutions can only be obtained for fixed values of certain variables.

In linear programming, fixing variables using reduced costs is a standard procedure. In order
to illustrate this technique, consider the quadratic {—1, 1}-programming problem (3.4),

max z!Cz
ze{-1,1}"

with integral cost matrix C' and assume that a ‘good’ integral solution ¢* = #z! BZ with Z €
{—1,1}" is known. Linear relaxations of (3.4) are usually formulated in variables z;;, that rep-
resent linearizations of the products z; - ;. The relaxations typically include the box constraints
—1 < z;; < 1. Let the optimal solution of the relaxation have dual objective value b4 where b
is the vector of primal right hand sides and 4 the vector of Lagrange multipliers. If the optimal
solution & of the linear relaxation yields £;; = 1, say, then we can quickly compute an upper bound
for the problem with the additional constraint z;; = —1 by exploiting the following observation.
In the dual problem the change of the right hand side in the primal constraint z;; < 1 = by to
z;; < —1 = by, affects only the cost coefficients, b changes to b. Thus, the old Lagrange multipliers
@ remain feasible for the new cost coefficients b and the new dual objective value is, in this par-
ticular case, bY@ = bT'4 — 4y. If this new bound satisfies b14 — @ < ¢* + 1, then this proves: If
there are better integral solutions than c* in the feasible set then they satisfy x;; = 1.

The semidefinite relaxation (SMC) for (3.4) already implies the box-constraints (Lemma 3.1.2).
Consequently, they are not included in the relaxation and the corresponding Lagrange multipliers
are unknown. Yet, if the optimal solution of the semidefinite relaxation displays some z;; = 1,
then there must be some corresponding active constraint buried in the semidefiniteness constraint.
Indeed, we can associate with each active constraint z;; > —1 or z;; < 1 an active constraint
vTXv > 0 from the set of constraints ensuring the positive semidefiniteness of X as follows. Let
|z;;| = 1 for some i # j in the optimal solution (X*,u*,Z*) of the current relaxation. Then the
vector v € R™ with

1 k=1
vp =14 —sgn(zi) k=] (6.8)
0 otherwise,

is in the null space of X*. Although the Lagrange multiplier corresponding to the constraint
(voT,X) > 0 is not directly available it might be possible to construct one from information
contained in the Lagrange multiplier to the semidefiniteness constraint on X, this multiplier being
the dual slack matrix Z*.

In this section we illustrate a practical method for extracting this information. We will present
two algorithms developed in Helmberg [2000]. The first is based on a line search with respect
to the maximum eigenvalue function. It is suitable for general inequalities and might also be
useful if the dual matrix variable is a huge structured matrix as may be the case in the spectral
bundle method or in the dual interior point method of Benson, Ye, and Zhang [2000]. The second
algorithm is tailored to box constraints on offdiagonal variables and assumes the availability of
the eigenvalue decomposition of the dual matrix variable. It is worth noting that the discussion
is completely independent of the actual algorithm used to solve the semidefinite relaxation.

We start by investigating the general case of semidefinite programming.



126 CHAPTER 6. CUTTING PLANE ALGORITHMS

6.3.1 The Theoretical Framework

Consider a standard primal-dual pair of semidefinite programs,

min (C, X) max (b, y)
(P) st. AX =0 (D) st. Aly+z2=cC
X>0 Z = 0.

We examine possibilities to extract duality information for equality or inequality constraints that
are not explicitly given in the problem description. Assume that optimal solutions X* of (P) and
(y*, Z*) of (D) are given and denote the optimal objective value by p* = (C, X*) = (b,y*) (in the
last equation we tacitly assume some constraint qualification to hold).

We are interested in the following question: How much does the optimal value of (P) increase
if an additional constraint (Ag, X) = bo is added to the problem? We would like to bound this
quantity without actually computing the optimal solution of the new problem.

Let yo denote the new dual variable associated with the new constraint. The corresponding
primal-dual pair reads

min {(C, X)

_ max boyo + <b; y)
(Po) i ff)? in_ & (Do) st. yodo + Aly+2Z=0C
X =0 Z=0

Computing the optimal solution is as hard as solving the original problem. However, we do already
know a “good” dual feasible solution for (Do), namely (yo = 0,y*, Z*). To improve this solution
with reasonable effort we restrict ourselves to a line search along an ascent direction (Ayg, Ay, AZ)
with

boAyo + (b,Ay) > 0
Ayodo + ATAy +AZ = 0
Z*+tAZ > 0 for some t > 0.

To determine the best search direction is again as difficult as the problem itself. The choice of a
good direction will depend on our understanding of the problem at hand.

Having fixed an ascent direction (Ayg, Ay, AZ) it remains to compute the maximal step size
t such that Z* + tAZ is still positive semidefinite, because the objective function is linear. With

S = C-Aly*=2*>0
B = Aygd+ ATAy

the problem reduces to
(LS) max t st.S—tB > 0.

There is no need to include the constraint ¢ > 0 since S > 0 implies that the optimal solution t*
is nonnegative. Problems of this form appear as matrix pencils in the literature (see, e.g., Golub
and van Loan [1989]). Indeed, the optimal ¢ can be computed explicitly.

Let PAgPT = S denote an eigenvalue decomposition of S with P an orthonormal matrix and
Ag a diagonal matrix having the eigenvalues A\1(S) > ... > A, (S) on its diagonal in this order.
Then S — tB > 0 is equivalent to

As —tPTBP > 0.

If the rank of S is k, then A\;(S) = 0 for 4 = k + 1,...,n. Scaling the equation above by
D = Diag(A1(S)™%,..., A\ (S)"%,1,...,1) we obtain

[ Ié“ 8 ] —tDPTBPD > 0.
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Assuming that ¢t > 0 exists, we divide by ¢ and impose the same block structure on DPT BPD,

1

I, 0 By, B

t — - 07
|: :| |: Bl,TQ ‘322 :| o

0 0
with By € My, Bas € M,,_, B1s € Mlc,nfk such that
Bll Bl2 T
= DP'BPD.
e

In the case where Bjo and By, are both zero, % > Amax(B11) is the best choice (for S > 0 this
specializes to % = Amax(S _lB). This is sometimes used in interior point methods to replace the
line search for X +aAX > 0, see Kojima, Shindoh, and Hara [1994]). Note, that for Apax(B11) <0
the problem is unbounded. If —Bj, is non-zero and not positive semidefinite, then ¢ = 0 is the
optimal solution. If —Bss is positive semidefinite with rank h, we can apply a similar sequence of
steps to obtain a condition B B
I — By Biy Bis

Bl In 0 = 0.

BL 0 0
If B3 is non-zero then again ¢ must be zero. Otherwise we can apply the Schur complement
Theorem 1.1.9 to obtain the condition

1 _ _
;Ik — By = B12Bi,.

This yields % Z )\max(Bll + BIQBTZ)

We specialize this general procedure to a case of particular importance in semidefinite program-
ming. For the purpose of explanation assume that X* and (y*, Z*) are a strictly complementary
pair of optimal solutions, i.e., rank(X*) + rank(Z*) = n (these do not necessarily exist, see Al-
izadeh, Haeberly, and Overton [1997]). Furthermore let Ay be a dyadic product vv? for some
v € R" with <m)T, X*> =0, 4.e., v is in the null space of X*. The matrix vv” may be interpreted
as one of the active constraints ensuring the positive definiteness of X. The right hand side by of
the new constraint must be greater than zero, otherwise there is no feasible primal solution for
the new problem. As ascent direction we choose Ayy = 1 and Ay = 0. This yields the following
line search problem,

max t s.t. Z* —tvo? = 0.

Because X* and Z* are strictly complementary solutions and v is in the null space of X* we
conclude that v lies in the span of the eigenvectors associated with non-zero eigenvalues of Z*.
Assume that rank(Z*) = k and let PAz.P = Z* denote the eigenvalue decomposition of Z* with
P € My, PTP = I, and the spectrum of non-zero eigenvalues Az+ € S;. Then the maximal ¢
is given by
1

B vTPA,IPTy’
If in particular v happens to be an eigenvector of Z* then t* is the corresponding eigenvalue of
Z*.

This procedure can be extended to the case where X* and Z* are not strictly complementary.
For any vector v in the null space of X* but not in the span of the non-zero eigenvectors of Z*
the optimal ¢ is zero.

*

(6.9)

6.3.2 A Practical Algorithm

With respect to the semidefinite relaxation (SMC), formula (6.9) suggests a convenient procedure
for constructing Lagrange multipliers for constraints of the form (6.8). Denote by (X*, Z* u*)
an optimal primal-dual solution to (SMC). For some i # j with |z};| = 1 in this solution, let
v be the corresponding vector (6.8). Assuming that the eigenvalue decomposition of Z* into
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PAz.PT is available (k = rank(Z*), P € M, PTP = I},), it is easy to check whether v is in
the span of the eigenvectors P. If it is not, then t* = 0, otherwise t* = —1/(vTPA,1PTv) is
the best Lagrange multiplier for the constraint v7 Xv = 0 obtainable from Z* = Diag(u*) — C
(since (SMC) is a maximization problem, the optimal ¢ is now nonpositive). Forcing the opposite
assignment z;; = —sgn(z};) can be modeled by changing the right hand side of the (currently
active) constraint v7 Xv = 0 to vT Xv = 4 in the current relaxation. The optimal value of the
relaxation corresponding to this opposite assignment is therefore at most e”u* + 4t*.

In theory this yields a very efficient algorithm for checking several pairs {i,j}. The eigenvalue
decomposition has to be computed only once for all pairs, the evaluation for a single pair requires
roughly O(nk) arithmetic operations.

In implementing this approach several difficulties are encountered. Indeed, we cannot expect
any real world algorithm to deliver a true optimal solution (X*,u*,Z*) of (PMC) for arbitrary
cost matrices. For a computed solution (X, Z) both, X and Z, w111 be (rather ill conditioned)
full rank matrices. Even in the case where the gap (X , Z ) between the primal and dual solutions
is almost zero, it is difficult to decide which of the eigenvalues of X and Z will eventually converge
to zero. The space spanned by the eigenvectors corresponding to the “non-zero” eigenvalues of
X and Z may still differ substantially from the true eigenspaces of X* and Z*. The vectors v of
(6.8) will neither be contained in the null space of X nor in the space spanned by the “non-zero”
eigenvectors of Z because no |z;;| will be exactly one. As a result the line search will allow only
a very short step and the approach fails.

In the case of (SMC), however, there is an obvious way to get around these difficulties. It is
worth noting that the framework can be applied when there are additional primal constraints, but
as these have no influence on the considerations to follow, we ignore them here.

Within the branch and bound scenario let (X , U, Z ) be the solution computed for the relaxation
of the current branch and bound node yielding the upper bound e’4. Let ¢* denote the lower
bound on the optimal solution of (MC). How much does the upper bound improve if we add a
branching constraint (Ag, X) = b (w.l.0.g. assume by > 0) to the current relaxation? We denote
the Lagrange multiplier for the new constraint by ug. We would like to compute an upper bound,
ideally smaller than ¢*, for the problem

min  boug + eTu
s.t. Z =wupA¢ + Diag(u) - C
Z 0.

Consider the situation of setting ug to some (negative) value required for achieving bouo+e’ 4 < c*.
If Z + ugAg is still positive semidefinite then we are done . If not, we add —Amin(Z + ugAp)e to
U, giving .
u=u-— )\min(Z + 'LL(]A())@.
This worsens the original bound of eTa by —nAmin, but the new Z is feasible. Thus we seek a ug
such that
dug +eTd — nAmin(Z + ugovT) < ¢*.

Summing up we specialize the semidefinite program above to

min boug + €7t — nAmin (o Ao + Z). (6.10)
ug ER

We first outline a general method for arriving at good estimates for ug and present a specialized
algorithm for constraints of the form z;; = —sgn(&;;) afterwards.

The minimal eigenvalue is a concave function, so (6.10) is a convex optimization problem. The
objective function is differentiable if and only if the minimal eigenvalue has multiplicity one. In
this case the gradient is determined by

Vo (boto — nAmin (o Ao + Z)) = by — n q(uo) TAoq(ug)

with g(ug) denoting the (normalized) eigenvector to the minimal eigenvalue of ugAg + Z. As
explained above, it can be expected that Z has eigenvalue zero with high multiplicity. Therefore,
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the function is not differentiable for ug = 0 and it is hard to guess the initial descent. It seems
appropriate to choose the starting value ug with respect to the gap ¢* —e”4, e.g., ug = (c* —eT)-
1.2/bo. For reasonably large |ug| the minimal eigenvalue will be well separated and we can use
the gradient to decide whether it is worth increasing |ug| even further or not. If the value of the
gradient implies that it might be possible to beat ¢* we do another step slightly overestimating
the remaining gap. We repeat this procedure at most three times.

The computation of the gradient requires the computation of the eigenvector of the minimal
eigenvalue of ugAg + Z. Extremal eigenvalues and eigenvectors are best determined via iterative
methods such as the Lanczos method, which can exploit problem structure (see Section 5.6 and
references therein). In particular these methods are very fast if a good starting vector is known.
For the first computation we suggest to choose an eigenvector associated with the maximum
eigenvalue of Ay, for all further iterations the last eigenvector computed is the natural choice. We
expect that this approach is efficiently applicable even in the case when Zisa huge structured
matrix as may be the case in the spectral bundle method or in Benson, Ye, and Zhang [2000].

In the following we assume that the constraint is of the form x;; = 1 (the argument for
zij = —1 is analogous) and that the eigenvalue decomposition Z = PAPT with PTP = I,, can be
computed efficiently, i.e., the dimension of Z is not above 1000, say. In practice, the representation
(Eij,X) = 2 (the matrix E;; has a 1 in positions ¢j and ji and is zero otherwise) of the constraint
z;; = 1 has proved superior to the representation (vvT, X) = 4 with v as in (6.8). This is probably
due to the difference in the spectrum of the representation matrices.

The fact that E;; is a rank two matrix can be exploited to avoid repeated eigenvalue compu-
tations in the line search®. Let E;; = vo” — ww? for appropriate v,w € R* and let Z = PAPT
with PTP = I, be an eigenvalue decomposition of Z. Then (6.10) specializes to

min  2ug+nX st uPT(vv! —ww? )P+ AT+ A > 0.
ug<0,A>0

For a given A > 0 we may rewrite the semidefinite constraint as

(A + M — uoww™) + uedv” > 0,
where & = PTv and @ = PTw. Since, for ug < 0, the matrix —ugww”
hence A + AI — ugww” > 0, we may employ (6.9) to obtain

1
> —— — —.
= 0T(A+ M — yowwT) 1w

is positive semidefinite and

Uo

Using the Sherman-Morrison-Woodbury formula for the inverse this leads to

[O(A + M)~ tw]? 1

v(A N '
U( +A ) U+u01—uOU_]T(A+)\I)71’U_] ~ ug

which is equivalent to

2
() (o ) i 2)
— Mi(Z2)+ A S AZ2)+X wo S X(Z2)+ X wo

From this quadratic relation the best ug can be computed explicitly for any given A > 0 in O(n)
arithmetic operations. This speeds up the line search, which is now formulated in A, considerably.
The factorization of Z has to be computed only once for all z;; that are considered for fixing.

In Table 6.13 we present some experimental results comparing the pure branch and cut code
of Helmberg and Rendl [1998] (the underlying cutting plane algorithm is outlined in Section 6.1.1)
to its versions with the fixing routines. The problems are the same as in Table 6.2. The fixing
procedures are applied whenever a variable z;; of the current optimal solution satisfies |z;;| > .98.
This leads to no additional cost for problems in which no variables satisfy this bound. Whenever
variables of this size appeared then usually some of them could be fixed.

3This was observed by Kurt Anstreicher.
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no fixing with fixing gen. fixing no fixing with fixing gen. fixing
nnr | hmm:ss nodes | hrmm:ss nodes | hrmm:ss nodes | h:mm:ss nodes | hmm:ss nodes | hmm:ss nodes
Gos G_1/0/1
40 10 12 8 11 7 11 7 13 9 13 9 13 9
50 10 46 16 46 16 47 16 50 19 50 19 49 19
60 5 4:26 57 4:24 57 4:29 57 2:45 37 2:44 36 2:44 36
70 3 14:17 121 14:06 118 14:24 118 7:44 64 7:40 63 7:40 63
80 2 30:08 145 29:53 145 29:59 145 41:15 203 41:11 203 41:14 203
90 1 2:39:05 583 2:37:07 583 2:39:11 583 11:57:00 2363 11:52:28 2360 11:56:01 2360
Gp Gip
40 10 7 4 7 4 7 4 1 1 1 1 1 1
50 10 48 14 48 14 48 14 8 2 9 2 9 2
60 5 3:13 32 3:14 31 3:15 31 49 9 49 9 49 9
70 3 7:12 41 7:05 39 7:07 39 4:32 25 5:17 29 5:19 29
80 2 43:06 158 42:57 156 43:11 156 4:57 17 4:57 18 5:02 18
90 1 30:00 69 30:48 73 30:54 73 22:49 63 23:17 63 23:18 63
Q100 Q100,.2
41 10 23 23 12 10 16 10 1 1 1 1 1 1
5110 1:12 39 34 14 42 14 6 1 5 1 7 1
61 5 2:47 51 1:11 16 1:26 16 56 15 40 9 47 9
71 3 5:57 71 3:42 35 4:38 35 7:20 71 3:41 32 4:19 32
81 2 11:23 86 9:24 45 10:50 45 7:32 33 3:22 11 5:28 11
91 1 18:35 79 1:21 3 6:04 3 18:17 73 2:56 7 4:33 7
101 1 31:39 137 28:47 104 32:34 104 31:31 113 4:29 7 8:30 7
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It was observed in Helmberg and Rendl [1998] that in practice G.5 and G_;/q/; are substan-
tially more difficult to solve than G, and G4, and these are again more difficult than @190 and
Q100,2- Indeed, for the classes G5, G_1/0/1, Gp, and G, the fixing routines were hardly ever
called, because no variables satisfied |z;;| > .98. Accordingly, the additional cost of the routine
is negligible. However, for the “easy” classes of problems Q190 and Q100,.2 the specialized fixing
routine was very successful and lead to large savings in most cases. The general fixing routine was
almost equally successful in fixing variables, but the cost of the repeated eigenvalue computations
is clearly visible.

Note, that the algorithms trivially extend to other semidefinite relaxations, e.g., for coloring
or max k-cut, allowing the possibility to shift eigenvalues directly. It also extends to quadratic
0-1 programming via the scaling of Lemma 3.2.3 to max-cut. Furthermore, our approach is not
restricted to the fixing of variables, but can be used to test whether a certain equality or inequality
constraint must be satisfied by all optimal solutions. In this sense we may also call this approach
fixing of constraints.

6.4 Remarks on the Literature

The first steps in combining cutting planes with interior point methods were taken in linear
programming, see Mitchell and Borchers [1996] and references therein. In semidefinite program-
ming, interior point cutting plane algorithms started with computational experiments on max-cut,
Helmberg [1994]; Helmberg and Rendl [1998]. Building on this work, Karisch [1995]; Karisch and
Rendl [1998]; Karisch, Rendl, and Clausen [1997] developed a cutting plane algorithm for graph
equipartitioning. Wolkowicz and Zhao [1996] discuss graph partitioning with prespecified sizes.
Semidefinite relaxations of the quadratic assignment problem were studied in Karisch [1995]; Zhao,
Karisch, Rendl, and Wolkowicz [1998]; Lin and Saigal [1997]. In order to approach more general
polyhedra, Helmberg, Rendl, and Weismantel [2000]; Helmberg and Weismantel [1998] investigated
the quadratic knapsack problem.

The ideas presented in Section 6.2 for combining cutting planes and the spectral bundle method
have not yet appeared in the literature. Even though they still lack proper computational jus-
tification we have decided to include them here, in the hope to encourage further work in this
direction. Fruitful discussions with Franz Rendl are gratefully acknowledged. We also thank
Andreas Eisenbldtter for providing the real world test data sets of the co-channel interference
minimization problems.

Sensitivity analysis of semidefinite programming is a well studied topic; we refer to Bonnans,
Cominetti, and Shapiro [1998] and references therein. Unfortunately, the theory builds on exact
solutions and full spectral information and is therefore of little help in implementations. The more
practical approach presented here was developed by Helmberg [2000].
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Appendix A

Linear Algebra

As a reference we recommend Horn and Johnson [1985]; Horn and Johnson [1991]. We assume
familiarity with the basic concepts of linear algebra. In this appendix we give the notation and
cite some results that are needed in the text. Unless stated explicitly otherwise, we consider the
field R of real numbers. Vectors are column vectors, M, , is the set of m x n matrices, M, refers
to the set of square matrices of order n, S,, denotes the space of symmetric matrices of order n.

The identity matrix in M, is denoted by I,, or simply I if the dimension is clear. A matrix
P € My, is called orthonormal if PTP = 1.

Theorem A.0.1 (Spectral theorem for symmetric matrices) If A € S,, then A is real
orthogonal diagonalizable, i.e., there is an orthonormal matrix P € M, and a diagonal matrix
A € S, with A= PAPT (PAPT is called the eigenvalue decomposition of A).

Proof. See Horn and Johnson [1985], (2.5.6). |

It is a very special property of two matrices if they can be diagonalized by the same matrix.

Definition A.0.2 A, B € M,, are simultaneously diagonalizable if there is a regular matriz S €
M,, so that ST*AS and S™1BS are both diagonal.

The columns of S may be interpreted as a common basis of A and B for which both transformations
reduce to a scaling of the coordinates.

Likewise we may consider it a special property of two matrices if they are commutative with
respect to matrix multiplication. We say that two matrices A and B commute if AB = BA. In
case of symmetric matrices, A and B commute if and only if their product AB is a symmetric
matrix. The following theorem shows that simultaneous diagonalization and commutativity are
tightly linked together. To maintain its full generality we state the theorem for matrices over the
complex numbers C.

Theorem A.0.3 A, B € M,(C) are simultaneously diagonalizable if and only if A and B commute
(AB = BA). In particular, for A,B € S,,, AB € S, if and only if there is an orthonormal matriz
P which diagonalizes A and B.

Proof. See Horn and Johnson [1985], (1.3.12). |

We denote the eigenvalues of A € S, by \;(4), i =1,...,n. For our purposes it is convenient
to sort the eigenvalues non-increasingly, Amax(A4) = A1(4) > Aa(4) > ... > A(A) = Amin(4).

Theorem A.0.4 (Rayleigh-Ritz) Let A € S,,. Then

Amin(A)zTz < 2T Az < Amax(A)zTz  for all z € R
)\max(A) = MaX||gz||=1 xT Az
)‘min(A) = min”;,;”:l .'L"TA.TI.

133



134 APPENDIX A. LINEAR ALGEBRA

Proof. See Horn and Johnson [1985], (4.2.2). |

When a symmetric matrix is extended by adding an additional row (and column), its eigen-
values cannot change arbitrarily.

Theorem A.0.5 (Interlacing eigenvalues for bordered matrices) Let A € S,,, y € R,
a € R, and let
I

B= [ a4 ] |
Then A1(B) > A(A) 2 A2(B) > A2(A4) > -+ > Au(B) > Ap(A) > A1 (B).
Proof. See Horn and Johnson [1985], (4.3.8). |
The following theorem bounds the eigenvalues in terms of the matrix elements.
Theorem A.0.6 (Gersgorin disc theorem) Let A = [a;;] € Mp(C), and let r; = ). |agl.

j:l,j;éz
Then all eigenvalues of A are located in the union of n discs

U{z €C: |z—ayu| <mi}

=1

Furthermore, if a union of k of these n discs forms a connected region that is disjoint from all the
remaining n — k discs, then there are precisely k eigenvalues of A in this region.

Proof. See Horn and Johnson [1985], (6.1.1). [ ]

For the partitioned matrix

B C
4= Cen,

with B regular, the matrix
F=E-DB'C

is called the Schur complement of B in A. Tt corresponds to a block Gaussian elimination step
and appears frequently in the text.



Appendix B

Convexity, Cones, and Polyhedra

References for convexity and convex minimization are Rockafellar [1970]; Hiriart-Urruty and
Lemaréchal [1993a]; Hiriart-Urruty and Lemaréchal [1993b)].

A set C C R" is called conwvez if for ¢1,co € C all points on the straight line segment ac; +
(1—a)c, for a € [0,1] are contained in C as well. For example a halfspace {z € R" : ¢'z > b} for
some ¢ € R” and b € R and the closed ball B.(y) = {x € R” : ||z — y|| < &} centered at y € R"
with € > 0 are convex sets.

The intersection of (possibly infinitely many) convex sets is again a convex set. Any closed
convex set is the intersection of (possibly infinitely many) halfspaces. An inequality ¢’z > b
is called walid for a convex set C if the associated halfspace contains C. A hyperplane H =
{z: Tz =b} is called a supporting hyperplane of C if C is completely contained in one of its
halfspaces and H N C # 0.

If C is a convex set so is aC = {az : z € C} for @ € R The (Minkowski) sum of two convex
sets Cy +Cy = {1 + z2 : 1 € C1,22 € Cs} is a convex set. The image of a convex set C under a
linear transformation A is a convex set, AC = {Az : x € C'}. The convex combination Z;’;l a;C;
with 37" i =1, a; > 0 for i = 1,...,m of convex sets is a convex set.

The convex hull conv(S) of some set S C R" is the smallest convex set (with respect to set
inclusion) that contains S. In fact, conv(S) is the set of all convex combinations of elements in S.

A vector x € R” is an affine combination of vectors si,...,s; € R* if z = ATs for some
A € RF with Yt A = 1. zis affinely independent of si,. .., sy if such a A does not exist. A
set S € R" is called affinely independent if each element s € S is affinely independent of S\ {s}.
The dimension dim(S) is the cardinality of a largest affinely independent subset of S minus one.
The relative interior relint(S) is the set of points of S which is in the interior of S with respect to
aff(S), relint(S) = {z : e > 0: B.(z) Naff(S) C S}.

A set C C R" is a cone if it is closed under nonnegative multiplication and addition (z,y €
C = Az +y) € C VX>0). This definition implies that a cone is convex. A cone C is pointed
if C N (=C) = {0}. Linear subspaces and a ray {z: = Ac, A > 0} for some 0 # ¢ € R" are
examples of cones. The recession cone 0T C of a convex set C consists of all directions y such that
forz € C, x + Ay € C VA > 0. The lineality space lin(C) of a convex set C is the linear subspace
0tC N (—0"C). The cone generated by a set S is cone(S) = {z: IA > 0: z € Aconv(S)}.

A convex subset F of a convex set C is a face if every closed line segment in C' whose relative
interior intersects F' is contained in F' (z,y € CAJa € (0,1): axz+(1—a)ye F = z,y e F). If
a point in the relative interior of a convex set C' C C'is contained in a face F of C, then C' C F.
The collection of relative interiors of all nonempty faces of C' forms a partition of C'. A face is
proper if it does not contain C and is called trivial if it is empty. An exposed face is a face that
arises from the intersection of C' with a supporting hyperplane.

The faces of dimension zero are called eztreme points of C'. A closed bounded convex set is the
convex hull of its extreme points. A half-line face of C' (rays with shifted origin) determines an
extreme direction of C. The extreme directions of cones are called extreme rays. A closed convex
set not containing a line is the convex hull of its extreme points and extreme directions. If a convex
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set is the convex hull of finitely many points and extreme directions it is called finitely generated.
Convex sets with lineality space not equal zero have neither extreme points nor extreme directions.
However, the extremal structure can be obtained by considering the convex set C' N lin(C)*.

A convex set P C R" is a polyhedron if it is finitely generated, i.e., there are finite sets V, E € R"
such that P = conv(V') + cone(E). Equivalently, a polyhedron is the intersection of finitely many
halfspaces, i.e., there is a matrix A € R™*™ and b € R™ such that P = {z e R" : Az <b}. A
bounded polyhedron it is called a polytope. A cone is polyhedral if it is a polyhedron. For a
polyhedral cone C' € R™ there exists some matrix A € R™*™ such that C = {z € R" : Az < 0}.
For polyhedra all faces are exposed. The extreme points of a polyhedron are called wvertices, the
maximal (with respect to dimension) proper faces are called facets.

Let D C R* and f : D - RU {4+00,—00} be a function. The epigraph epi(f) of f is
the set {(z,y): € D,y € R,y > f(z)}. If epi(f) is convex in R*™*! then f is called convex.
Any convex function can be extended from D to R" by setting f(xz) = +oo for z € R* \ D.
A convex function is called proper if it is finite somewhere and f(z) > —oc everywhere. The
pointwise supremum of a (possibly infinite) family of convex functions is again a convex function,
because its epigraph is the intersection of convex epigraphs and therefore convex. For convex
functions every local minimum is a global minimum. A convex function is called strictly convex if
flaz+(1—a)y) < af(x)+(1—a)f(y). If for a strictly convex function the minimum is attained
then it is attained in a unique point. If a convex function is twice continuously differentiable
then the positive definiteness of the Hessian matrix (for all z) is equivalent to strict convexity. A
subgradient of a convex function f at a point z € D is a vector s € R™ satisfying the subgradient
inequality f(y) > f(x) + (s,y —z) for all y € D. The set of all subgradients of f at x is the
subdifferential at x and is denoted by 0f(z). x is a minimizer of a convex function f if and only
if 0 € 0f(x).

A convex function o : R® — R is called sublinear if it satisfies o(tz) = to(z) for all z € R™ and
t > 0. A function is sublinear if and only its epigraph is a cone in R**!. For a set S € R (not
necessarily convex), the support function os(x) = sup,cg (s, ) is a closed sublinear function.

The projection of a point z onto a closed convex set C'is the point y € C' minimizing 1 ||z — y||?
(the point having minimal Euclidean distance to z). Since the function is strictly convex, y is
unique. If z ¢ C there is a hyperplane separating x from C strictly, i.e., 3Ic € R*,be R: Tz <
b < cTy Vy € C. The hyperplane may be chosen so that it is supporting in the projection of x
on C.



Appendix C

Graph Instances

The numerical results of Section 6.2.3 were obtained for graphs generated by rudy, a device
independent graph generator written by Giovanni Rinaldi. It is currently available under

http://www.zib.de/helmberg/rudy.tar.gz

The arguments used to generate the graphs are listed below.
G1 -rnd_graph 800 6 8001

G2 -rnd_graph 800 6 8002
G3 -rnd_graph 800 6 8003
G4 -rnd_graph 800 8004
G5 -rnd_graph 800 6 8005

Ge -rnd_graph 800
G7  -rnd_graph 800

8001 -random O 1 8001 -times 2 -plus -1
8002 -random O 1 8002 -times 2 -plus -1
Gg -rnd_graph 800 6 8003 -random O 1 8003 -times 2 -plus -1
Gg -rnd_graph 800 6 8004 -random 0 1 8004 -times 2 -plus -1
G1o -rnd_graph 800 6 8005 -random O 1 8005 -times 2 -plus -1
G11  -toroidal_grid 2D 100 8 -random O 1 8001 -times 2 -plus -1
G12 -toroidal grid 2D 50 16 -random O 1 8002 -times 2 -plus -1
Gi3 -toroidal_grid 2D 25 32 -random 0 1 8003 -times 2 -plus -1
G14 -planar 800 99 8001 -planar 800 99 8002
G15 -planar 800 99 8003 -planar 800 99 8004
G1s -planar 800 99 8005 -planar 800 99 8006
G17 -planar 800 99 8007 -planar 800 99 8008
G138 -planar 800 99 8001 -planar 800 99 8002
G19 -planar 800 99 8003 -planar 800 99 8004
G20 -planar 800 99 8005 -planar 800 99 8006
G21 -planar 800 99 8007 -planar 800 99 8008
G2z  -rnd_graph 2000 1 20001
G23  -rnd_graph 2000 1 20002
G24 -rnd_graph 2000 1 20003
G25  -rnd_graph 2000 1 20004
G2 -rnd_graph 2000 1 20005
G27  -rnd_graph 2000 1 20001 -random O 1 20001 -times

1

1

1

1

(o2 e e I © T « I« T « N <}

-random O 1 8001 -times 2
-random 0 1 8002 -times 2 -plus -1
-random 0 1 8003 -times 2 -plus -1
-random O 1 8004 -times 2

-plus -1

+ o+ o+ + o+ o+ o+ o+

-plus -1

2 -plus -1
G2g  -rnd_graph 2000 20002 -random 0 1 20002 -times 2 -plus -1
G29 -rnd_graph 2000 20003 -random 0 1 20003 -times 2 -plus -1
G3o -rnd_graph 2000 20004 -random 0 1 20004 -times 2
G31 -rnd_graph 2000 20005 -random 0 1 20005 -times 2
G3a -toroidal_grid 2D 100 20 -random O 1 20003 -times 2 -plus -1
G333 -toroidal_grid 2D 80 25 -random 0 1 20002 -times 2 -plus -1

G34 -toroidal_grid. 2D 50 40 -random O 1 20001 -times 2 -plus -1

-plus -1
-plus -1
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-planar
-planar
-planar
-planar
-planar
-planar
-planar

-planar

-rnd._graph
-rnd_graph
-rnd_graph
-rnd_graph
-rnd_graph

-toroidal_grid_2D
-toroidal_grid_2D
-planar 1000 100 10001 -planar
-planar 1000 100 10003 -planar
-planar 1000 100 10005 -planar
-planar 1000 100 10007 -planar

2000
2000
2000
2000
2000
2000
2000
2000

99
99
99
99
99
99
99
99

1000
1000
1000
1000
1000
-toroidal_grid_2D

20001
20003
20005
20007
20001
20003
20005
20007

-planar
-planar
-planar
-planar
-planar
-planar
-planar

-planar

2 10001
2 10002
2 10003
2 10004
2 10005

50 60
30 100
25 120

-rnd_graph 5000 0.12 50001
-rnd_graph 5000 0.1 50001 -random 0 1 50001 -times 2 -plus -1
-toroidal_grid 2D 50 100 -random O 1 50001 -times 2 -plus -1

-planar 5000 99 50001 -planar 5000 99 50002 +
-planar 5000 99 50001 -planar 5000 99 50002 + -random 0 1 50001 -times 2 -plus -1
-rnd_graph 7000 0.07 70001
-rnd_graph 7000 0.07 70001 -random O 1 70001 -times 2 -plus -1
-toroidal_grid 2D 70 100 -random O 1 70001 -times 2 -plus -1

-planar 7000 99 70001 -planar 7000 99 70002 +
-planar 7000 99 70001 -planar 7000 99 70002 + -random 0 1 70001 -times 2 -plus -1
-toroidal grid 2D 80 100 -random O 1 100001 -times 2 -plus -1
-toroidal_grid 2D 90 100 -random O 1 100001 -times 2 -plus -1
-toroidal_grid 2D 100 100 -random 0 1 100001 -times 2 -plus -1

2000
2000
2000
2000
2000
2000
2000
2000

99
99
99
99
99
99
99
99

20002
20004
20006
20008
20002
20004
20006
20008

+ O+ + o+ o+ o+ o+ 4+

1000 100 10002
1000 100 10004
1000 100 10006
1000 100 10008

-random
-random
-random

-random

+ o+ o+ o+

APPENDIX C. GRAPH INSTANCES

0 1 20001
0 1 20002
0 1 20003
0 1 20004

-times
-times
-times

-times

2 -plus -1
2 -plus -1
2 -plus -1
2 -plus -1
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Sets and Matrices

relint(F)
Vx
min / max

inf / sup
argmin / argmax
Argmin / Argmax

complex numbers

nonnegative integers (including zero)

rational numbers

real numbers

set of integers

real column vector of dimension n

nonnegative real column vector

m X n real matrices

n % n real matrices

n X n complex matrices

n X n symmetric real matrices

n X n symmetric positive definite matrices

n X n symmetric positive semidefinite matrices
identity of appropriate size or of size n

vector of all ones of appropriate dimension

i-th column of I

i-th eigenvalue of A € M,,, usually Ay > A2 > ... > A\,
minimal and maximal eigenvalue of A

diagonal matrix with (A4)i; = Ai(4)
determinant of A

nullspace of A

range space of A

rank of A

transpose of A

trace of A € My, tr(A) = 30" | aii = D1y Ai(4)
inner product in M,, ,, (4, B) = tr(BT A)
Frobenius norm of A, ||A|lz = 1/(4, 4)
Hadamard or Schur product of A, B € My,
Kronecker product of A € My, n, B € My,
vector obtained by stacking the columns of A
symmetric Kronecker product of A, B € M,
vector obtained by stacking the columns of the lower triangle
of A € S, with offdiagonals multiplied by /2
i-th row (column) of A

diagonal matrix with v on its main diagonal

the diagonal of A € M, as a column vector
signum of z

affine hull of a set S

conic hull of a set S

convex hull of a set S

relative interior of a convex set F'

first derivative with respect to X
minimum/maximum value attained in an ordered set
or minimize/maximize a program
infimum/supremum of an ordered set
minimizing/maximizing argument of a function
set of minimizing/maximizing arguments of a function



150 BIBLIOGRAPHY

Graphs
G=(V,E) graph with node set V and edge set E
1% set of nodes, usually V ={1,...,n}
E set of edges
ij edge with end nodes i and j

4(9) cut; the set of edges with exactly one endnode in S CV



