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Abstract

In this report we review and structure the branch of molecular visualization
that is concerned with the visual analysis of cavities in macromolecular protein
structures. First the necessary background, the domain terminology, and the goals
of analytical reasoning are introduced. Based on a comprehensive collection of
relevant research works, we present a novel classification for cavity detection ap-
proaches and structure them into four distinct classes: grid-based, Voronoi-based,
surface-based, and probe-based methods. The subclasses are then formed by their
combinations. We match these approaches with corresponding visualization tech-
nologies starting with direct 3D visualization, followed with non-spatial visualiza-
tion techniques that for example abstract the interactions between structures into a
relational graph, straighten the cavity of interest to see its profile in one view, or
aggregate the time sequence into a single contour plot. We also discuss the current
state of methods for the visual analysis of cavities in dynamic data such as molecu-
lar dynamics simulations. Finally, we give an overview of the most common tools
that are actively developed and used in the structural biology and biochemistry
research. Our report is concluded by an outlook on future challenges in the field.

1 Introduction
The behavior of matter and the functioning of living systems is determined by molec-
ular interactions. A molecule consists of atoms, each occupying a certain amount of
space and contributing to the molecule’s electron shell and force fields. For molecular
interactions the spatial setting is of great importance, as most of the various forces are
short-ranged and also are shielded by other parts of the molecule. In order to interact,
molecules must come close together. The possibilities of molecules to move, to form
bonds, and to arrange themselves to complexes are determined by spatial and physico-
chemical conditions. Molecular behavior thus is explained halfway by spatial aspects,

1



in particular by the shapes of the molecules.
Particularly important for understanding molecular processes are two related as-

pects of molecular shapes: First, the mutual accessibility of molecules, characterized
by molecular surfaces, and, second, the spatial volumes on the boundary or in the in-
terior of a molecule, which can be occupied by other molecules or ions, i.e., regions
that are not filled with atoms of the molecule under consideration. Depending on the
context, the spatial characteristics of these volumes, and the nomenclature used, these
”empty” spatial volumes are called cavities, pockets, indentations, clefts, grooves, pro-
trusions, voids, pores, channels or tunnels. In this article, we use the term cavity as
generic term for all types of such spatial volumes.

While the generation, analysis, and visualization of molecular surfaces has been re-
viewed in our recent survey [66], the methods for detecting, analyzing, and visualizing
cavities is the subject of the present article. Brezovský et al. report in [7] on available
tools for cavity analysis and their functionality, without detailing the methodological
background of the algorithms.

The importance of the cavities for the understanding of molecular phenomena can
be seen from the following examples:

• A binding site is a region on a molecule to which other molecules and/or ions
may bind, or even form a chemical bond. Binding sites exhibit chemical and
spatial complementarity, often in form of a pocket or cleft. To understand the
reactivity of a protein and to elucidate its function, binding site analysis, i.e.,
characterization of spatial and physico-chemical characteristics has to be per-
formed.

• A particular example for a binding site is the active site of an enzyme, i.e., the
region where substrate molecules bind to an enzyme and undergo a chemical
reaction. Often this is the largest cavity on the surface of the enzyme. Char-
acterization of known as well as detection of novel enzymes requires a detailed
geometric and physico-chemical analysis of the cavity.

• In many biochemical processes molecular recognition plays a crucial role. The
molecular specificity requires particularly pronounced geometrical and physico-
chemical complementarity, i.e., specifically shaped pockets and well-defined
stereochemical arrangements.

• In pharmaceuticalmedicinal chemistry one aims at finding or constructing sites
that bind drug-like molecules. Cavity analysis therefore is an essential part of the
analysis of pharmaceutical agents, of rational drug design and of ”druggability”
prediction.

• Major biological processes are transport processes where molecules or ions are
transported through protein complexes that belong to a biological membrane.
Revealing potential paths for the molecules to be transported requires a spa-
tiotemporal analysis of cavities in such protein complexes. As many transport
processes involve long time scales that often are out of reach of molecular dy-
namics (MD) simulations, supporting geometrical cavity analyses are particu-
larly useful.

Since the presence and the shape of cavities depend on the dynamics of the molecule
or molecular complexes, cavity analysis often requires tracing on basis of MD trajecto-
ries; the development of such algorithms has started recently. When complex biochem-
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ical phenomena are considered that are not (yet) accessible to full MD simulations one
has to resort to geometrical analysis and simplified physical considerations.

Independent of whether full, partial, or only rudimentary MD analysis of the pro-
cess of interest is possible, a geometrical and visually supported interactive analysis
of cavities is necessary. This analysis can for example reveal if an active site within
a cavity is accessible to the specific substrate molecule under certain boundary condi-
tions. This procedure explains the fundamental need for fast algorithms for detection,
analysis, and visualization of cavities. Because of the practical importance of visually
supported cavity analysis, a large number of methodological approaches has emerged.
To the best of our knowledge, the approaches altogether have never been compared
and classified. With the present report we provide a formal definition of cavities, a
methodological overview, a grouping of the different analysis methods according to
methodological criteria, and finally an overview on available practical software tools.
Such a survey seems to be necessary for further successful development of the analysis
techniques—particularly since different research communities from separated disci-
plines are involved, who often are not fully aware of the progress in neighbored disci-
plines.

The report is structured as follows. In Section 2, a formal definition and a classifi-
cation of various types of cavities is given. Section 3 provides additional aspects from
the application side and mentions related areas. In Section 4, the various terms used
for cavities, sometimes with slightly different meaning, are further clarified and the
various analysis techniques are classified methodologically. In Section 5, algorithms
for the extraction of cavities are presented, while Section 6 deals with their interactive
visual analysis. In Section 7, the plethora of different methods is discussed, a brief
overview on available tools is given, and directions on the comparison and verification
of cavity extraction methods are provided. The final section provides conclusions and
an outlook.

2 Definition & Classification of Cavities
Although there are many algorithms to compute molecular cavities, there is no clear
formal definition for these structures. Often they are defined implicitly by the devel-
oped algorithms. In this section, we try to give a formal definition of molecular cavities
based on the definition of paths. All algorithms to compute molecular paths and cavities
that are presented in Section 5 are simplifications or restrictions of this formal defini-
tion. In general, the better these simplifications approximate the formal definition, the
higher the accuracy of the cavities is.

Generally, a molecular path is a path of a small molecule or ion within a larger
molecule. This could be, for example, a path of a substrate to its binding site in a re-
ceptor protein or the path of an ion through a channel of a membrane protein. Note
that both molecules are dynamic structures, which makes a path time-dependent. Fur-
thermore, a molecular cavity is defined as a continuous volumetric void space that can
be accessed by the small molecule. Thus, each cavity is described by the space around
connected molecular paths. Additionally, cavities require the definition of a volumetric
boundary based on the large molecule. This boundary separates inside and outside.
Without this boundary, all channels and pockets would belong to the same cavity be-
cause they are connected by paths outside the large molecule. In contrast to this formal,
theoretical description of paths and cavities, it is quite difficult to define this boundary
in practice, because it is not independent of the application.
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2.1 Formal Definition
Let X be the current state of a molecule. It includes all properties to describe the
molecule based on the underlying physical model. For example, for the classical phys-
ical model, the state includes the atom positions and electrostatic potentials as well as
the bonding and non-bonding forces. If the molecule changes over time to another state
Y , for the following definitions, it will be assumed that a continuous function exists that
connects these two states.

Consider two molecules, a larger one, which could be a receptor protein, and a
smaller one, which could be a substrate, ligand, solvent, or ion. First, we observe a
static state X̂ of the large molecule. Let SX̂ be the set of all states the smaller molecule
can adopt under the influence of the large molecule in state X̂ . A molecular path of the
small molecule is then defined as a continuous curve c in the space of SX̂ . Furthermore,
let bX̂ be a boundary function that evaluates if a state of the small molecule lies inside or
outside of the region of the large molecule or if it lies on the boundary. The restriction
S̃X̂ ⊂ SX̂ is the set of all states X ∈ SX̂ for which bX̂ (X) evaluates the state as being
inside or on the boundary. In the non-degenerate case, S̃X̂ consists of a network of
paths with one or more connected components.

Now consider the spatial region VX̂ ,X in R3 representing the volume of the small
molecule in state X under the influence of the large molecule in state X̂ . Note that a
unique formal definition of VX̂ ,X is not available, again it depends on the underlying
physical model. However, reasonable heuristics to approximate VX̂ ,X exist. For a state
X̂ of the large molecule, a molecular cavity is defined as the union of all volume sets
whose corresponding states are connected by molecular paths in S̃X̂ . Note that even if
two cavities intersect each other, there still might not exist a molecular path between
any two states of the two cavities.

Consider now the case where the large molecule is dynamic, i.e., X̂ is a function of
time X̂(t). Let Y ∈ SX̂(t1)

and Z ∈ SX̂(t2)
be two states of the small molecule for different

times. A dynamic molecular path between Y and Z is defined as a time-dependent
continuous function c, with

c : [t1, t2]⊂ R→ SX̂(t) , with c(t1) = Y, c(t2) = Z.

Furthermore, a dynamic molecular cavity is defined as the union of all VX̂(t),X that are
connected either by a dynamic molecular path or by a molecular path. Thus, four
possible topological events can be distinguished for the change of a molecular cavity
over time. It can appear and disappear, or it can merge into another cavity or split into
two or more cavities.

2.2 Simplification
Since the computation of all molecular paths is similar to an infinite number of physical
simulations for all possible states of the small molecule, it is not practicable to directly
apply this definition to the analysis of a potential receptor molecule (neither to a static
receptor nor to the results of molecular simulations). To create a practical solution,
the states of the molecules need to be simplified. For this reason, the formal definition
serves as theoretical ground truth and allows to study the degree of simplification. An
example of a typical simplification is given in the following.

Often, the states of the molecules are restricted to a space with pure geometrical
properties. For the states of the large molecule, typically the hard sphere model is
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Cavity

Closed Cavity (a) Open Cavity

- Buried Cavity
- Internal Cavity
- Enclosed Cavity Single-Entry
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(a)

(b)
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Figure 1: Definition and classification of molecular cavities. The boundary of the large
molecule is shown by the yellow region and two molecular paths are depicted.

applied, which means only the atom positions and radii are used to create an imaginary
hard boundary of the molecule. In addition, the small molecule is often approximated
by a single probe sphere. Thus, for a state X̂ of the large molecule, the set SX̂ includes
all probe centers, where the probe does not intersect any atom sphere of the large
molecule. With this restriction, a molecular path is a three-dimensional continuous
curve of probe centers and a cavity is the union of all points inside all probe spheres
that are connected by continuous curves in S̃X̂ . Furthermore, a dynamic molecular path
is a three-dimensional continuous curve of the probe over time and a dynamic cavity is
the union of all cavities that are connected by dynamic molecular paths. For most grid-
based algorithms, additionally, the shape of the molecules as well as their dynamics
are discretized in R3 (see Section 5.1). As boundary bX̂ for the large molecule, the
convex hull of the atom positions or atom spheres is often used. Other approaches use
a distance threshold to the atom spheres or simply the axis-aligned bounding box of the
atom spheres. An ambient occlusion threshold as boundary indicator seems to be quite
promising and is also used in several approaches.

Figure 1 shows a 2D illustration of a simplification. The states of both molecules
are restricted to the atom positions and radii and the boundary bX̂ is the convex hull of
the large molecule.
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2.3 Classification
Besides the term cavity, many other denotations and classifications are used in the
literature, for example, voids, hollows, pockets, tunnels, pores, or channels. In the fol-
lowing, we propose a classification based on the cavity definition above that clarifies
the meaning of these terms in this work. While void can be seen as a synonym for
cavity, all other terms usually describe a specification of a class of cavities. To do so,
we distinguish between closed and open cavities. All molecular paths inside the closed
cavities do not reach the boundary, given by bX̂ . Open cavities are further separated
into cavities with a single entry or with multiple entries. An entry is a set of states
of the small molecule where all states are connected by paths that lie completely in
the boundary. We define cavities with a single entry as pockets, tunnels, grooves, or
clefts and cavities with multiple entries as channels or pores. An illustration of this
classification is given in Figure 1. Note that subtle differences between these subcat-
egories exist. For example, grooves are usually shallower than pockets, which are in
turn not as deep as a tunnel. The term pores is typically used for straight channels.
Since we are, however, mostly interested in the geometric properties of cavities, the
simple categorization into single-entry cavities and multiple-entry cavities is sufficient.

3 Differentiation from Related Areas
This section introduces related areas of research that are not discussed in detail in this
report. The purpose is to position the work discussed in our report within the greater
subject of molecular visualization and analysis, and to provide directions for further
reading.

A large field that cannot be covered in this report is the usage of MD simulations to
investigate phenomena like binding affinities in cavities or transport processes. In this
survey, we focus on fast geometry-based techniques to extract, analyze, and visualize
potential paths and cavities (cf. Section 2.2). This can be seen either as pre-processing
for simulations to detect, for example, potential binding sites in cavities, or as post-
processing to analyze the dynamics of cavities. A typical application of MD simulation
is the evaluation of the binding affinity of a certain ligand in a known cavity. These
methods are out of scope of this survey since they are not designed to detect cavities
in a molecule or to extract their geometrical properties. Readers interested in this field
are referred to the following docking reviews [24, 96] and some recent works [33, 123,
135].

Void spaces or cavities are important for molecular interactions like enzymatic reac-
tions, which are typically triggered by a ligand that docks to the active site of a protein.
The traditional lock-key model of enzymatic catalysis proposed by Fischer [36] was
designed for proteins with exposed active sites located on their surface. It follows the
notion that the ligand fits the respective area on the protein geometrically like a key
into a lock. For active sites that are buried inside the protein core, Prokop et al. [110]
proposed the keyhole-lock-key model, where the keyhole is a path that leads to the
active site. These models fit to most of the methods and algorithms discussed in this
survey. However, it is noteworthy that this (keyhole-)lock-key metaphor does not apply
to all proteins. For example, intrinsically disordered proteins [129] do not exhibit a sta-
ble conformation prior to the docking of a ligand. Their analysis requires specialized
visualization methods like the one proposed by Heinrich et al. [45], which are out of
scope of this survey.
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A different approach to investigate molecular interactions are interactive systems
where the user can manually dock the ligand to the protein surface. Typically, both
molecules are treated as rigid bodies. The forces between them are computed inter-
actively, which enables direct feedback, e.g., using a haptic input device. A recent
example of such a system is Haptimol RD by Iakovou et al. [53]. Maciejewski et
al. [92] presented a molecular docking application based on volumes, which uses a
haptic transfer function that makes soft and permable objects possible. Such interac-
tive analysis tools are, however, diametral to the approaches that this survey focuses on,
since they do not analyze the protein but rather offer users a way to explore possible
paths for a ligand.

Void space analysis is also useful in protein-protein docking, which aims at pre-
dicting the preferred mutual orientation of two or more molecules binding together and
creating a stable complex. However, this requires different search strategies compared
to those for protein-ligand docking. We do not cover this topic in our survey, since
a comprehensive review and evaluation of current methods was recently presented by
Huang [51].

Contrary to the number of algorithms that analyze protein-protein interactions,
there are only few specialized methods for their visualization. Existing approaches
such as the one of Jin et al. [55] often combine simple 3D representation with 2D
interaction maps for visual analysis. Another related area of ongoing research are
protein interaction networks, which can be represented by network diagrams called
protein interaction maps. For example, Edes et al. [32] proposed a tool for visualizing
these maps using Kohn’s Molecular Interaction Maps [64]. Another example is the
Cytoscape platform for visualizing complex networks by Shannon et al. [118]. Since
these visualizations do not focus on void spaces between the proteins but rather on
chemical interactions, they are out of the focus of our survey.

In many biological processes, protein-RNA and protein-DNA interactions play a
fundamental role. Although computational docking methods focusing on these protein-
nucleic acid interactions are less frequently found in the literature than those solv-
ing protein-protein interactions, there are solutions like the NPDock web server [128].
Since these methods also do not explicitly deal with void spaces, they are not discussed
in our survey.

To the best of our knowledge, only a few approaches explicitly extract intermolecu-
lar voids between molecules. For example, Intersurf [112] extracts an interface surface
and creates a corresponding interaction map between proteins that can be colored by
attributes such as distance to protein, in some way similar to the earlier MolSurfer ap-
proach [37]. In a similar spirit, the approach by Lee and Varshney [81] computes a
plane between two docked molecules. Then, a double-height field is generated that
shows the distances from the plane to the molecules. The surface of this double-height
field is colored to show negative volumes, that is, intersecting parts of the molecules.
The visualization of the resulting intermolecular voids can help to assess the fitness of
the proposed docking. In contrast, Maeda et al. [93] use the Delaunay complex as a
basis to measure the volume of intermolecular voids. In the first step, all atoms in the
region of the interface are detected. Then, the Delaunay complex of all interface atoms
is computed. All tetrahedra between the two molecules contribute to the interface vol-
ume. Finally, the volume is discretized on a grid to remove the volumes of the atoms
from the intersecting tetrahedra.
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Figure 2: Classification of methods according to their algorithmic background. Grey
rectangles represent individual categories, each of them contains methods for cavity
computation on static molecules (blue rectangle), some are also able to handle dynamic
molecular data (marked with ocher rectangle).

4 Classification of Methods to Analyze Cavities
As described in Section 2, different types of cavities can be distinguished based on
their topological properties. Although these differences might be meaningful from the
perspective of biochemistry and structural biology, from a technical point of view, they
are often not very meaningful. In addition, the differences between sub-classes such
as grooves and pockets are formally difficult to define. Almost all algorithms for the
extraction of cavities simplify the molecule by the hard sphere model (Section 2.2).
Hence, the extraction of cavities can be described in most cases as a geometry pro-
cessing problem. Therefore, it is not only highly related to visualization of these struc-
tures but even the numerical results can highly depend on the employed computational
method. For this reason, we propose a classification of these approaches according to
the computational methods used for the cavity detection. All methods presented in this
survey can be categorized into four main categories or a combination of two of these,
as illustrated in Figure 2.

The four main categories are formed by methods based on Voronoi diagrams, grids,
molecular surfaces, and (usually spherical) probes. These four categories form the cor-
ner nodes of the classification in Figure 2. The other five categories are combinations
of these basic methods, which are shown as nodes between the four corner nodes. Fur-
thermore, the categories can contain methods operating not only with static molecular
structures but also with dynamic data, for example, the trajectories resulting from a
molecular dynamics (MD) simulation. Our survey is structured according to this cat-
egorization. Therefore, the figure also contains references to the respective sections
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describing the individual category and their corresponding methods.
An indispensable part of the cavity analysis is the visual representation of results.

The output cavities detected by the algorithms from all categories can be visualized
using different approaches which are in detail discussed in Section 6.

5 Algorithms for the Extraction of Cavities
Before discussing individual algorithms in detail, we briefly review the historical de-
velopment. The first algorithms to detect cavities in molecules were based on grids
due to simplicity. At that time, these solutions were suitable for small- to medium-size
molecules (i.e., hundreds to a few thousands of atoms). Due to hardware limitations,
they were not applicable to larger structures without decreasing the grid resolution sub-
stantially. One solution for this problem was the usage of Voronoi diagrams. Voronoi
diagrams proved to be suitable for the detection of paths in molecules and were able to
process large molecules as well. A limitation was their more complex implementation
compared to grid-based algorithms. Other possibilities that were developed at about
the same time were surface-based methods and probe-based ones. Molecular surfaces
provide a natural way to detect cavities since they are defined as a border between a
molecule and its environment. Probe-based methods have the advantage that the probe
size approximates a ligand that can reach the extracted cavities. Nowadays, grid-based
approaches are also popular again. This is due to the fact that current hardware allows
to use fine grids even for very large structures and, thus, process even molecular dy-
namics simulations in a reasonable time. In combination with other approaches, the
current solutions are very powerful and open new possibilities for the future develop-
ment discussed in Section 8.

In the following, we will detail various methods for the extraction of cavities from
molecular data. We will adhere to our cavity classification introduced in Section 2 for
the naming of these intramolecular voids. That is, the terms used in this survey can
sometimes differ from the ones used in the original papers for the sake of consistency
and comprehensibility. The rest of this section is organized according to the algorithm-
based classification of cavity extraction methods given in Section 4 (see Figure 2). Note
that not all methods are able to extract all types of cavities. Therefore, Figure 3 shows
an overview of all methods discussed in this section with respect to types of cavities the
method can extract. The additional icons indicate important features and the algorith-
mic properties of the individual methods. This not only applies to the cavity extraction
itself. Many methods and tools also introduce novel visualizations for cavities or allow
for a comprehensive visual analysis of their properties. Thus, methods and tools that
offer such capabilities are also highlighted by a dedicated visual analysis icon. The
respective visualizations are discussed in detail in Section 6.

As mentioned in Section 3, the right branch of the tree in Figure 3—intermolecular
voids—are out of scope of this survey and will not be discussed. We will focus only
on methods for the extraction of intramolecular voids, that is, cavities as defined in
Section 2. In accordance with most applications, we sometimes use the terms protein
and ligand to denote the large and small molecule. However, most techniques are not
restricted to the specific structure of a protein.
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Intramolecular Voids: Cavities

Closed Cavities Open Cavities
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surface-based
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visual analysis

Voorintholt et al. [VKV*89]

POCKET [LB92]

SURFNET [Las95]

LIGSITE [HRB97]

Exner et al. [EKMB98]

CAST [LEW98]

PASS [BJS00]

PocketFinder [ATA05]

Q-SiteFinder [LJ05]

LIGSITECSC [HS06]

PocketPicker [WPS07]

HOLLOW [HG08]

SITEHOUND [HGS09]

FPocket [LGST09]

McVol [TU10]

3V [VG10]

POCASA [YZTY10]

Voroprot [OMV11]

dxTuber [RK11]

MDPocket [SBCLB11]

Lindow et al. [LBH11]

Lindow et al. [LBBH12/13]

LEGEND:

VOIDOO [KJ94]

MSMS [SOS96]

Phillips et al. [PGD*10]

Krone et al. [KFR*11]

Jurčík et al. [JPSK16]

MolSurfer [GWW99]

Intersurf [RCPM05]

Lee and Varshney [LV06]

Maeda et al. [MK09]

Intermolecular Voids

Molecular Voids

BetaTunnel/Void [KCKS13]

TRAPP [KRH*13]

Krone et al. [KRS*13, KKRE14]

RobustVoids [SDP*13]

LES [LBH14]

trjcavity [PEG*14]

PrinCCes [Czi15]

Desdouits et al. [DNB15]

BetaCavityWeb [KCL*15]

Epock [LCC*15]

Kim et al. [KLKK16]

Haranczyk et al. [HS09]

PoreWalker [PCMT09]

GHECOM [Kaw10]

Giard et al. [GRAGM11]

CAVER 3.0 [CPB*12, PeK*15]

Parulek et al. [PTRV12]

MOLE 2.0 [SSVB*13]

CHEXVIS [MSCN15]

Smart et al. [SGW93]

HOLE [SNW*96]

Cortés et al. [CSA*05, CBES11]

Travel Depth [CS06]

CAVER [POB*06]

Medek et al. [MBS07]

MOLE [PKKO07]

CHUNNEL [CS08]

MolAxis [YFW*08]

Figure 3: Classification of methods based on the cavity definition. Green color denotes
tools and algorithms that are dealing not only with static molecules but are also able to
process dynamic data like molecular dynamics trajectories. Note that Epock does not
introduce a new method for cavity extraction but integrates other tools to enable the
processing of molecular simulations (for details, see Section 6.)

5.1 Grid-based Methods
Many methods extract the cavities by simplifying the protein as hard sphere model and
the possible ligand positions as discrete points, usually using a uniform cubical grid
(Section 2.2). An advantage of such grid-based methods is that they usually require
only simple data structures without numerical problems. For all following grid-based
methods, the geometrical accuracy as well as the computation time and memory re-
quirements depend greatly on the resolution of this grid.

One of the first approaches to compute and visualize cavities was POCKET [82]
developed by Levitt and Banaszak in 1992. The algorithm creates a three-dimensional
cubical grid with a user-defined cell width, which is typically 1 Å. For each grid point,
the distance to the closest atom center is computed. If this distance is smaller than a
predefined threshold (usually 3 Å), the grid point is marked as a protein contact point.
Then, the neighboring grid points in the three main directions of each unmarked grid
point are investigated. If such a point is bounded by protein contact points along both
sides of at least one direction, the density of the point is set to 1. Note that the density
is initialized with 0. Finally a modified Marching Cubes [91] algorithm is used to
extract the surface of the cavities. Because of the small number of directions that
are investigated for each grid point, the result depends a lot on the orientation of the
molecule.

In contrast to this purely geometric technique, An et al. proposed a more physically-
based technique in 2005, which is implemented in the tool PocketFinder [1]. They
also use a grid for the cavity detection, but instead of geometrical properties, they
compute the Lennard-Jones potential of a carbon probe atom at each grid position.
In the next steps, they smooth the discrete potential field and compute a threshold
using the average field value and the root mean square distance of all values. With this
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threshold, the cavities are given by the isosurface of the discrete potential field. Finally,
cavities with a volume smaller than 100 Å3 are filtered out.

Q-SiteFinder by Laurie and Jackson [78] also does not rely purely on the geometry
of the molecule. At each grid position, the non-bonded interaction energy is computed
using the program Liggrid [54]. Using a threshold, all grid points with a high binding
energy are marked and clustered. Finally volume calculations are performed. The au-
thors compared their results with the ones of the Lennard-Jones-based PocketFinder [1]
and stated that the Q-SiteFinder results have a higher success rate. SITEHOUND by
Hernandez et al. [47] also uses non-bonded interaction energies to find potential ligand
binding sites. Similar to Q-SiteFinder [78], it computes the binding affinity of either a
carbon or a phosphate atom at each position in the grid. Subsequently, only grid points
with a high binding affinity are considered and clustered to get potential cavities.

In 2006 appeared a grid-based solution for the detection of tunnels. The tool
CAVER by Petřek et al. [108] searches for paths leading from a starting point located
in the protein interior to its surface. Similar to POCKET [82], the cells of a uniform
grid are clustered into two classes: those within an atom sphere (defined by the van der
Waals radius of the corresponding element) and those containing an empty space. The
convex hull is used to distinguish between the inner and outer space of the protein. The
nodes on the boundary of this convex hull are potential stops of the grid-based path
search algorithm, which aims at identifying the shortest low-cost path. The cost func-
tion is based on the length and curvature of the detected path: long and complicated
paths are more ”expensive” than short and direct ones.

To overcome the limitations that are induced by investigating only few directions in
a grid, Weisel et al. developed PocketPicker [132]. For each grid point that does not lie
inside an atom sphere and whose minimal distance to any atom sphere is smaller than a
user-defined threshold, a uniformly distributed set of 30 rays is cast. The rays are com-
puted by subdividing an octahedron. For each ray, the surrounding atom positions are
orthogonally projected onto the ray. If the distance between an original atom position
and its projected position is smaller than 0.9 Å and the distance between the grid point
and the projected position is smaller than 10 Å, the ray is marked as buried. For 16-26
buried rays, a grid point is defined as point inside a pocket. Grid points inside pock-
ets are again clustered. Additionally, the shape of a pocket is described by evaluating
the buried values and distances of all pairs of grid points in a single 420-dimensional
vector. Figure 4 shows an example of a pocket detected by the PocketPicker.

Phillips et al. [109] proposed to cast parallel rays through the molecular structure
in order to determine exact intersection points. From this information, one can ana-
lytically solve the line integral for each ray. All rays are then summed up to obtain
an approximation of the molecular volume. The quality of this approximation can be
controlled by the resolution of the plane from which the rays are cast. Naturally, all
intersection points along the ray have to be found, since there can be internal cavities.
That is, the ray-casting can be used for the extraction of cavities that are located behind
the first surface intersection point. A flood-fill segmentation is used to distinguish be-
tween the empty space surrounding the molecule and the empty space within (i.e., the
internal cavities). Furthermore, the surface area can be approximated using the infor-
mation about the intersection locations by considering the area near each intersection
point as a small quadrangle of the size of the pixel from which the ray was cast.

A method that takes the actual geometry of the substrate into account was proposed
by Haranczyk and Sethian [44]. They use a 7-dimensional space that includes trans-
lational, rotational, and internal degrees of freedom of the substrate. For each sample
in this space, it is checked if the substrate is in a valid state with respect to the static
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Figure 4: The largest pocket (blue spheres) of malate dehydrogenase (PDB ID 2CMD)
detected by PocketPicker. Image source: [132].

receptor molecule. After sampling the space, the shortest path for the substrate is com-
puted based on the valid samples. Due to the sampling of the 7-dimensional space, the
approach is time-consuming and requires a lot of memory.

The abovementioned methods can only process static molecular structures. For
the analysis of dynamics data, such as the results of a molecular dynamics simulation,
these methods can only process the individual snapshots of the simulation but will
not correlate the results between frames or compute temporal statistics. The tools and
methods that are discussed in the following take this aspect into account.

In 2010, Raunest and Kandt [111] presented dxTuber, one of the first tools that
investigates internal cavities based on the dynamics of the protein and water inside
and around the protein. To achieve this, the protein dynamics are simulated inside a
lipid membrane (in case of a membrane protein) and surrounded by water using the
molecular dynamics (MD) simulation package GROMACS [2]. The positions of the
water molecules yield the cavities of the protein. The authors found that short simu-
lations of only 100 ps are sufficient to detect all cavities reachable by water. In order
to compute the shape of the cavities, two 3D grids are used that store the number of
water atoms and protein ones per grid cell. The cavities are detected and characterized
by investigating cells along the three main directions for each grid cell. A grid cell is
characterized as internal cavity if it is surrounded along all three axes in positive and
negative direction by the protein. If only two of the three directions are surrounded by
the protein, the grid cell is characterized as tunnel and in case of only one direction,
the cell is defined to be inside a pocket. Finally, the grid cells will be clustered and the
result is filtered to get the description of the cavities. Figure 5 clearly illustrates the
workflow of the algorithm.

While the algorithm is suitable to detect cavities accessible by water, it cannot
detect empty cavities. These cavities are often more flexible and their dynamics are
often related to conformational changes in the protein. Furthermore, the algorithm
results in a static representation of the cavities, which does not allow to study cavity
dynamics. Hence, transport processes due to cavity changes that build, for example, a
dynamic channel that is built by single-entry and closed cavities over time cannot be
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Figure 5: Cavity detection workflow proposed in dxTuber. Image source: [111].

investigated.
In contrast to the method by Raunest and Kandt [111], which uses a MD simulation

to find channels and aggregates their dynamic behavior in one static snapshot, Krone et
al. [69] developed a method to extract enclosed cavities directly from a molecular simu-
lation trajectory. For each simulation frame, a Gaussian density grid is computed in real
time from the atom positions using a GPU-accelerated algorithm. A semi-transparent
molecular surface can be extracted from the grid using direct volume rendering. The
user can interactively select an enclosed cavity by clicking on it. This cavity is ex-
tracted from the density grid via a 3D flood-fill segmentation. For subsequent time
steps, the cavity found in the previous one is used as a seed point, which makes it
possible to track the selected cavity over time. Additionally, the approximate cavity
volume is computed by summing up the volumes of the grid cells (Figure 15 (a)).

TRAPP by Kokh et al. [65] is also tailored to trajectories or ensembles of struc-
tures and factors conformational changes into the cavity detection. Their grid-based
algorithm determines the shape and physico-chemical characteristics of the voids. Two
algorithms are implemented to take into account the motion: a Principal Component
Analysis-(PCA-)based technique and an approach based on the average deviation from
a reference structure. The method also offers the options to measure the fraction in
which a particular cavity is open, to compare similarity of cavities between different
structures, to trace the contribution of amino acids to a site of interest, and to measure
spatial complementarity between void and ligand. More recently, PCA was used to fol-
low cavity evolution throughout MD simulations and correlate it to functional motions
in proteins [22].

Paramo et al. [100] presented a tool for MD trajectory analysis called trjcavity, which
detects and characterizes cavities. It analyzes the temporal evolution of cavity topology
and provides different measurements (volume, occupancy, solvent or ligand statistics,
cross-section, bottleneck identification). Similar to the work of Krone et al., time effi-
ciency was a design focus. Thus, the method also uses an efficient grid-based region-
growing algorithm that detects the type of cavity in terms of how many surrounding
grid cells belong to the cavity or the protein. Trajectories of the cavities that show their
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temporal evolution can be generated for visualization.
Laurent et al. [77] developed the tool Epock, which measures properties of cavities

within a predefined maximum encompassing (MER) region of the investigated molec-
ular system. The algorithm is based on POVME [27, 26] with some improvements on
accuracy. Epock was designed in the context of extensive MD simulations, where rel-
evant cavities have been identified previously but need to be characterized efficiently
over time to manage large, dynamic data sets. A particular issue that can be addressed
by Epock is to separate close-by or interconnected networks of cavities (e.g., close-by
ligand binding pockets) for analysis and comparison.

5.2 Voronoi-based Methods
Another group of algorithms to extract cavities is based on Voronoi diagrams. Among
other advantages, this approach overcomes the basic limitation of the grid-based algo-
rithms—the dependency of the accuracy and memory requirements on the resolution
of the grid. The protein is often simplified by the atom positions or the hard sphere
model. In contrast to grid based methods, the ligand positions are not restricted to dis-
crete points (Section 2.2). Furthermore, the edges of Voronoi diagrams automatically
provide geometrically optimal molecular paths based on the restriction.

There are two approaches that use Voronoi diagrams for detection of channels,
tunnels, and pores, which were presented concurrently in 2007. Petřek et al. [107]
published their MOLE algorithm, which computes the Voronoi diagram for centers
of protein atoms. Its edges are assigned positive values representing the relative cost
of taking this edge along a path. The cost function is derived from that defined by
Petřek et al. in their previous grid-based CAVER 1.0 approach [108] but also takes
the edge length into account. Then, Dijkstra’s graph search algorithm is used to find
the ”cheapest” path leading from the starting point outwards. The boundary of the
structure and its environment are determined by a convex hull. Figure 6 illustrates the
procedure. When searching for more paths, a large positive ”penalty” is added to the
Voronoi edges that are parts of already detected paths. Dijkstra’s algorithm then avoids
these edges due to their high cost. Finally, the algorithm performs the clustering of
detected paths that do not differ significantly.

At the same time, Medek et al. [95] presented their approach to the detection of
tunnels in proteins. Their method computes tunnels using a Voronoi diagram and a
Delaunay triangulation. First, it computes the Voronoi diagram for a set of points
representing atom centers. The edges are evaluated according to their distance to the
nearest atom. The authors claim that the computation is more convenient when using
the dual structure of the Voronoi diagram, the Delaunay triangulation. As in MOLE,
Dijkstra’s algorithm is used for searching the path from the starting point to the outside
solvent. The computed tunnel can then be represented by its centerline composed of
Voronoi edges but also by a set of neighboring tetrahedra. The authors propose three
modifications of the Voronoi diagram in order to detect more tunnels by changing the
weights of Voronoi edges.

One year later, Yaffe et al. [133] presented their approach to the detection of chan-
nels in macromolecules, called MolAxis. This solution provides a shift in accuracy
compared to the previous approaches. Since the Voronoi diagram of the atom positions
does not take into account the different atom radii, the paths computed by MOLE and
Medek et al. are geometrically not optimal. To increase the accuracy of the paths in
MolAxis, the atoms are approximated by sets of spheres with constant radii. While,
for example, a hydrogen atom can be approximated by a single sphere, a carbon atom
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Figure 6: Voronoi diagram used by the MOLE algorithm [107]. Each Voronoi edge is
evaluated by the cost function. The thick line represents the optimal path from a given
point found by the Dijkstra’s algorithm. Reprinted from Structure, 15(11), Petřek et
al., MOLE, Pages 1357–1363, Copyright 2007, with permission from Elsevier.

is approximated by a cluster of several spheres of the same size. The Voronoi dia-
gram is computed using the centers of these newly placed spheres. In the next step, all
edges that correspond to spheres of the same cluster or that intersect the atom spheres
are removed from the graph. The weighting and the path detection is then equal to
the previous approaches. This algorithm accounts for the atom radii but substantially
increases the number of spheres (i.e., their centers) that have to be inserted into the
Voronoi diagram.

In 2013, Sehnal et al. [117] presented MOLE 2.0, an extension of the original
MOLE algorithm by Petřek et al. [107]. The speed-up of this modified algorithm for
computation of channels and pores on static molecules comes from several preprocess-
ing steps. The implementation involves seven steps: computation of Voronoi diagram,
construction of the molecular surface, identification of buried cavities, identification
of possible channel start points (binding sites) as a subset of the buried cavities and
similarly for end points, localization of channels, and filtering of the localized chan-
nels. Furthermore, the algorithm estimates physico-chemical properties of the identi-
fied channels, i.e., hydropathy, hydrophobicity, polarity, charge, and mutability. Most
of the functionality of MOLE 2.0 is exposed in the MOLEonline 2.0 tool by Berka et
al. [3]. MOLEonline 2.0 is a web-based tool using an embedded 3D graphical repre-
sentation showing the detected path, its profile accompanied by a list of lining amino
acids along with their basic physico-chemical properties.

All previously discussed methods were focusing on the analysis of static molecules.
But similar to the grid-based methods discussed above, the Voronoi diagram approach
can be used for processing of molecular dynamics trajectories as well. Thus, for the
rest of this section, we will focus on algorithms that are able to deal also with dynamic
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data.
In 2012, Chovancová et al. introduced the new version of the CAVER software first

published in [108] which extends the solution presented by Medek et al. [95] based on
Voronoi diagrams. The new extension, CAVER 3.0 [12], allows the user to analyze
tunnels and channels in large ensembles of protein conformations. It detects individual
paths in each time step and then clusters these paths in order to reveal their time evolu-
tion. The principles of the CAVER 3.0 algorithm were described in detail by Pavelka
et al. [104]. In addition, the authors improved the clustering method for finding the
correspondence between tunnels from different time steps of the molecular dynamics
trajectory. They modified the average link hierarchical clustering approach used in
CAVER 3.0. To avoid an expensive cluster-cluster similarity matrix, the distance be-
tween clusters is computed on the fly. For very large data sets, Pavelka et al. introduced
two techniques to reduce the data size—subsampling and preclustering. These modifi-
cations enable processing larger sets of tunnels much faster. Both implementations are
distributed as standalone command-line tools as well as PyMOL plugins. They were
also integrated in the CAVER Analyst 1.0 tool [67].

Kingsley and Lill [62] focused on the combination of results by studying the vari-
ability of detected voids for different MD-based structural ensembles. Using the Cy-
tochrome P450 enzyme family as example, CAVER 3.0 [12] and MolAxis [133] results
on potential ligand paths were compared for a variety of structural ensembles derived
from MD simulations. The ensembles comprised a collection of MD time steps, an
RMSD-based clustering, a pairwise-distance clustering, and a hydrogen-bond network-
based clustering. The main purpose was to provide guidelines on how the flexibility
should be taken into account to be the most efficient, for example, how to generate a
structural ensemble, how big it should be, and whether it should comprise apo- and/or
holo-structural snapshots. The flexibility was revealed to be important to capture a
maximum of paths and the authors proposed a general strategy to generate a represen-
tative ensemble of small size.

5.3 Grid-Voronoi Methods
Methods that combine Voronoi diagrams and grid-based extractions of cavities usually
try to combine the benefits of both methods: the accuracy of the Voronoi diagram and
the fast and simple handling of a grid.

Kim et al. [59] proposed a GPU-accelerated algorithm that extracts cavities using
a grid-based Voronoi diagram. Their method first computes a voxelized approximate
convex hull. Next, each convex hull voxel that is not within an atom is classified
whether it belongs to a Voronoi diagram edge. This results in a discretized grid rep-
resentation of the edges of the Voronoi diagram, which are then clustered and subse-
quently used to find paths.

Schmidtke et al. [115] presented the tool MDpocket, which uses fpocket [80] (see
Section 5.5) to compute the Voronoi diagram of the atom positions for each time step of
a MD trajectory. Then a grid is created on which a discrete density is computed based
on the size of the α-sphere at the Voronoi vertices. By selecting only a section of the
whole MD trajectory, the specific dynamic processes of the cavities can be analyzed.
The cavities are visualized using an isosurface of the discrete density function. How-
ever, similar to dxTuber [111], it is difficult to analyze the detailed dynamic behavior
of the cavities.
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5.4 Probe-based Methods
In this section, we discuss methods to compute molecular paths and cavities that utilize
the spatial extension of the ligand. For these methods and combinations with other
techniques, the following simplifications are often applied to the ligand (Section 2.2).
Most of the techniques approximate the ligand by a single hard sphere, called a probe.
Few methods consider the full hard sphere model of the ligand, sometimes even with
dynamics information. Furthermore, the positions of the ligand can be discretized. As
for most of the previous techniques, the protein is often approximated by the atom posi-
tions or the hard sphere model. The probe-based methods presented in this section are
only applicable to static data of the protein (e.g., individual snapshots of a simulation).

Smart et al. [121] presented a method that enables to characterize and display pores
of ion channel proteins. This method was later included in the HOLE software [122].
The goal is to provide quantitative data to understand the biological ion permeation
function of these channels by measuring properties relevant for ion conduction, pore
dimensions, and constrictions. HOLE is one of the earliest tools to compute a possible
molecular path. The tool computes a path from a user-defined start point inside a cavity
to the outside of the molecule. The path direction is steered by a given direction vector
~v of the cavity. The start point is moved to the position where the distance to the atom
spheres becomes locally maximal using a Monte Carlo simulated annealing approach.
During this process, the point stays in the plane that includes the original start point and
is orthogonal to~v. Afterwards, the point and the plane move a step into the direction of
~v and the simulated annealing approach starts again. This is repeated until the outside of
the molecule is reached. Note that the approach cannot guarantee to detect the optimal
point with the local maximal distance to the atom spheres. Furthermore, the algorithm
fails to detect paths in cavities where the medial axis is more complex (i.e., it cannot
be described by a single direction). Smart et al. [120] later presented an extension
that predicts the conductance of an ion channel from its three-dimensional structure.
The method combines the pore dimensions of the channel as measured in the HOLE
program with an Ohmic model of conductance.

Laskowski presented the tool SURFNET [76], which fills cavities in a molecule
with gap spheres that do not penetrate the atom spheres. In more detail, between each
pair of atoms a gap sphere is placed in the middle, touching the two atom spheres. The
radius of the gap sphere is reduced in case of a penetration with another atom sphere.
If the radius falls below a user-defined threshold, the sphere is completely rejected. Fi-
nally all gap spheres are sampled into a three-dimensional grid using Gaussian density
kernels. From this grid a surface of the cavities can be easily generated. The main
shortcomings of this method are the time complexity, which is cubic and the geometric
accuracy, which is not optimal due to the fixed position of the gap sphere.

One of the few methods that take the geometry and dynamics of a ligand into ac-
count was developed by Cortés et al. [18]. They use rapidly-exploring random trees
(RRTs) [79] to compute a possible molecular path of a specific ligand to a binding site.
That is, the method does not use a spherical probe but the actual geometry of the ligand
molecule to probe the protein for possible paths. RRTs were originally developed for
fast path planning in robotics. A tree is incrementally constructed by adding random
valid robot configurations as tree nodes until a node reaches a point or area of interest
(see Figure 7). For molecular path detection, the ligand is considered as the robot and
the protein is the labyrinth for which a path should be detected from a user-defined
start position to the outside of the protein. The start position is the root of the tree and a
valid configuration is a position and orientation of the ligand such that it does not pen-
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Figure 7: Trajectory of a ligand aiming to access the active site [18].

etrate the protein. Furthermore, the configuration has to be reachable from the closest
node in the current tree. This means that the ligand must be close enough to an existing
node in the tree such that it is guaranteed to move the ligand from the tree node to the
new configuration without penetrating the protein. Depending on the number of free
variables for the configuration of the ligand, the algorithm can be slow. Furthermore,
it is difficult to setup a stop criterion for the tree construction. The authors further ex-
tended their approach to better visualize and analyze the results of the RRT [19]. To
do so, they generate a 3D volume on which the RRT is mapped. The three variables
of the volume can encode any user-selected ligand property of interest such as three
selected bond torsions. The mapping algorithm is straightforward and simple visual-
ization techniques for 3D volumes are applied. The implementation of the approach is
part of the BioMove3D software package.

5.5 Voronoi-Probe Methods
This section covers approaches combining the Voronoi diagram method with the usage
of a probe. Edelsbrunner and Liang presented a series of papers dealing with cavity
detection and cavity analysis based on α-shapes and α-complexes. Ultimately, these
works led to the development of a tool called CAST [85]. The algorithm calculates
the Voronoi diagram consisting of Voronoi cells (Figure 8 left). The Voronoi diagram
is mathematically eqivalent to the Delaunay triangulation of the complex hull drawn
around the protein atom centers. The α-complex is then defined as a subset of the De-
launay complex (Figure 8 right). Each Delaunay element whose dual Voronoi element
has a closer minimal distance to the atom positions than α ∈ R is also an element of
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Figure 8: Illustration of the α-shape used in CAST. Left: Voronoi diagram of atoms
of the same radii. Right: convex hull triangulated into Delaunay triangles, the dual
complex is defined by the shaded triangles and the black lines. Image source: [132].

the α-complex. The probe radius is included in the α value.
In 1995, Edelsbrunner et al. [29] described the detection of internal cavities and the

analytical computation of their volumes. These cavities can be easily extracted from
the α-shape. In a subsequent work, they extended the cavity computation to pocket
detection [30]. The approach uses the discrete flow of the Delaunay triangles to define
and identify the cavities. Later, they presented the VOLBL tool to measure properties
such as volume and area for internal cavities and pockets [83, 84]. As mentioned above,
they integrated the detection and measurements into the tool CAST [85]. The minor
drawbacks of the approach are the limited cavity visualizations and the problem that
shallow pockets cannot be detected by the algorithm.

Similar to the CAST algorithm, fpocket by Le Guilloux et al. [80] first computes the
Voronoi diagram of the atom positions and assigns a maximal α-sphere that does not
intersect the atom spheres to each Voronoi vertex. In the next step, all α-spheres with
a radius smaller than a minimal threshold or larger than a maximal threshold are re-
moved. Afterwards, the remaining spheres are labeled as apolar or polar, depending on
the neighboring atoms. A three-step clustering method is applied to the spheres. In the
first step, α-spheres are clustered if they are connected by a Voronoi edge and if their
distance is smaller than a given threshold. In the second step, clusters are aggregated
based on the distance of their centers of mass. Finally, the pairwise distances between
α-spheres of clusters are investigated. If a certain number of distances is smaller than
the threshold, the two clusters are aggregated. After clustering, small and hydrophobic
cavities are removed and the remaining cavities are ranked.

A combination of a Voronoi diagram and probes was also used by Olechnovič et
al. [98] in 2011 when they presented Voroprot, which is an interactive tool for the
analysis and visualization of cavities. Voroprot was one of the first tools using the
additively weighted Voronoi diagram—also called Apollonius diagram—of the atom
spheres instead of the atom positions (similar to Lindow et al. [88]). It computes the
diagram to analyze interatomic contact surfaces but also to study cavities using the
Voronoi vertices. For each vertex, an empty sphere that is tangent to four atom spheres
exists. Such a sphere corresponds to an internal cavity if it is larger than a given probe
sphere and if it is not accessible by the probe sphere from outside the molecule. Large
probe sizes can be used to detect pockets. However, the authors do neither give a clear
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Figure 9: Cavities computed by the algorithm by Lindow et al. Left: cavities in one
time step of the MD trajectory. Right: 3D shape of the dynamic cavity traced from the
selected cavity (purple, left) and colored according to time [86].

definition nor a visualization concept for molecular cavities.
At the same time, Lindow et al. [88] presented another approch based on the

Voronoi diagram of the atom spheres. It computes and visualizes molecular paths and
cavities. By considering the different atom radii, the paths are geometrically optimal
for probe spheres in contrast to previous approaches. Additionally, the paths can be
filtered to get an overview of the most significant paths of the whole molecule. Besides
path computation, the corresponding cavities can be extracted and visualized as a skin
surface [28, 90]. Furthermore, the paper describes several possibilities to visualize the
paths and cavities in combination with the surrounding molecule (see Figure 16, refer
to Section 6 for more details). The temporal evolution of cavities was also studied by
Lindow et al. [87]. In this extended version of their previous paper [86], they describe
a visualization tool to analyze molecular dynamics trajectories. To do so, the paths
and cavities are precomputed for each time step (see Figure 9 left) and correlated over
time to keep track of their evolution. Afterwards, the user can interactively trace them
over time while topological events like splits and merges of cavities are illustrated in
plots. The tracing is computed by approximating the overlap of cavities of consecutive
time steps. For an in-depth visual analysis, the cavities and the molecular structure are
visualized accordingly. Furthermore, cavities related to each other over several time
steps can be aggregated to visualize the 3D shape of dynamic channels or pockets in a
static 3D visualization (see Figure 9 right). Additionally, the volume of cavities can be
computed and the probability of cavities for the whole trajectory can be visualized in a
single image.

Sridharamurthy et al. [124] also used the α-complex to identify robust voids and
pockets, which are stable with respect to small perturbations in the atomic radii. The
notion of robust voids is based on the stability and the topological persistence with
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respect to the α-complex. First, the weighted Delaunay triangulation is computed on
the set of atom centers. Second, the α-shape spectrum is constructed, which represents
the filtration of the weighted Delaunay triangulation. Via the modification of filtration
a set of stable voids is acquired. The implementation of this algorithm, RobustVoids,
allows to visualize the results for different values of α.

In 2013, Kim et al. [60] presented a generalization of the CAST algorithm [85].
The algorithm, focusing on the detection of tunnels and voids via Voronoi diagrams and
β -complexes, considers the correct atom radii by using the β -shape. The idea of the
algorithm is to compute the Voronoi complement that corresponds to the skeleton of the
molecular complement. Then, the tunnels and voids are recognized by analyzing the
Voronoi complement. The algorithm was integrated to the software tools BetaTunnel
and BetaVoid.

One of the most recent tools for automated characterization of voids is ChExVis,
presented by Masood et al. [94]. The paper introduces their α-complex based method
and a webserver, treating a large range of biological use cases with a focus on trans-
membrane channels. The method stores the occupied volume and centerlines of identi-
fied voids and can handle multiple objects simultaneously. The visualization and visual
analysis is quite feature-rich, also mixing in physico-chemical descriptors such as hy-
drophobicity and conservation in a representation the authors call channel profiles (see
Figure 18 (c) and Section 6). Handling of transmembrane pores seems to be a strong
point of their approach.

5.6 Grid-Probe Methods
Another category of methods detecting cavities discussed in this survey combines the
grid-based approach with the usage of a probe. A pioneering work that belongs to this
category was presented by Voorintholt et al. [130], who developed a fast grid-based
visualization of the Solvent Accessible Surface (SAS). In detail, each grid point inside
the van der Waals sphere is assigned the value 100. Grid points with a larger distance
than the van der Waals radius plus the radius of the probe are assigned the value 0. All
grid points in between are assigned the value (100 · ((Rv +Rp)

2− d2)/((Rv +Rp)
2−

R2
v), where Rv is the radius of the closest atom, Rp is the radius of the probe, and d is the

distance to the closest atom position. Although this method does not explicitly extract
cavities but only visualizes them as contours of the SAS derived from the grid data, it
can be seen as a precursor for subsequent methods such as LIGSITE by Hendlich et
al. [46].

LIGSITE is a tool for direction-based cavity detection that also maps the SAS into
a three-dimensional grid. Afterwards, for each grid point outside the SAS, all neigh-
boring grid points along the three main axes and the four cubic diagonal axes are in-
vestigated within 12 Å. If a grid point lies inside the SAS in both directions on one
axis, this axis is marked as protein, solvent, protein (PSP). All grid points with at least
two PSP directions are marked as cavity grid points and will be clustered. The sur-
face of the cavities is obtained by sampling the solvent probe sphere at each cavity grid
point. An improved version of LIGSITE, called LIGSITECSC, was published by Huang
and Schroeder [50]. Additionally, the conservation of the neighboring residues of the
three main pockets is analyzed to rate the availability of the pockets. The authors also
compared the results with other tools—LIGSITE [46], PASS [6], SURFNET [76], and
CAST [85].

Another approach is implemented in the tool HOLLOW by Ho and Gruswitz [48].
Instead of placing a sphere between each pair of atoms as in SURFNET [76], they place
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Figure 10: Multiscale pockets detected by the approach by Kawabata. Image
source: [58].

them directly on a grid with a fixed sphere size. Afterwards, all spheres that penetrate
the atom spheres or that lie outside the envelope of the molecule are removed from the
grid. The remaining spheres of the grid are used as dummy atoms whose molecular
surface represents the surface of the cavities.

In 2010, Kawabata proposed an algorithm to detect shallow and deep multiscale
protein pockets [58]. The algorithm exploits a 3D grid representation and morpho-
logical operators. The grid is defined as an approximation of spheres representing the
atoms. Afterwards, morphological operators are applied, where the structural element
is defined by probe spheres of different sizes. The final formula, enabling to extract
the protein pockets, is defined by a combination of opening and closing operators (see
Figure 10). For each pocket, a measure of its shallowness is computed as the minimum
inaccessible radius. The algorithm was implemented in a tool called GHECOM.

Recently, a technique for extracting cavities called PrinCCes was presented by
Czirják [20]. It is essentially a multistage grid-based algorithm that uses flood-fill
to iteratively mark the space with particular numerical encoding. Initially, two levels
of probes—a large probe and a small probe—are placed to the center of each atom
and sampled to a grid. The large probe separates the entire structure from the outer
space. Then the space between the atoms and within the large probe space is defined as
cavity candidate and finally the exact radii of the cavity extents at each grid point are
calculated. The final void space is then segmented into separate structures based on the
connectivity and intersection of the void space spheres. The technique was showcased
on several examples from single proteins up to large protein complexes such as virus
capsids.

5.7 Surface-based Methods
In contrast to most of the previous approaches, the protein is not purely restricted to the
hard sphere model, but to a molecular surface model (Section 2.2). Molecular surfaces

22



define an interface of the molecule and its environment. Therefore, they can be used to
define cavities as well. Surfaces like the Solvent Excluded Surface (SES), the Solvent
Accessible Surface (SAS), or the Ligand Excluded Surface (LES) have the additional
benefit that they define the interface with respect to a specific solvent or ligand. That is,
cavities derived from these surfaces are also accessible by a solvent or ligand molecule
of this size. For more information about molecular surfaces, please refer to the survey
of Kozlı́ková et al. [66].

Sanner et al. [113] introduced the Reduced Surface, which is similar to α-shapes [31].
Based on the Reduced Surface of a molecule, its Solvent Excluded Surface can be com-
puted. Sanner et al. also decribe how to compute the SES for internal voids, that is,
enclosed cavities. The surface area and enclosed volume of the SES can be computed
analytically for further analyses. The same idea—constructing the SES of internal
voids to detect closed cavities—was recently also applied by Jurčı́k et al. [57]. Their
method is an extension of the GPU-accelerated SES computation by Krone et al. [70],
which is based on the Contour-buildup algorithm [127]. In contrast to Sanner et al.,
Jurčı́k et al. use an approximation of the surface area to describe the cavities.

A technique to compute all channels in a protein was developed by Coleman and
Sharp [17]. Their tool CHUNNEL uses a triangulation of the SES provided by the
GRASP tool as an input. Afterwards, all topological loops on the surface are detected
as triangle strips. These strips characterize the channels in the molecule. In the final
step, the topological paths through the channels and the corresponding loops are com-
puted such that their distance to the surface becomes maximal. While the approach is
among the first that automatically detect all channels, the algorithm is very slow and
geometrically invalid channels can be detected due to circular singularities of the SES.

Parulek et al. [101, 102] introduced an implicit distance function that can be used
to extract the SES. This distance function can also be used to detect the cavities of
a protein. The approach involves a sampling strategy, where random but uniformly
distributed samples are placed around the molecular surface. For each sample that is
within a certain threshold, a ray is cast in the direction of the gradient of the distance
field. If the ray hits the molecular surface, the sample is within a cavity (see Figure 11).
For all samples that are within a cavity, a minimum spanning tree is computed, which
can be used for substrate path analysis. Additionally, properties related to amino acids
surrounding the cavity are computed to improve the parameter set describing each cav-
ity. Although their method only considers one individual time step of a simulation
trajectory, they propose the use of a scatterplot of the results for all time steps to assist
users with the visual analysis of dynamic data.

Krone et al. [72] developed a method that extracts all types of cavities in real-time
on the GPU. For each frame, a Gaussian density surface mesh is computed [73], which
approximates the SES. For each triangle of this mesh, the Ambient Occlusion (AO)
factor is computed (using the particle-based AO method of Grottel et al. [40]). If the
AO is higher than a certain threshold, this part of the surface is classified as belonging
to a cavity. Adjacent cavity triangles are collected into sub-meshes that represent the
individual cavities. The evolution of the cavities is tracked over time by matching
their centroids and additional properties such as the surface area of the cavities are
computed. Krone et al. later extended their work to compute additional metrics of
the cavities and to classify them into channels, pockets, and enclosed cavities [71].
Additionally, the length and width of a channel or pocket is computed based on the
centerline.
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Figure 11: Illustration of the approach to the detection of cavities used by Parulek et
al. Image source: [102].

5.8 Grid-Surface Methods
Methods combining surface-based and grid-based methods are also commonly used for
cavity detection. This section reviews methods that fall into this category.

In 1994, Kleywegt and Jones [63] developed the tool VOIDOO to detect closed
cavities in molecules. VOIDOO computes the Solvent Accessible Surface for a given
probe on a discrete grid. Afterwards, all grid points that can be reached from the
boundary of the grid are removed. Consequently, all remaining grid points outside the
SAS are points inside closed cavities. These points can be used to create a surface of
the cavities or to measure their volumes. The procedure is repeated several times with
increasing scaling values for the atomic radii. The scale factor that creates the most
cavities is finally used for further analyzes. However, the detection of this factor is
not trivial and small variations can change the results a lot. Due to the nature of the
algorithm, only closed cavities can be detected but not channels or pockets.

Similar to LIGSITE [46] presented in Section 5.6, Exner et al. [35] proposed a
method that maps the SES into a discrete grid representation. For each grid point
outside the SES, the grid points in the three main directions are investigated within a
given neighborhood radius. If at least two directions contain grid points that lie in-
side the molecular surface in either direction, the investigated grid point is marked as
belonging to a cavity. All cavity grid points are combined in clusters on which contrac-
tion and expansion operations are performed. The final clusters represent the cavities.
The main shortcoming of this method is the limited detection directions. Depending
on the neighborhood radius, this can lead to missing cavities whose medial shape axis
is aligned diagonal to the main directions.

Yu et al. [134] presented the Roll algorithm for cavity detection, which is also based
on the SES. Here, the volume of the cavities is defined as the difference of the volume
enclosed by the SES and the volume enclosed by the van der Waals surface. To compute
the difference efficiently, they sample the van der Waals surface to a 3D grid. Then,
the SES is sampled by rolling the probe sphere along the grid without intersecting the
atom spheres. The grid points between the SES and the van der Waals surface lie inside
cavities. All cavities that are completely surrounded by the van der Waals surface are
specified as closed cavities. On the other hand, cavities that are partially surrounded
by the SES are denoted as pockets. By computing the volume depths of the cavities, a
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Figure 12: Result of a reimplementation of the tool 3V [131]. The difference between
two solvent excluded surfaces with different probe radii results in the cavity structure
in 3V.

ranking is achieved to easily detect potential binding sites. The Roll algorithm is used
by the tool POCASA.

Till and Ullmann [126] presented another approach to extract cavities, called McVol.
The approach computes the SAS of the protein as a discrete set of points using the
method by Eisenhaber et al. [34]. Internal cavities are detected by connecting neigh-
boring points of the SAS, followed by a connected components search on the resulting
graph. Typically, the largest connected component represents the outer part of the SAS,
while the other components represent the internal cavities. In addition, a second possi-
bility to extract the internal cavities is proposed. To do so, further points are sampled
inside the bounding box of the protein. If a point lies inside the SES it is marked as
protein point otherwise it is marked as solvent point. Then, a grid is constructed, where
each cell is marked as a solvent cell if at least one sample point in the cell is a solvent
point, otherwise the cell is defined as a protein cell. Neighboring solvent cells are con-
nected and again all connected components are detected, which results in the exterior
of the protein as well as all internal cavities. Since this method does not detect pockets,
the authors proposed a modification to extract them in a separate pass. For each solvent
cell, all surrounding cells within a given cube are investigated. If the ratio of protein
cells and solvent cells is larger than a user-defined threshold, the cell is marked as a
pocket cell. Note that the accuracy of the algorithm depends on the number and quality
of the point samplings. Furthermore, the definition of internal cavities and pockets is
rather heuristic.

The 3V tool was introduced by Voss and Gerstein [131] in 2010 as a generalization
of the Roll algorithm [134]. 3V computes the Solvent Excluded Surface for two probe
spheres with different radius. The first probe approximates the substrate of interest.
The second probe is larger and is used to extract the so-called shell surface that closes
all outer pockets of the molecule. The volume of all cavities is defined as the difference
of the volume enclosed by the shell and the volume enclosed by the SES of the substrate
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Figure 13: Three main cavities of hexameric insulin (PDB ID 3MTH) computed with
the LES algorithm [89].

(Figur 12). The SES for both probe spheres are computed using a discrete grid. In 2014,
the same method was proposed again by Oliveira et al. [99] in their tool KVFinder.
In addition, Desdouits et al. [22] extract cavities in the same manner to study their
evolution throughout MD simulations.

In 2014, Lindow et al. [89] proposed a method enabling the detection of all cavities
based on the actual ligand geometry (Figure 13). It is based on an extension of the SES
called Ligand Excluded Surface, which shows the accessibility for a specific ligand
instead of an approximating single probe sphere. The grid-based algorithm to compute
the surface computes intersection tests of the ligand with the receptor for each grid
point, for a number of discrete ligand orientations and conformations. Grid points
where the ligand can be placed are clustered according to the valid orientations and
conformations that results in cores of cavities. An ambient occlusion technique is used
to decide whether a grid point is inside or outside the boundary of the receptor. Only
grid points inside the boundary are clustered. From these cores, the surface of the
cavities is computed by sampling all valid ligand orientations and conformations into
a discrete scalar field, which is visualized using Marching Cubes or direct volume ray
casting.

5.9 Probe-Surface Methods
The last category includes combinations of surface-based and probe-based approaches.
The only method that falls into this category is the PASS tool by Brady and Stouten [6].
PASS (Putative Active Sites with Spheres) enables the detection and measurement of
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 Enhanced Visualization and Analysis of Molecular Shape
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Figure 14: Three main categories of methods focusing on visualization and visual anal-
ysis of molecular cavities.

buried cavities inside the proteins, which also helps to identify the active site of the
molecule. The algorithm uses layers of probe spheres to fill the cavities. Only exposed
spheres that are surrounded by at least a certain number of atoms are kept. The first
layer of spheres are placed tangent to the atom spheres by looping over all unique
triplets of atoms. The next layers are placed in the same way, tangent to the previous
layers. These spheres are then utilized to evaluate the size, shape, the extent of such
cavities and the prediction of active sites. For a sphere, the active site is estimated by
a number of neighboring spheres and the parameter describing the extent to which it is
buried. Additionally, the system allows to visualize the residues close to the cavities as
well as the cavities themselves.

6 Interactive Visual Analysis of Molecular Cavities
This section reviews the state of the art concerning the visualization of results produced
by the previously described methods to extract cavities. The appropriate presentation
of these results is an essential part for their analysis. This aspect is also visible in
Figure 3, where cavity analysis methods that also introduced special methods for the
visual analysis of these cavities are marked. The visual analysis of cavities is closely
related to general methods for the visualization and visual analysis of molecular shape.
This allows expert users a comprehensive visual analysis of cavities, binding sites, and
related phenomena.

There are basically three main categories, spatial and non-spatial visualizations and
enhanced visualization and analysis of molecular shape. The organization of papers in
this section is illustrated in Figure 14, which shows their categorization. The image
clearly shows high overlaps between these categories, which denotes that many of the
papers are conveying the information about cavities by combining visualization tech-
niques of more than one category.
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(a)

(b)

(c)
Figure 15: Visualizations of cavities in combination with the secondary structure and
molecular surface. (a) Illustration of cavities as spheres on a uniform grid by Krone
et al. [69], (b) Visualization of cavities as surface segments (combined with Cartoon
rendering) in MegaMol [71, 39], (c) Visualization of cavities as spheres of Voronoi
vertices in CAVER Analyst [67].

6.1 Spatial Visualizations
In many cases, the methods described in Section 5 do not introduce specific visual-
izations. Typically, well-established and commonly used molecular visualization tools
like VMD [52], PyMOL [21, 116], or UCSF Chimera [106] are used to present the
results. In these cases, the methods are either implemented as a plugin for these tools
or the results are stored to a file that can be read by the respective tool (e.g., in the PDB
file format [4] or as a PyMOL script file). While these molecular visualization tools
offer a wide range of general-purpose visualizations for molecular data, they are not
tailored to the visualization of cavities.

Most commonly, cavities are simply rendered as a set of spheres (Figure 15 (a),
(c)), or can be represented by a molecular surface based on these spheres. For grid-
based methods, isosurfaces derived from the grid are commonly used as a surface-based
representation of the cavities. Many tools use polygonal isosurface extraction (e.g.,
Marching Cubes). In contrast, Krone et al. [69] used isosurfaces obtained by direct
volume rendering, which can be beneficial in term of image quality, especially when
rendering semi-transparent surfaces. Phillips et al. [109] also applied direct volume
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rendering to visualize internal cavities. Another option that is often used to highlight a
cavity is to color the atoms or amino acids of the protein that surround this cavity. For
methods that extract a possible path through a pore or a tunnel, the tools will usually
depict this path by a simple line strip. Paths can also be visualized as a set of spheres
positioned on each node of the path. Here, the radius of each sphere is typically equal
to the maximal radius of a hypothetical spherical probe that touches the surrounding
atoms. In this case, the cavity extraction method has to provide the positions and radii
of the spheres. Recent examples for such visualizations can be found in the works
of Czirják [20] who used only spheres, or Kim et al. [59] who used spheres as well as
centerlines. Especially in combination with cutting planes or transparency, these simple
sphere-, surface-, or line-based representations already convey a lot of information
about the cavities to the user.

Many methods described in Section 5 are accessible as a web service (see Sec-
tion 7.2 for more details). Most of these web services use web-based molecular visual-
izations based on Jmol [56] or JSmol [43] to offer simple cavity visualizations similar
to the ones described above (e.g., fpocket [80] or ChExVis [94]). An exception is Pore-
Walker [105], which presents only still images of the results that are pre-rendered on
the server. The visualizations in these images are, however, similar to the simple visu-
alizations described above (e.g., spheres that represent the path through the extracted
pore).

Epock offers visualizations of cavity computation results through a plugin for the
molecular visualization tool VMD [52]. It also includes Python scripts for plotting the
results, for example, the evolution of cavity volume or the pore profile. The focus is
on the visualization and analysis of the time evolution. Trajectories of the cavities can
also be generated for visual analysis.

A stand-alone molecular visualization tool that focuses on cavities is CAVER An-
alyst [67], which uses the CAVER method [12]. Besides the most common represen-
tations for proteins like ball-and-stick, cartoon, and surfaces, CAVER Analyst also of-
fers sphere- or surface-based representations of tunnels that show their path and width.
Clipping planes and transparency further help users to see the interior of the proteins.
The visual analysis tool for dynamic cavities presented by Krone et al. [71] is inte-
grated in the molecular visualization framework MegaMol [39]. To convey the results
of their cavity extraction, they either render only the surfaces of the cavities or use
semi-transparent molecular surfaces for the exterior parts of the molecule to provide
the context, whereas the parts of the molecular surface that demarcate cavities are ren-
dered opaque (Figure 15 (b)). Similarly, Jurčı́k et al. [57] improved the visualization
of transparent Solvent Excluded Surface to enable users to see the internal cavities in
the context of the molecular surface without the need to slice through it. All these tools
offer the usual coloring schemes that show physico-chemical properties of the proteins
to support the analysis (e.g., by amino acid or hydrophobicity).

Lindow et al. [88, 86, 87] proposed a set of methods to highlight the paths in pro-
teins that are extracted by their Voronoi diagram-based cavity extraction method. They
filter the paths to show only the most relevant ones. Afterwards, they place many point
light sources along the paths. Consequently, the molecular surface around the path is
brightly lit. The paths themselves are rendered as tubes that follow a NURBS curve.
Screen Space Ambient Occlusion is used to illustrate the general shape of the protein.
Furthermore, they offer a view-dependent clipping to remove parts of the exterior sur-
face that occlude user-selected cavities. Examples of the resulting visualization can be
seen in Figures 16 and 17.

Parulek et al. [101] presented an interactive visual analysis approach to explore the
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Figure 16: Visualization of Voronoi-based cavities [88]. Left: Cavities as skin surface
in combination with the secondary structure. Right: Solvent Excluded Surface clipped
by the cavities to show the corresponding paths.

space of cavities, i.e., their parameters, by means of a system linked views. This tech-
nique is a typical representative of combining spatial visualizations with non-spatial
ones, which are discussed in the subsequent part. Parulek et al. use several types
of scatterplots which allow users to interactively select the desired cavity parameters.
Each point in the scatterplot represents a single cavity instance, where the user can opt
between displaying two different parameters against each other or a single parameter
over time. By brushing points in the scatterplot, all the linked views are automat-
ically updated. In the accompanying 3D view, a focus-and-context visualization is
utilized, where the molecular surface becomes more saturated around the cavity than
the regions further away. Additionally, the user has the possibility to slice through the
molecule while the visualization preserves the focus-and-context visualization style. In
the follow-up study, Parulek et al. [102] enhanced the cavity parameter set by properties
of the amino acids. The user can select cavities by specification of amino acids names
in addition to their geometric characteristics. Chemical properties of the amino acids
are color-coded near the selected cavities in the 3D visualization. Moreover, the user is
provided with a dedicated linked view that shows evolution of chemical properties of
selected cavities over time.

6.2 Non-spatial Visualizations
Another possibility is to present cavities and their properties using non-spatial visu-
alizations. These methods can convey additional information and statistics about the
cavities that are not easily discernible when using typical three-dimensional represen-
tations. Consequently, non-spatial visualizations are often used in concert with spatial
ones to provide complementary information. This is especially helpful when analyz-
ing dynamic data, where a spatial visualization would require either an animation or a
temporal aggregation.

Conformational changes of a protein during a simulation can lead to interaction
of cavities. For example, a cleft can merge with an internal cavity so that a pocket is
formed. Lindow et al. [87] used a relational graph to show the evolution and interaction
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Figure 17: Illumination of cavities by placing many small point lights along potential
molecular paths [88].

of cavities over time (e.g., splits or merges between cavities). A second graph shows
the evolution of the cavities—that is, their position and spatial extent—over time (Fig-
ure 18 (a)). Krone et al. [72, 71] also used relational graph to show cavity evolution.
Additional properties like the channel width or surface can be encoded in this graph.

In addition to the relational graph, Krone et al. employed several 2D line plots
to show the profiles of the extracted cavity and to illustrate the temporal evolution of
cavity properties like channel diameter or surface area in molecular simulation trajec-
tories. This for example allows users to detect the narrowest sites of a tunnel (i.e., its
bottlenecks). Similar 2D line plots that show the properties for dynamic data over time
were used by Byška et al. [9] (see Figure 18 (b)). For each time step, they plot one
line that shows the tunnel profile, which reveals the most stable and unstable parts of
the tunnel over time. Below this profile plot, the amino acids that surround the tunnel
are plotted. Each amino acid is represented by a colored strip consisting of individual
lines. The number of these lines corresponds to the total number of time steps and
their length depicts the extent of influence of the tunnel by this amino acid. Using
this representation, users can detect amino acids that have a substantial contribution to
a bottleneck, which might be candidates for protein mutations that influence the pro-
tein reactivity. The coloring can be changed according to different physico-chemical
properties of the amino acids. A combination of non-spatial visualizations and spatial
ones can, however, also be useful to provide additional information for static data. An
example for this is ChExVis [94], which uses JSmol to show the geometry of cavities,
as mentioned above. An additional 2D plot is used to show the profile of the currently
selected channel, that is, its length and width in Ångströms, as well as the hydropho-
bicity profile along the channel (see Figure 18 (c)). Similar to the work of Byška et al.,
the visualization also shows the amino acids that are in contact with the channel.
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(a)

(b)
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Figure 18: (a) Relational graph (top) showing splits and merges of cavites and evolu-
tion graph (bottom) illustrating the position and spatial extent of the cavities over time.
(b) TunProfile (top) depicts the tunnel width and length for each time step. AAExplorer
(bottom) shows the amino acids that surround the tunnel. (c) Combination of channel
profile plot (left) and the classical three-dimensional representation of a channel (right)
in the tool CHEXVIS. Image source: [87, 9, 94]

In another work, Byška et al. [8] proposed further methods to explore the shape as
well as the properties of a selected tunnel in dynamics molecular data using 2D visual-
izations and plots. Heat map plots are either used to show the width of all tunnels or the
evolution over time for one specific tunnel. The temporal evolution of the bottleneck of
a single tunnel can also be explored in detail in one static image called the MoleCollar
representation (see Figure 19). This view is enriched with abstract depictions of dif-
ferent physico-chemical properties of the amino acids surrounding the bottleneck. The
idea of these methods is to show the most biochemically relevant tunnels and evaluate
their throughput without tedious observation of all steps of the simulation trajectory.

6.3 Enhanced Visualization and Analysis of Molecular Shape
Rendering methods that highlight the shape of a molecule can be beneficial for the vi-
sual analysis of cavities. Tarini et al. [125] proposed a set of techniques to enhance
the perception of molecular data, including contour lines and ambient occlusion. Bor-
land [5] proposed Ambient Occlusion Opacity Mapping, which modulates the trans-
parency of the molecular surface based on the ambient occlusion in order to emphasize
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the internal structure—that is, the cavities—of a molecule (see Figure 20). Grottel et
al. [40] presented an interactive ambient occlusion method for large, dynamic molec-
ular data. Most recently, Skånberg et al. [119] proposed a combination of ambient oc-
clusion and diffuse interreflections to highlight the entrance of the ligand to the active
site located on the molecular surface. They use this technique also for the visualization
of the interaction strength between a ligand and a receptor molecule. A recent review
of methods for molecular visualization was given by Kozlı́ková et al. [66].

Besides methods that focus mainly on the visual appearance of the shape of a
molecular surface, algorithms aiming to analyze the shape have been proposed as well.
Visualizing the results of such shape descriptors cannot only assist the visual analysis
of cavities but also provides a means to analyze and compare the shape of cavities.
Cipriano et al.[14] proposed a multi-scale shape descriptor and applied it to molec-
ular surface analysis. The descriptor estimates the degree of non-planarity and the
anisotropy in a circular area around a given surface point. They showcased descriptor
properties on a set of proteins while varying the value of the descriptor radius giving it a
biological relevance. In a follow-up work [15], they showed how their shape descriptor
can also be applied to surface matching, that is, to finding similar surface points among
different proteins, which can be used to identify potential ligand binding sites. In their
visualizations, Cipriano et al. use color to show the results of their surface descriptor
together with ambient occlusion, which emphasizes the general shape of the molecule
(see Figure 21 left).

Coleman and Sharp [16] introduced a shape descriptor called travel depth, which is
defined as the shortest path for a small molecule from the convex hull to the molecular
surface (see Figure 21 right). The small molecule can be represented by a probe sphere.
This shape descriptor can be used to illustrate cavities on protein surfaces. Coleman
and Sharp proposed a grid-based implementation to compute the travel depth. Subse-

Figure 19: The MoleCollar representation by Byška et al. shows the bottleneck of a
channel or tunnel over time. All time steps are superimposed and the surrounding
glyphs denote the amino acids that are bodering the bottleneck. Image source: [8].
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Figure 20: Comparison between CASTp (left) and the Ambient Occlusion Opacity
Mapping (AOOM) proposed by Borland (right). AOOM also highlights the entrances
to the channel (black circles). Image source: [5].

quently, Giard et al. [38] presented an algorithm for fast estimation of the travel depth
based on a molecular surface mesh. The travel depth can be visualized by coloring
the molecular surface according to the corresponding path length. Paths inside internal
cavities are ignored in this approach.

Natarajan et al. [97] segment the molecular surface into grooves and pockets by
means of a Morse-Smale complex. This includes the extraction of critical points on
the surface and finding the appropriate edges of the Morse-Smale cells. The authors
applied their method to correspondence matching of proteins in different conforma-
tions. Another application is the calculation of the atomic density function from the
topological description. According to this density function, the authors are able to seg-
ment the molecular surface according to its protrusions and grooves and thus detect
and visualize the protein pockets.

Scharnowski et al. [114] presented an algorithm for the pairwise comparison of lo-
cal and global differences of molecular surfaces. After aligning the surfaces, one of
them is deformed until it matches the second one. Local differences are derived from
the deformation (geometric difference) as well as from the difference of the physico-
chemical properties between the matched surfaces. The global difference is measured
by integrating over the local differences. Local differences are visualized using color
and transparency, whereas global pairwise differences within an ensemble of proteins
can be shown in a matrix plot. Similar to the methods of Cipriano et al. [15] or Natara-
jan et al. [97], this method can be used to analyze differences in the vicinity of a cavity.
This can support users in drawing conclusions about accessibility and ligand binding.

Another visualization that focuses on the shape of a protein is the molecular sur-
face abstraction proposed by Cipriano and Gleicher [13]. The method is based on
geometric simplification of a meshed Solvent Excluded Surface. First, the mesh is
simplified with a Taubin filter so that details that are smaller than an amino acid but
bigger than an atom are smoothed. Afterwards, mid-sized features—indentations and
protrusions—are removed based on their Gaussian curvature. Texture decals that rep-
resent the removed mid-sized feature (such as small and shallow pockets) are placed
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Figure 21: Different shape descriptors. Left: Multi-scale surface descriptor by Cipriano
et al. [15]. Right: Reimplementation of travel depth by Coleman and Sharp [16].

Figure 22: Left: Molecular surface of a protein colored by electrostatic potential with
a ligand (yellow). Right: Molecular surface abstraction. Removed indentations and
protrusions are illustrated by texture decals ( o© and +©). Putative ligand binding sites
are highlighted in yellow on the surface. c© 2007 IEEE. Reprinted, with permission,
from [13].

in the corresponding location on the mesh surface. That is, high-frequency details of
the surface are completely removed, but the overall shape is conserved. Consequently,
the visibility of shape details is increased since the occlusion from mid-sized features
has been resolved by the glyph replacement. The representation also allows for a clear
representation of interaction sites. Interaction areas like binding sites are also projected
onto the abstracted molecular surface using textures (see Figure 22).

7 Discussion
As shown in Section 5, there is a plethora of different methods to extract cavities from
molecular data. Although the general goal of these methods is similar, they also use
very different approaches to reach this goal. The methods are not only algorithmically
different, but sometimes also in the way they define cavities. Consequently, the re-
sults are often also different. Apart from that, many of the tools that implement these
methods offer additional analyses that provide users with more information about the
cavities. This information can be an important factor for drawing conclusions about
possible biological function of cavities. Individual tools might be optimal for a specific
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analysis task, even though they can have deficiencies compared to other tools. That is,
users have to choose carefully from the available methods depending on their research
question or task. This of course also applies to visualization developers that devise new
visual analysis methods for molecular cavities. They have to be aware that their choice
of cavity extraction algorithm can influence the quality and utility of the results and,
consequently, of their visual analysis tool.

One important aspect that we want to focus on is the analysis of dynamic data. The
constant improvement of the capabilities of modern molecular simulations—resulting
from improved hardware as well as improved simulation codes—leads not only to more
accurate results for complex molecular systems, but also to longer simulation trajec-
tories with large numbers of time steps. Today, molecular dynamics simulation has
advanced to a point where it can be used to run virtual experiments that can provide
novel insights into the characteristics and properties of molecular systems. Getting
these insights, however, also requires analysis methods that are tailored to dynamic
data. Additionally, conveying the analysis results to the user requires tailored visu-
alization methods. The resulting visual analysis tools that provide information about
the temporal evolution of features like cavities are important for users to understand
the data and benefit from it. As observable in Figure 3, the number of methods and
tools for the extraction of cavities that can deal with dynamic data is relatively small
(green references). However, the figure also shows that in recent years, a trend towards
dynamics data is emerging. This is also reflected in the increasing availability of vi-
sualization methods and visual analysis tools for cavities in dynamic data, which is
described in Section 6. As mentioned above, visualization is crucial for the analysis
of previously extracted cavities and their properties as well as secondary information.
This is even more important for dynamic data, since the complexity rises with the num-
ber of time steps. As described in Section 6, modern visualization tools take different
approaches to convey the evolution of the cavities to users. In general, one popular
approach for visualizing dynamic data is to present the temporal information in one
static representation. In case of visualizing cavities, this approach is often found in
the non-spatial depictions described in Section 6.2. Spatial visualizations that show
results for a whole trajectory in one static image often use aggregation to show the
average cavity extent over time. However, the straightforward approach of visualizing
temporal development as an animation is also found in cavity analysis and also has its
benefits. Animation supports a more exploratory analysis of the data, where the user
directly sees the changes over time. Even subtle changes are visible, in contrast to static
depictions where detailed information might be lost due to aggregation or summariza-
tion. Furthermore, for in-situ visualization of interactively steered simulations, direct
visualization of the results is the only possibility. Such scenarios of course pose the
additional challenge that the cavity extraction algorithms as well as the visualizations
have to be fast enough to be applicable in real time. In order to provide users with the
benefits of both visualization approaches, a trend for the visual analysis that is apparent
from Section 6 is the combination of spatial visualizations and non-spatial ones using
multiple views. Such visual analysis tools can concurrently give an overview of the
data and provide detailed views, as well as provide quantitative measurements.

A property that is currently taken into account by only few methods is the actual
shape and orientation of a ligand within a cavity. Obvious reasons for that are the algo-
rithmic complexity as well as the necessary computational power, which only recently
became more widely available due to improvements in computing hardware. Available
methods include the Ligand Excluded Surface by Lindow et al. [89] and TRAPP by
Kokh et al. [65]. We think that this is an important challenge, especially for dynamic
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data, since a method that considers detailed information about a ligand would be able to
provide a more accurate estimation of the reachability of a binding site. An example for
a tool that goes into this direction is the MoMA-LigPath web server [23], which sim-
ulates protein-ligand docking by calculating the ligand unbinding trajectory based on
a simplified model considering mechanistic representation with partial flexibility. The
protein-ligand complex serves as an input for the Manhattan-like Rapidly-exploring
Random Tree (ML-RRT) that iteratively expands the search space of possible paths
(similar to the work of Cortés et al. [18, 19]). This approach is borrowed from robotics,
where it is used for path planning in mechanistic system.

7.1 Directions on the Comparison and Verification of Cavity Ex-
traction Methods

A fundamental question concerns appropriate ways to compare and assess different
methods, either on an individual basis or at a global scale. Here we want to pro-
vide a few directions and ideas for the verification and comparison of results and raise
questions such as how to monitor the accuracy of measurements. As an example, we
observed discrepancies in volume measurements among several tools, in some cases up
to 200%. Currently no guidelines for a quantitative numerical comparison exist. More
generally speaking, very few tools provide the option to measure inherent errors. This
shortage makes it difficult to identify systematic errors, possibly induced by a chosen
method or algorithm.

For the comparison of two methods, both the overall detected cavities and the re-
lated measurements should be taken into account. The detection could be handled by
comparing the number of cavities found and assessing their similarity. Several studies
provide ad hoc assessments, see for example [94] for a visual comparison of results
from ChExVis, MOLE, CAVER, MolAxis, and PoreWalker for selected enzymes and
transmembrane proteins. The detailed comparison of cavity characterization results
by two methods could involve the identified surrounding amino acids, the cavity vol-
ume measurement, and, in the case of tunnels or pores—the path profile (e.g., width
along centerline) measurement. A challenge is to move from qualitative to quantitative
descriptors.

Rather than comparing methods individually, it would be desirable to have a gold
standard for verification. In other fields, such as docking, dedicated benchmark data
sets are used. For cavities, no commonly admitted reference data set currently ex-
ists. A database of biologically relevant cavities might be particularly useful in that
respect. Some existing databases may form the basis for such a benchmark, for ex-
ample free ones such as the pocketome one [74], or commercial ones such as, e.g.,
CavBase [75]. Specific use cases have been employed as a benchmark in several
studies. For instance, the heat-shock protein HSP90 crystal structure collection was
characterized through MDpocket, TRAPP, and Epock tools. A benchmark set includ-
ing HSP90 can actually be downloaded from http://epock.bitbucket.org/
docs/epock_benchmarks.html. A major limitation for these biological data
sets is that measurements cannot be verified, e.g., the ”real” volume of a cavity is
an unknown entity. For numerical and quantitative assessment, it may thus be bet-
ter to resort to synthetic controlled data sets with known properties. One possibil-
ity is to generate artificial cavities of known shape and size, for example a sphere.
We did so and Figure 23 provides an example assessment for illustration. A sys-
tematic underestimation of the volume is observed, with up to -40% for very small
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Figure 23: Example of volume measurement error assessment based on a sphere cavity
trajectory of precisely controlled volume. The true sphere volume increases regularly
(blue line). Three program settings are compared with percentual error indicated as
inset. The smallest and largest spherical cavities are depicted. Data kindly provided by
Dr. Benoist Laurent.

cavities. Changing program settings such as the grid spacing in this case can sig-
nificantly reduce the error. Therefore, it has to be noted that the accuracy of results
may be intimately linked to the choice of program options and parameters, with a
likely tradeoff between accuracy and efficiency. When program authors provide rec-
ommended settings, those should be used for assessment. We provide the sphere tra-
jectory as example benchmark system along with a brief discussion of errors: http:
//epock.bitbucket.org/docs/epock_error.html. Of course, a spheri-
cal shape may only represent certain types of cavities, hence other shapes should be
tested as well, e.g., ellipsoids, cylinders, and more complex forms. In summary, com-
parison and verification of cavity extraction methods are issues that the community has
to work on. Common guidelines for evaluation and assessment of methods and results
need to be elaborated.

7.2 A Brief Overview of Available Tools
In addition to the technical descriptions, we want to provide an overview of the current
availability of the tools discussed in the previous sections. Table 1 presents this infor-
mation as a comprehensible overview, which gives the current status of these tools, the
accessibility of their source code, and their availability on the three most often used
platforms.

Note that this overview only includes freely available tools. However, there are also
several commercial tools available which can be used for the computation and visual-
ization of cavities. Among such tools belongs Molsoft’s ICM-Pro (http://www.
molsoft.com/), which uses the method of An et al. [1]. One of the most used soft-
ware for cavity detection is SiteMap [42, 41] which enables to detect the binding sites
and to classify the druggability of proteins. Another example is the YASARA software
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tool by YASARA Biosciences whose YASARA View version [68] is freely available
for PC as well as Android platforms. YASARA enables to locate cavities and cal-
culate their volume. Other tools, such as SeeSAR by BioSolveIT (http://www.
biosolveit.de/SeeSAR/) or MakeReceptor by OpenEye (https://docs.
eyesopen.com/oedocking/make_receptor_gui.html), announce that they
are able to compute cavities. However, no information about the algorithms used by
these tools is available.

To complete the overview of the existing tools, we have to mention also solutions
which do not come with their own algorithm for computation of cavities. These tools
can be divided into two groups. The first group is formed by the general-purpose visu-
alization tools, such as PyMOL or VMD, which are able to visualize the results of the
computational tools by enabling the users to write their own plugins. The second group
is represented by solutions that combine more tools in order to provide the users with
more features at once, such as prediction of protein binding site and cavity detection.
One such tool is ConCavity [11]. It enables to predict protein ligand binding sites by
combining evolutionary sequence conservation with 3D structure. ConCavity makes
use of LIGSITE [46], SURFNET [76], and PocketFinder [1] for the geometrical cavity
detection. These algorithms are extended by a ‘voting’ of the cavities, which is based
on the sequence conservation of the surrounding residues. To do so, the authors used
the Jensen-Shannon divergence.

MetaPocket by Huang [49] is another tool that does not introduce a new cav-
ity detection method but combines multiple other methods. It uses the results of
LIGSITECSC [50], PASS [6], SURFNET [76], and Q-SiteFinder [78] to improve the
identification of possible binding sites. More recently, Zhang et al. [136] presented
MetaPocket 2.0, which takes into account four further tools, namely fpocket [80],
GHECOM [58], ConCavity [11], and POCASA [134].

HotSpot Wizard [103] is a web server for automatic identification of ”hot spots”
in proteins and for annotation of protein structures. It integrates the structural, func-
tional, and evolutionary information from different databases and tools. HotSpot Wiz-
ard searches for the amino acids located around buried cavities and pockets contain-
ing the active site and around the access tunnels to them. It utilizes CASTp [25] and
CAVER [108] tools. The output of HotSpot Wizard consists of the list of annotated
amino acids and is visualized in the web browser using Jmol. The tool is useful in
the design of mutations in site-directed mutagenesis and focused directed evolution
experiments.

8 Conclusions and Outlook
In this report we have reviewed and organized research work on molecular cavity de-
tection, analysis, and visualization. The focus of the computer science research has
been primarily targeted at protein-ligand binding. We can see that the algorithms on
cavity detection have been maturing throughout the last years and now offer a variety
of approaches that can be either based on discretization of the space, or topological
analysis, negative surface extraction, or on probing that simulates the interaction of
the ligand with the host macromolecule directly. The analytical methods are predom-
inantly visualization-centric, although until recently, mostly direct 3D visualization
techniques have been used for structural biology research workflows. While the avail-
ability of 3D visualization is essential, we can nowadays witness the emergence of
tailored visualization methods that abstract the rich and overwhelming structural detail
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Table 1: List of tools along with the availability of their source code (Src), availability
for individual platforms (Lin: Linux, Mac: Apple OS X, Win: Microsoft Windows,
Web: Web-based), current status (Stat, i.e., whether we were able to successfully run
the tool on a small data set; + available, − not available, ? we were unable to verify),
and visualization options (Vis, i.e., if the tool uses its own or an external visualization
software or it just outputs the results to a file; V has its own visualization, E uses
external visualization software, F writes results to file).

Tool Availability Stat Vis

Sr
c

L
in

M
ac

W
in

W
eb

3V[131] + ? ? ? + + E
BetaCavityWeb[61] – – – – + + E
BioMOVE3D[19] + ? ? ? – + E
CAST[85] – – – – – – E
CAVER 3[12] + + + + + + E
CAVER Analyst 1[67] – + + + – + V
ChExVis[94] – – – – + + E,V
ConCavity[10] + ? ? ? + + ?
dxTuber[111] – – – – – – E
Epock[77] + + + + – + E
FPocket[49] + + + + + + E
GHECOM[58] + ? ? ? + + E
HOLLOW[48] + + + + – + E
HotSpot Wizard[103] – – – – + + E
LIGSITE[46] – – – – – – F
LIGSITECSC

[50] + + – – + + E
McVol[126] – + – – – + ?
MDPocket[115] + + + + + + E
MegaMol[71] + + – + – + V
metaPocket[49] – – – – + + E
MolAxis[133] – + – – + + E
Mole 2[117] + + + + + + V
MoMALigPath[23] – + + – + + E
PASS[6] – + – – – – F
POCASA[134] – – – – + + E
POCKET[82] – – – – – – ?
PocketFinder[1] – ? ? ? ? ? ?
PocketPicker[132] + + – + – + E
PoreWalker[105] – – – – + + E
PrinCCes[20] – + – + – + E
Q-SiteFinder[78] – – – – – – ?
RobustVoids[124] – ? ? ? ? ? ?
SITEHOUND[47] + + + + + ? E
SURFNET[76] – + + + – + F
TRAPP[65] – – – – + ? E
VOIDOO[63] – + + – – + F
Voroprot[98] + + + + + + V
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to simpler representations, which are tightly related to specific questions of the analyst
and are also more quantitative. Moreover, by simplifying the complex spatio-temporal
structure into simpler form, visualization estate is freed up for additional chemical and
physical properties, as these should be considered together with the geometrical char-
acteristics. We foresee that the trend of research in design studies that are tailored to
specific analytical reasoning will continue in the context of ligand-protein interaction
in the coming years.

With increasing simulation detail, more and more simulations are performed with
the ligand contained in the simulated solution, and its interaction characteristics with
the host macromolecule will be important to study. Visualization methodology will
play here a central role. We can also foresee that visualization can in future allow for a
semi-automatic protein engineering, where the parameter space of an entire ensemble
of simulated mutations can be visually explored, and the iterative trial-error process
can be significantly shortened. From the reviewed literature we can also deduce that
the analytical methods for ligand-protein interaction are well developed and reach the
stage of maturation. This is, however, not the case for the accompanying visualization
technology. In the context of protein-protein interactions several analytical methods
have been developed to date, but this technology is still emerging. The accompanying
visualization technology that would align to typical questions of an analyst is practi-
cally non-existent. We see this subfield of structural biology as a large opportunity
where the molecular visualization community can move to and as enabling technology
that assists new discoveries. The protein-protein interactions can be the key for under-
standing large set of complex molecular machineries, which can have a strong impact
on the advances in medicine, biology, and nanotechnology.
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