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SCIP-Jack – A solver for STP and variants with

parallelization extensions∗

Gerald Gamrath†· Thorsten Koch · Stephen J. Maher
Daniel Rehfeldt · Yuji Shinano

Abstract

The Steiner tree problem in graphs is a classical problem that commonly arises in practi-
cal applications as one of many variants. While often a strong relationship between different
Steiner tree problem variants can be observed, solution approaches employed so far have been
prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that
can be used to solve both the classical Steiner tree problem and many of its variants without
modification. This versatility is achieved by transforming various problem variants into a
general form and solving them by using a state-of-the-art MIP-framework. The result is
a high-performance solver that can be employed in massively parallel environments and is
capable of solving previously unsolved instances.

1 Introduction

The Steiner tree problem in graphs (STP) is one of the classical NP-hard problems [1]. Given
an undirected connected graph G = (V,E), costs c : E → Q≥0 and a set T ⊆ V of terminals, the
problem is to find a tree S ⊆ G of minimum cost that spans T .

Practical applications of the STP can be found for instance in the design of fiber-optic net-
works [2]. However, it is more common that practical applications are formulated as a particular
variant of the STP [3, 4, 5, 6].

The announcement of the 11th DIMACS Challenge initiated our work with an investigation
into the STP solver Jack-III, described in [7]. The model and code of Jack-III provided a base
for the development of a general STP solver—being able to solve many of the problem variants.
However, Jack-III is more than 15 years old. As such, many modern developments regarding
STP solution methods and MIP solving techniques are not available. Our approach to address
this limitation of Jack-III includes the combination of the model used in [7] with the start-of-
the-art MIP-framework SCIP [8, 9]. Employing SCIP naturally facilitated the incorporation
of many algorithm developments from the past two decades and provided a platform for the
development of new methods.

A major contribution of this paper is the development of a general Steiner tree problem solver.
This achievement stands in contrast to the many problem-specific solvers observed within the
literature. Furthermore, SCIP provides a massively parallel MIP-framework that is employed
with this general solver. Thereupon, bolstered by algorithmic improvements, the developed
solver is able to solve several previously unsolved benchmark instances. Detailing the approach
delineated above, the remainder of this paper will be structured as follows:
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Faculty Research Award.
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• Section 2 demonstrates the impact of transitioning from a simple, ad hoc created branch-
and-cut code to the use of a full fledged, state-of-the-art MIP-framework.

• Section 3 shows how to employ the versatility of MIP models to not only solve a whole class
of related problem variants, but—in combination with further algorithmic advances—be
competitive with or even superior to problem-specific state-of-the-art solvers.

• Finally, in Section 4 the potential from using hundreds of CPU cores to solve a single
problem is illustrated.

The results achieved in this paper demonstrate the value of revisiting topics after some
time. In our case this occurred in two steps: First, prior to the DIMACS Challenge, with the
developments delineated above, and second, after the completion of the Challenge, when further
algorithmic methods were devised and implemented to considerably enhance the performance of
SCIP-Jack. Further examples of revisiting research topics can be found in [10, 11].

In general, it can be stated that a branch-and-cut based Steiner tree solver has three major
components. First, preprocessing is extremely important. Apart from some instances either
specifically constructed or insightfully handpicked to defy presolving techniques, such as the
PUC [12] and I640 [13] test sets, preprocessing is often able to significantly reduce instances.
Results presented in the PhD theses of Polzin [14] and Daneshmand [15] report an average
reduction in the number of edges of 78 %, with many instances being solved completely by
presolving. In computational experiments performed for this paper, reduction rates of more
than 90 % for some Steiner problem variants (e.g., for the maximum-weight connected subgraph
problem) are obtained.

Second, heuristics are needed to find good or even optimal solutions and help find strong upper
and lower bounds quickly. In our experiments, for more than 90 % of the instances that were not
already solved during preprocessing the final solution was found by a heuristic. Furthermore,
heuristics can be especially important for hard instances, for which the dual bound often stays
substantially below the optimum for a long time.

Finally, the core of the approach is constituted by the branch-and-cut procedure used to
compute lower bounds and prove optimality. The results of [14] show that many STP instances
can already be solved by reduction- and heuristic-based approaches [14]. However, the failure
of the state-of-the-art solver described in [14] to solve a number of hard instances that defy
preprocessing highlights the importance of strong branch-and-cut procedures.

2 From simple hand tailored to off-the-shelf state-of-the-
art

The model employed in the solver SCIP-Jack uses the flow-balance directed cut formulation
described in [7]. This formulation provides a tight linear programming (LP) relaxation. It is
built upon the directed equivalent of the STP, the Steiner arborescence problem (SAP): Given
a directed graph D = (V,A), a root r ∈ V , costs c : A → Q≥0 and a set T ⊆ V of terminals, a
directed tree (VS , AS) ⊆ D of minimum cost is required such that for all t ∈ T , (VS , AS) contains
exactly one directed path from r to t. Each STP can be transformed to an SAP by replacing
each edge with two anti-parallel arcs of the same cost and distinguishing an arbitrary terminal as
the root. This procedure results in a one-to-one correspondence between the respective solution
sets, see [16] for a proof.

An integer program for the SAP can be obtained by introducing a variable ya for each arc
a ∈ A with the interpretation ya = 1 if a is in the Steiner arborescence, and ya = 0 otherwise.
These considerations set the stage for the following formulation:
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Formulation 1. Flow Balance Directed Cut Formulation

min cT y (1)

y(δ+(W )) ≥ 1, for all W ⊂ V, r ∈W, (V \W ) ∩ T 6= ∅ (2)

y(δ−(v))

 =
=
≤

0 if v = r,
1 if v ∈ T \ r,
1 if v ∈ N,

for all v ∈ V (3)

y(δ−(v)) ≤ y(δ+(v)), for all v ∈ N (4)

y(δ−(v)) ≥ ya, for all a ∈ δ+(v), v ∈ N (5)

0 ≤ ya ≤ 1, for all a ∈ A (6)

ya ∈ {0, 1}, for all a ∈ A (7)

where N = V \ T , δ+(X) := {(u, v) ∈ A|u ∈ X, v ∈ V \X}, δ−(X) := δ+(V \X) for X ⊆ V ;
i.e., δ+(X) is the set of all arcs going out of, and δ−(X) the set of all arcs going into X.

Constraints (4) strengthen the LP-relaxation of Formulation 1, see [13]. However, the re-
maining additional constraints (3), (5), and (6) do not improve the value of the LP-relaxation;
although they nevertheless lead to an empirical speed-up in practical solving [14]. Further details
of Formulation 1 are given in [7].

Since the model potentially contains an exponential number of constraints a separation rou-
tine is employed. Violated constraints, are separated during the execution of the branch-and-cut
algorithm. Jack-III employed this problem formulation along with a model-specific branch-and-
bound search. Strong branching [17] was used with a depth-first search node selection.

The implementation of SCIP-Jack is based on the academic MIP solver SCIP [8, 9]. Besides
being one of the fastest non-commercial MIP solvers [18], SCIP is a general branch-and-cut
framework. The plugin-based design of SCIP provides a simple method of extension to handle
a variety of specific problem classes.

In the case of SCIP-Jack, the first plugins implemented were a reader to read problem
instances and problem data to store the graph and build the model within SCIP. Within these
plugins it was possible to re-use the reading methods and data structures of Jack-III. However,
each of these had to be extended as part of the implementation in SCIP-Jack. The heart of the
new implementation is a constraint handler that checks solutions for feasibility and separates
any violated model constraints. Again, separation methods of the more than 15-year old code
are re-used in SCIP-Jack, while SCIP provides a filtering of cuts to improve numerical stability
and dynamic aging of the generated cuts. Additionally, the general-purpose separation methods
that exist within SCIP are used, which include Gomory and mixed-integer rounding cuts.

Jack-III includes many STP-specific preprocessing techniques, as described in [7]. However,
for SCIP-Jack only the Degree-Test (DT) [19] method has been reused. All other tests were
replaced by more efficient variants, which have emerged in the decade following the release
of Jack-III, cf. [14]. Moreover, after the DIMACS Challenge work on reduction techniques
continued and various new reduction methods were developed for several of the Steiner problem
variants described in this paper. They are a pivotal factor in the improved performance of
SCIP-Jack as compared to its predecessor participating in the Challenge—the main motivation
behind the development of the new methods was to enhance SCIP-Jack [16]. Due to the large
number of presolving techniques and their complexity it is not possible to provide individual
descriptions within the frame of this paper. The reader is referred to [16] for detailed information.
The preprocessing techniques implemented in SCIP-Jack are listed in Table 2 according to
the abbreviations used in [16]; the full names of the preprocessing techniques can be found
in Section B of the appendix. Supplementary to the presolving techniques, a Steiner problem
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specific propagator is implemented that fixes edges during the branch-and-cut according to the
same criteria used in the dual-ascent (DA) reduction method [13, 14].

For the branch-and-bound search a straightforward STP-specific branching-rule has been
implemented. Specifically, instead of branching on variables, i.e., in the case of the STP on
arcs, vertex branching [20] is employed. This has been identified empirically by the authors of
this publication to be stronger than the generic branching rules natively implemented in SCIP.
During the branch-and-bound procedure, vertex branching selects a Steiner vertex to be rendered
a terminal in one child node and excluded in the second child.

Determining such a Steiner vertex is achieved by means of the following criterion. Let y ∈
[0, 1]

A
be an LP solution at the current node during branch-and-cut. Select a vertex vi ∈ V \ T

to branch upon, such that ∣∣∣∣∣∣
∑

a∈δ−(vi)

ya − 0.5

∣∣∣∣∣∣ (8)

is minimal among all Steiner vertices.
The node selection is organized by SCIP and is performed with respect to a best estimate

criterion—interleaved with best bound and depth-first search phases [21].
One dual and several primal STP-specific heuristics have been implemented in SCIP-Jack—

the dual-ascent heuristic (DA), the repetitive shortest path heuristic (RSPH), in the form pro-
posed in [22], an improvement heuristic (VQ) [23], the reduction-based heuristics prune (P) and
ascend-and-prune (AP) [14], and a new recombination heuristic (RC).

The dual-ascent algorithm was introduced in [24]. It exhibits a time complexity of
O(|E|min{|V ||T |, |E|}), see [14], but is usually faster than this bound might suggest; efficient
implementations can be found in [13] and [25]. In SCIP-Jack the implementation of [25] is
used. At termination, dual-ascent provides a dual solution to a reduced version of Formulation 1
that contains only the constraints (2) and (6). This solution involves directed paths along arcs of
reduced cost 0 from the root to each other terminal. The heuristic is executed prior to the branch-
and-cut procedure and includes all cuts corresponding to the dual solution found by DA. Due to
strong duality, the objective value of the first LP solved during branch-and-cut corresponds to
the objective value of the dual solution found by DA.

On the primal side, SCIP-Jack includes the well-known repetitive shortest paths heuristic.
Starting with a single vertex, the heuristic iteratively connects the current subtree to a nearest
terminal by a shortest path. This procedure is reiterated until all terminals are spanned. The
heuristic is implemented in Jack-III, but in its original form detailed by [26]. In SCIP-Jack
an empirically faster version based on Dijkstra’s algorithm [22] is implemented. In addition to
being used as an initial heuristic, the RSPH is also employed, with altered costs, during the
branch-and-cut. Specifically, given an LP optimal solution y ∈ QA, the heuristic is called with
the costs (1 − ya) · ca for all a ∈ A. Thus, a stimulus for the heuristic to choose arcs contained
in the LP solution is provided. Moreover, the heuristic is started from several distinct vertices,
making it empirically much stronger (by default 100 start vertices for the initial call at the root
node, 50 at the beginning of the processing of each other branch-and-bound node and 15 for calls
within the cut loop). Terminals are preferred as start points, but vertices that exhibit a high
(fractional) out-degree in the incumbent LP solution are also selected. The heuristic is called
before and after the processing of a (branch-and-bound) node, after each cut loop and after each
LP solving during a cut loop.

The improvement heuristic VQ is a combination of the three local search heuristics vertex
insertion, key-path exchange, and key-vertex elimination as described in [23]. The basic idea of
vertex insertion (denoted by V) is to connect further vertices to an existing Steiner tree in such
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a way that expensive edges can be removed. Key-vertices with respect to a tree S are either
terminals or vertices of degree at least three in S. Correspondingly, a key-path is a path in S with
a key-vertex at both endpoints, but without any intermediary key-vertices. A key-path exchange
attempts to replace existing key-paths by others that are less costly. Similarly, for key-vertex
elimination in each step a non-terminal key-vertex and all adjoining key-paths (except for the
key-vertices at their respective ends) are extracted and an attempt is made to reconnect the
disconnected subtrees at a lower cost. As in [23], the combination of key-path exchange and
key-vertex elimination is denoted by Q. VQ is called for a newly found solution whenever the
latter is among the five best known solutions.

The prune heuristic comes with a less customary approach obtained by building upon bound-
based reductions introduced in [14] that were afterwards slightly improved in [16]. While for the
original bound-based reductions an upper bound is provided by the weight of a given Steiner
tree, in the prune heuristic the bound is reduced such that in each iteration a certain proportion
of edges and vertices is eliminated. Thereupon, all exact reductions methods are executed on the
reduced graph, motivated by the assumption that the (possibly inexact) eliminations performed
by the bound-based method will allow for further (exact) reductions. To avoid infeasibility, a
Steiner tree is initially computed by using RSPH and afterwards the elimination of any of its
vertices by the bound-based method is being prohibited. Within SCIP-Jack the heuristic is
called whenever a new best solution has been found.

Another powerful heuristic approach is borne by the combination of the prune heuristic and
dual-ascent: the ascend-and-prune [14] method. Ascend-and-prune is motivated by the assump-
tion that certain similarities exist between an optimal Steiner tree and the LP solution that
is identified by the reduced costs provided by dual-ascent. Thereupon, the heuristic attempts
to find an optimal solution on the graph constituted by the undirected edges corresponding to
zero-reduced-cost paths from the root to all additional terminals. On this subgraph a solution
is computed by first employing an (exact) reduction package and then using the prune heuris-
tic. Within SCIP-Jack, ascend-and-prune is performed after each execution of dual-ascent, in
particular prior to the initiation of the branch-and-cut procedure.

Finally, the recombination of given solutions to find improved primal bounds is performed
by the RC heuristic. In the following, RC is described in the context of an STP, but it can be
naturally extended to cover all Steiner tree problem variants discussed in this paper. First, the
set of solutions to be considered for recombination is defined by L; in the case of SCIP-Jack L
comprises the best found solutions and its cardinality is bounded from above by 50.

The heart of RC is the n-merging (n ≥ 2) operation subsequently defined for a given solution
S0 to an STP P = (V,E, T, c): S0 is merged with pseudo-randomly selected n − 1 solutions
S1, ..., Sn out of L \ {S0} to form a new STP P̃ consisting of all edges and vertices that are part
of at least one of the n solutions. By applying the reduction techniques provided by SCIP-Jack
to P̃ , a reduced problem P̃ ′ is obtained. Thereupon, a solution to P̃ ′ is computed in several
steps. First, it is observed that each edge e in P̃ ′ corresponds to a set of ancestor edges Ee ⊆ E.
Denoting the edges of a solution Si by ESi

gives the definition:

α(e) =

∑n
i=0 |Ee ∩ ESi |
|Ee|

.

Next, the cost of each edge e in P̃ ′ is multiplied by a pseudo-randomized number that is anti-
proportional to α(e) (i.e., the number increases as α(e) decreases). This edge cost multiplication
approach is a more general variant of a procedure suggested in [27]. The latter approach recom-
bines two solutions without employing reduction techniques. Using the new edge cost, RSPH is
employed to obtain a solution S̃′ to P̃ ′. For the starting points of RSPH, vertices vi are used such
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that
∑
e∈δP̃ ′ (vi)

α(e) is maximized. Next, after retrieving the original arc costs, VQ is applied on

S̃′. Finally, S̃′ is retransformed to the original solution space.
The RC heuristic is clustered around the n-merging operation: Given a new solution S, in

one run consecutively six 2-, two 3- and one 4–merge operations are performed. When a solution
S′ is generated during an n-merging with a smaller cost than S, the solution S is replaced by S′,
which is attempted to be added to L. Moreover, in this case the n-merging is performed again
in a new run that is started after the conclusion of the current run. The total number of runs
is limited to ten. RC is called whenever r new solutions have been found compared to its last
execution. Initially, r is set to 4 and modified throughout the solution process, setting r := 0 if
a solution has been improved during the execution of RC and r := min{r + 1, 4} otherwise.

By the combination of the previously described heuristics the ability to generate good pri-
mal solutions quickly is considerably improved, as compared to employing SCIP-Jack without
Steiner problem specific heuristics. Furthermore, this combination is able to eventually find
optimal solutions to most problems.

2.1 Computational experiments

Several thousand instances of 15 Steiner tree problem variants were collected as part of the
DIMACS Challenge. To show the performance of the developed general Steiner tree problem
solver, computational experiments on ten variants of the STP will be presented.

All computational experiments described were performed on a cluster of Intel Xeon X5672
CPUs with 3.20 GHz and 48 GB RAM, running Kubuntu 14.04. A development version of SCIP
3.2.1 was used and SoPlex [28] version 2.2.1 was employed as the underlying LP solver. More-
over, the overall run time for each instance was limited by two hours. If an instance was not

solved to optimality within the time limit, the gap is reported, which is defined as |pb−db|
max{|pb|,|db|}

for final primal bound (pb) and dual bound (db). The average gap is obtained as an arithmetic
mean. The averages of the number of nodes and the solving time are computed by taking the
shifted geometric mean [21] with a shift of 10.0 and 1.0, respectively.

Prior to the discussion of the different STP variants solved by SCIP-Jack in the following
section, the solver performance will be demonstrated on pure STP instances. To this end, six
STP test sets have been selected for computational experiments. Five of them, X [7] E [29],
I640 [13], PUC [12], and ALUE [7], are test sets from SteinLib. First, the three X instances
include complete graphs with Euclidean distances corresponding to geographical locations (in
Berlin, Brazil, and worldwide). In contrast, the E and I640 test sets contain randomly gen-
erated instances. The (sparse) E test set has proved to be solvable within short time limits
by state-of-the-art solvers [14]. However, the I640 set—whose instances were selected to defy
preprocessing—contains several problems that have remained unsolved until today. Similarly,
many unsolved instances still remain in the PUC test set, which contains artificially designed
problems such as instances composed of combinations of odd wheels and odd circles. As opposed
to the previous three test sets, the ALUE instances are not artificially designed, but derive from
a VLSI application and contain grid graphs with rectangular holes. The final test set is vienna-i-
simple [2], which contains real-world instances generated from telecommunication networks that
have already been preprocessed by the Degree-Test described in [19].

A summary of the computational performance of SCIP-Jack on the five STP test sets is
presented in Table 1. Each line in the table shows aggregated results for the test set specified
in the first column. The second column, labeled #, lists the number of instances in the test
set, the third column states how many of them were solved to optimality within the time limit.
The average number of branch-and-bound nodes and the average running time in seconds of
these instances are presented in the next two columns, named optimal. The last two columns,
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labeled timeout, show the average number of branch-and-bound nodes and the average gap for the
remaining instances, i.e., all instances that hit the time limit. In the next section, similar tables
will be presented for different STP variants. If all instances of a particular variant are solved
to optimality within the time limit, the timeout columns are omitted. Detailed instance-wise
computational results of all experiments can be found in Appendix C.

The instances from the X test set is solved without any branching and in very short run
times; even the largest instance, consisting of more than 200 000 edges, requires only one second.
Similarly, SCIP-Jack solves the entire, mostly sparse, E test set to optimality within an average
time of 2.8 seconds. The only instance requiring branching is e18, which also exhibits a run time
much longer than any other of that test set, 127.7 seconds. The, similarly sparse, VLSI-derived
ALUE instances are harder to solve for SCIP-Jack: three problems remain unsolved with gaps
of 1.4, 1, 5, and 2.3 percent, while the solved instances require an average run time of 27.6 seconds.
For only three of the instances branching is performed, and none requires more than five nodes.

SCIP-Jack exhibits a distinctively disparate behavior on the I640 test set: While more than
half of the instances are solved within a few seconds, 22 problems remain unsolved after two
hours. As compared with the previous instances the number of branch-and-bound nodes is much
higher—up to 4589.

The PUC test set proves to be much more difficult for SCIP-Jack. This is unsurprising
since more than half of the instances in this set still remain unsolved. SCIP-Jack only solves
eight of 50 instances and none at the root node. More than half of the unsolved instance are still
processing the root node when terminated. Finally, 80 percent of the vienna instances set are
solved by SCIP-Jack within the time limit, with none of the remainder exhibiting an optimality
gap of more than 0.01%. As compared to the PUC test set, the number of branch-and-bound
nodes is much smaller and more than half of the instances can be solved in the root.

The results demonstrate an improvement of SCIP-Jack in two dimensions. First, compared
to Jack-III, SCIP-Jack empirically yields significantly better results, as exemplified by the E
test set. While Jack-III and SCIP-Jack both manage to solve all instances in relatively short
times, there is a large difference in the run times achieved by each. Jack-III needs more than
one second for all but one instance. The hardest instance, e18, requires more than 11 minutes.
In contrast, SCIP-Jack solves all but three instances in less than a second, with a maximum
runtime (for e18 ) of about two minutes. On average, SCIP-Jack is more than two orders of
magnitude faster on the E test set than Jack-III.

The drastically stronger performance of SCIP-Jack in comparison with Jack-III comes
hardly as a surprise. While the main component of Jack-III, the separation algorithm, is
being reused within SCIP-Jack, a variety of powerful new methods, as described heretofore, is
clustered around it. The new reduction techniques alone, for instance, are more than ten times
faster than those implemented in Jack-III and nevertheless notably stronger.

The second dimension is seen when comparing the performance of the current version of
SCIP-Jack with its predecessor participating in the DIMACS Challenge, cf. [30]. In particular,

Table 1: Computational results for STP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

X 3 3 1.0 0.3 – –
E 20 20 1.6 1.1 – –
ALUE 15 12 1.7 12.5 1.0 1.7
I640 100 78 17.7 9.4 84.3 0.8
PUC 50 8 405.8 36.7 121.4 3.5
vienna-i-simple 85 68 2.6 142.7 1.9 0.0
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Table 2: Problem variants solved by SCIP-Jack

Variant Abbreviation Preprocessing Heuristics

Steiner Tree in Graphs STP DT, NV/SL, SD/SDC, NTD3,4,
BND, DA

P, AP, RSPH, VQ, RC

Steiner Arborescence SAP BR, RPT, CT, SDC, PNT, BND, DA AP, RSPH, RC
Rectilinear Steiner Minimum Tree RSMTP DT, NV/SL, SD/SDC, NTD3,4,

BND, DA
P, AP, RSPH, VQ, RC

Node-weighted Steiner Tree NWSTP DA AP, RSPH, RC
Prize-collecting Steiner Tree PCSTP UNT/DT, SD/SDC, NTD3, NV/SL,

BND, DA
P, AP, RSPH, VQ, RC

Rooted Prize-collecting Steiner Tree RPCSTP UNT/DT, SD/SDC, NTD3, NV/SL,
BND, DA

P, AP, RSPH, VQ, RC

Maximum-weight Connected Subgraph MWCSP UNPV/BT, CNS, NNP, NPV2,3,4,5,
DA

AP, RSPH, RC

Degree-constrained Steiner Tree DCSTP None RSPH, RC
Group Steiner Tree GSTP DT, NV/SL, SD/SDC, NTD3,4,

BND, DA
P, AP, RSPH, VQ, RC

Hop-constrained directed Steiner Tree HCDSTP CBND, HBND RSPH, RC

computational experiments demonstrate that the current version is significantly stronger. Taking
the example of the I640 test set, one sees additional 13 instances being solved to optimality within
two hours. Also, the run time for several instances (such as i640-043) is reduced by a factor of
more than a hundred.

The improvement of the current version of SCIP-Jack as compared with the previous ver-
sion that competed in the DIMACS Challenge can be put down to several major algorithmic
improvements. First, the implementation of new or enhanced problem-specific preprocessing
methods, such as the dual-ascent reductions [31]. Second, the implementation of the new heuris-
tics dual-ascent, and, on the primal side, prune, ascend-and-prune, and an improved version of
the recombination heuristic. Third, the implementation of a problem-specific propagator and
branching rule.

However, while the current version of SCIP-Jack proves to be competitive with the best
exact results obtained at the DIMACS Challenge, it falls short of matching the fastest STP
solver described in the literature [14, 31]. Apart from very easy instances, such as in X, and the
hard PUC test set, for which SCIP-Jack yields comparable results, the solver described in [14]
(which uses the commercial CPLEX 12.61) is more than an order of magnitude faster for most
instances [31].

3 From single problem to class solver

SCIP-Jack is developed as a general STP solver—being able to solve many problem variants.
An overview of the problem variants solved by SCIP-Jack is given in Table 2. This table also
presents the heuristics (see Section 2) and presolving techniques (see Table 14) that are applied
to each of the problem variants. Specific transformation approaches have been employed in order
to solve each variant by SCIP-Jack. Each of these transformations will be described in detail.
Throughout this section the weights of an (undirected) edge e and an (directed) arc a are denoted
by ce and ca respectively and the weight of a vertex v by pv.

3.1 The Steiner arborescence problem

As SCIP-Jack transforms each Steiner tree problem to a Steiner arborescence problem (SAP),
the branch-and-cut framework can be used for general SAPs with only minor modifications.

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Slightly modified forms of the RSPH, AP, and RC heuristics can also be used for SAP instances.
However, due to the missing bi-direction with equal cost, the VQ heuristic cannot be applied. As
to presolving techniques, besides DA, specific SAP reduction methods have been implemented—
as described in [16].

Computational results Computational experiments have been performed on two test sets of
Steiner arborescence problems. These instances are derived from a genetic application [32]. The
results are summarized in Table 3. The test sets contain small SAP instance, with the largest
consisting of 602 nodes, 1716 edges and 86 terminals. Because of their size, SCIP-Jack solves
all instances within fractions of a second without requiring any branching. Furthermore, the
reduction techniques eliminate more than 90 percent of the arcs on average.

Table 3: Computational results for SAP instances

test set # solved ∅ nodes ∅ time [s]

gene 10 10 1.0 0.2
gene2002 9 9 1.0 0.1

3.2 The rectilinear Steiner minimum tree problem

The rectilinear Steiner minimum tree problem (RSMTP) can be described as follows: Given
a number of n ∈ N points in the plane, find a shortest tree consisting only of vertical and
horizontal line segments, containing all n points. The RSMTP is NP-hard, as proved in [33],
and has been the subject of various publications, see [34, 35, 36]. In addition to this two-
dimensional variant, a generalization of the problem to the d-dimensional case, with d ≥ 3, will
be considered. The presented computational experiments include instances that derive from a
cancer research application [3] and exhibit up to eight dimensions.

Hanan [37] reduced the RSMTP to the Hanan-grid obtained by constructing vertical and
horizontal lines through each given point of the RSMTP. It is proved in [37] that there is at least
one optimal solution to an RSMTP that is a subgraph of the grid. Hence, the RSMTP can be
reduced to an STP. Subsequently, this construction and its multi-dimensional generalization [38]
is exploited in order to adapt the RSMTP to be solved by SCIP-Jack. Given a d-dimensional,
d ∈ N \ {1}, RSMTP represented by a set of n ∈ N points in Qd, the first step involves building
a d-dimensional Hanan-grid. By using the resulting Hanan-grid an STP P = (V,E, T, c) can be
constructed, which is handled equivalently to a usual STP problem by SCIP-Jack.

It certainly bears mentioning that this simple Hanan-grid based approach is not expected to
be competitive with highly specialized solvers such as GeoSteiner [34] in the case d = 2. However,
a motivation for the implementation in SCIP-Jack is to address the obvious lack of solvers—
specialized or general—that can provide solutions to RSMTP instances in dimensions d ≥ 3.
Still, it is not practical to apply the grid transformation for large instances in high dimension,
as the number of both vertices and edges increases exponentially with the dimension.

A variant of the RSMTP is the obstacle-avoiding rectilinear Steiner minimum tree problem
(OARSMTP). This problem requires that the minimum-length rectilinear tree does not pass
through the interior of any specified axis-aligned rectangles, denoted as obstacles. SCIP-Jack is
easily extended to solve the OARSMTP with a simple modification to the Hanan grid approach
applied to the RSMTP. This modification involves removing all vertices that are located in the
interior of an obstacle together with their incident edges as well as all edges crossing an obstacle.
There was no competition for this variant in the DIMACS Challenge and for the OARSMTP,
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Table 4: Computational results for RSMTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

estein40 15 14 1.0 255.9 144.0 0.2
estein50 15 13 1.4 1868.0 31.8 0.4
estein60 15 6 1.0 5396.6 3.9 0.7
solids 5 4 4.9 0.2 8435.0 0.5
cancer 14 13 1.0 3.0 1.0 100.0

unlike the RSMTP, optimal solutions to all instances submitted to the Challenge have already
been published. While SCIP-Jack is capable of solving all instances submitted to the DIMACS
Challenge, computational experiments for this problem variant have been omitted.

Computational results The experiments on the RSMTP involve solving five of the test sets
submitted to the DIMACS Challenge. These test sets contain instances ranging from less than 10
to 10 000 points and from two to eight dimensions. Specifically, the test sets used in the presented
experiments include the two-dimensional estein instances with up to 60 nodes, the solids test
set with three-dimensional instances whose terminals are the vertices of the five platonic solids,
and the real-world derived cancer instances in up to eight dimensions. Computational results
are summarized in Table 4 with the detailed results listed in the appendix.

The vast majority of the estein40 and estein50 instances can be solved to optimality, 14 and
13 out of 15 respectively. For all but one of these instances, the optimal solution was found at
the root node. Also, none of the unsolved instances exhibits an optimality gap above 0.7 percent
at the time limit. However, as the number of terminals increases, so does the run time and the
number of unsolved instances: Only six of the estein60 instances can be solved within two hours,
requiring more than twice as much time on average than the estein50 problems. The optimality
gap of the unsolved instances ranges from 0.1 to 1.6 percent. Only one of the estein60 instances
requires branching—using 82 branch-and-bound nodes.

The results in Table 4 show the capabilities of SCIP-Jack to solve instances in three di-
mensions. Specifically, all but one of the solids instances are solved to optimality. The unsolved
instance, dodecahedron, is terminated after two hours with an optimality gap of 0.5 percent and
8435 branch-and-bound nodes. All other instances are solved in less than a second.

Finally, the cancer instances demonstrate the ability of SCIP-Jack to handle and solve
RMST problems with up to eight dimensions. SCIP-Jack solves 13 of 14 instances to optimality
at the root node. The remaining instance hits the memory limit after presolving—with SCIP-
Jack computing a primal, but no dual bound. To the best of the authors’ knowledge, SCIP-
Jack is the first solver to solve any of the cancer instances to optimality. Remarkably, more than
half of the instances can be solved during preprocessing, including the cancer13 8D instance with
more than a million arcs (in its transformed shape). Furthermore, only two of the solved instances
require more than four seconds to achieve optimality. As compared to the previous version of
SCIP-Jack competing in the DIMACS Challenge, cf. [30], the run times have considerably
improved, mainly due to the enhanced reduction techniques (most notably DA), but also due to
the new heuristics (most notably ascend-and-prune). For example, the cancer4 6D instance was
not solved within 12 hours with the previous version, while the new version of SCIP-Jack now
proves optimality in less than 15 minutes.
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3.3 The node-weighted Steiner tree problem

The node-weighted Steiner tree problem (NWSTP) is a generalization of the Steiner tree problem
in graphs where the edges and, additionally, the vertices are assigned non-negative weights. The
objective is to connect all terminals while minimizing the weight summed over both vertices and
edges spanned by the corresponding tree.

The NWSTP is formally stated by: Given an undirected graph G = (V,E), node costs
p : V → Q≥0, edge costs c : E → Q≥0 and a set T ⊆ V of terminals, the objective is to find a
tree S = (VS , ES) that spans T while minimizing

C(S) :=
∑
e∈ES

ce +
∑
v∈VS

pv.

The NWSTP can be transformed to an SAP by substituting each edge by two anti-parallel arcs.
Then, observing that in a tree there cannot be more than one arc going into the same vertex,
the weight of each vertex is added to the weight of each of its incoming arcs.

Transformation 1 (NWSTP to SAP).
Given an NWSTP P = (V,E, T, c, p) construct an SAP P ′ = (V ′, A′, T ′, c′, r′) as follows:

1. Set V ′ := V , T ′ := T , A′ := {(v, w) ∈ V ′ × V ′ : {v, w} ∈ E}.

2. Define c′ : A′ → Q≥0 by c′a = c{v,w} + pw, for a = (v, w) ∈ A′.

3. Choose a root r′ ∈ T ′ arbitrarily.

Lemma 1 (NWSTP to SAP). Let P = (V,E, T, c, p) be an NWSTP and P ′ = (V ′, A′, T ′, c′) an
SAP obtained by applying Transformation 1 on P . Denote by S and S ′ the set of solutions to P
and P ′ respectively. Then S ′ can be bijectively mapped onto S by applying

VS := {v ∈ V : v ∈ V ′S′} (9)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (10)

for S′ = (V ′S′ , A
′
S′) ∈ S ′ and it holds:

c′(A′S′) + pr′ = c(ES) + p(VS). (11)

The resulting SAP can be directly solved by SCIP-Jack. However, due to efficiency reasons
only a subset of the heuristics and reduction techniques are employed, see Table 2.

Computational results Two NWSTP instances derived from a computational biology ap-
plication are part of the DIMACS Challenge. The two instances differ drastically in their size.
The first has more than 200 000 nodes—55 000 of them terminals—and almost 2.5 million edges,
while the smaller instance comprises merely 386 nodes, 1477 edges, and 35 terminals.

The size of the first instance proves to be prohibitive for SCIP-Jack. The memory re-
quirements of this instance quickly exceeds the limits of SCIP-Jack when applying the default
settings on a modest machine. To evaluate the ability of SCIP-Jack to solve this particular
instance, a runtime of 72 hours was used on a machine with 386 GB memory. To render the pre-
solving more effective, modified versions of the STP tests NVO, SD and NTD3 were employed
to solve the NWSTP instance (in addition to the default preprocessing). After the application
of the reduction techniques, the resulting graph contains 187 933 nodes and 986 703 edges. This
equates to a 8.6 % and 60.4 % decrease in the number of nodes and edges respectively. SCIP-
Jack fails to solve this instance to optimality, but it does achieve a nearly-optimal primal bound
of 656 970.94 with an optimality gap of 0.0049%. The much smaller second instance is solved by
SCIP-Jack at the root node within 0.1 seconds.
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3.4 The prize-collecting Steiner tree problem

In contrast to the classical Steiner tree problem, the required tree for the prize-collecting Steiner
tree problem (PCSTP) needs only to span a (possibly empty) subset of the terminals. However, a
non-negative penalty is charged for each terminal not contained in the tree. Hence, the objective
is to find a tree of minimum weight, given by both the sum of its edge costs and the penalties of
all terminals not spanned by the tree. A profound discussion on the PCSTP is given in [4] that
details real-world applications and introduces a sophisticated specialized solver.

A formal definition of the problem is stated as: Given an undirected graph G = (V,E),
edge-weights c : E → Q≥0 and node-weights p : V → Q≥0, a tree S = (VS , ES) in G is required
such that

P (S) :=
∑
e∈ES

ce +
∑

v∈V \VS

pv (12)

is minimized.
Prior to the discussion of the prize-collecting Steiner tree problem, a variation is introduced,

the rooted prize-collecting Steiner tree problem (RPCSTP). The RPCSTP incorporates the ad-
ditional condition that one distinguished node r, denoted the root, must be part of every feasible
solution to the problem. It is assumed that pr = 0. The RPCSTP can be transformed into an
SAP as follows:

Transformation 2 (RPCSTP to SAP).
Given an RPCSTP P = (V,E, p, r) construct an SAP P ′ = (V ′, A′, T ′, c′, r′) as follows:

1. Set V ′ := V , A′ := {(v, w) : {v, w} ∈ E}, r′ := r and c′ : A′ → Q≥0 with c′a = c{v,w} for
a = (v, w) ∈ A′.

2. Denote the set of all v ∈ V with pv > 0 by T = {t1, ..., ts}. For each node ti ∈ T , a new
node t′i and an arc a = (ti, t

′
i) with c′a = 0 is added to V ′ and E′ respectively.

3. Add arcs (r′, t′i) for each i ∈ {1, ..., s}, setting their respective weight to pti .

4. Define the set of terminals T ′ := {t′1, ..., t′s}.

After Transformation 2, for each terminal t′i of the SAP P ′ there are exactly two incoming
arcs (ti, ti

′) and (r′, t′). Thereupon, each solution S′ = (V ′S′ , A
′
S′) ∈ P ′ that contains ti must

also contain (ti, ti
′), more succinctly:

∀i ∈ {1, ..., s} : ti ∈ V ′S′ =⇒ (ti, ti
′) ∈ A′S′ (13)

Condition (13) is satisfied by all optimal solutions to P ′ and each feasible solution can be eas-
ily modified to accomplish this, concomitantly improving its solution value. Transformation 2
is presented in [39], but without using condition (13). The latter gives rise to a one-to-one
correspondence of the solution sets, stated in the following lemma.

Lemma 2 (RPCSTP to SAP). Let P ′ = (V ′, A′, T ′, c′) be an SAP obtained from an RPCSTP
P = (V,E, c, p) by applying Transformation 2. Denote by S and S ′ the set of solutions to P and
P ′, satisfying condition (13), respectively. P ′ can be mapped bijectively onto P by

VS := {v ∈ V : v ∈ V ′S′} (14)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (15)

for S′ = (V ′S′ , A
′
S′) ∈ S ′. The solution value is preserved.
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Figure 1: Illustration of a rooted prize-collecting Steiner tree instance with root r (left), the
equivalent SAP problem obtained by Transformation 2 (middle), and a solution to the SAP
instance with value 8.6 (right).

Transformation 2 can be extended to cover the PCSTP by the inclusion of an artificial root
node r′ and arcs (r′, ti) of cost 0. However, only one of these arcs can be part of a feasible
solution. This requirement is enforced by the following constraint:∑

a∈δ+(r′),c′a=0

ya = 1. (16)

Furthermore, to allow a bijection between the original and the transformed problem, for all ti
included in a solution the arc (r′, ti) with the smallest index i is required to be part of the
solution. This condition can be expressed by using the following set of constraints:∑

a∈δ−(tj)

ya + y(r′,ti) ≤ 1 i = 1, ..., s; j = 1, ..., i− 1. (17)

An SAP that requires the conditions (13), (16) and (17) is referred to as root constrained
Steiner arborescence problem (rcSAP). The constraints (16) and (17) can be incorporated into
the cut-formulation (Formulation 1) without further alterations and each solution can be modified

in order to meet condition (13). Although additional s(s−1)
2 constraints are introduced to fulfill

(17), the solving time is considerably reduced by adding the constraints, as they exclude a
plethora of symmetric solutions.

Transformation 3 (PCSTP to rcSAP).
Given an PCSTP P = (V,E, c, p) construct an rcSAP P ′ = (V ′, A′, T ′, c′, r′) as follows:

1. Add a vertex v0 to V and set r := v0.

2. Apply Transformation 2 to obtain P ′ = (V ′, A′, T ′, c′, r′).

3. Add arcs a = (r′, ti) with c′a := 0 for each ti ∈ T .

4. Add constraints (16) and (17).

Lemma 3 (PCSTP to rcSAP). Let P = (V,E, c, p) be an PCSTP and P ′ = (V ′, A′, T ′, c′, r′)
the corresponding rcSAP obtained by applying Transformation 3. Denote by S and S ′ the sets of
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Table 5: Computational results for PCSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

JMP 34 34 1.0 0.0 – –
CRR 80 80 1.0 0.4 – –
PUCNU 18 10 11.4 53.8 50.4 1.9

solutions to P and P ′ respectively. Each solution S′ ∈ S ′ can be bijectively mapped to a solution
S ∈ S defined by:

VS := {v ∈ V : v ∈ V ′S′} (18)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′}. (19)

The solution value is preserved.

For the PCSTP and RPCSTP a vast number of reduction techniques—described in [16]—
are employed by SCIP-Jack, see Table 2. Furthermore, all heuristic used for the STP can be
deployed, albeit with some alterations. For the RSPH in the case of a transformed PCSTP,
i.e. an rcSAP, instead of commencing from different vertices, the starting point is always the
(artificial) root. In each run all arcs between the root and non-terminals (denoted by (r′, t) in
Transformation 3) are temporarily removed, except for one. A tree is then computed on this
new graph, by using the same process as the original constructive heuristic. Instead of starting
from a new terminal as done by customary RSPH, a different arc (r′, t) is chosen to remain in
the graph.

Finally, the VQ heuristic requires an adaption for both the RPCSTP and the PCSTP: All
terminals are temporarily removed from the (transformed) graph and VQ is executed with all ti,
as defined in Transformation 2 and Transformation 3, marked as key vertices.

Computational results Table 5 shows aggregated results for three of the PCSTP test sets
provided for the DIMACS Challenge. All but two JMP instances are solved during preprocessing
in at most 0.1 seconds. The remaining problems require no more than 0.2 seconds. Similarly,
reduction techniques alone can solve 72 of the 80 CRR instances. However, the hardest (and
considerably larger) instances take comparably longer—up to 3.7 seconds—to be solved to opti-
mality. The third test set, PUCNU, is derived from the PUC test set for the STP. SCIP-Jack is
already unable to solve many of the original instances and the PCSTP versions also prove to be
hard. However, ten of the instances are solved to optimality, with only four instances requiring
branching. The remaining eight instances terminate with optimality gaps in the range 1.0 % to
2.8 %.

Comparing the above results with those obtained by the previous version of SCIP-Jack,
a significant improvement is observed. Specifically, the JMP and CRR instances can be solved
more than 10 times faster on average, with the longest single run time of the previous version
being almost 1000 seconds. This is compared to 3.7 seconds for the current version of SCIP-
Jack. Moreover, three additional PUCNU instances can be solved within the time limit. A
notable result is that SCIP-Jack now exhibits a better performance for 10 of the 12 JMP,
CRR and PUCNU instances that were part of the exact DIMACS competition than any other
participating solver at the time of the competition.

The improved performance of SCIP-Jack can be traced to the vastly stronger new reduction
techniques. However, it is also due to the new heuristics P and AP, and the general improvements
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of SCIP-Jack, such as the new propagator and the dual-ascent algorithm, which allows the start
the branch-and-cut with a strong lower bound.

Table 6: Computational results for RPCSTP instances

optimal
test set # solved ∅ nodes ∅ time [s]

cologne1 14 14 1.0 0.2
cologne2 15 15 1.0 0.6

The average results for the RPCSTP instances are displayed in Table 6. Remarkably, the
maximum run time observed is 0.7 seconds. While in the DIMACS Challenge SCIP-Jack
already took first place in the exact solving category of the RPCTSP, the current version requires
significantly less time to solve the Challenge instances—being on average more than a factor of
25 faster for the cologne1 test set and more than a factor of 75 for the cologne2 set. This
improvement is the result of the vastly improved preprocessing techniques, which alone manage
to solve all cologne1 and cologne2 instances to optimality.

3.5 The maximum-weight connected subgraph problem

At first glance, the maximum-weight connected subgraph problem (MWCSP) bears little resem-
blance to the Steiner problems introduced so far: Given an undirected graph (V,E) with (pos-
sibly negative) node weights p, the objective is to find a tree that maximizes the sum of its
node weights. However, it is possible to transform this problem into a prize-collecting Steiner
tree problem. One transformation is given in [5]. In this paper, an alternative transformation
is presented that leads to a significant reduction in the number of terminals for the resulting
PCSTP.

In the following it is assumed that at least one vertex is assigned a negative cost and at least
one vertex is assigned a positive cost. Without this assumption the problem becomes trivial to
solve.

Transformation 4 (MWCSP to rcSAP).
Let P = (V,E, p) be an MWCSP, construct an rcSAP P ′′ = (V ′′, A′′, T ′′, c′′, r′′):

1. Set V ′ := V , A′ := {(v, w) : {v, w} ∈ E}.

2. c′ : A′ → Q≥0 such that for a = (v, w) ∈ A′:

c′a =

{
−pw, if pw < 0

0, otherwise

3. p′ : V ′ → Q≥0 such that for v ∈ V ′:

p′(v) =

{
pv, if pv > 0
0, otherwise

4. Perform Transformation 3 to (V ′, A′, c′, p′), but in step 2 instead of constructing a new arc
set, A′ is being used. The resulting rcSAP gives us P ′′ = (V ′′, A′′, T ′′, c′′, r′′).

Lemma 4 (MWCSP to rcSAP). Let P = (V,E, p) be an MWCSP and P ′′ = (V ′′, A′′, T ′′, c′′, r′′)
an rcSAP obtained from P by Transformation 4. Then each solution S′′ to P ′′ can be bijectively
mapped to a solution S to P . The latter is obtained by:

VS := {v ∈ V : v ∈ V ′′S′′} (20)

ES := {{v, w} ∈ E : (v, w) ∈ A′′S′′ or (w, v) ∈ A′′S′′} (21)
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Furthermore, for the objective value C(S) of S and the objective value C ′′(S′′) of S′′ the
following equality holds:

C(S) =
∑

v∈V :pv>0

pv − C ′′(S′′). (22)

Table 7: Number of terminals after transformation for test set ACTMOD

instance Transformation 4 transformation from [5]

drosophila001 71 5226
drosophila005 194 5226
drosophila0075 250 5226
HCMV 55 3863
lymphoma 67 2034
metabol expr mice 1 150 3523
metabol expr mice 2 85 3514
metabol expr mice 3 114 2853

Since most of the vertex weights are non-positive for all real-world DIMACS instances, Trans-
formation 4 results in problems with significantly less terminals compared to the transformation
described in [5]. The differences in the number of terminals resulting from the two transfor-
mations are presented in Table 7. Even if the number of positive weight vertices is high in
the original problem, after presolving it is typically much smaller, since adjacent non-negative
vertices can be contracted [16].

For the MWCSP the computational settings of SCIP-Jack are similar to those of the
(R)PCSTP. However, the VQ heuristic is not enabled since it cannot easily be adapted to handle
anti-parallel arcs of different weight.

Computational results Computational experiments have been performed on the two MWCSP
test sets that were part of the DIMACS Challenge. The first is the real-world derived ACTMOD
test set (which contains eight instances), and second is the artificially created JMPALMK set
(which contains 72 instances). The results, illustrated in Table 8, demonstrate the ability of
SCIP-Jack to effectively handle real-world MWCSP instances of up to 93 000 edges in very
short time: All eight instances can be solved within 1.4 seconds, in an average of less than half
a second. The speedup of SCIP-Jack as compared to its DIMACS Challenge predecessor is
impressive, ranging from a factor of ten to more than 4000. Furthermore, each instance is solved
at least four times faster than by any solver during the DIMACS competition. A salient example
is the drosophila001 instance which requires only 0.8 seconds with SCIP-Jack, but at least
21.6 seconds with any of the participating solvers at the time of the DIMACS competition. The
drastically reduced run time of SCIP-Jack is mainly due to new reduction techniques, but also
the dual-ascent algorithm is a notable factor.

The effectiveness of Transformation 4 is demonstrated by the performance of SCIP-Jack on
the ACTMODPC test set, which consists of the ACTMOD problems transformed to PCSTP by
the transformation described in [5]. Compared to the original ACTMOD test set the run time of
SCIP-Jack increases for each instance of the ACTMODPC set; one cause of this increase is the
DA method becoming less efficient due to a far higher amount of terminals in the transformed
SAP. As such, Transformation 4 is a valuable addition to SCIP-Jack.

The results on the JMPALMK test set once again bespeak the strength of reduction techniques
implemented in SCIP-Jack. All instances are solved during presolving, in an average of less
than 0.1 seconds.
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Table 8: Computational results for MWCSP instances

test set # solved ∅ nodes ∅ time [s]

ACTMOD 8 8 1.0 0.4
JMPALMK 72 72 1.0 0.0

3.6 The degree-constrained Steiner tree problem

The degree-constrained Steiner tree problem (DCSTP) is an STP with additional degree con-
straints on the vertices, described by a function b : V → N. The objective is to find a minimum
cost Steiner tree S = (VS , ES) such that δS(v) ≤ b(v) is satisfied for all v ∈ VS . A comprehensive
discussion of the DCSTP, including its applications in biology, can be found in [6].

The implementation in SCIP-Jack to solve the DCSTP involves the extension of Formula-
tion 1 by an additional (linear) degree constraint for each vertex. Since the degree restriction
does not comply with any reduction techniques of SCIP-Jack, problem-specific preprocessing
has not been performed on these instances. Only the constructive heuristic is used, albeit in a
modified form. The implemented constructive heuristic performs the following two checks while
choosing a new (shortest) path to be added to the current tree. First, whether attaching this
path would violate any degree constraints. Second, whether after having added this path at least
one additional edge could be added (or all terminals are spanned). If no such path can be found,
a vertex of the tree is pseudo randomly chosen that allows to add at least one adjacent edge.
Next, such an edge leading to a vertex of high degree and being of small cost is chosen.

Computational results Computational experiments are performed on the 20 instances in the
TreeFam test set of the DIMACS Challenge with a time limit of two hours. All instances come
with degree bounds of at most 3 and their underlying graphs are complete.

The results from computational experiments on these instances are illustrated in Table 9.
SCIP-Jack finds the optimal solution to five instances and proves the infeasibility of another
two. The remaining 13 instances cannot be solved by SCIP-Jack within the time limit. The
gap is reduced to less than or equal to one percent for seven of these instances. However, the
gaps of the remaining six instances range from 4.5 to as much as 55.0 percent.

As compared to what can be observed for other Steiner problem variants in this paper, the
average number of branch-and-bound nodes is high, with 90.6 nodes for the solved and 758.6 for
the unsolved instances.

Similar to the preceding variants, the current version of SCIP-Jack demonstrates improved
performance over the previous version at the DIMACS competition. In particular, the insatisfia-
bility of two instances can now be proven and both the run time for the solved instances and the
gap for the remainder are significantly reduced: by a factor of more than 10 and by a factor of
up to 100, respectively. This results in a reduction of the average gap (one of the criteria in the
DIMACS Challenge) from 37.4 at the time of the competition to 9.3 with the latest SCIP-Jack
version. Note that the winner of this category reached an average gap of 19.1 in the competi-
tion. The improved solving behavior of SCIP-Jack on the DCSTP can be attributed to general
enhancements such as the new propagator, see Section 2.

Table 9: Computational results for DCSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

TreeFam 20 7 90.6 10.5 758.6 14.3
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3.7 The group Steiner tree problem

The group Steiner tree problem (GSTP) is another generalization of the Steiner tree problem that
originates from VLSI design [20]. For the GSTP the concept of terminals as a set of vertices to
be interconnected is extended to a set of vertex groups: Given an undirected graph G = (V,E),
edge costs c : E → Q≥0 and a series of vertex subsets T1, ..., Ts ⊆ V , s ∈ N, a minimum cost
tree spanning at least one vertex of each subset is required. By interpreting each terminal t as
a subset {t}, every STP can be considered as a GSTP, the latter likewise being NP-hard. On
the other hand, it is possible to transform each GSTP instance (V,E, T1, .., Ts, c) to an STP by
using the following scheme:

Transformation 5 (GSTP to STP).
Given an GSTP P = (V,E, T1, ...Ts, c) construct an STP P ′ = (V ′, E′, T ′, c′) as follows:

1. Set V ′ := V , E′ := E, T ′ = ∅, c′ := c, K :=
∑
e∈E ce + 1.

2. For i = 1, ..., s add a new node t′i to V ′ and T ′ and for all vj ∈ Ti add an edge e = {t′i, vj},
with c′e := K.

Let (V,E, T1, ...Ts, c) be a GSTP and P ′ = (V ′, A′, T ′, c′) an STP obtained by applying
Transformation 5 on P . A solution S′ to P ′ can then be reduced to a solution S to P by deleting
all vertices and edges of S not in (V,E). The GSTP P can in this way be solved on the STP P ′

as shown in [20] and [40].
This approach has already been deployed by [41] to solve group Steiner tree problems and

demonstrated to be competitive with specialized solvers at the time of publishing. In the case of
SCIP-Jack, to solve a GSTP, Transformation 5 is applied and the resulting problem is treated
as a customary STP that is solved without any alteration. An alternative approach would be to
employ GSTP-specific heuristics or reduction techniques [42].

Table 10: Computational results for GSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

GSTP1 8 6 14.9 25.0 355.9 3.9
GSTP2 10 0 – – 48.6 3.2

Computational results Computational experiments were performed on two test sets of un-
published group Steiner tree instances derived from a real-world wire routing problem. The
results from these experiments are presented in Table 10. SCIP-Jack solves all but two of the
first test set, with run times ranging from 3.3 to 563 seconds. Four of the instances solved to
optimality only require a single node, with the remaining instances solved in 219 and 61 nodes,
respectively. The two unsolved instances gstp34f2 and gstp39f2 exhibit optimality gaps of 2.7 %
and 5.1 % respectively. The same performance is not observed for the second test set. None of
the instances, are solved within the time limit and the optimality gaps range from 0.9 % to 7.8 %.

3.8 The hop-constrained directed Steiner tree problem

The hop-constrained directed Steiner tree problem (HCDSTP) searches for an SAP with the
additional constraint that the number of selected arcs must not exceed a predetermined bound,
called hop limit. The cut formulation (Formulation 1) used by SCIP-Jack is simply extended

18



to cover this variation by adding one extra linear inequality bounding the sum of all binary arc
variables. It should be noted that in the literature the term ”hop-constrained Steiner tree” often
refers to a problem for which the number of arcs in the path from the root to any terminal within
a feasible solution is limited by a predefined bound [43], which differs from the definition used
in this paper.

The hop limit brings significant ramifications for the preprocessing and heuristics approaches
in its wake. Customarily, many presolving techniques for Steiner tree problems remove or include
edges from the graph if a less costly path can be found, regardless whether this procedure leads to
a solution with more edges. For the HCDSTP such techniques can therefore produce infeasibility.
However, a number of HCDSTP-specific bound-based reduction techniques can be applied, as
described in [16].

Similar to the presolving techniques, the heuristics implemented in SCIP-Jack for the other
variants do not take into account the hop limit. As such, any identified solution may not be
feasible. Therefore, a simple variation of the constructive heuristic is used for the HCDSTP:
Each arc a, having original costs ca, is assigned the new cost c′a := 1 + λ ca

cmax
, with λ ∈ Q+

and cmax := maxa∈A ca. Initially λ is set to 3 but its value is decreased or increased after
each iteration of the constructive heuristic, depending on whether the last computed solution
exceeds or is below the hop limit, respectively. This modification to λ is performed relative to
the deviation of the number of edges from the hop limit.

Computational results Three different test sets, consisting of the gr12, gr14 and gr16 in-
stances, are used for the computational experiments. All three test sets were used in the evalua-
tion of the DIMACS Challenge. SCIP-Jack is able to solve all gr12 instances at the root node
in less than 100 seconds. The performance worsens for the gr14 test set, with 12 of 21 instances
being solved to optimality within the time limit. The unsolved instances terminate with opti-
mality gaps ranging from 2.4 % to 17.9 %, after 8.8 nodes on average. Similarly, the optimally
solved instances require—with 433.9 seconds—much more time than the previous problems (in
gr12).

Table 11: Computational results for HCDSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

gr12 19 19 1.0 4.0 – –
gr14 21 12 6.2 396.6 8.8 10.2
gr16 20 0 – – 1.1 81.3

Finally, more than half of the gr16 instances were terminated due to insufficient memory.
Therefore, to solve these instances a different machine was used, consisting of Intel Xeon E5-
2697 CPUs with 2.70 GHz and 128 GB RAM. Although this machine can boast more RAM than
the machines of the cluster used for the other computational experiments reported in this paper
(see Section 2.1), it is notably slower.

The results for the gr16 test set are significantly worse than for the other two sets. Specifically,
all instances terminate within the time limit with an optimality gap of at least 27.4 %. For these
larger instances, SCIP-Jack terminates within the cut loop at the root LP for all but one
instance. Besides the size of the problems, a possible cause of this performance is the lack of
stronger HCDSTP-specific reduction techniques and heuristics in SCIP-Jack.
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3.9 Using CPLEX as underlying LP solver

As an extension of SCIP, SCIP-Jack provides a branch-and-cut search, but requires an external
LP solver for solving the linear programming relaxations. For all results previously presented the
LP solver SoPlex—the default LP solver employed by SCIP—has been used for this purpose.
However, SCIP provides interfaces to many different commercial and academic LP solvers. This
section discusses the impact of exchanging the academic LP solver SoPlex for the commercial
solver CPLEX 12.6.

Table 12: Results of using CPLEX as LP solver for SCIP-Jack.

SCIP-Jack SCIP-Jack/CPLEX relative change [%]

test set type solved ∅ time [s] solved ∅ time [s] solved ∅ time

vienna-i-simple STP 68 298.6 75 218.9 +10.3 -26.7
estein60 RSMTP 6 6307.2 12 2672.5 +100 -57.6
PUCNU PCSTP 10 127.0 10 56.3 – -55.7
TreeFam DCSTP 7 730.1 7 773.0 – +5.9
GSTP2 GSTP 0 7200.1 6 2394.4 – -66.7
gr14 HCDSTP 12 1134.9 14 523.7 +16.7 -53.9

all 103 866.5 124 501.0 +20.4 -42.2

The comparison between using the LP solvers of CPLEX and SoPlex in SCIP-Jack is
performed by selecting one test set for each previously discussed Steiner tree problem variant.
An exception is made for those problem variants that can be trivially solved after presolving—
such as the SAP and MWCSP. This test set selection is made to provide instances for which the
reduction techniques still leave large problems, to highlight the impact of the LP solver in the
branch-and-cut algorithm.

Table 12 illustrates the comparative performance of SCIP-Jack/CPLEX. The test set and
the problem variant are listed in columns one and two. Columns three and four show the number
of solved instances and the shifted geometric mean of the running time on the test set for SCIP-
Jack using SoPlex as LP solver. The next two columns show the corresponding information for
SCIP-Jack/CPLEX. Finally, the last two columns provide the relative change in the number
of solved instances and the average time. The last row of the table considers all instances of the
six test sets jointly.

Table 12 reveals that the number of solved instance is significantly increased when CPLEX is
used. This phenomenon becomes notably pronounced for the estein60 instances, for which more
than 90 percent of time is spent in the LP solver. Specifically, the number of solved instances
doubles. Even more salient is the behavior on the GSTP2 test set, with six instances solved to
optimality by SCIP-Jack/CPLEX, but not a single one by SCIP-Jack/SoPlex.

The comparison between CPLEX and SoPlex shows that the solving time for most of the
instances is significantly smaller when the former is used as LP solver of SCIP-Jack. The
only exception to this pattern is the TreeFam class on which SCIP-Jack/SoPlex is around six
percent faster than SCIP-Jack/CPLEX.

In summary, the results show a considerable potential to speed up SCIP-Jack by using a
faster LP solver.

4 From single core to distributed parallel

SCIP has two parallel extensions, ParaSCIP [44] and FiberSCIP [45], which are built by using
the Ubiquity Generator Framework (UG) [45]. In order to parallelize a problem-specific solver
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(such as SCIP-Jack), users of SCIP can simply modify their developed plugins by adding a
small glue code and linking to one of the UG libraries for SCIP (UG can be used with different
state-of-the-art MIP solvers). This glue code consists of an additional class with a function
that issues calls to include all SCIP plugins required for the sequential version of the code.
Importantly, no modification to the sequential version of the problem-specific solver is required.

In this way, users obtain their own problem-specific parallel optimization solver that can
perform a parallel tree search on a distributed memory computing environment. The main
features of UG are: several ramp-up mechanisms (the ramp-up is the process from the beginning
of the computation until all available solvers become busy), a dynamic load balancing mechanism
for parallel tree search and a check-pointing and restarting mechanism. More details about the
parallelization provided by UG can be found in [44, 45].

This section presents computational results for the PUC test set from SteinLib. However, it
must be noted that the parallel version of SCIP-Jack can handle all of the variants presented
throughout this paper. The main purpose of the parallel runs is to provide optimal solutions
to as many instances as possible. As mentioned above, the parallelization of a problem-specific
solver only requires a small glue code. As such, the parallel version of SCIP-Jack is identical
to the sequential version. By pursuing this simple approach, large supercomputing resources can
be employed to apply SCIP-Jack to solve computationally difficult Steiner tree problems. For
the computations, various clusters and supercomputers were used as they were available. The
largest computation performed for these experiments involved up to 864 cores, which was only re-
quired for eight instances (bip52p, bip62u, bipa2p, bipa2u, cc11-2p, cc12-2p, cc3-12p,

hc9p). However, all other computations were conducted with 192 or less solvers. Since these
experiments were performed with the goal to solve previously unsolved instances and cluster and
supercomputer time was limited, CPLEX 12.6 was used as the underlying LP solver to reduce
the expected run times, see Section 3.9. As a reference to the scalability of ParaSCIP, the
largest computation previously performed was an 80 000 cores run on Titan at ORNL [46]. It is
expected that SCIP-Jack can also run on such a large scale computing environment, although
at this stage only relatively small scale computational experiments have been conducted.

Table 13 shows the results on the instances of the PUC test set as of 17th April 2015. This
table lists the number of nodes, edges, and terminals, as well as the best primal bound known at
the beginning of the DIMACS Challenge (August 2014), and the primal solution value obtained
in experiments with the parallel version of SCIP-Jack. Prior to the experiments performed
using SCIP-Jack, 32 instances of the PUC test set remained unsolved. Three of these instances
have been solved by SCIP-Jack to proven optimality, which have been underlined and marked
with an asterisk in Table 13. For a further 16 instances, SCIP-Jack improved the best known
solution. All instances for which the best known primal bound has been improved are marked
in bold. Finally, all previously solved instances of the PUC test set have also been solved by
SCIP-Jack to proven optimality, which have been marked by an asterisk (without underline).

The instances presented in Table 13 differ widely in their solving behavior. Using the cc6-
3u instance as an example, one obtains greater insight into the typical solving procedure when
applying ParaSCIP. The cc6-3u instance was solved to optimality for the first time by SCIP-
Jack and ParaSCIP. In order to solve this instance again in a single run without restarting,
SCIP-Jack was run on the HLRN-III supercomputer consisting of a Cray XC30. This experi-
ment was performed by using nodes equipped with two 12-core Intel Xeon Haswell CPUs sharing
64 GB of RAM and with a CPU clock of 2.5 GHz. By deploying 3072 MPI processes, the optimal
solution with an objective value of 197 was proven in 961 seconds after having processed 123 210
branch-and-bound nodes. While the lower bound was already within a distance of one to the
optimal objective value after 20 seconds, the primal bound dropped to 198 only after 100 seconds.

The above results demonstrate an overall strong performance of the parallel version of SCIP-
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Table 13: Primal bound improvements on the PUC instances

instance |V | |E| |T | best SCIP-Jack instance |V | |E| |T | best SCIP-Jack

bip42p 1200 3982 200 24657 24657* cc3-5u 125 750 13 36 36*
bip42u 1200 3982 200 236 236* cc5-3p 243 1215 27 7299 7299*
bip52p 2200 7997 200 24535 24526 cc5-3u 243 1215 27 71 71*
bip52u 2200 7997 200 234 234 cc6-2p 64 192 12 3271 3271*
bip62p 1200 10002 200 22870 22843 cc6-2u 64 192 12 32 32*
bip62u 1200 10002 200 220 219 cc6-3p 729 4368 76 20456 20270*
bipa2p 3300 18073 300 35379 35326 cc6-3u 729 4368 76 197 197*
bipa2u 3300 18073 300 341 338 cc7-3p 2187 15308 222 57088 57117
bipe2p 550 5013 50 5616 5616* cc7-3u 2187 15308 222 552 552
bipe2u 550 5013 50 54 54* cc9-2p 512 2304 64 17296 17199
cc10-2p 1024 5120 135 35379 35227 cc9-2u 512 2304 64 167 167*
cc10-2u 1024 5120 135 342 343 hc10p 1024 5120 512 60494 59797
cc11-2p 2048 11263 244 63826 63636 hc10u 1024 5120 512 581 575
cc11-2u 2048 11263 244 614 618 hc11p 2048 11264 1024 119779 119689
cc12-2p 4096 24574 473 121106 122099 hc11u 2048 11264 1024 1154 1151
cc12-2u 4096 24574 473 1179 1184 hc12p 4096 24576 2048 236949 236080
cc3-10p 1000 13500 50 12860 12837 hc12u 4096 24576 2048 2275 2262
cc3-10u 1000 13500 50 125 126 hc6p 64 192 32 4003 4003*
cc3-11p 1331 19965 61 15609 15648 hc6u 64 192 32 39 39*
cc3-11u 1331 19965 61 153 153 hc7p 128 448 64 7905 7905*
cc3-12p 1728 28512 74 18838 18997 hc7u 128 448 64 77 77*
cc3-12u 1728 28512 74 186 187 hc8p 256 1024 128 15322 15322*
cc3-4p 64 288 8 2338 2338* hc8u 256 1024 128 148 148*
cc3-4u 64 288 8 23 23* hc9p 512 2304 256 30258 30242
cc3-5p 125 750 13 3661 3661* hc9u 512 2304 256 292 292

Jack in solving computationally difficult STP instances.

5 Conclusions

This paper shows the multilayered impact of embedding a 15-year old Steiner tree branch-and-cut
procedure into a state-of-the-art MIP framework and clustering new solving methods around it.
First, the amount of problem-specific code is drastically reduced. At the same time the number
of general solution methods available, e.g., cutting planes, has increased and will be kept up-
to-date just by the continuous improvements in the framework. Furthermore, the opportunity
to solve instances in a massively parallel distributed memory environment has been added at
minimal cost. Attempts were made to solve open instances from the difficult PUC test set by
using these massively parallel extensions. As a result, SCIP-Jack was not only able to solve
three previously unsolved instances, but improve the best known solution for another 16.

The use of a general MIP solver allows a significant amount of flexibility in the model to
be solved. SCIP-Jack is able to support solving ten variants of the Steiner tree problem with
nearly the same code, and the support of further restrictions in the model is straightforward.
On top of this versatility, the powerful solving framework for the underlying IP formulation
combined with problem-specific methods such as reduction techniques allows SCIP-Jack to be
highly competitive with problem-specific state-of-the-art solvers.

Yet, there certainly is potential for future work to improve the performance and scope of
the solver. First, already implemented routines such as the branching rule could be improved.
Second, additional reduction techniques and heuristics for specific Steiner tree problem variants
could be implemented. Finally, SCIP-Jack could be extended to cover further Steiner problem
variants described in the literature. By using the plugin structure of SCIP, the inclusion of some
of these enhancements is expected in the future.

Ultimately, this paper has described the creation of a highly competitive exact solving frame-
work of outstanding versatility that can veritably be designated as a Steiner class solver. Fur-
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thermore, to the best of our knowledge this is the first time that a powerful exact Steiner tree
solver has been made available in source code to the scientific community. The SCIP Opti-
mization Suite [9] already contains a previous version of our solver and the current version of
SCIP-Jack is planned to be part of the next release of SCIP. We hope that the availability of
such a device will foster the use of Steiner trees in modeling real-world phenomena.
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A Proofs

This section provides proofs to the lemmata stated in the course of this paper. For the respective
transformation corresponding to each of these lemmata a one-to-one correspondence between the
solution sets of the original and the transformed problem is proven as well as the linear relation
between the respective solutions values. This implies that all these problems can be solved on
their transformed solution spaces.

A.1 Proof of Lemma 1 (NWSTP to SAP)

Proof. To see the one-to-one correspondence let S = (VS , ES) ∈ S and proceed as follows:
Surjective. Initially set V ′S′ := VS and A′S′ := ∅. Traverse (VS , ES), e.g. using breadth-first
search, starting from r′ and add for each w ∈ VS visited from v ∈ VS the arc (v, w) to A′S′ .
S′ := (V ′S′ , A

′
S′) is a solution to P ′ and by applying (9) and (10), S is obtained.

Injective. S′ is the only solution to P ′ that is mapped by (9) and (10) to S: Each S̃′ ∈ S ′,
S̃′ 6= S′ contains at least one arc (v, w) such that (v, w) /∈ A′S′ and (w, v) /∈ A′S′ , since only
substituting arcs in A′S′ by there anti-parallel counterparts would not allow directed paths from
the root to all vertices. Therefore, S̃′ is not mapped onto S.

To acknowledge (11) one readily observes that for each node of S′ except for the root there
is exactly one incoming arc, so:∑

(v,w)∈A′
S′

c′(v,w) =
∑

(v,w)∈A′
S′

(
c{v,w} + pw

)
=

∑
{v,w}∈ES

c{v,w} +
∑
w∈VS

pw − pr′ ,

which implies (11).

A.2 Proof of Lemma 2 (RPCSTP to SAP)

Proof. To acknowledge that (14) and (15) constitute a mapping S ′ → S it can be observed that
first the root node is conserved and second the set of all arcs corresponding to edges in the
original graph (V,E) forms a tree. To prove that a bijection is given, let S = (VS , ES) ∈ S and
T = {t1, ..., ts} as defined in Transformation 2.
Surjective. Initially, set V ′S′ := VS and A′S′ := ∅. Analogously to the proof of Lemma 1, add for
each edge in ES an arc to A′S′ in such a way that finally there is for each v′ ∈ V ′S′ a directed
path from r′ to v′. Next, for each i ∈ {1, ...s} set ai := (ti, t

′
i) if ti ∈ VS , otherwise ai := (r′, t′i)

and add ai to A′S′ . Thereupon, S′ := (V ′S′ , A
′
S′) is a solution to P ′ and by applying (14) and

(15), we obtain S.
Injective. Define the set of all arcs of P ′ corresponding to the edges of P as A := {(v, w) ∈
A′ : {v, w} ∈ E} and accordingly AS′ := A′S′ ∩ A. Since (13) has been assumed, it holds that:
(ti, t

′
i) ∈ A′S′ ⇔ ti ∈ V ′S and (r′, t′i) ∈ A′S′ ⇔ ti /∈ V ′S . This implies that A′S′ is already determined

by AS′ . Now let S̃′ = (Ṽ ′S , Ã
′
S) ∈ S ′, S̃′ 6= S′. Consequently, there is at least one arc (v, w) ∈ Ã′S
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such that (w, v) /∈ AS′ and (w, v) /∈ AS′ and therefore is S̃′ not mapped to S.
Finally, using the above notation one observes that:∑

a∈A′
S′

c′a =
∑
a∈AS′

c′a +
∑

a∈A′
S′\AS′

c′a =
∑
e∈ES

ce +
∑

v∈V \VS

pv,

so the costs of S′ and S are equal.

A.3 Proof of Lemma 3 (PCSTP to rcSAP)

Proof. Likewise to the proof of Lemma 2 one observes that (18) and (19) constitute a mapping
S ′ → S. Let S = (VS , ES) ∈ S and T = {t1, ..., ts} defined as in Transformation 3.
Surjective. Initially, define V ′S′ := VS , A′S′ := {(r, ti0)}, with i0 := min {i | ti ∈ V ′S′}. Then
extend A′S′ analogously to the proof of Lemma 2. The so constructed S′ := (V ′S′ , A

′
S′) is a

solution to P ′ and applying (18) and (19) S is obtained.
Injective. Parallelly to the proof of Lemma 2 it can be shown that for a solution S̃′ 6= S′ to
P ′ there must be at least one arc (v, w) ∈ AS̃′ such that (v, w) /∈ AS′ and (w, v) /∈ AS′ with A

defined as in the proof of Lemma 2. Therefore it follows that S̃′ is not mapped to S.
The equality of the solution values of S and S′ can be seen likewise.

A.4 Proof of Lemma 4 (MWCS to rcSAP)

Proof. The one-to-one correspondence between the sets of solutions to P and P ′′ can be seen
analogously to the proof of Lemma 3.
To prove (22) let S = (VS , ES) be a solution to P and S′′ = (V ′′S′′ , A

′′
S′′) the corresponding solution

to P ′′, obtained by applying (20) and (21). Further, define A := {(v, w) ∈ A′′ : {v, w} ∈ E} and
AS′′ = A ∩ A′′S′′ . First, one observes that for each v ∈ S such that pv ≤ 0 there is exactly one
incoming arc a ∈ AS′′ , so: ∑

v∈VS :pv≤0

pv = −
∑

a∈AS′′

c′′a. (23)

Second: ∑
v∈VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

v∈V \VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′\AS′′

c′′a. (24)

Finally, by adding (23) and (24) the equation:∑
v∈VS

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′

c′′a (25)

is obtained, which coincides with (22).

B Abbreviations of Reduction Methods

This section provides the names for all reduction methods used by SCIP-Jack, which are listed
in Table 2 in abbreviated form. All methods are described in detail in [16]. Note that several
methods can be used for several variants, see Table 2, but in this case almost always require
(considerable) adaptations. These adaptations can likewise be found in [16].
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Table 14 lists in the first column the respective abbreviation of each reduction method used
by SCIP-Jack. The second column provides the full name of the method, while the third and
last column states all Steiner problem variants that use this particular reduction method (in
adapted form).

Table 14: Abbrevitations of Reduction Methods

Abbreviation Name Variant

BND Bound STP, SAP, PCSTP, RPCSTP, RSMTP, GSTP
BR Basic Reduction SAP
BT Basic Test MWCSP
CBND Cost Bound HCSTP
CNS Connected Neighborhood Subset MWCSP
CT Close Terminals SAP
DA Dual-Ascent SPG, SAP, NWSTP, PCSTP, RPCSTP, MWCSP,

RSMTP, GSTP
DT Degree Test SPG, SAP, PCSTP, RPCSTP, RSMTP, GSTP
HBND Hop Bound HCSTP
NNP Non-negative Path MWCSP
NPVk Non-Positive Vertex of degree k MWCSP
NTDk Non-Terminal of Degree k SPG, PCSTP, RPCSTP, RSMTP, GSTP
NV Nearest Vertex SPG, PCSTP, RPCSTP, RSMTP, GSTP
PNT Prohibitive Non-Terminal SAP
RPT Root Proximity Terminal SAP
SD Steiner bottleneck Distance SPG, PCSTP, RPCSTP, RSMTP, GSTP
SDC Steiner bottleneck Distance Circuit SPG, PCSTP, RPCSTP, MWCSP, RSMTP, GSTP
SL Short Links SPG, PCSTP, RPCSTP, RSMTP, GSTP
UNT Unreachable Non-Terminal PCSTP, RPCSTP
UNPV Unreachable Non-Positive Vertex MWCSP

C Detailed Computational results

This section presents detailed instance-wise results from the experiments performed in this paper
for all test sets discussed in Sections 2 and 3. The tables list the original and the presolved
problem size, i.e., number of nodes |V |, arcs |A|, and terminals |T | as well as the preprocessing
time (column t [s] in the Presolved columns). Moreover, the tables show the Dual and Primal
bound upon termination and the corresponding Gap in percent. If an instance was solved to
optimality, the optimal value is printed instead of primal and dual bound, and the gap is omitted.
Similarly, “–” is printed if no primal bound was present at the time of termination. Additionally,
the number of branch-and-bound nodes (N), and the total solving time in seconds (last column)
is listed. The total solving time includes the preprocessing time. A timeout is marked by “>”
before the termination time. In case of the DCSTP for which SCIP-Jack does not perform
preprocessing, the statistics about the presolved model are omitted.

Table 15. Detailed computational results for the STP, test set X.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

berlin52 52 2652 16 0 0 0 0.0 1044 1 0.0
brasil58 58 3306 25 0 0 0 0.0 13655 1 0.0
world666 666 442890 174 0 0 0 1.1 122467 1 1.1

Table 16. Detailed computational results for the STP, test set E.
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

e01 2500 6250 5 0 0 0 0.1 111 1 0.1
e02 2500 6250 10 0 0 0 0.1 214 1 0.1
e03 2500 6250 417 0 0 0 0.1 4013 1 0.1
e04 2500 6250 625 0 0 0 0.2 5101 1 0.2
e05 2500 6250 1250 0 0 0 0.2 8128 1 0.2
e06 2500 10000 5 0 0 0 0.3 73 1 0.3
e07 2500 10000 10 0 0 0 0.4 145 1 0.4
e08 2500 10000 417 0 0 0 0.2 2640 1 0.2
e09 2500 10000 625 0 0 0 0.1 3604 1 0.1
e10 2500 10000 1250 0 0 0 0.2 5600 1 0.2
e11 2500 25000 5 0 0 0 0.5 34 1 0.5
e12 2500 25000 10 0 0 0 0.4 67 1 0.5
e13 2500 25000 417 439 1506 164 0.6 1280 1 1.4
e14 2500 25000 625 0 0 0 0.2 1732 1 0.2
e15 2500 25000 1250 0 0 0 0.4 2784 1 0.4
e16 2500 125000 5 0 0 0 1.0 15 1 1.0
e17 2500 125000 10 0 0 0 0.7 25 1 0.7
e18 2500 125000 417 2063 11702 245 0.9 564 20 127.7
e19 2500 125000 625 1203 5878 175 3.5 758 1 6.1
e20 2500 125000 1250 0 0 0 13.2 1342 1 13.2

Table 17. Detailed computational results for the STP, test set ALUE.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

alue2087 1244 3942 34 0 0 0 0.1 1049 1 0.1
alue2105 1220 3716 34 53 154 16 0.1 1032 1 0.1
alue3146 3626 11738 64 682 2364 58 0.7 2240 3 7.9
alue5067 3524 11120 68 605 1966 61 0.5 2586 1 4.8
alue5345 5179 16330 68 2728 9146 68 1.5 3507 5 955.6
alue5623 4472 13876 68 2037 6816 68 1.8 3413 5 746.0
alue5901 11543 36858 68 2749 9320 68 2.4 3912 1 671.4
alue6179 3372 10426 67 259 778 52 0.5 2452 1 0.8
alue6457 3932 12274 68 748 2388 62 0.7 3057 1 7.2
alue6735 4119 13392 68 799 2564 66 0.6 2696 1 5.5
alue6951 2818 8838 67 733 2362 67 0.7 2386 1 10.7
alue7065 34046 109682 544 28309 97592 512 6.5 23340.4247 23898 2.3 1 >7200.0
alue7066 6405 20908 16 3631 12480 11 10.1 2231.0018 2265 1.5 1 >7200.0
alue7080 34479 110988 2344 27631 95538 2002 14.8 61569.9419 62475 1.4 1 >7200.0
alue7229 940 2948 34 0 0 0 0.1 824 1 0.1

Table 18. Detailed computational results for the STP, test set I640.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

i640-001 640 1920 9 0 0 0 0.1 4033 1 0.1
i640-002 640 1920 9 0 0 0 0.0 3588 1 0.0
i640-003 640 1920 9 0 0 0 0.1 3438 1 0.1
i640-004 640 1920 9 0 0 0 0.1 4000 1 0.1
i640-005 640 1920 9 0 0 0 0.1 4006 1 0.1
i640-011 640 8270 9 0 0 0 0.1 2392 1 0.1
i640-012 640 8270 9 0 0 0 0.1 2465 1 0.1
i640-013 640 8270 9 0 0 0 0.1 2399 1 0.1
i640-014 640 8270 9 0 0 0 0.1 2171 1 0.1
i640-015 640 8270 9 0 0 0 0.1 2347 1 0.1
i640-021 640 408960 9 0 0 0 4.4 1749 1 4.4
i640-022 640 408960 9 0 0 0 4.4 1756 1 4.4
i640-023 640 408960 9 0 0 0 4.3 1754 1 4.3
i640-024 640 408960 9 0 0 0 4.4 1751 1 4.4
i640-025 640 408960 9 0 0 0 4.4 1745 1 4.4
i640-031 640 2560 9 0 0 0 0.1 3278 1 0.1
i640-032 640 2560 9 0 0 0 0.1 3187 1 0.1
i640-033 640 2560 9 0 0 0 0.1 3260 1 0.1
i640-034 640 2560 9 0 0 0 0.1 2953 1 0.1

cont. next page
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

i640-035 640 2560 9 0 0 0 0.1 3292 1 0.1
i640-041 640 81792 9 32 232 9 1.5 1897 1 1.5
i640-042 640 81792 9 44 338 9 1.2 1934 1 1.3
i640-043 640 81792 9 36 260 9 1.4 1931 3 1.6
i640-044 640 81792 9 21 102 9 1.1 1938 1 1.1
i640-045 640 81792 9 0 0 0 1.2 1866 1 1.2
i640-101 640 1920 25 62 194 22 0.1 8764 1 0.3
i640-102 640 1920 25 0 0 0 0.0 9109 1 0.0
i640-103 640 1920 25 0 0 0 0.0 8819 1 0.0
i640-104 640 1920 25 0 0 0 0.1 9040 1 0.1
i640-105 640 1920 25 173 658 25 0.1 9623 3 1.9
i640-111 640 8270 25 640 8270 25 0.1 6167 233 82.1
i640-112 640 8270 25 640 8270 25 0.1 6304 89 68.5
i640-113 640 8270 25 640 8270 25 0.2 6249 285 223.6
i640-114 640 8270 25 640 8270 25 0.3 6308 199 159.8
i640-115 640 8270 25 640 8270 25 0.2 6217 285 143.7
i640-121 640 408960 25 0 0 0 4.8 4906 1 4.8
i640-122 640 408960 25 0 0 0 4.6 4911 1 4.6
i640-123 640 408960 25 0 0 0 5.0 4913 1 5.1
i640-124 640 408960 25 0 0 0 4.8 4906 1 4.8
i640-125 640 408960 25 0 0 0 4.8 4920 1 4.8
i640-131 640 2560 25 95 322 25 0.1 8097 1 0.7
i640-132 640 2560 25 106 414 24 0.1 8154 3 0.5
i640-133 640 2560 25 100 384 23 0.1 8021 1 0.4
i640-134 640 2560 25 0 0 0 0.1 7754 1 0.1
i640-135 640 2560 25 0 0 0 0.1 7696 1 0.1
i640-141 640 81792 25 640 39442 25 2.5 5199 186 2912.9
i640-142 640 81792 25 636 40352 25 2.7 5193 77 1549.6
i640-143 640 81792 25 640 49152 25 2.7 5194 69 1218.2
i640-144 640 81792 25 396 9360 25 1.9 5205 105 347.4
i640-145 640 81792 25 640 80900 25 3.4 5218 225 3213.1
i640-201 640 1920 50 104 352 39 0.1 16079 1 0.2
i640-202 640 1920 50 0 0 0 0.1 16324 1 0.1
i640-203 640 1920 50 165 602 46 0.1 16124 1 1.3
i640-204 640 1920 50 0 0 0 0.1 16239 1 0.1
i640-205 640 1920 50 55 162 31 0.1 16616 1 0.1
i640-211 640 8270 50 640 8270 50 0.3 11848.9241 12034 1.5 2368 >7200.0
i640-212 640 8270 50 640 8270 50 0.1 11795 1167 1413.9
i640-213 640 8270 50 640 8268 50 0.3 11879 4589 5950.2
i640-214 640 8270 50 640 8270 50 0.3 11860.0352 11898 0.3 3219 >7200.0
i640-215 640 8270 50 640 8262 50 0.2 11974.4282 12081 0.9 3114 >7200.0
i640-221 640 408960 50 640 175732 50 15.5 9821 31 1041.1
i640-222 640 408960 50 568 64944 50 7.3 9798 21 231.8
i640-223 640 408960 50 320 26888 50 7.3 9811 17 60.7
i640-224 640 408960 50 109 5672 50 5.3 9805 7 10.0
i640-225 640 408960 50 272 21786 50 6.2 9807 13 70.1
i640-231 640 2560 50 448 2044 50 0.1 15014 55 28.3
i640-232 640 2560 50 483 2226 49 0.1 14630 11 7.1
i640-233 640 2560 50 489 2208 47 0.1 14797 9 20.7
i640-234 640 2560 50 196 808 47 0.1 15203 1 1.0
i640-235 640 2560 50 482 2238 50 0.1 14803 181 206.4
i640-241 640 81792 50 640 79734 50 4.4 10165.1069 10259 0.9 26 >7200.1
i640-242 640 81792 50 636 38180 50 4.2 10195 323 6331.2
i640-243 640 81792 50 640 81410 50 3.4 10174.2073 10245 0.7 19 >7200.1
i640-244 640 81792 50 640 81354 50 3.3 10171.5011 10256 0.8 28 >7200.1
i640-245 640 81792 50 640 81414 50 3.3 10167.8358 10235 0.7 23 >7200.1
i640-301 640 1920 160 318 1168 122 0.1 45005 1 0.8
i640-302 640 1920 160 291 1112 110 0.0 45736 1 3.3
i640-303 640 1920 160 270 956 116 0.1 44922 1 0.2
i640-304 640 1920 160 261 930 119 0.0 46233 1 0.6
i640-305 640 1920 160 301 1106 115 0.1 45902 1 3.0
i640-311 640 8270 160 640 8058 160 0.5 35356.8112 35889 1.5 1032 >7200.0
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

i640-312 640 8270 160 639 8034 160 0.3 35382.3785 35892 1.4 1078 >7200.0
i640-313 640 8270 160 640 8064 160 0.2 35228.9425 35589 1.0 1095 >7200.0
i640-314 640 8270 160 640 8054 160 0.5 35132.6682 35666 1.5 1241 >7200.1
i640-315 640 8270 160 640 8038 160 0.6 35299.5984 35972 1.9 1272 >7200.0
i640-321 640 408960 160 640 383854 160 22.9 31005.418 31101 0.3 1 >7200.6
i640-322 640 408960 160 640 383870 160 23.3 31001.5172 31082 0.3 1 >7201.2
i640-323 640 408960 160 640 383854 160 21.6 31007.5649 31096 0.3 1 >7200.6
i640-324 640 408960 160 640 383872 160 26.4 31014.8474 31097 0.3 1 >7200.6
i640-325 640 408960 160 640 383870 160 24.8 31000.4459 31104 0.3 1 >7200.6
i640-331 640 2560 160 488 2204 145 0.2 42796 161 68.6
i640-332 640 2560 160 504 2250 152 0.2 42548 165 93.8
i640-333 640 2560 160 502 2230 147 0.3 42345 1023 498.5
i640-334 640 2560 160 512 2280 155 0.1 42768 2586 1115.8
i640-335 640 2560 160 516 2292 153 0.2 43035 907 526.1
i640-341 640 81792 160 640 77068 160 5.3 31865.446 32121 0.8 9 >7200.1
i640-342 640 81792 160 640 76886 160 4.9 31839.4952 32028 0.6 11 >7200.0
i640-343 640 81792 160 640 76970 160 4.7 31846.6237 32049 0.6 8 >7200.1
i640-344 640 81792 160 640 77206 160 4.9 31829.1739 32009 0.6 10 >7200.0
i640-345 640 81792 160 640 77076 160 4.7 31839.7831 32051 0.7 9 >7200.1

Table 19. Detailed computational results for the STP, test set PUC.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

bip42p 1200 7964 200 990 7236 200 0.1 24479.6971 24768 1.2 3395 >7200.1
bip42u 1200 7964 200 990 7220 200 1.1 233.059954 237 1.7 3989 >7200.0
bip52p 2200 15994 200 1819 14666 200 0.2 24240.916 24749 2.1 990 >7200.0
bip52u 2200 15994 200 1819 14652 200 1.3 229.719752 235 2.2 1432 >7200.0
bip62p 1200 20004 200 1199 20000 200 0.5 22505.0323 23002 2.2 485 >7200.0
bip62u 1200 20004 200 1199 20000 200 1.1 214.685228 221 2.9 532 >7200.0
bipa2p 3300 36146 300 3140 35594 300 0.8 34739.6741 35909 3.3 107 >7200.4
bipa2u 3300 36146 300 3140 35590 300 3.3 329.71166 343 3.9 143 >7200.2
bipe2p 550 10026 50 550 10026 50 0.2 5616 1549 522.9
bipe2u 550 10026 50 550 10026 50 0.5 54 81 112.1
cc10-2p 1024 10240 135 1024 10240 135 0.7 34472.1056 36569 5.7 1 >7200.0
cc10-2u 1024 10240 135 1024 10240 135 1.5 334.170226 346 3.4 1 >7200.0
cc11-2p 2048 22526 244 2048 22526 244 1.6 62105.0239 65297 4.9 1 >7204.4
cc11-2u 2048 22526 244 2048 22526 244 2.8 602.531609 623 3.3 1 >7200.0
cc12-2p 4096 49148 473 4096 49148 473 5.8 118446.22 123835 4.4 1 >7200.2
cc12-2u 4096 49148 473 4096 49148 473 6.2 1148.80514 1201 4.3 1 >7200.0
cc3-10p 1000 27000 50 1000 27000 50 1.1 12696.14 12860 1.3 187 >7200.0
cc3-10u 1000 27000 50 1000 27000 50 2.5 117.836203 128 7.9 1 >7200.0
cc3-11p 1331 39930 61 1331 39930 61 1.7 15448.5499 15676 1.5 46 >7200.0
cc3-11u 1331 39930 61 1331 39930 61 7.9 143.458338 155 7.4 1 >7200.0
cc3-12p 1728 57024 74 1728 57024 74 2.5 18635.313 19422 4.1 1 >7200.0
cc3-12u 1728 57024 74 1728 57024 74 6.0 172.550821 190 9.2 1 >7200.0
cc3-4p 64 576 8 64 576 8 0.0 2338 6301 169.7
cc3-4u 64 576 8 64 576 8 0.1 23 123 19.9
cc3-5p 125 1500 13 125 1500 13 0.1 3568.4105 3661 2.5 18225 >7200.0
cc3-5u 125 1500 13 125 1500 13 0.2 34.6128505 36 3.9 17765 >7200.0
cc5-3p 243 2430 27 243 2430 27 0.1 7185.13262 7299 1.6 1902 >7200.0
cc5-3u 243 2430 27 243 2430 27 0.4 69.6775124 71 1.9 964 >7200.0
cc6-2p 64 384 12 64 384 12 0.0 3271 207 11.8
cc6-2u 64 384 12 64 384 12 0.0 32 33 3.6
cc6-3p 729 8736 76 729 8736 76 0.5 20133.1622 20428 1.4 113 >7200.0
cc6-3u 729 8736 76 729 8736 76 1.4 195.4 201 2.8 1 >7200.1
cc7-3p 2187 30616 222 2187 30616 222 1.9 55338.9773 58029 4.6 1 >7201.1
cc7-3u 2187 30616 222 2187 30616 222 2.8 535.826599 562 4.7 1 >7200.0
cc9-2p 512 4608 64 512 4608 64 0.3 16868.7823 17594 4.1 1 >7200.0
cc9-2u 512 4608 64 512 4608 64 0.9 163.525703 172 4.9 1 >7200.5
hc10p 1024 10240 512 1024 10240 512 0.5 59250.6769 61322 3.4 150 >7200.0
hc10u 1024 10240 512 1024 10240 512 3.4 567.777778 595 4.6 4 >7200.2
hc11p 2048 22528 1024 2048 22528 1024 1.2 117404.127 122371 4.1 19 >7200.1
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

hc11u 2048 22528 1024 2048 22528 1024 13.7 1124.45703 1175 4.3 1 >7200.0
hc12p 4096 49152 2048 4096 49152 2048 3.1 232883.175 244784 4.9 1 >7200.0
hc12u 4096 49152 2048 4096 49152 2048 699.5 2208.9654 2335 5.4 1 >7200.2
hc6p 64 384 32 64 384 32 0.0 4003 1629 20.0
hc6u 64 384 32 64 384 32 0.0 39 481 14.6
hc7p 128 896 64 128 896 64 0.0 7856.69231 7905 0.6 69979 >7200.0
hc7u 128 896 64 128 896 64 0.1 75.1282051 77 2.4 34024 >7201.3
hc8p 256 2048 128 256 2048 128 0.1 15204.8511 15322 0.8 7611 >7200.0
hc8u 256 2048 128 256 2048 128 0.3 145.251909 148 1.9 2728 >7200.0
hc9p 512 4608 256 512 4608 256 0.1 29928.2278 30259 1.1 900 >7200.0
hc9u 512 4608 256 512 4608 256 0.7 286.875 295 2.8 67 >7200.0

Table 20. Detailed computational results for the STP, test set vienna-i-simple.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

I001 30190 95496 1184 7539 23190 978 6.6 253921201 1 222.6
I002 49920 155742 1665 12947 39624 1324 12.8 399809303 3 2889.0
I003 44482 146838 3222 13687 41394 2346 17.7 788774400 788774494 0.0 1 >7208.2
I004 5556 17104 570 471 1300 198 0.8 279512692 1 1.8
I005 10284 31960 1017 1031 2950 378 1.3 390876350 1 4.1
I006 31754 105750 2202 11750 35452 1856 9.8 504526035 5 5009.3
I007 15122 48742 737 4310 13290 586 2.9 177909660 1 50.0
I008 15714 51134 871 4804 14630 713 3.2 201788202 3 227.3
I009 33188 104014 1262 10603 32962 1066 7.8 275558727 3 653.4
I010 29905 94914 943 7421 23194 821 5.8 207889674 1 150.0
I011 25195 82596 1428 7454 22826 1218 8.0 317589880 11 808.7
I012 12355 39924 503 2057 6400 383 1.6 118893243 1 8.6
I013 18242 57952 891 4818 14740 679 4.0 193190339 1 95.0
I014 12715 41264 475 1870 5934 336 1.8 105173465 1 7.3
I015 48833 159974 2493 16371 50858 2142 25.3 592240740 592240832 0.0 5 >7207.6
I016 72038 230110 4391 23236 70546 3388 41.9 1110879760 1110921290 0.0 1 >7213.9
I017 15095 48182 478 3500 10972 391 3.1 109739695 1 23.1
I018 31121 102226 1898 10360 31530 1571 11.7 463887832 3 2317.7
I019 25946 83290 866 8703 28128 747 4.6 217647693 3 572.9
I020 21808 69842 594 4230 13532 513 3.0 146515460 1 84.0
I021 16013 50538 392 3097 10192 298 2.2 106470644 1 21.8
I022 16224 51382 437 3857 12068 355 2.5 106799980 1 22.7
I023 22805 70614 582 4315 13278 437 2.8 131044872 1 31.3
I024 68464 217464 3001 26094 81048 2566 40.7 758479100 758484240 0.0 1 >7230.8
I025 23412 75904 945 7573 23930 848 4.2 232790758 3 1021.3
I026 47429 158614 3334 14589 44204 2640 26.0 928032223 7 5249.0
I027 85085 277776 3954 33300 103702 3537 68.3 976783461 976821921 0.0 1 >7200.1
I028 72701 230860 1790 37098 116948 1674 31.7 384026141 384055351 0.0 1 >7200.1
I029 69988 223608 2162 29051 91656 2026 27.1 492190521 492197789 0.0 1 >7200.0
I030 33188 107360 1263 9217 29282 1077 7.7 321646787 3 571.2
I031 54351 176422 2182 16397 51858 1853 25.0 578284709 5 2571.2
I032 56023 182798 3017 16513 50380 2435 36.4 773096540 773096720 0.0 3 >7207.7
I033 18555 59460 636 4073 12460 559 2.8 134461857 1 92.4
I034 22311 71032 735 6006 19008 639 4.1 165115148 1 106.3
I035 30585 100908 1704 10392 31946 1420 7.6 414440370 27 631.5
I036 37208 120712 1411 13410 42622 1278 11.6 375260654 375261017 0.0 6 >7221.3
I037 13694 44252 427 4003 12906 390 2.5 105720727 1 73.7
I038 18747 61278 967 5883 18274 786 3.1 255767543 7 866.7
I039 8755 28898 347 2566 7958 314 1.5 85566290 1 29.3
I040 40389 131640 1762 14850 46752 1480 10.9 431490471 431504580 0.0 1 >7215.4
I041 47197 150614 1193 17972 57698 1047 10.8 301914840 5 2036.9
I042 51896 171100 2171 19763 62066 1972 22.5 532128039 532131496 0.0 1 >7200.0
I043 10398 33574 367 3200 10126 327 1.3 95722094 1 38.8
I044 68905 227778 3358 25796 80104 2999 48.5 804499605 804538034 0.0 1 >7223.3
I045 14685 46932 421 4965 15742 390 2.6 105944062 1 54.0
I046 70843 234418 3598 25770 80572 3152 46.5 925444211 925473901 0.0 1 >7201.0
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

I047 28524 92502 2354 8528 25526 1695 7.2 695163406 3 1934.8
I048 13189 42438 358 3418 10906 330 2.2 91509264 1 41.4
I049 30857 99182 990 11239 36292 834 7.5 294811505 1 1266.6
I050 43073 142552 2868 14736 44958 2226 18.1 792589745 792605078 0.0 1 >7200.2
I051 27028 90812 1524 9912 30402 1344 7.3 357230839 37 2900.3
I052 2363 7522 40 0 0 0 0.1 13309487 1 0.1
I053 3224 10570 126 433 1320 89 0.3 30854904 1 1.0
I054 3803 12426 38 204 632 29 0.1 15841596 1 0.2
I055 13332 43160 570 3225 10066 463 2.1 144164924 1 28.0
I056 1991 6352 51 0 0 0 0.1 14171206 1 0.1
I057 33231 110298 1569 11142 34578 1366 9.3 412746415 1 915.0
I058 23527 79256 1256 5915 18378 1008 4.0 305024188 1 125.4
I059 9287 29950 363 1576 4854 287 1.4 107617854 1 6.1
I060 42008 135144 1242 14838 47920 1199 11.5 337290460 1 2052.2
I061 39160 127318 1458 18198 57156 1329 10.2 363042641 363042801 0.0 7 >7201.9
I062 66048 220982 3343 17331 55012 2760 40.0 792941137 9 5723.7
I063 26840 87322 1645 7294 22254 1239 5.8 459801704 13 1053.9
I064 63158 214690 3458 27661 84210 3188 44.8 863037799 863120966 0.0 1 >7201.6
I065 3898 12712 144 812 2522 117 0.5 32965718 1 2.0
I066 15038 49192 551 2732 8708 425 2.1 174219813 1 16.6
I067 20547 66460 627 7945 25222 569 4.0 175540750 1 393.1
I068 33118 110254 1553 9019 27914 1281 8.8 420730046 3 754.3
I069 9574 32416 543 2731 8312 455 1.5 135161583 1 45.1
I070 15079 49216 550 4956 15844 510 2.2 136700139 1 235.8
I071 33203 108854 1494 9631 29822 1291 11.4 382539099 1 352.3
I072 26948 88388 993 7870 25248 848 6.6 289019226 3 248.2
I073 21653 70342 1847 6106 18106 1274 4.4 663004987 1 364.1
I074 13316 44066 653 3118 9648 519 1.8 165573383 1 17.6
I075 57551 190762 2973 17983 55874 2487 29.3 815404026 11 4857.1
I076 14023 45790 598 3472 10934 489 2.1 166249692 1 27.4
I077 20856 68474 1787 7821 23236 1467 5.3 472503150 1 1679.4
I078 13294 43896 835 4874 14766 696 2.2 185525490 7 204.4
I079 19867 62542 565 5853 18694 520 3.0 150506933 1 836.2
I080 18695 59416 548 5530 17452 515 3.8 164299652 1 273.9
I081 25081 81478 888 8199 25950 746 4.2 247527679 1 282.9
I082 15592 49576 515 3951 12476 437 2.2 147407632 1 20.5
I083 89596 297166 4991 26313 80678 4045 80.9 1405586980 1405595600 0.0 1 >7202.7
I084 44934 147454 2319 12753 39698 1883 17.3 627187559 5 4391.7
I085 9113 28982 301 1727 5422 242 1.6 80628079 1 8.5

Table 21. Detailed computational results for the SAP, test set gene.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

gene41x 335 910 43 27 68 9 0.1 126 1 0.1
gene42 335 912 43 31 80 11 0.1 126 1 0.1
gene61a 395 1024 82 28 78 11 0.1 205 1 0.1
gene61b 570 1616 82 31 86 10 0.1 199 1 0.1
gene61c 549 1580 82 102 304 39 0.2 196 1 0.2
gene61f 412 1104 82 37 110 17 0.2 198 1 0.2
gene425 425 1108 86 29 82 12 0.2 214 1 0.2
gene442 442 1188 86 38 114 18 0.2 207 1 0.2
gene575 575 1648 86 22 58 8 0.2 207 1 0.2
gene602 602 1716 86 41 116 15 0.2 209 1 0.2

Table 22. Detailed computational results for the SAP, test set gene2002.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

microtri1 347 952 47 28 76 9 0.0 128 1 0.1
microtri3 400 1112 47 30 74 9 0.0 146 1 0.0
microtri5 416 1124 47 44 126 17 0.1 150 1 0.1
microtri6 419 1164 47 30 74 9 0.0 146 1 0.1
microtri7 437 1172 47 24 62 8 0.1 159 1 0.1
microtri8 484 1412 47 80 218 24 0.1 151 1 0.1
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

microtri9 297 792 47 30 78 10 0.0 131 1 0.0
microtri10 319 836 47 35 98 15 0.0 136 1 0.0
microtri11 382 1024 47 25 70 10 0.1 152 1 0.1

Table 23. Detailed computational results for the RSMTP, test set estein40.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

estein40-0 1600 6240 40 1362 5462 40 1.2 4.484154 1 80.0
estein40-10 1600 6240 40 1369 5452 40 1.6 4.673421 1 422.2
estein40-11 1600 6240 40 867 3424 40 1.2 4.384339 1 5.5
estein40-12 1600 6240 40 1371 5334 40 1.3 5.188453 1 227.2
estein40-13 1600 6240 40 1576 6188 40 0.9 4.916698 1 191.7
estein40-14 1600 6240 40 1512 6002 40 1.1 5.082803 1 419.7
estein40-1 1600 6240 40 1291 5174 40 2.1 4.681131 1 261.0
estein40-2 1600 6240 40 1466 5834 40 1.4 4.997415 1 689.5
estein40-3 1600 6240 40 1337 5330 40 1.7 4.528989 1 317.4
estein40-4 1600 6240 40 1543 6096 40 1.0 5.18228937 5.194038 0.2 144 >7200.1
estein40-5 1600 6240 40 1403 5574 40 1.3 4.97534 1 296.0
estein40-6 1600 6240 40 1394 5538 40 1.4 4.563901 1 169.5
estein40-7 1600 6240 40 1397 5548 40 0.7 4.874601 1 314.8
estein40-8 1600 6240 40 1548 6108 40 1.2 5.176179 1 1923.4
estein40-9 1600 6240 40 1547 6116 40 0.9 5.713686 1 743.9

Table 24. Detailed computational results for the RSMTP, test set estein50.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

estein50-0 2500 9800 50 2475 9744 50 1.1 5.494867 1 1570.1
estein50-10 2500 9800 50 2471 9718 50 1.4 5.253293 1 4541.1
estein50-11 2500 9800 50 2397 9460 50 1.1 5.32773868 5.34093 0.2 149 >7200.0
estein50-12 2500 9800 50 2401 9464 50 1.4 5.389099 1 2006.4
estein50-13 2500 9800 50 2436 9612 50 2.2 5.355143 1 3005.2
estein50-14 2500 9800 50 2427 9586 50 1.4 5.218085 1 1190.2
estein50-1 2500 9800 50 2442 9672 50 1.3 5.548422 1 3080.2
estein50-2 2500 9800 50 2313 9218 50 2.1 5.469105 1 2605.8
estein50-3 2500 9800 50 2222 8850 50 1.6 5.153576 1 445.2
estein50-4 2500 9800 50 2129 8458 50 2.2 5.518601 1 631.7
estein50-5 2500 9800 50 2426 9598 50 1.4 5.58043 1 3470.8
estein50-6 2500 9800 50 2443 9650 50 2.4 4.96438487 5.000242 0.7 1 >7200.1
estein50-7 2500 9800 50 2325 9194 50 2.0 5.375465 1 699.2
estein50-8 2500 9800 50 2441 9670 50 1.4 5.345677 7 4239.8
estein50-9 2500 9800 50 2472 9738 50 1.2 5.403795 1 2830.3

Table 25. Detailed computational results for the RSMTP, test set estein60.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

estein60-0 3600 14160 60 3438 13596 60 2.0 5.376143 1 4188.3
estein60-10 3600 14160 60 3566 14082 60 1.7 5.614167 1 6480.2
estein60-11 3600 14160 60 3573 14100 60 2.5 5.88235049 5.979133 1.6 1 >7200.0
estein60-12 3600 14160 60 3573 14102 60 1.8 6.03294593 6.121356 1.4 1 >7200.3
estein60-13 3600 14160 60 3575 14110 60 2.0 5.603556 1 6003.0
estein60-14 3600 14160 60 3559 14052 60 1.6 5.662257 1 5588.5
estein60-1 3600 14160 60 3508 13906 60 3.2 5.5143905 5.536782 0.4 1 >7201.6
estein60-2 3600 14160 60 3534 13964 60 2.0 5.64039151 5.656678 0.3 1 >7201.4
estein60-3 3600 14160 60 3573 14102 60 3.1 5.48713677 5.542169 1.0 1 >7200.1
estein60-4 3600 14160 60 3539 13996 60 1.4 5.462872 5.470499 0.1 82 >7200.0
estein60-5 3600 14160 60 3573 14092 60 2.1 6.02892818 6.042196 0.2 1 >7200.1
estein60-6 3600 14160 60 3555 14058 60 1.9 5.83360294 5.897848 1.1 1 >7200.2
estein60-7 3600 14160 60 3565 14094 60 1.8 5.813816 1 6749.6
estein60-8 3600 14160 60 3568 14096 60 2.0 5.57171307 5.587713 0.3 1 >7201.9
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

estein60-9 3600 14160 60 3570 14104 60 1.5 5.762446 1 4019.2

Table 26. Detailed computational results for the RSMTP, test set solids.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

cube 8 24 8 0 0 0 0.0 7 1 0.0
dodecahedron 343 1764 20 317 1642 20 0.2 7.65777665 7.69398 0.5 8435 >7200.0
icosahedron 125 600 12 90 436 12 0.0 20.944264 27 1.0
octahedron 27 108 6 0 0 0 0.0 6 1 0.0
tetrahedron 18 66 4 0 0 0 0.0 2.682521 1 0.0

Table 27. Detailed computational results for the RSMTP, test set cancer.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

cancer10 6D 10000 94000 82 0 0 0 0.5 92 1 0.5
cancer11 8D 4762800 64777860 75 1389461 16249270 51 642.6 0 185 100 1 >12349.8
cancer12 8D 918750 12031250 58 2282 13394 33 67.8 113 1 82.9
cancer13 8D 86400 1039680 70 0 0 0 3.8 88 1 3.8
cancer14 8D 27648 308736 54 0 0 0 1.3 63 1 1.3
cancer1 4D 600 3820 20 0 0 0 0.0 28 1 0.0
cancer2 4D 256 1536 20 0 0 0 0.0 21 1 0.0
cancer3 6D 20580 197078 110 331 1568 33 1.0 146 1 1.4
cancer4 6D 34560 340416 93 6585 47340 26 2.1 136 1 786.1
cancer5 6D 8000 74400 48 312 1614 16 1.5 69 1 2.7
cancer6 6D 5120 46592 50 0 0 0 0.2 55 1 0.2
cancer7 6D 21000 203300 109 522 2788 29 1.0 140 1 2.1
cancer8 6D 8640 80064 77 0 0 0 0.3 89 1 0.3
cancer9 6D 6000 54800 46 0 0 0 0.3 59 1 0.3

Table 28. Detailed computational results for the PCSTP, test set JMP.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

K100-10 115 722 15 3 6 2 0.0 133567 1 0.0
K100-1 112 762 12 3 6 2 0.0 124108 1 0.0
K100-2 114 756 14 3 6 2 0.0 200262 1 0.0
K100-3 111 874 11 3 6 2 0.0 115953 1 0.0
K100-4 111 788 11 3 6 2 0.0 87498 1 0.0
K100-5 117 812 17 3 6 2 0.0 119078 1 0.0
K100-6 112 680 12 3 6 2 0.0 132886 1 0.0
K100-7 114 708 14 3 6 2 0.0 172457 1 0.0
K100-8 116 776 16 3 6 2 0.0 210869 1 0.0
K100-9 112 732 12 3 6 2 0.0 122917 1 0.0
K100-0 115 786 15 3 6 2 0.0 135511 1 0.0
K200-0 234 1580 34 3 6 2 0.0 329211 1 0.0
K400-10 450 3308 50 3 6 2 0.0 394191 1 0.0
K400-1 465 3324 65 3 6 2 0.0 490771 1 0.0
K400-2 462 3420 62 17 68 8 0.0 477073 1 0.1
K400-3 456 3314 56 3 6 2 0.0 415328 1 0.0
K400-4 456 3182 56 3 6 2 0.0 389451 1 0.0
K400-5 477 3368 77 3 6 2 0.0 519526 1 0.0
K400-6 456 3482 56 3 6 2 0.0 374849 1 0.0
K400-7 468 3286 68 3 6 2 0.0 474466 1 0.0
K400-8 461 3392 61 3 6 2 0.0 418614 1 0.0
K400-9 454 3318 54 3 6 2 0.0 383105 1 0.0
K400-0 463 3402 63 3 6 2 0.0 350093 1 0.0
P100-1 133 760 33 3 6 2 0.0 926238 1 0.0
P100-2 127 750 27 3 6 2 0.0 401641 1 0.0
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

P100-3 125 776 25 3 6 2 0.0 659644 1 0.0
P100-4 133 760 33 3 6 2 0.0 827419 1 0.0
P100-0 134 832 34 3 6 2 0.0 803300 1 0.0
P200-0 249 1462 49 3 6 2 0.0 1317874 1 0.0
P400-1 521 3144 121 3 6 2 0.1 2808440 1 0.1
P400-2 508 3034 108 3 6 2 0.1 2518577 1 0.1
P400-3 514 3028 114 52 212 21 0.1 2951725 1 0.2
P400-4 495 2852 95 3 6 2 0.1 2852956 1 0.1
P400-0 495 2964 95 3 6 2 0.1 2459904 1 0.1

Table 29. Detailed computational results for the PCSTP, test set CRR.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

C01-A 506 1280 6 3 6 2 0.0 18 1 0.0
C01-B 506 1280 6 3 6 2 0.0 85 1 0.0
C02-A 511 1310 11 3 6 2 0.0 50 1 0.0
C02-B 511 1310 11 3 6 2 0.0 141 1 0.0
C03-A 584 1748 84 3 6 2 0.0 414 1 0.0
C03-B 584 1748 84 3 6 2 0.0 737 1 0.0
C04-A 626 2000 126 3 6 2 0.0 618 1 0.0
C04-B 626 2000 126 3 6 2 0.0 1063 1 0.0
C05-A 751 2750 251 3 6 2 0.0 1080 1 0.0
C05-B 751 2750 251 3 6 2 0.0 1528 1 0.0
C06-A 506 2030 6 3 6 2 0.1 18 1 0.1
C06-B 506 2030 6 3 6 2 0.1 55 1 0.1
C07-A 511 2060 11 3 6 2 0.1 50 1 0.1
C07-B 511 2060 11 3 6 2 0.1 102 1 0.1
C08-A 584 2498 84 3 6 2 0.1 361 1 0.1
C08-B 584 2498 84 3 6 2 0.1 500 1 0.1
C09-A 626 2750 126 3 6 2 0.1 533 1 0.1
C09-B 626 2750 126 3 6 2 0.2 694 1 0.2
C10-A 751 3500 251 3 6 2 0.1 859 1 0.1
C10-B 751 3500 251 3 6 2 0.1 1069 1 0.1
C11-A 506 5030 6 3 6 2 0.1 18 1 0.1
C11-B 506 5030 6 3 6 2 0.1 32 1 0.1
C12-A 511 5060 11 3 6 2 0.1 38 1 0.1
C12-B 511 5060 11 3 6 2 0.1 46 1 0.1
C13-A 584 5498 84 3 6 2 0.2 236 1 0.2
C13-B 584 5498 84 3 6 2 0.2 258 1 0.2
C14-A 626 5750 126 3 6 2 0.2 293 1 0.2
C14-B 626 5750 126 3 6 2 0.2 318 1 0.2
C15-A 751 6500 251 3 6 2 0.1 501 1 0.1
C15-B 751 6500 251 3 6 2 0.1 551 1 0.1
C16-A 506 25030 6 3 6 2 0.7 11 1 0.7
C16-B 506 25030 6 3 6 2 0.7 11 1 0.7
C17-A 511 25060 11 3 6 2 0.7 18 1 0.7
C17-B 511 25060 11 3 6 2 0.6 18 1 0.6
C18-A 584 25498 84 269 1418 46 1.0 111 1 1.1
C18-B 584 25498 84 378 2246 48 1.0 113 1 1.2
C19-A 626 25750 126 3 6 2 0.7 146 1 0.7
C19-B 626 25750 126 3 6 2 0.6 146 1 0.6
C20-A 751 26500 251 3 6 2 0.5 266 1 0.5
C20-B 751 26500 251 3 6 2 0.5 267 1 0.5
D01-A 1006 2530 6 3 6 2 0.1 18 1 0.1
D01-B 1006 2530 6 3 6 2 0.0 106 1 0.0
D02-A 1011 2560 11 3 6 2 0.1 50 1 0.1
D02-B 1011 2560 11 3 6 2 0.1 218 1 0.1
D03-A 1168 3502 168 3 6 2 0.0 807 1 0.0
D03-B 1168 3502 168 3 6 2 0.1 1509 1 0.1
D04-A 1251 4000 251 3 6 2 0.0 1203 1 0.0
D04-B 1251 4000 251 3 6 2 0.1 1881 1 0.1
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

D05-A 1501 5500 501 3 6 2 0.1 2157 1 0.1
D05-B 1501 5500 501 3 6 2 0.2 3135 1 0.2
D06-A 1006 4030 6 3 6 2 0.1 18 1 0.1
D06-B 1006 4030 6 3 6 2 0.1 67 1 0.1
D07-A 1011 4060 11 3 6 2 0.1 50 1 0.1
D07-B 1011 4060 11 3 6 2 0.1 103 1 0.1
D08-A 1168 5002 168 3 6 2 0.2 755 1 0.2
D08-B 1168 5002 168 3 6 2 0.3 1036 1 0.3
D09-A 1251 5500 251 3 6 2 0.2 1070 1 0.2
D09-B 1251 5500 251 3 6 2 0.3 1420 1 0.3
D10-A 1501 7000 501 3 6 2 0.2 1671 1 0.2
D10-B 1501 7000 501 3 6 2 0.3 2079 1 0.3
D11-A 1006 10030 6 3 6 2 0.3 18 1 0.3
D11-B 1006 10030 6 3 6 2 0.3 29 1 0.3
D12-A 1011 10060 11 3 6 2 0.3 42 1 0.3
D12-B 1011 10060 11 3 6 2 0.3 42 1 0.3
D13-A 1168 11002 168 84 352 31 0.8 445 1 0.8
D13-B 1168 11002 168 3 6 2 0.4 486 1 0.4
D14-A 1251 11500 251 3 6 2 0.5 602 1 0.5
D14-B 1251 11500 251 3 6 2 0.4 665 1 0.4
D15-A 1501 13000 501 3 6 2 0.4 1042 1 0.4
D15-B 1501 13000 501 3 6 2 1.1 1108 1 1.1
D16-A 1006 50030 6 3 6 2 1.1 13 1 1.1
D16-B 1006 50030 6 3 6 2 1.1 13 1 1.1
D17-A 1011 50060 11 3 6 2 1.2 23 1 1.2
D17-B 1011 50060 11 3 6 2 1.1 23 1 1.1
D18-A 1168 51002 168 547 3026 92 2.0 218 1 2.4
D18-B 1168 51002 168 837 5550 95 2.3 223 1 3.7
D19-A 1251 51500 251 502 2582 95 2.0 306 1 2.5
D19-B 1251 51500 251 765 4494 98 2.4 310 1 3.0
D20-A 1501 53000 501 3 6 2 1.6 536 1 1.6
D20-B 1501 53000 501 3 6 2 1.9 537 1 1.9

Table 30. Detailed computational results for the PCSTP, test set PUCNU.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

bip42nu 1401 9164 201 1191 8420 201 1.6 223.804921 226 1.0 4034 >7200.0
bip52nu 2401 17194 201 2020 15852 201 1.9 219.793866 223 1.4 2242 >7200.3
bip62nu 1401 21204 201 1400 21200 201 1.9 210.047825 216 2.8 28 >7200.0
bipa2nu 3601 37946 301 3441 37390 301 6.4 320.113009 329 2.7 1 >7200.0
bipe2nu 601 10326 51 601 10326 51 0.5 53 9 50.4
cc10-2nu 1160 11050 136 1066 9872 89 0.4 165.703651 169 2.0 25 >7200.2
cc11-2nu 2293 23990 245 2123 21678 160 1.2 300.600236 307 2.1 1 >7200.0
cc12-2nu 4570 51986 474 4220 46846 299 2.4 558.858243 568 1.6 1 >7200.8
cc3-10nu 1051 27300 51 1051 16500 51 0.6 61 110 769.8
cc3-11nu 1393 40296 62 1393 23826 62 1.1 79 57 2845.4
cc3-12nu 1803 57468 75 1803 33048 75 1.4 95 39 4305.0
cc3-4nu 73 624 9 3 6 2 0.0 10 1 0.0
cc3-5nu 139 1578 14 138 996 14 0.0 17 1 1.2
cc5-3nu 271 2592 28 267 2282 26 0.1 36 1 14.2
cc6-2nu 77 456 13 3 6 2 0.0 15 1 0.0
cc6-3nu 806 9192 77 736 7268 42 0.3 95 1 34.7
cc7-3nu 2410 31948 223 2250 26534 143 1.1 268.372944 273 1.7 1 >7200.6
cc9-2nu 577 4992 65 567 4874 60 0.2 83 7 417.6

Table 31. Detailed computational results for the RPCSTP, test set cologne1.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i101M1 758 12704 11 0 0 0 0.1 109271.503 1 0.1
i101M2 758 12704 11 0 0 0 0.2 315925.31 1 0.2
i101M3 758 12704 11 0 0 0 0.2 355625.409 1 0.2
i102M1 760 12730 12 0 0 0 0.1 104065.801 1 0.1
i102M2 760 12730 12 0 0 0 0.2 352538.819 1 0.2

cont. next page

37



Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i102M3 760 12730 12 0 0 0 0.2 454365.927 1 0.2
i103M1 764 12738 14 0 0 0 0.1 139749.407 1 0.1
i103M2 764 12738 14 0 0 0 0.2 407834.228 1 0.2
i103M3 764 12738 14 0 0 0 0.2 456125.488 1 0.2
i104M2 744 12598 4 0 0 0 0.1 89920.8353 1 0.1
i104M3 744 12598 4 0 0 0 0.2 97148.789 1 0.2
i105M1 744 12604 4 0 0 0 0.1 26717.2025 1 0.1
i105M2 744 12604 4 0 0 0 0.1 100269.619 1 0.1
i105M3 744 12604 4 0 0 0 0.2 110351.163 1 0.2

Table 32. Detailed computational results for the RPCSTP, test set cologne2.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i201M2 1812 33522 10 0 0 0 0.5 355467.684 1 0.5
i201M3 1812 33522 10 0 0 0 0.6 628833.614 1 0.6
i201M4 1812 33522 10 0 0 0 0.7 773398.303 1 0.7
i202M2 1814 33520 11 0 0 0 0.5 288946.832 1 0.5
i202M3 1814 33520 11 0 0 0 0.6 419184.159 1 0.6
i202M4 1814 33520 11 0 0 0 0.6 430034.264 1 0.6
i203M2 1824 33584 16 0 0 0 0.5 459894.776 1 0.5
i203M3 1824 33584 16 0 0 0 0.6 643062.02 1 0.6
i203M4 1824 33584 16 0 0 0 0.6 677733.067 1 0.6
i204M2 1805 33454 5 0 0 0 0.5 161700.545 1 0.5
i204M3 1805 33454 5 0 0 0 0.6 245287.203 1 0.6
i204M4 1805 33454 5 0 0 0 0.6 245287.203 1 0.6
i205M2 1823 33640 14 0 0 0 0.5 571031.415 1 0.5
i205M3 1823 33640 14 0 0 0 0.6 672403.143 1 0.6
i205M4 1823 33640 14 0 0 0 0.6 713973.623 1 0.6

Table 33. Detailed computational results for the MWCSP, test set ACTMOD. The number of
terminals was not changed during preprocessing.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

drosophila001 5298 187214 72 3 6 0.8 24.3855064 1 0.8
drosophila005 5421 187952 195 37 134 1.4 178.663952 1 1.4
drosophila0075 5477 188288 251 3 6 1.1 260.523557 1 1.1
HCMV 3919 58916 56 3 6 0.2 7.55431486 1 0.2
lymphoma 2102 15914 68 3 6 0.1 70.1663087 1 0.1
metabol expr mice 1 3674 9590 151 3 6 0.1 544.94837 1 0.1
metabol expr mice 2 3600 9174 86 3 6 0.0 241.077524 1 0.0
metabol expr mice 3 2968 7354 115 3 6 0.1 508.260877 1 0.1

Table 34. Detailed computational results for the MWCSP, test set JMPALMK. The number of
terminals was not changed during preprocessing.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

10-0-a-0-6-d-0-25-e-0-25 1193 11024 193 3 6 0.1 931.538552 1 0.1
10-0-a-0-6-d-0-25-e-0-5 1388 12194 388 3 6 0.1 1872.2754 1 0.1
10-0-a-0-6-d-0-25-e-0-75 1564 13250 564 3 6 0.5 2789.57911 1 0.5
10-0-a-0-6-d-0-5-e-0-25 1114 10550 114 3 6 0.1 522.525615 1 0.1
10-0-a-0-6-d-0-5-e-0-5 1250 11366 250 3 6 0.0 1197.85102 1 0.0
10-0-a-0-6-d-0-5-e-0-75 1374 12110 374 3 6 0.0 1762.70747 1 0.0
10-0-a-0-6-d-0-75-e-0-25 1062 10238 62 3 6 0.1 332.791924 1 0.1
10-0-a-0-6-d-0-75-e-0-5 1141 10712 141 3 6 0.1 754.300601 1 0.1
10-0-a-0-6-d-0-75-e-0-75 1196 11042 196 3 6 0.1 998.215414 1 0.1
10-0-a-1-d-0-25-e-0-25 1193 27710 193 3 6 0.0 939.39337 1 0.0
10-0-a-1-d-0-25-e-0-5 1388 28880 388 3 6 0.0 1883.21361 1 0.0
10-0-a-1-d-0-25-e-0-75 1564 29936 564 3 6 0.1 2789.57911 1 0.1
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Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum N t [s]

10-0-a-1-d-0-5-e-0-25 1114 27236 114 3 6 0.0 533.4294 1 0.0
10-0-a-1-d-0-5-e-0-5 1250 28052 250 3 6 0.0 1205.42131 1 0.0
10-0-a-1-d-0-5-e-0-75 1374 28796 374 3 6 0.1 1770.27776 1 0.1
10-0-a-1-d-0-75-e-0-25 1062 26924 62 3 6 0.0 336.829944 1 0.0
10-0-a-1-d-0-75-e-0-5 1141 27398 141 3 6 0.0 760.284581 1 0.0
10-0-a-1-d-0-75-e-0-75 1196 27728 196 3 6 0.0 1004.19939 1 0.0
150–a-0-6-d-0-25-e-0-25 1785 17028 285 3 6 0.1 1333.47643 1 0.1
150–a-0-6-d-0-25-e-0-5 2078 18786 578 3 6 0.1 2799.67722 1 0.1
150–a-0-6-d-0-25-e-0-75 2353 20436 853 3 6 0.2 4230.25112 1 0.2
150–a-0-6-d-0-5-e-0-25 1680 16398 180 3 6 0.1 847.452011 1 0.1
150–a-0-6-d-0-5-e-0-5 1881 17604 381 3 6 0.1 1858.0926 1 0.1
150–a-0-6-d-0-5-e-0-75 2060 18678 560 3 6 0.1 2697.45876 1 0.1
150–a-0-6-d-0-75-e-0-25 1594 15882 94 3 6 0.1 502.17599 1 0.1
150–a-0-6-d-0-75-e-0-5 1705 16548 205 3 6 0.1 1089.77117 1 0.1
150–a-0-6-d-0-75-e-0-75 1779 16992 279 3 6 0.1 1423.61063 1 0.1
150–a-1-d-0-25-e-0-25 1785 42758 285 3 6 0.1 1377.0144 1 0.1
150–a-1-d-0-25-e-0-5 2078 44516 578 3 6 0.1 2820.05174 1 0.1
150–a-1-d-0-25-e-0-75 2353 46166 853 3 6 0.2 4230.25112 1 0.2
150–a-1-d-0-5-e-0-25 1680 42128 180 3 6 0.1 860.618961 1 0.1
150–a-1-d-0-5-e-0-5 1881 43334 381 3 6 0.2 1865.66289 1 0.2
150–a-1-d-0-5-e-0-75 2060 44408 560 3 6 0.1 2707.70001 1 0.1
150–a-1-d-0-75-e-0-25 1594 41612 94 3 6 0.1 502.17599 1 0.1
150–a-1-d-0-75-e-0-5 1705 42278 205 3 6 0.1 1089.77117 1 0.1
150–a-1-d-0-75-e-0-75 1779 42722 279 3 6 0.1 1423.61063 1 0.1
50–a-0-62-d-0-25-e-0-25 590 5728 90 3 6 0.0 460.577357 1 0.0
50–a-0-62-d-0-25-e-0-5 696 6364 196 3 6 0.0 992.967111 1 0.0
50–a-0-62-d-0-25-e-0-75 788 6916 288 3 6 0.0 1447.54452 1 0.0
50–a-0-62-d-0-5-e-0-25 556 5524 56 3 6 0.0 280.832378 1 0.0
50–a-0-62-d-0-5-e-0-5 629 5962 129 3 6 0.0 655.623217 1 0.0
50–a-0-62-d-0-5-e-0-75 696 6364 196 3 6 0.0 965.554694 1 0.0
50–a-0-62-d-0-75-e-0-25 531 5374 31 3 6 0.0 171.628785 1 0.0
50–a-0-62-d-0-75-e-0-5 566 5584 66 3 6 0.0 362.188212 1 0.0
50–a-0-62-d-0-75-e-0-75 593 5746 93 3 6 0.0 490.623986 1 0.0
50–a-1-d-0-25-e-0-25 590 13572 90 3 6 0.0 471.393285 1 0.0
50–a-1-d-0-25-e-0-5 696 14208 196 3 6 0.0 995.313181 1 0.0
50–a-1-d-0-25-e-0-75 788 14760 288 3 6 0.0 1447.54452 1 0.0
50–a-1-d-0-5-e-0-25 556 13368 56 3 6 0.0 286.920868 1 0.0
50–a-1-d-0-5-e-0-5 629 13806 129 3 6 0.0 661.711707 1 0.0
50–a-1-d-0-5-e-0-75 696 14208 196 3 6 0.0 965.554694 1 0.0
50–a-1-d-0-75-e-0-25 531 13218 31 3 6 0.0 171.628785 1 0.0
50–a-1-d-0-75-e-0-5 566 13428 66 3 6 0.0 362.188212 1 0.0
50–a-1-d-0-75-e-0-75 593 13590 93 3 6 0.0 490.623986 1 0.0
750-a-0-647-d-0-25-e-0-25 891 9278 141 3 6 0.0 702.644057 1 0.0
750-a-0-647-d-0-25-e-0-5 1041 10178 291 3 6 0.0 1419.77986 1 0.0
750-a-0-647-d-0-25-e-0-75 1176 10988 426 3 6 0.0 2116.58233 1 0.0
750-a-0-647-d-0-5-e-0-25 830 8912 80 3 6 0.0 403.177763 1 0.0
750-a-0-647-d-0-5-e-0-5 939 9566 189 3 6 0.0 946.129495 1 0.0
750-a-0-647-d-0-5-e-0-75 1036 10148 286 3 6 0.0 1382.77203 1 0.0
750-a-0-647-d-0-75-e-0-25 799 8726 49 3 6 0.0 266.983922 1 0.0
750-a-0-647-d-0-75-e-0-5 856 9068 106 3 6 0.0 580.407832 1 0.0
750-a-0-647-d-0-75-e-0-75 895 9302 145 3 6 0.0 764.156726 1 0.0
750-a-1-d-0-25-e-0-25 891 20484 141 3 6 0.0 708.143835 1 0.0
750-a-1-d-0-25-e-0-5 1041 21384 291 3 6 0.0 1426.44904 1 0.0
750-a-1-d-0-25-e-0-75 1176 22194 426 3 6 0.0 2116.58233 1 0.0
750-a-1-d-0-5-e-0-25 830 20118 80 3 6 0.0 403.177763 1 0.0
750-a-1-d-0-5-e-0-5 939 20772 189 3 6 0.0 946.129495 1 0.0
750-a-1-d-0-5-e-0-75 1036 21354 286 3 6 0.0 1382.77203 1 0.0
750-a-1-d-0-75-e-0-25 799 19932 49 3 6 0.0 266.983922 1 0.0
750-a-1-d-0-75-e-0-5 856 20274 106 3 6 0.0 580.407832 1 0.0
750-a-1-d-0-75-e-0-75 895 20508 145 3 6 0.0 764.156726 1 0.0

Table 35. Detailed computational results for the DCSTP, test set TreeFam.

Instance |V | |A| |T | Dual Primal Gap% N t [s]

TF101057-t1 52 2652 35 infeasible 1 0.1
TF101057-t3 52 2652 35 2756 1027 21.4
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Instance |V | |A| |T | Dual Primal Gap% N t [s]

TF101125-t1 304 92112 155 infeasible 1 5.9
TF101125-t3 304 92112 155 55083.0778 55338 0.5 613 >7201.4
TF101202-t1 188 35156 72 79659.0814 80037 0.5 3488 >7200.5
TF101202-t3 188 35156 72 77859.6474 78102 0.3 13435 >7200.0
TF102003-t1 832 691392 407 194783.06 396842 50.9 2 >7213.6
TF102003-t3 832 691392 407 181270.819 190431 4.8 3 >7211.3
TF105035-t1 237 55932 104 34857.087 47145 26.1 1207 >7200.2
TF105035-t3 237 55932 104 32858.3179 32967 0.3 6058 >7200.0
TF105272-t1 476 226100 223 135288.813 300315 55.0 59 >7203.1
TF105272-t3 476 226100 223 126694.275 132597 4.5 19 >7208.6
TF105419-t1 55 2970 24 18668 8720 111.7
TF105419-t3 55 2970 24 18223 6 0.9
TF105897-t1 314 98282 133 106872.613 179907 40.6 245 >7200.2
TF105897-t3 314 98282 133 97485.0445 98452 1.0 352 >7202.2
TF106403-t1 119 14042 46 54124 532 199.1
TF106403-t3 119 14042 46 53760 1 2.6
TF106478-t1 130 16770 54 54979.9097 55413 0.8 59538 >7200.1
TF106478-t3 130 16770 54 54764.7394 54849 0.2 87932 >7200.1

Table 36. Detailed computational results for the GSTP, test set GSTP1.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

gstp30f2 474 1828 30 192 726 24 0.8 569 1 1.1
gstp31f2 349 1284 31 312 1170 30 0.5 635 1 3.8
gstp33f2 452 1746 33 0 0 0 0.5 513 1 0.5
gstp34f2 1253 5000 34 1234 4952 34 1.3 628.611868 646 2.7 67 >7200.0
gstp36f2 442 1672 36 410 1552 36 1.0 610 1 6.5
gstp37f2 1054 4216 37 1044 4190 37 1.1 485 219 4520.8
gstp38f2 618 2504 38 590 2416 38 1.3 656 61 601.6
gstp39f2 707 3310 39 700 3294 39 1.1 429.130633 452 5.1 1729 >7200.0

Table 37. Detailed computational results for the GSTP, test set GSTP2.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

gstp50f2 1142 4622 50 1120 4572 50 1.8 654.179976 674 2.9 244 >7200.0
gstp55f2 1751 6804 55 1691 6680 55 2.0 849.40167 892 4.8 45 >7200.0
gstp60f2 838 3528 60 835 3522 60 1.7 1153.20028 1164 0.9 602 >7200.0
gstp64f2 1860 7380 64 1790 7218 60 1.7 903.513293 932 3.1 18 >7200.0
gstp66f2 2623 10100 66 2483 9812 62 2.3 893.440207 920 2.9 8 >7200.2
gstp73f2 1911 7308 73 1797 7044 65 2.2 1195.80281 1209 1.1 25 >7200.0
gstp76f2 1818 6990 76 1686 6696 68 1.5 1016.0365 1026 1.0 14 >7200.0
gstp78f2 2355 9384 78 2275 9204 74 2.6 1053.98605 1095 3.7 59 >7200.0
gstp83f2 3177 12530 83 3052 12272 80 2.3 835.124263 906 7.8 18 >7200.1
gstp84f2 2358 9134 84 2184 8754 74 1.7 1055.89293 1095 3.6 58 >7200.1

Table 38. Detailed computational results for the STP, test set gr12.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wo11-cr100-se10 809 7432 10 335 3390 10 0.1 136516 1 0.9
wo11-cr100-se11 809 7430 10 502 5168 10 0.1 145251 1 1.4
wo11-cr100-se1 809 7444 10 616 6622 10 0.0 182082 1 2.5
wo11-cr100-se2 809 7394 10 480 5070 10 0.1 163872 1 0.4
wo11-cr200-se10 809 15262 10 471 9550 10 0.2 59523 1 2.5
wo11-cr200-se11 809 15260 10 661 14210 10 0.1 66786 1 4.9
wo11-cr200-se1 809 15274 10 663 14582 10 0.1 76353 1 8.8
wo11-cr200-se2 809 15224 10 645 13726 10 0.1 75434 1 1.9
wo12-cr100-se10 809 9360 10 510 6256 10 0.0 167223 1 2.2
wo12-cr100-se11 809 9852 10 569 7056 10 0.1 199679 1 1.4
wo12-cr100-se1 809 9446 10 554 6812 10 0.0 164198 1 2.0
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

wo12-cr100-se7 809 9702 10 301 3702 10 0.1 136232 1 0.6
wo12-cr200-se9 809 28346 10 293 8588 10 0.1 46408 1 1.1
wo10-cr100-se0 809 14396 10 809 14396 10 0.1 171486 1 74.1
wo10-cr100-se10 809 14428 10 603 10548 10 0.1 117081 1 4.7
wo10-cr100-se11 809 14386 10 643 10942 10 0.1 125785 1 7.7
wo10-cr200-se7 809 44696 10 454 19898 10 0.1 46306 1 3.3
wo10-cr200-se8 809 44654 10 805 44392 10 0.3 61177 1 34.5
wo10-cr200-se9 809 44670 10 723 37912 10 0.4 51737 1 28.4

Table 39. Detailed computational results for the STP, test set gr14.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% N t [s]

wo10-cr100-se0 3209 215940 10 3209 215940 10 2.6 160723.537 178284 9.8 1 >7200.2
wo10-cr100-se11 3209 215932 10 2831 187356 10 3.0 120466 1 2300.5
wo10-cr200-se3 3209 643552 10 3187 635486 10 21.9 51380.983 61148 16.0 1 >7203.6
wo10-cr200-se4 3209 643414 10 3167 628838 10 16.6 50725.3688 57593 11.9 1 >7202.7
wo11-cr100-se6 3209 115502 10 2773 115502 10 1.5 206671.764 218292 5.3 7 >7200.1
wo11-cr200-se2 3209 232858 10 2684 220074 10 2.8 71134 1 526.0
wo11-cr200-se3 3209 233104 10 2041 158058 10 2.3 57930 1 189.7
wo11-cr200-se4 3209 233038 10 2763 231592 10 3.1 63313 1 384.6
wo12-cr100-se0 3209 153366 10 904 38542 10 0.8 116288 1 22.0
wo12-cr100-se5 3209 156578 10 1374 63594 10 1.2 131631 1 293.4
wo12-cr100-se6 3209 157214 10 2030 99256 10 1.4 146049 234 6697.8
wo12-cr100-se7 3209 158984 10 1349 63790 10 0.8 122306 1 267.2
wo12-cr100-se8 3209 157912 10 1423 68700 10 0.8 116077 1 627.6
wo12-cr100-se9 3209 156658 10 633 23838 10 0.7 99170 1 6.3
wo12-cr200-se0 3209 445774 10 1515 181670 10 2.8 53883 1 442.4
wo12-cr200-se10 3209 446040 10 2317 311642 10 7.1 62137.1904 72475 14.3 1 >7201.2
wo12-cr200-se11 3209 457496 10 2383 330774 10 4.8 66663.9 81213 17.9 9 >7200.5
wo12-cr200-se4 3209 460250 10 2395 329386 10 6.7 71599.6445 78710 9.0 1 >7200.7
wo12-cr200-se5 3209 456998 10 2172 280816 10 6.8 57694 40 7062.8
wo12-cr200-se6 3209 460500 10 2377 327552 10 9.4 60423.1974 63892 5.4 7 >7201.1
wo12-cr200-se7 3209 464090 10 1823 224594 10 4.6 60445.221 61938 2.4 317 >7200.4

Table 40. Detailed computational results for the HCDSTP, test set gr16. All instances have 10
terminals (before and after preprocessing).

Original Presolved
Instance |V | |A| |V | |A| t [s] Dual Primal Gap% N t [s]

wo10-cr100-se0 12509 2843882 11604 2843678 6.8 67934.3155 178781 163.2 1 >7208.4
wo10-cr100-se10 12509 2844058 11319 2772610 129.4 68639.4849 122284 78.2 1 >7331.9
wo10-cr100-se6 12509 2843894 11604 2843690 6.9 69686.5234 199237 185.9 3 >7207.2
wo10-cr200-se0 12509 8741560 11604 8738884 29.7 36160 68834 90.4 1 >7231.1
wo10-cr200-se3 12509 8741850 11604 8739162 29.8 32976 59383 80.1 1 >7235.9
wo10-cr200-se4 12509 8741234 11604 8738558 29.7 34218.3333 66166 93.4 1 >7240.3
wo10-cr200-se5 12509 8740874 11604 8738198 29.7 35158 68277 94.2 1 >7244.3
wo10-cr200-se7 12509 8741906 9692 7159770 2939.8 32432.3125 46438 43.2 1 >10143.0
wo11-cr100-se0 12509 1634066 10654 1634018 3.9 92733.2864 204001 120.0 1 >7204.4
wo11-cr100-se10 12509 1633968 8811 1319422 383.4 85769.1902 124389 45.0 1 >7583.5
wo11-cr200-se2 12509 3416158 10654 3415928 8.9 45476.5249 76168 67.5 1 >7211.3
wo11-cr200-se3 12509 3416916 10449 3341260 117.3 45394.1664 57820 27.4 1 >7319.8
wo12-cr100-se2 12509 2172502 10486 2145056 5.3 96880.9782 194788 101.1 1 >7207.4
wo12-cr100-se3 12509 2173508 10426 2122636 7.9 90073.8988 151797 68.5 1 >7209.1
wo12-cr200-se2 12509 6560440 10543 6530350 22.8 43813.1724 81064 85.0 1 >7230.0
wo12-cr200-se3 12509 6557828 10494 6465210 22.8 40141.5455 62201 55.0 1 >7224.9
wo12-cr200-se4 12509 6420904 10422 6281784 19.9 43269.8722 83053 91.9 1 >7224.6
wo12-cr200-se7 12509 6766046 9903 6190724 1016.1 41470.7083 64796 56.2 1 >8231.3
wo12-cr200-se8 12509 6207724 10434 6178476 111.6 38677.7129 54757 41.6 1 >7313.8
wo12-cr200-se9 12509 6571406 9928 6168132 924.0 36254.0664 50364 38.9 1 >8124.9
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