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ABSTRACT. The polynomial differential system modeling the behavior of a
chemical reaction is given by graph theoretic structures. The concepts from
toric geometry are applied to study the steady states and stable steady states.
Deformed toric varieties give some insight and enable graph theoretic inter-
pretations. The importance of the circuits in the directed graph are empha-
sized. The counting of positive solutions of a sparse polynomial system by B.
Sturmfels is generalized to the counting of stable positive solutions in case of
a polynomial differential equation. The generalization is based on a method
by sparse resultants to detect whether a system may have a Hopf bifurcation.
Special examples from chemistry are used to illustrate the theoretical results.

1. Introduction

In chemistry a class of polynomial differential equations arise which has a lot
of discrete structure in the coefficients and the monomials:
1-771

T = Y;IaIK‘IJ((E), \I](:I") = ’

1-7771

is given by adjacency matrices and incidence matrices of two weighted graphs. A
detailed description of the problem is given in Section 2. One is interested in the
positive steady states, stable ones and Hopf points, especially depending on the
structure of the graphs and for all positive values of the involved constants k;;.
This fascinating problem shows a very rich mathematical structure and several
mathematical disciplines may be applied.

Numerical methods are not suitable since several (too many) unknown con-
stants are involved and one is interested in global statements while numerical in-
vestigations are local.

There are several known results. Especially, the early work in [C180] has in-
fluenced a lot the chemical literature like [EBSE96, E94, HS98]. The papers
[F, F95a, F95b] (for explanation see also [GH99)]) include special interesting re-
sults for a special subclass (Y; = Y;). In [MMING89] symbolic computation has been
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2 KARIN GATERMANN

applied to such chemical systems for the first time. They applied Grobner bases
as a black box neglecting the structure of the problem. Of course Grébner bases
are very important for the study of positive solutions ((GRRT99]), but in this
problem class the computation of a Grébner bases of the given polynomials ignore
the graph theoretic structures. That’s why the use of Grébner bases is restricted
to study toric ideals which appear.

Toric varieties turn out to be very useful if they are adjusted to this particular
application. The generalization is even suitable for the study of positive solutions.
A realistic example illustrates this principle and nicely interpreted by substructures
of the graphs.

But the main result is the counting of stable positive solutions by a general-
ization of ideas from [St94, St98]. For this reason the new polynomial Resp g
is introduced. The vanishing of Resp g is a necessary condition that a dynamical
system has a Hopf point.

The structure of the paper is as follows. Section 2 describes the given data
and the structure of the differential equations precisely. Deformed toric varieties
and graph theoretic investigation of a convex polyhedral cone are the topics of Sec-
tion 3 while Section 4 investigates Hopf bifurcation with resultants and bialternate
products. Finally, Section 5 gives the main result of this paper, the counting of
positive stable steady states as a generalization of the counting of positive solutions
in [St94, St98].

2. Mass action kinetics - a sparse polynomial system

An interesting system of ordinary differential equations consisting of sparse
polynomials is defined by two graphs as presented in [GH99].

The first graph is a weighted bipartite graph. The two sets of vertices consist of
Si,i=1,...,mand Cj, j =1,...,n. To each edge {S; C;} there are two weights
yi; € N and n;; € N associated. This defines two weighted adjacency matrices
whose relevant parts are Y = (yij)i=1,... ,m,j=1,...,n and Yz = (0ij)i=1,... m,j=1,... ,n-
We denote the columns of Y by y1,... ,yn € (Z>0)™ and the columns of Y} by
My---sMn € (Z>0)™. We assume that Y and Y have the same support (i.e. y;; =0
iff n;; = 0 and y;; > 0 iff n;; > 0) and that n;; < y;;,Vi=1,... ,m,j=1,...,n
Moreover, we assume that y; # y; or 1; # n; for all ¢ # j. Additionally, we assume
that every vertex S; is adjacent at least to one vertex C;. But there may be Cj
without incident edges.

Secondly, there is a weighted directed graph with vertices C;,i = 1,...,n and
oriented edges C; — C; for some i,j € {1,...,n}. Each oriented edge (arrow)
C; = C; from reactant C; to product C; has a weight kc, o, = ki; € Ry. This
information is encoded in the weighted adjacency matrix K = (ki;) € (R>o)™"
with k;; = 0if C; = C; is not an arrow. We assume that for each vertex C; there
is at least one adjacent edge. An oriented edge C; — C; and its opposite C; — C;
with two different associated constants are simultaneously possible. But there are
no parallel edges.

Beside the adjacency matrix the directed graph has two incidence matrices.
The first incidence matrix is I, = (w;j)i=1,... ;n,j=1,..., Where w;; € {—1,0,1} and
a denotes the number of arrows. Each column represents an oriented edge by con-
taining one entry —1 for the reactant and 1 for the product. The second incidence
matrix is Ix = (Upw)p=1,... lp=1,...,n With uy, € {ki;|i,7 =1,...,n} or uy, = 0.
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TABLE 1. The algebra-chemistry dictionary.

SNA stoichiometric network analysis
Y, stoichiometric matrix A = I, Ik kinetic matrix
S = im(Y,I,) stoichiometric space im(Y,I,Ix) = im(Y; A) kinetic space

v; L im(Y;A) conservation vector (v; > 0) Jv; L im(Y;A),v; > 0 conservative
t

vix — a; conservation relations (v; > 0) ¢ = rank(Jl,) — rank(Y;I,) deficiency
AU (x) complex formation vector Y, A¥(x) species formation vector

Ik ¥(z) reaction velocity vector

k;i; rate constant K rate constant matrix

yi; stoichiometric coeff. or molecularity  #;; kinetic exponent

C; complexes S; chemical species

reaction C; — C; with reactant complex C; and product complex C;
S; — 25; autocatalytic reaction
minimal generator E; of cone ker(Y,;I,) N (R>o)’ extreme current

Each row corresponds to one oriented edge and has at most one non-zero entry.
The p-th arrow C; — C; gives u,; = k;; encoding the weight and that Cj; is the
reactant complex.

Altogether, this defines the following polynomial differential equation

mnl

(2.1) i =Y,A¥(z), with ¥(z)=| : |,

'Z-'rln

where A = I, Ix = K — diag(K'e) and z = (21, ... ,Zm) € (R>0)™.
In [C180] the matrix v := Y1, is used. With v(z) = Ix¥(x) system (2.1) is
written as

(2.2) & =vo(z).

Moreover, v(z) may be written as Dx(z) with a diagonal matrix D € (R>o)"
containing diagonal entries d, , = k;; for the y-th arrow C; — C; and a vector
of monomials x(z) = (z**,...,2")t, x,(x) = 2" . The matrix s of exponents as
used in [CI80] is formed from the columns of Y},. More precisely they are formed
from the columns of Y. which is given by those columns 7; from Y} for which an
arrow C; — C; exists.

A special case is that Y, can be chosen such that Y; = Yj. Then system (2.1) is
a stoichiometric system or with mass action kinetics 1. This name stems from the
fact that the graphs naturally arise in chemistry where (2.1) describes the evolution
of the concentrations x; of the chemical species S;. Also all other quantities have a
special name as summarized in Table 1.

System (2.1) has flow-invariant subspaces of the form (zo +im(Y;A4))N(R>0)™,
see Lemma 2.7 in [GH99]. Thus one restricts the investigation of steady states to
those satisfying

viz—a; =0, i=1,...,m—rank(Y;A),
1 The precise definition of mass action kinetics is that it is not pathological (3vij < 0,55 = 0)

and for each pair of forward reaction ¢ and backward reaction j we have v; = k; — Kk;, where
Vi, Kj, ki are columns of the matrices v and .
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AN

FIGURE 1. Field emitter tip: Ha/O3 reaction on the tip of a thin
metal within an electric field as presented in [EBSE96]. The num-
ber of barbs gives y;; within a reactant complex and the total
number of feathers gives y;; within a product complex while the
number of feathers to the left gives n;;. The vacant ads-space on
the tip of the metal is symbolized by *.

where v; form an orthonormal basis of the orthogonal complement of im(Y;A) and
the a; € R are given constants. In the literature often im(Y;I,) is used. But in case
a connected component includes several terminal strong connected components then
rank(I,Ix) < rank(l,). If rank(Y; A) < rank(Y;I,) the v; depend on the constants
ki; in general.

Even more one is interested in stable points (i.e. real parts of all eigenvalues
of Jacobian negative) and Hopf points (eigenvalues tiw). Since im(Y,;A) is flow-
invariant the notions of stability and Hopf points are modified in Section 4.

The graph theoretic definitions are explained by the following typical example
which was taken from [EBSE96].

ExAaMPLE 2.1. Figure 1 and Figure 2 show the same information on a chemical
reaction in an analogous way.
The differential equations are

1 = —koiz1me® — 2k10,721° + 2 k7,1075°
.sz = =2 k2,1$1$22 -2 k9’3.'1722 -2 k11’3$2$4 + 2 k379$5
B3 = koam132” + (ks — koa) T3
f4 = ksavs3 — 2ki0,624° — 2k11,8T274
B5 = keam1T2® + ko 3o + ko as + 2 k10,674 + 2 k10,7717 + 3 K11,8T224
—k3,0z5 — 2 k7 10257
where x1,...,25 are the concentrations of O,H,H>0,H>0; and the amount of

space on the metal, respectively.
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FI1GURE 2. Information from Figure 1 as a weighted directed graph
and a weighted bipartite graph. An edge in the bipartite graph
without number has weights y;; = n;; = 1. If one number is
associated to the edge then y;; = n;; else y;; > ;5.

We have rank(I,Ix) = 6,rank(l,) = 7,rank(Y;I,Ix) = rank(Y;I,) =4 <5 =
m. The additional linear restriction is given by

viz—a=(2 1 2 2 2)z—a =0.
&

The nice thing about system (2.1) is that almost all mathematical terms have
a graph theoretic meaning. For example we may consider the combined graph from
the directed graph and the bipartite graph since the vertices C; appear in both. If
the combined graph has several connected components then system (2.1) decouples.

In [FH77] it is explained how the structure of the directed graph determines by
connected components, strong connected components and terminal strong connected
components the structure and the rank of the matrix A = I,Ix. This knowledge
is exploited in the work [F], [F95a], [F95b]. An explanation of this is given in
[GH99].

3. Deformed toric varieties and positive steady states

This section is started with the discussion of complex solutions z € (C\ {0})™
of Y;A¥(xz) = 0 with the help of toric varieties. If one neglects the property of
normality they are defined as Xo = V(Iy ) = {z € C*|f(z) =0V f € I3 }
Iy = {f € Clz1,... ,2n]| f(zoz™,... ,202™) = 0}. Binomial generators of Iy,
are computed by the usual implicitation of varieties with Grébner bases or more
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efficiently by Algorithms 12.3 and 12.6 in [St96]. See also [KM99] for efficient
computation with ideals of this type.

The advantages of toric varieties are well-known. The degree of the toric variety
(computed by the coefficient of the Hilbert polynomial [St96] p. 36 or by the mixed
volume of the Newton polytopes by mixed subdivision [CLO98]) gives the number
of toric solutions for generic coefficients since Iy, does not depend on the coefficients.
The facets of the Newton polytopes are used to explain when for special values of
the coefficients some solutions z € (C\ {0})™ escape to points with components
zero or to infinity ((CLO98] p. 309).

For positive real solutions one needs to discuss the intersection of the convex
polyhedral cone ker(Y;A) N (R>0)" (of dimension n — rank(YsA)) with Xy which
is the basis of the deficiency-one-theorem [F95a] as explained in [GH99]. Once a
generating vector z of an intersection line is known z = xo¥(z) is solved by Hermite
normal form.

In this application one can take advantage of the special structure. The first
obvious property is that not all monomials appear. Remember that the columns
of Y, are formed by those n; for which an arrow C; — C; exists. Then one would
consider the homogeneous toric ideal Iy, . But one can even better take advantage
of the structure. Because the coefficient matrix in our application is a product of
Y;, I, and Ix and all constants are positive a variant of this principle has even
more advantages. We use

IE = {f € C(E)[zla s le] | f(wovl(m)a te ;3701}1(-’17)) = 0}7
where k collects all appearing non-zero k;;, and its variety V(I3) and the convex
polyhedral cone ker(Y,I,) N (R>0)'. The advantage in comparison to the standard
approach is that the cone does not involve the constants k;;. We denote the elements
of a minimal set of generators by E;.

LeEMMA 3.1. (3) If rank(YsI,) = rank(I,) then the positive circuits of the di-
rected graph generate the convez polyhedral cone ker(Y;I,) N (R>o)!. Then the
minimal generators E; are given by those positive circuits which are not a convez
combination of other positive circuits.

(i) Let the set of indices {1,...,l1} decompose with respect to the connected
components Ly and even further decompose with respect to terminal strong con-
nected components Ly =TY U---UT,* URx. Define I{ = (wij)i=1,... njery where
I, = (wij)i=1,... n,j=1,... - If rank(Y,IY) = rank(IY) then the positive circuits of the
terminal strong connected components (A, v) which are not conver combinations of
other positive circuits define minimal generators E;.

While the positive circuits are oriented cycles in the directed graph the other
minimal generators have an interpretation in the combined graph consisting of the
directed graphs without weights k;; and the bipartite graph with weights y;;, see
the example below. Note that the cone is not necessarily simplicial, although in
many practical situations this will be the case because rank(1,)—rank(Y;,) is small
and ker(I,) N (Rx>o)! is a simplicial cone if the directed graph is not complicated.

The generators F; may be computed by the simplex algorithm from linear pro-
gramming. But here no linear functional is optimized. A variant of the simplex
algorithm is used to enumerate all vertex vectors. Of course one likes to take ad-
vantage of the graph theoretic information within this computation. Since Y1, is
integer there is even a relation to Grobner bases. Algorithm 4.5 in [St96] may be
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FI1GURE 3. Minimal generators E; and Fs of the convex polyhedral
cone which are positive circuits in the directed graph.

used and an universal Grébner basis may be computed which by Proposition 4.11
in [St96] includes all circuits. The circuits of type 2¥ — 1 will give our minimal
generators. The computation of an universal Grébner basis (equivalently the deter-
mination of the Grébner fan and the state polytope) works for toric ideals efficiently
even for larger problems as shown in [TH99).

Because of the importance of the cone ker(Y;I,) N (R>g)! the computation of
a minimal set of generators E; is studied a lot in the chemical literature ([C180],
[HS98] and references therein). There the fact is used that each z € ker(Y;I,) N
(R4 )! gives a positive solution z € R™ if the k;; are chosen appropriately. On the
other hand if the constants k;; are given the vector z € ker(Y;I,) N (R>o)! has to
satisfy the condition z € V(Iz).

LEMMA 3.2. (i) The ideal I; in C(k)[z] is generated by binomials in Q[E][z].
(i) Each vertex C; in the directed graph which is incident to two (or more) oriented
edges pointing out from C; gives one (or several) linear polynomial(s) in I. (iii)
I and IT’T have the same Hilbert series and the same Hilbert polynomial.

PROOF. (i) I is clearly generated by binomials because a Grébner basis of the
elimination ideal Iz = ({z; — zoui(z) |1 = 1,...,1}) N Q(k)[2] may be computed
by the Buchberger algorithm where all involved polynomials are binomial if the
input polynomials are binomial. (ii) Two arrows C; — C; and C; EX C, give v, =
kjiz™, vg = ky,;a™ and thus ky;2q — kji2p. (iil) The Hilbert series and the Hilbert

polynomial are build from the vector space dimensions of (Clz1 ... , 2,]/I, )a and
(Clz1--. ,2]/Iz)q of degrees d € N. But for each additional variable in z1,... , z
there is a linear polynomial by (ii) such that the dimensions are equal. O

Each binomial in Iz has an interpretation in the combined graph formed from
the directed graph with weights k;; and the bipartite graph with weights 7;;, see
the example below.
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FIGURE 4. Minimal generator Fs of the cone. The numbers as-
sociated to the arrows are E3 = [2,0,3,0,2,0,0,1,1] while the
weights on the vertices C; are given by the entries of I, F3 =
[-2,2,3,-2,2,0,1,—1,—3, —1,1]. The computations associated to
the vertices S; stand for Y;(I,FE3).

Geometrically, the variation of values of all k;; > 0 means that the vari-
ety V(Iz) just deforms without changing basic properties. The variety V(If,r)
is clearly isomorphic to V(I3) in case all k;; = 1 since for additional variables
z; we have linear equations z; = zj;. Thus for all positive choices of k;; the
varieties V'(Iz) and V(I3 ) are isomorphic. While X5, contains the orbit O1 =
{z € (C\{O})"|Fo,... ,tm with 2 = (to [Tz, t7*, ... ,to [[1o, t7")} as an open
and dense set the deformed toric variety V(I3) contains the orbit Or,1 = {2z €
(C\{0})!| o, ... ,tm with z = diag(to [[1m, t5", ... sto [[1ny t7")IKk1} as a dense
and open set. Even more the structure of subvarieties corresponding to points at
infinity or with zero-components is the same. That means that the property that
toric solutions escape to infinity depends on the structure of the graphs, but not on
their weights. It seems that the positive circuits in the directed graph often turn
out to be important in this context.

EXAMPLE 3.3. (Example 2.1 continued) A minimal set of generators of the
convex polyhedral cone ker(YsI,) N (R>o)! is found by elementary linear algebra

[ E, = [07070707070717170]
E3:[
E,=]
By =]

NN W I—\

1,

0
.0
.0

0
2,
2
2

While I,E, = I, Es = 0 because these two are positive circuits in the directed
graph (see Figure 3) the other three are interpreted in the combined graph as
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FIGURE 5. The exponents of the 3. binomial 212232 — c(k)z22 2527
correspond to a vector in the kernel of k which corresponds to a
kernel vector of Y.

illustrated in Figure 4 for E3. A Grobner basis of the deformed toric ideal is
computed by using

21 = ko1 818380 22 = ko 38380 23 = k3 9ds5f0
24 = kg 4Z3%0 25 = ks %380 26 = k1062540
271 = k1078230 28 = k7108580 29 = k11, 8828480
giving
—ks,a24 + koa2s, k11872622 — ko 3ki0,629°, kio,7k37kr,1021223° — k3,9 ka,12 222 2527

Substituting 2?21 M E; gives three polynomials in A

—2ksads +koa (2X3+2X\1), k118 M1 — ko ski0.6A37,
E107k9s%k7.10 (2 A3 +2Aa 4+ 225)° (A1 + 3 A3 + 20 +2X5)°
—k3,92k2,12/\12 (A2 + A3+ Ag + X5) Ao

CASE X3 = 0: Then case A\; = 0 gives Ay = A5 = 0 and A2 arbitrary. The case
A4 = 0 leads to A5 = 0 and Ay = 0 and A arbitrary or opposite Ao = 0 and A;
arbitrary.

CASE A3 # 0: Because we work in homogeneous coordinates we may choose A3 = 1
and receive from the first two equations

_ ko4 (k11,8° M1 + ko 3k10,6) \, = ko 3k10,6

A M= .
° k1182 Aiks 4 k1182
Substitution into the third gives one polynomial in A1, Ay
e (B)ATAS + (c16(B)AT + c15(E)AT) A2 — coo(k) — -+ - — cos (k) AT

which is quadratic in Ay having positive coefficients of A2 and A, and negative
constant co(A1, k) if we consider A; to be positive. There is one family of positive
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solutions parameterized by A; > 0. For given A2 there may be at most two values
of A1 by Descartes’ rule of signs.

The limits are of particular interest. Since points with zero-components or
at infinity correspond to facets we investigated the 8 facets of the 5-dimensional
polytope conv(n1, 93, N4, N6, N7, M8, Mo, M10)- Not all facets allow for non-negative real
points. One facet corresponds to As = 0 while another corresponds to A3 = Ay = 0.
Neighboring facets allow for real points only for Ay E; or Ay E5. Since the real part of
the variety is homeomorphic to the polytope ([F93] p. 81) the curve parameterized
by A1 is homeomorphic to a curve within the 5-dimensional polytope. It connects
two facets which are further investigated with the momentum map which projects
a point on the toric variety to a convex combination of the vertices of the polytope.
If Ay — oo then A2 — e2(k),As = 0,As — c¢5(k). The limit of the image of
the momentum map approaches ks o/(ks,9 + ko.3)k2 + ko 3/(ks,9 + ko3)ks which
corresponds to E;. Then z — (0,0,0,0,0). If \; — 0 then Ay — oo like 1/A} and
A1 — 00, A5 — 00 the image of the momentum map goes to kz7,10/ (k7,10 +k10,7) k7 +
k10,7/ (k7,10 + k10,7)ks which corresponds to E,. Then z tends to infinity.

For arbitrary A\; we may solve for z; (£;) in Ix ¥ (£)Zo = 2 in terms of roots by
Hermite normal form. This transforms the linear equation to

3 3 4 3 4

w1 w1 w3Ww1 W4aW1

2+ 4 6 354

w24w5 w53w2 w54w2 W5 W

where w; = w;(k,\),7 = 1,2,3,4,6 and ws = c5(k) - \&2' Of course A1, Ao still
1

need to satisfy the equation above from the toric ideal. Depending on the value of

a1 > 0 one expects several positive solutions. &

An alternative way includes the linear conditions right from the beginning.
Then

Y,I, 0 v(z)
vl o 1
. : = Bx(z) =0
0 : : ar.
vt a, T

has the coefficient matrix B and monomial vector y. The minimal set of generators
of the convex polyhedral cone ker(B) N (R>)2T™*! are partially known as (E?,0)
from the set of minimal generators of ker(Y;1,) N (R>o)'. Unfortunately, in general
v; will involve the constants k;; as already a; are entering the computation of the
cone. Moreover, the discussion will be complicated and depend on the values of a;
for vectors v; which are non-negative for conservative systems, but in general are
not. The computation of the generators of the toric ideal is done analogously and
substitution of a convex combination of the generators of the cone gives equations
in A.

EXAMPLE 3.4. (Example 2.1 and 3.3 continued)
Lifting n1, 73,4, M6, 77,78, M9, 70, €1, €2, €3, €4, €5, 0 and computing a Grobner basis
of the toric ideal with Maple gives the Hilbert polynomial
1 13 8 47 47
) L R (R R N e e aputy W |
5 +12 +3 +12 +15 +h
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with degree 24 which means that the system has for generic values of coefficients
at most 24 complex solutions and thus at most 24 real positive solutions.

For completeness we mention that one might as well work with Minkowski
summands of the Newton polytopes, either by forming the sum of the two obvious
summands or more tricky by distinguishing several Newton polytopes after linear
manipulation of Y; AP (x). This leads to higher dimensional convex polyhedral cones
and toric ideals in rings with many variables. This may turn out to be inefficient.

4. Finding Hopf bifurcation with resultants

The aim of the next section is the generalization of the method of counting pos-
itive solutions valid for some parameter regions as explained in [St94] and [St98].
In this section we will give some necessary definitions from dynamical systems and
prepare the generalization.

A dynamical system is given by & = f(x) where f : R® — R"™ is a C*°-
function. A steady state ¢ € R" is called stable, if all eigenvalues of the Jacobian
D, f(xo) € R™™ have negative real part. We consider a system & = f(x, \) where
f : R"*! — R™ depends on an additional parameter and like to know how the
stable steady states depend on A. Assume a C*°-branch (z(s), A(s)) of steady state
solutions then the eigenvalues of D, f(z(s),A(s)) depend C* on the parameter
s. Starting with a stable point xy = x(s¢) the real parts of the eigenvalues have
two possibilities to turn positive. Either a real eigenvalue crosses 0 (in a bifurcation
point) or a pair of complex eigenvalues crosses the imaginary axis. The last situation
is called Hopf bifurcation because the pair of eigenvalues +iw together with some
genericity conditions guarantee the bifurcation of a branch of periodic solutions
(oscillations). A good reference is [GH83] p. 151.

Criteria are known to decide numerically when a real matrix C' (which is a Ja-
cobian D, f(xg, Ao) € R™™) has a pair of complex eigenvalues +iw. These methods
use algebraic concepts.

The first method uses resultants and works efficiently for n < 10. From
the characteristic polynomial p(u) = det(uld — C) one constructs two polyno-
mials ge(4®) = p(k) + p(—p) and ¢o(p®) = (p(k) — p(—p))/p of degree [n/2].
Since g.(—w?) = q,(—w?) = 0 it follows for the Sylvester resultant Res(D,f) =
Res(ge, 90, 1) = 0 if the matrix C has a pair of eigenvalues +iw. This method has
been successfully applied numerically in the program LocBif.

The second method uses the bialternate product of matrices (see e.g. [Go00]
n(n—1)
2

p- 94). This associates to C' a matrix 2C ® Id of dimension

—a;] ifk‘zj
Qi ifk#iandl=j
Qi + ajj ifk=diandl =
aji ifk=diandl#j
—ajk ifl=1
0 else.

(2C © Id) i 5),(k1) =

The index pairs satisfy ¢ > j and k& > [. If C has eigenvalues +iw then 2C © Id
has eigenvalue zero. Thus pg = det(2C ® Id) = 0 is a necessary condition for a
dynamical system to have a Hopf point. This is used in the program Content.
These methods may be applied in order to check whether a system & = f(z, \)
where f is polynomial in 2 and A over a field F' may have a Hopf bifurcation at all.
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LEMMA 4.1. Let f(z, A k) € (F[k][z,A])™ be a polynomial vector where F is
an appropriate field. Let Res(D;f(x,\; k)),pe € F[k][z, ] be the polynomials con-
structed above. If the system & = f(z,\;k) has for some fized values k, o Hopf
point at (zo, o) then Res(xo, X, ky) = 0 = pe(zo, Mo, kg). If (xo, Xo) is a bifurca-
tion point then det(D f(zo, Ao, kg)) = 0. If zo is positive then the toric Jacobian
det(diag((zo)1,--- , (z0)n) Dz f(x0, Ao, ky)) has eigenvalue zero.

Since a bifurcation point satisfies n + 1 sparse polynomial equations in n vari-
ables z1, ... ,z, the sparse resultant ([CLO98] Sec. 7.2) may be applied. Then
Resp, (Ao, kg) = 0 where B denotes the support of f as polynomials in z and T'
the support of the determinant of the toric Jacobian. This was used in [St98].
In analogy one may check for Hopf points by the sparse resultant Resg,m (o, kg)
where H is the support of Res(D,f) or of pg as a polynomial in z. For problems
of moderate size it is possible to construct (multiples) of these sparse resultants
([EC95, EM99]).

For system (2.1) f(z;k) = YsI,Ix¥(z) is clearly polynomial, but the situation
is slightly different. Since affine shifts of im(Y;A) are flow-invariant a steady state
xo is called to stable within xo+ im(Y;A) if the restricted Jacobian has the property
that all eigenvalues have negative real part. Analogously, Hopf points within z¢ +
im(Y;A) are defined. Thus we use an orthonormal basis of im(Y;A) and form a
matrix U € F™? from these vectors where s is the dimension of im(Y; A). Then C' =
UtY,I,1xD,¥(z)U is a polynomial matrix in F[z, k]*>*. Then the resultant from
the first method and the determinant of the bialternate product are polynomials
in F[z,k]. We consider it as a polynomial in F[k][z], as well as U'Y,I,Ix¥(z) as
s polynomials. The linear equations viz — a;,i = 1,...,m — s are polynomials in
F[k,a][x]. Then the sparse resultant is a polynomial in F[k,a]. If system (2.1)
undergoes some Hopf bifurcation for some value of some parameter A = k;; (and
where the remaining k;; are constant) then the sparse resultant vanishes for these
values.

ExAMPLE 4.2. (Example 2.1 simplified) We simplify the H2O example such
that no H»Oy is involved (z4 = 0). Then we compute Res(z,k) and po(z,k)
explicitly in Maple. They turn out to be different. Unfortunately, the formulas are
so complicated that no information can be extracted.

This example shows hat in general this treatment of Hopf bifurcation is not
efficient. Concepts in numerics and in symbolic computation are so different that
methods from numerics can not be transfered without rethinking. Nevertheless the
polynomials Res(z, k) and pg(z,k) are important for theory and thus are used in
the next section.

In [C180] it is suggested to use the minimal generators E; of the convex poly-
hedral cone and the Routh-Hurwitz theorem to determine the stability of all steady
states. This requires further research and a careful investigation with methods from
algebraic geometry and analysis.

5. The number of stable solutions
In the beginning of this section we consider the general polynomial situation:

& = f(z;¢), where f;; = Z axb, i=1,...,r5=1,... k
beB;

with k; + --- + k. = n and supports B; C (Z>0)".
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The theory in [HS95, St94, St98] is based on a special homotopy which
enables to divide the polynomial system into binomial systems which are easily
solved. This is

H;j(z,t) = Z cimbtwi(b),
beB;

where the integer values w;(b) are chosen randomly. Geometrically, the Newton
polytopes are lifted and the lower hull of the lifted polytopes gives a mixed subdi-
vision of the Newton polytopes for generic lifting values. Moreover, generically one
may assume that the mixed cells are even simple mixed.

DEFINITION 5.1. ([HS95], [VG95])
(i) A subdivision of B = (By,...,B;) is a collection S = {Cy,...,Cs} of s cells

C;= (CJ(I), ... ,C](-T)) such that

(a) dim(conv(Cj)) =nfor j=1,...,s,

(b) conv(Cj) N conv(Cy) is a common face of conv(C;) and of conv(C},) for all
pairs C;,Cy € S,

(¢) Uj=, conv(C;) = conv(B).

(ii) The subdivision is called mized if the additional property
(d) >, dim(conv(C’](-)‘))) =n for all cells C; € S holds.
(iii) A cell C; is called mized, if
() dim(conv(CV)) =kr, A=1,...,r.
(iv) A mixed cell Cj is called simple, if

() Tia @)~ =n
holds.
(v) A mixed subdivision is called a simple mized subdivision if all mixed cells are
simple mixed cells.

The idea is that each mixed cell gives a small subsystem of the original system
f(z;¢) = 0 corresponding to a facet of the lower hull. Along the homotopy this
generically continues to solutions of f(z;¢) = 0. Additionally, one may check the
stability for ¢ = 0. If no bifurcation or Hopf bifurcation occurs along the homotopy
then the number of stable, positive solutions at ¢ = 0 equals the number of stable,
positive solutions at ¢t = 1, i.e. for the original system f(z,c) = 0.

Motivated by the signed Newton polytopes a mixed cell of the subdivision is
called alternating in [IR96], if the associated binomial system has precisely one
positive solution.

THEOREM 5.2. Consider f,H as above with generic lifting values w;(b) € Z.
Assume that the induced mized subdivision is simple mized and that the coefficients
¢ are such that the following conditions are satisfied.

(i) The sparse resultant Resg r(c,a,t) has no zero for t € (0,1].
(ii) None of the small systems associated to a facet has infinitely many solutions.
(i) The sparse resultant Resp m(c,a,t) has no zero for ¢t € (0,1].

Then the number of stable positive solutions is the same for t =0 and t = 1.
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PRrOOF. The proof of Bernstein’s theorem in [HS95] is based on Puiseux ex-
pansions

ult'Yl
z(t) = : + higher order terms in ¢,
Ut

where (v, 1) is an inner normal to one of the facets of the lower hull of the lifted
Newton polytopes. The complex solutions of the associated binomial system are
candidates for u. By Hensel’s lemma they give rise to a Puiseux expansion. In
[St94, St98] it was observed that z(t) is real and positive for all ¢ € (0,¢) with ¢
sufficiently small iff u is real and positive. This argumentation uses the coordinate
transformation z; = u;t",1=1,... ,n and

1 .
gij(u,t)zﬂn—iHij(ut'*,t)z Z cab+ hotint, j=1,...,k, i=1,...,r,
beC()

where C' = (C™,...,C") is a simple mixed cell defined by the facet of the lower
hull and m; is the minimal value of the linear functional defined by (v,1) on the
lifted Newton polytope. A positive solution (u,0) gives by the theorem of implicit
functions a branch of positive solutions (u(t),#) for ¢ small which yields a branch
of positive solutions (z(t), t).

By the first two conditions it is guaranteed that the homotopy paths stay
positive, finite and do not undergo a bifurcation. Then the number of positive
solutions of f(z;c) = 0 equals the number of alternating cells.

According stability we observe that generically D, g(u,0) is regular and thus
one may decide on stability. Suppose all eigenvalues have negative real part. Since
the eigenvalues depend C'™ on the parameter ¢ the points (u(¢),t) are stable for
= g(u,t) for sufficiently small ¢. The Jacobian matrices are related as

diag( ) D, H a(1), )iag(1™) = Duglult), ).

Multiplication with positive diagonal matrices from both sides does not change
the signs of the real parts of the eigenvalues. This implies stability of (z(t),t) for
small ¢. One may use the equivalent characterization of stability

E'BJE < =63t JE VEER™,

where J is the Jacobian, 6 > 0 a constant, and B a symmetric positive definite
matrix. With this criterion the desired conclusion is easily observed.

By the third condition there is no Hopf bifurcation along the homotopy. Thus
the number of alternating cells whose positive solution is stable equals the number
of stable steady states of & = f(z;¢). O

In the chemical reaction system (2.1) the situation is slightly different since
there are flow-invariant subspaces. But a modified version is still valid.

THEOREM 5.3. Assume a chemical reaction system
:L-Th

& =Y, Ik ¥(z), ¥(z)= : ’
™

defined by a weighted bipartite graph and o weighted directed graph together with
the conservation relations viz —a;,i = 1,... ,m — rank(Y;I,Ix). Assume that the
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o~

Resppn(k,a,t) =0

a;

FIGURE 6. Schematic picture for Theorem 5.3. The set
{(k,a)|3t € (0,1), Respr(k,a,t) = 0} is shown for which a sys-
tem f with the constants (k,a) admits a bifurcation along the
homotopy. Analogously, {(k,a,t)|t € (0,1), Respu(k,a,t) = 0} is
shown and its projection {(k,a)|3t € (0,1), Respu(k,a,t) = 0}.
The point symbolizes a system f where the associated homotopy
might have a Hopf point, but no bifurcations, see Figure 7.

lifting values of the two supports By = {n;|n; column in Y.} and the m-simplex
By = {0,e1,...,em} are chosen such that the mized subdivision is simple. The
lifting values define a homotopy

oM pw1(m)

Hy(z,t;k) = Y, I I :
2 $@1(7n)
Hyj(z,t;a) = (2119200, . gpt@2(em) )y — a 492(0)

where j = 1,...,m — rank(Y;A). Assume the constants k;; € Ry and parameter
a; are chosen such that the following conditions are satisfied along the homotopy.

(i) The sparse resultant Resp r(k,a,t) has no zero for t € (0,1].
(ii) None of the small systems associated to a facet has infinitely many solutions.
(i) The sparse resultant Resp u(k,a,t) has no zero for t € (0,1]. This sparse
resultant is constructed from the equations YsI, Ik U (z)t“* = 0, the conser-
vation relations vit?> — a;t*2(®) = 0 and the determinant of the bialternate
product of the Jacobian matriz UtY,I,Ix D, ¥ (z)t“1U, where the columns of
U form an orthonormal basis of im(YsI,Ik).
Then the number of stable positive points of YiI,Ix¥(x) = 0 within a subspace
xo + im(Y;A)) N (Ry)™ equals the number of stable positive points of the binomial
systems.

Of course it will be difficult to compute the sparse resultants as polynomials in
k, a, but for given values k;, a, one might evaluate its value numerically.
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Hopf

|
{

1 t

FI1GURE 7. The homotopy for a system corresponding to the point
in Figure 6. There may be a Hopf point, but no bifurcation points.

A mixed cell (C(V,C®) of the supports have graph theoretic meaning. Tt
corresponds to a subgraph of the combined graph.
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