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Abstract

In many applications one is interested to compute transition proba-
bilities of a Markov chain. This can be achieved by using Monte Carlo
methods with local or global sampling points. In this article, we analyze
the error by the difference in the L2 norm between the true transition prob-
abilities and the approximation achieved through a Monte Carlo method.
We give a formula for the error for Markov chains with locally computed
sampling points. Further, in the case of reversible Markov chains, we will
deduce a formula for the error when sampling points are computed glob-
ally. We will see that in both cases the error itself can be approximated
with Monte Carlo methods. As a consequence of the result, we will derive
surprising properties of reversible Markov chains.

1 Introduction

In many applications, one is interested to approximate the term

P[X1 ∈ B | X0 ∈ A]

from a Markov chain (Xn) with stationary measure µ. A solid method to do
this is by using a Monte Carlo method. In this article, we will give the exact
error between this term and the approximated term by the Monte Carlo method.
It will turn out that when we approximate the term with N trajectories with
starting points distributed locally in A, then the squared error in the L2 norm
is exactly given by

1

N
·
(
EµA [Px[X̃1 ∈ B]2]− EµA [Px[X̃1 ∈ B]]2

)
where µA(B) := µ(A ∩ B) is the stationary distribution restricted on A and
(X̃n) is the reversed Markov chain. If the Markov chain(Xn) is reversible and if
we approximate the term with N trajectories with global starting points, then
the squared error in the L2 norm is given by

1

N
·
(
P[X2 ∈ A, X1 ∈ B | X0 ∈ A]

P[X0 ∈ A]
− P[X1 ∈ B | X0 ∈ A]2

)
.

We even give the exact error for a more generalized term which is of interest
whenever one wants to compute a Markov State Model of a Markov operator
based on an arbitrary function space which has application in computational
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drug design [10, 11]. Further, we derive from the result some surprising prop-
erties for reversible Markov chains. For example, we will show that reversible
Markov chains rather return to a set then being in a set, i.e.

P[X2 ∈ A | X0 ∈ A] ≥ P[X0 ∈ A]

for any measurable set A.

2 Basics

We denote with (E,Σ, µ) and (Ω,A,P) probability spaces on any given sets E
and Ω. We call a map p : E × Σ→ [0, 1] Markov kernel if

• A→ p(x,A) is almost surely a probability measure on Σ and

• x→ p(x,A) is measurable for all A ∈ Σ.

We denote with (Xn)n, Xn : Ω→ E a Markov chain on a measurable state space
[8, 6], i.e.there exists a Markov kernel p with

P[X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An] =

∫
A0

. . .

∫
An−1

p(yn−1, An) p(yn−2, dyn−1) . . . p(y0, dy1)µ(dy0)

for any n ∈ N, A0, . . . , An ∈ Σ. In this article, we only need this formula for
n ≤ 2, where it simplifies to

P[X0 ∈ A0, X1 ∈ A1, X2 ∈ A2] =

∫
A0

∫
A1

p(y,A2) p(x, dy)µ(dx)

for any A0, A1, A2 ∈ Σ. We assume throughout this paper that µ is a stationary
measure, i.e. P[Xn ∈ A] = µ(A) for any n ∈ N, A ∈ Σ.

We call a Markov chain (Xn) reversible if∫
A

p(x,B)µ(dx) =

∫
B

p(x,A)µ(dx)

holds for any A,B ∈ Σ. This is equivalent to

P[X0 ∈ A, X1 ∈ B] = P[X0 ∈ B, X1 ∈ A]

for any A,B ∈ Σ. In particular, it implies that µ is a stationary measure. We
denote with L1(µ) the space of all µ-integrable functions [1, Page 99]. It is
known [3, Theorem 2.1] that there exists a Markov operator P : L1(µ)→ L1(µ)
with

||Pf ||L1 = ||f ||L1 and Pf ≥ 0

for all non-negative f ∈ L1(µ) which is associated to the Markov chain, i.e.∫
E

p(x,A) f(x)µ(dx) =

∫
A

(Pf)(x)µ(dx)

for all A ∈ Σ, f ∈ L1(µ). Since µ is a stationary measure, we have P (L2(µ)) ⊂
L2(µ) and we can restrict P onto L2(µ) [2, Lemma 1]. It is known [3] that a
reversed Markov chain (X̃n) exists with

P[X1 ∈ B,X0 ∈ A] = P[X̃1 ∈ A, X̃0 ∈ B]
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and that the Markov operator can be evaluated point-wise as

Pf(x) = Ex[f(X̃1)]. (1)

In the case where (Xn) is reversible, we have that the Markov operator P : L2(µ)→
L2(µ) is self-adjoint [4, Proposition 1.1] and that Xn = X̃n, thus it can be eval-
uated point-wise by

Pf(x) = Ex[f(X1)] (2)

Throughout the paper we note for any probability measure µ the expectation
as

Eµ[f ] =

∫
E

f(x)µ(dx)

and use the shortcut E := EP. We denote with 〈f, g〉µ =
∫
E
f(x) g(x)µ(dx) the

scalar product on L2(µ). In this article, we are interested in the quantity

C :=
〈f, Pg〉µ
〈f, 1〉µ

(3)

where 1 denotes the constant function that is everywhere one and f, g ∈ L2(µ)
with 〈f, 1〉µ 6= 0. For the special case where f(x) = 1A(x) and g(x) = 1B(x)
holds, we obtain

C =
1

µ(A)

∫
B

p(x,A)µ(dx) = P[X1 ∈ B | X0 ∈ A].

There are many applications that involve an approximation of C for different
types of functions f, g which can be found in [10].

3 Computation of the Local Error

To compute the error locally, we rewrite

C =
〈f, Pg〉µ
〈f, 1〉µ

=

∫
Pg(x)µi(dx)

with

µi(A) =
1

〈f, 1〉µ

∫
A

f(x)µ(dx).

This term can be approximated by Monte Carlo methods [5]. To do so, we need
random variables Y, Y1, . . . , YN : Ω → E distributed according to µi. Then we
can approximate the term C by

C̃ :=
1

N

N∑
k=1

Pg(Yk).

The error can be stated as

||C − C̃||2L2(P) =
VAR[Pg(Y )]

N
.
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This follows from E[C̃] = C and

||C − C̃||2L2(P) = VAR[C̃]

=
1

N2

N∑
i=1

VAR[Pg(Y )]

=
VAR[Pg(Y )]

N
.

In this case the variance is simply given as

VAR[Pg(Y )] = E[Pg(Y )2]− E[Pg(Y )]2

= Eµi [Ex[g(X̃1)]2]− Eµi [Ex[g(X̃1)]]2.

In the case where the Markov chain (Xn) is reversible, the variance simplifies
to

VAR[Pg(Y )] = Eµi [Ex[g(X1)]2]− Eµi [Ex[g(X1)]]2.

If further g = 1A, we obtain

VAR[Pg(Y )] = Eµi [Px[X1 ∈ A]2]− Eµi [Px[X1 ∈ A]]2.

3.1 Example

Consider the solution (Yt)t≥0 of the stochastic differential equation

dYt = −∇V (Yt) + σdBt

with σ > 0 and V (x) = (x − 2)2(x + 2)2. The potential V and a realization of
(Yt) are shown in Figure 1. The solution (Yt) is known to be reversible, see [7,
Proposition 4.5]. For any value τ > 0 the family (Xn)n∈N with Xn := Yn·τ is
a reversible Markov chain. Let us partition [−3, 3] into twenty equidistant sets
(Al)l=1,...,20. We compute a matrix M ∈ R20×20 with

M(i, j) = Eµi [Px[X1 ∈ Aj ]2]− Eµi [Px[X1 ∈ Aj ]]2

with µi(B) = µ(Ai ∩ B). In each set Ai we sample points xi1, . . . , x
i
N with the

Metropolis Monte Carlo Method distributed according to µi. For each point xij
we sample M trajectories starting in xij with endpoint yik,j for k = 1, . . . ,M .
We then approximate

Eµi [Px[X1 ∈ Aj ]2] ≈ 1

N

N∑
l=1

(
1

M

M∑
k=1

1Aj (y
i
k,l)

)2

and

Eµi [Px[X1 ∈ Aj ]]2 ≈
(

1

N

N∑
l=1

1

M

M∑
k=1

1Aj (y
i
k,l)

)2

The local sampled points and the matrix M are shown in Figure 2. It shows
that in order to compute the transition probability from 0 to 2 or from 0 to −2,
many trajectories are needed.
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Figure 1: Potential (left) and trajectory (right).
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Figure 2: Local starting points (left) and matrix M (right).

4 Computation of the Global Error

We assume in this section that (Xn) is reversible.
If we denote with

φ(x) := Pf(x) · g(x) · 1

〈f, 1〉µ
,

then one can rewrite

C =
〈f, Pg〉µ
〈f, 1〉µ

=
〈Pf, g〉µ
〈f, 1〉µ

=

∫
E

φ(x)µ(dx).

Analogous to the local case, we can approximate C by Monte Carlo methods.
However, this time we need random variables Y, Y1, . . . , YN : Ω→ E distributed
according to µ. Then we can approximate the term C by

C̃ :=
1

N

N∑
k=1

φ(Yk).

Again, the error can be stated as

||C − C̃||2L2(P) =
VAR[φ(Y )]

N
.

The main result of the article is the following theorem:

Theorem 1 It holds

VAR[φ(Y )] =
Eνf [g2(X1) f(X2)]

E[f(X0)]
− Eνf [g(X1)]2

with

νf (A) =

∫
A

f(X0(ω))∫
Ω
f(X0(ω̃))P(dω̃)

P(dω).
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Figure 3: Global starting points (left) and matrix M (right).

The theorem shows that one can compute the exact error. Before we step into
the proof, we will first show some applications of the theorem.

4.1 Example

In the case where f(x) = 1A(x), g(x) = 1B(x) the variance simplifies to

VAR[φ(Y )] =
P[X2 ∈ A, X1 ∈ B | X0 ∈ A]

P[X0 ∈ A]
− P[X1 ∈ B | X0 ∈ A]2.

We consider again the example from Section 3.1. This time, we compute starting
points globally with the Metropolis Monte Carlo Method distributed according
to µ and we compute the matrix

Mij =
P[X2 ∈ Ai, X1 ∈ Aj | X0 ∈ Ai]

P[X0 ∈ Ai]
− P[X1 ∈ Aj | X0 ∈ Ai]2.

The results are shown in Figure 3. One may note that the entries of the global
variance matrix are significantly higher then of the local variance matrix. The
reason for that is the following. In the global case, the matrix M(i, j) gives
indication how many global trajectories one needs to keep the error of P[X1 ∈
Aj | X0 ∈ Ai] small. However, one can only use those trajectories with starting
points in Ai. But in the local case, we only sample starting points in Ai and
thus we do not need to dismiss any trajectories, this implies that we need less
trajectories and thus it becomes clear that M(i, j) is smaller in the local case.
Especially, the global scheme has difficulties to capture the transition probability
from a transition region (here the area near 0) to a transition region. Which is
in turn no challenge for the local scheme.

5 Inequalities for Reversible Markov Chains

Since VAR[φ(Y )] ≥ 0, we obtain

Eνf [g2(X1) f(X2)]

E[f(X0)]
≥ Eνf [g(X1)]2

for any f, g ∈ L2(µ). If we set g(x) = 1, we obtain

Eνf [f(X2)] ≥ E[f(X0)].
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For the case where f(x) = 1A for A ∈ Σ, this simplifies to

P[X2 ∈ A | X0 ∈ A] ≥ P[X0 ∈ A].

In short: Reversible Markov chains prefer to return to a set instead of being
there. If E = {1, . . . , n} is finite and the Markov chain is described by a tran-
sition matrix P ∈ Rn×n which is reversible according to the probability vector
π ∈ Rn, i.e.

πipij = πjpji,

then the inequality states
P 2(i, i) ≥ πi.

This shows by the way that from

n∑
i=1

P 2(i, i) = 1

it immediately follows
P 2(i, i) = πi.

Another inequality can be obtained as follows. Fix some sets A,B ∈ Σ with
A ∩ B = ∅. Define the function f at point x ∈ E to be the probability that
the Markov chain (Xn) hits next set A before hitting set B when starting in x.
Since the Markov chain is reversible, this is equivalent to the probability that
one visited last set A instead of set B. This function is also known as committor
function [9]. The term Eνf [f(X2)] is then given as the conditioned probability
that one came last from A instead of B, moves for two steps, and returns then
next to A instead of B. The probability for this event is thus always higher,
then E[f(X0)] which represents simply the probability that one came last from
A instead of B.

Example

Consider the finite reversible Markov chain

P =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0


visualized in Figure 4 with stationary measure π =

(
1
3 ,

1
3 ,

1
3

)
. In this case we

have

P 2(i, i) =
1

2
≥ 1

3
= πi.

The probability that one came last from A := {1} instead of B := {2} is given
by

E[f(X0)] =
1

3
· 1 +

1

3
· 0 +

1

3
· 1

2
=

1

2
.

The conditioned probability that one came last from A instead of B, moves for
two steps, and returns then next to A instead of B is given by

Eνf [f(X2)] =
2

3
·
(

1

4
+

1

4
· 1

2
+

1

4
+

1

4
· 0
)

+0+
1

3
·
(

1

4
· 1

2
+

1

4
· 1 +

1

4
· 1

2
+

1

4
· 0
)

=
7

12
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Figure 4: Visualized simple Markov chain

where we have used that νf ({1}) = 2
3 , νf ({2}) = 0 and νf ({3}) = 1

3 . Thus, we
have as predicted

7

12
= Eνf [f(X2)] ≥ E[f(X0)] =

1

2
.

6 The proof

We will now give the proof of Theorem 1. First, note that we have

VAR[φ(Y )] = E[φ2(Y )]− E[φ(Y )]2.

For sets A,B ∈ Σ, we have

E[1A(X0)1B(X1)] = P[X0 ∈ A,X1 ∈ B] =

∫
E

1A(x)

∫
E

1B(y) p(x, dy)µ(dx).

For measurable functions f, g ≥ 0, we then obtain

E[f(X0) g(X1)] =

∫
E

f(x)

∫
E

g(y) p(x, dy)µ(dx). (4)

For φ(x) = Pf(x) g(x) 1
〈f,1〉µ

we first compute

E[φ2(Y )] =
1

〈f,1〉2µ

∫
E

(
Pf(x) g(x)

)2
µ(dx)

=
1

〈f,1〉2µ

∫
E

Pf(x)
(
g2 · Pf

)
(x)µ(dx)

=
1

〈f,1〉2µ

∫
E

f(x)
(
P
(
g2 · Pf

)
(x)
)
µ(dx)

=
1

〈f,1〉2µ

∫
E

f(x)

(∫
E

g2(y)Pf(y) p(x, dy)

)
µ(dx)

leading to

E[φ2(Y )] =
1

〈f,1〉2µ

∫
E

f(x)

∫
E

g2(y)Ey[f(X1)] p(x, dy)µ(dx),

where we have used Equation (2). From Equation (4) we get

E[φ2(Y )] =
1

〈f,1〉2µ
E
[
f(X0) g2(X1)EX1 [f(X1)]

]
.
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Further, according to [6, Equation (3.28) in Chapter 3], we have

EX1
[f(X1)] = E[f(X2) | F1],

where F1 = σ(X0, X1). Thus, we obtain

E
[
f(X0) g2(X1)EX1 [f(X1)]

]
= E

[
f(X0) g2(X1)E[f(X2) | F1]

]
Also note that we have

E[1A E[f(X2) | F1]] = E[1A f(X2)]

for any A ∈ F1. Since f(X0) g2(X1) is measurable according to F1, we obtain

E
[
f(X0) g2(X1)E[f(X2) | F1]

]
= E

[
f(X0) g2(X1) f(X2)

]
.

Thus we finally get

E[φ2(Y )] = Eνf [g2(X1) f(X2)]Eµ[f ]−1

with

νf (A) =

∫
A

f(X0(ω))∫
Ω
f(X0(ω̃))P(dω̃)

P(dω)

for all measurable sets A.
Finally, we have

E[φ(Y )] =
1

Eµ[f ]

∫
E

Pf(x) g(x)µ(dx)

=
1

Eµ[f ]

∫
E

f(x)Pg(x)µ(dx)

=
1

Eµ[f ]

∫
E

f(x)

[∫
E

g(y) p(x, dy)

]
µ(dx)

=
1

Eµ[f ]
E[f(X0)g(X1)]

= Eνf [g(X1)].

This gives us the exact formula for the variance.
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