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1 Introduction

Theoretical and experimental work done over the past decade has demonstrated that primal-
dual path following algorithms are among the best solution methods for linear programming
(LP), quadratic programming (QP), and Linear Complementarity Problems (LCP) (see for
example the excellent monograph of Steve Wright [16] and the recent survey paper [10]).
On one hand primal-dual path following methods form the basis of the best general purpose
practical algorithms, and on the other hand they have interesting theoretical properties. For
example, it has been proved that a large class of primal-dual path following algorithms can
solve linear programming problems with rational data in O(

√
nL) iterations, where L is the

length of a binary coding of the input data and n is the dimension of the problem. This
is the best computational complexity result obtained so far in the literature. Although the
same computational complexity result can be obtained by using other classes of interior-
point methods (for example potential reduction methods), path following algorithms have a
number of other attractive properties that distinguishes them among interior-point methods
(see the recent monographs [14, 16, 17]).

In the present paper we show that the affine invariant Kantorovich Theorem [2] can
be used for constructing a class of path following algorithm for LCP that have O(

√
nL)

iteration complexity. Given a point z that approximates a point z(τ) on the central path
of the LCP with complementarity gap τ , the algorithms compute a parameter θ ∈ (0, 1) so
that z satisfies the hypothesis of the affine invariant form of the Kantorovich Theorem for
the equation defining z((1−θ)τ). It is shown that θ is bounded below by a multiple of n−1/2,
where n is the dimension of the problem. Since the hypothesis of of the Kantorovich Theorem
is satisfied the sequence generated by Newton’s method, or the simplified Newton method,
with starting point z will converge to z((1− θ)τ). We show that the number of Newton (or
simplified Newton) steps required to obtain an acceptable approximation of z((1 − θ)τ) is
bounded above by a number independent of n. Therefore a point with complementarity gap
less than ε can be obtained in at most O(

√
n log(ε0/ε)) Newton and simplified Newton steps,

where ε0 is the complementarity gap of the starting point. For problems with rational input
data of bitlength L this implies that an exact solution can be obtained in at most O(

√
nL)

iterations plus a rounding procedure involving O(n3) arithmetic operations (see [16]).
The use of Newton method techniques in the study of interior point methods goes back

to the celebrated paper of Renegar [12]. The affine invariant Kantorovich theorem was used
by Renegar and Shub [13] to prove O(

√
nL)-iteration complexity for some Newton based

interior point methods for LP and QP. We note that Renegar and Shub used the affine
invariant Kantorovich Theorem to prove a variant of Smale’s theorem [15], which was then
applied to analyze the respective interior point methods . The approach of the present paper
is different in that it uses the Kantorovich Theorem directly. More importantly, we compute
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the optimal decrease of the duality gap that satisfies the hypothesis of the Kantorovich
Theorem instead of using a fixed decrease of the duality gap.

The paper is organized as follows. In Section 2 we state the affine invariant Kantorovich
Theorem for general nonlinear equations in IRn. In Section 3 we show how the Kantorovich
Theorem can be used to construct a path-following algorithm for linear complementarity
problems. Section 4 contains some technical lemmas that are used in the proof of our main
result. In the last section we prove that our path following algorithm has O(

√
nL)-iteration

complexity. We show that the parameters of the algorithm can be determined in such a
way that only one Newton step is needed each time the complementarity gap is decreased.
Cases where a given number of Newton steps or simplified Newton steps are needed are also
discussed.

Conventions. We denote by IN the set of all nonnegative integers. IR, IR+, IR++ denote the
set of real, nonnegative real, and positive real numbers respectively. For any real number γ,
d γ e denotes the smallest integer greater or equal to γ. Given a vector x, the corresponding
upper case symbol denotes as usual the diagonal matrix X defined by the vector. The symbol
e represents the vector of all ones, with dimension given by the context.

We denote component-wise operations on vectors by the usual notations for real numbers.
Thus, given two vectors u, v of the same dimension, uv , u/v , etc. will denote the vectors
with components uivi , ui/vi , etc. This notation is consistent as long as component-wise
operations always have precedence in relation to matrix operations. Note that uv ≡ Uv
and if A is a matrix, then Auv ≡ AUv, but in general Auv 6= (Au)v. Also if f is a scalar
function and v is a vector, then f(v) denotes the vector with components f(vi). For example
if v ∈ IRn

+, then
√

v denotes the vector with components
√

vi , and 1-v denotes the vector
with components 1− vi . Traditionally the vector 1− v is written as e− v , where e is the
vector of all ones. Inequalities are to be understood in a similar fashion. For example if
v ∈ IRn then v ≥ 3 means that vi ≥ 3, i = 1, . . . , n. Traditionally this is written as v ≥ 3 e.
If ‖ . ‖ is a vector norm on IRn and A is a matrix then the operator norm induced by ‖ . ‖
is defined by ‖A ‖ = max{‖Ax ‖ ; ‖x ‖ = 1}. As a particular case we note that if U is the
diagonal matrix defined by the vector u, then ‖U ‖2=‖u ‖∞. Finally we want to introduce
a less standard notation. If x, s ∈ IRn then the vector z ∈ IR2n obtained by concatenating x
and s will be denoted by d x, s c, i.e.,

z = d x, s c =
[

x
s

]
=
[
xT , sT

]T
. (1.1)
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2 The Kantorovich Theorem

The celebrated Kantorovich Theorem gives sufficient conditions for the existence and unique-
ness of a solution of nonlinear operator equation in a Banach space and shows than under
that condition the sequences generated by Newton’s method and the simplified Newton
method converge to the solution. In what follows we will present this theorem only in a fi-
nite dimensional setting. For our application it is essential that we use the “affine-invariant”
version of the Kantorovich Theorem whose importance was stressed in the paper of Deufl-
hard and Heindl [2]. As it will become apparent from Section 3, the traditional form of the
Kantorovich Theorem, as presented for example in the classical monograph of Ortega and
Rheinboldt [7], is inadequate for our application.

Let F : D ⊂ IRp → IRp be a nonlinear operator defined on a domain D of the p-
dimensional linear space IRp with values in IRp. Let ‖ . ‖ be a given norm on IRp, and let z
be a point of D such that the closed ball of radius ρ centered at z,

B(z, ρ) := {y ∈ IRp : ‖y − z‖ ≤ ρ}, (2.1)

is included in D, i.e.,
B(z, ρ) ⊂ D . (2.2)

We assume that the Jacobian F ′(z) is nonsingular and that the following affine-invariant
Lipschitz condition is satisfied

‖F ′(z)−1(F ′(y)− F ′(y))‖ ≤ ω‖y − y‖, ∀y, y ∈ B(z, ρ). (2.3)

The Kantorovich Theorem essentially states that if the quantity

α := ‖F ′(z)−1F (z)‖ (2.4)

is small enough, in the sense that

κ := αω ≤ 1

2
(2.5)

then there is a z∗ with F (z∗) = 0 and the sequences produced by Newton’s method

z0
N = z, zk+1

N = zkN − F ′(zkN )−1F (zkN ), k = 0, 1, . . . (2.6)

and by the simplified Newton method

z0
S = z, zk+1

S = zkS − F ′(z)−1F (zkS), k = 0, 1, . . . (2.7)

are well defined and converge to z∗. More precisely we have
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Theorem 2.1 (The Kantorovich Theorem) Let F : D ⊂ IRp → IRp be a differentiable
mapping and let z ∈ D be such that F ′(z) is nonsingular. Assume that conditions (2.3) –
(2.5) are satisfied and that the radius ρ is large enough in the sense that

ρ̂ :=
1−
√

1− 2κ

ω
≤ ρ. (2.8)

Then:

1. F has a zero z∗ in the closed ball B(z, ρ̂);

2. The open ball B(z, ρ̌) with radius

ρ̌ :=
1 +
√

1− 2κ

ω
(2.9)

does not contain any zero of F different from z∗;

3. The iterative procedures (2.6) and (2.7) produce sequences belonging to the open ball
B(z, ρ̂) that converge to z∗;

4. If κ < 1/2 then for Newton’s method we have the following estimates

∥∥∥ zkN − z∗
∥∥∥ ≤ 2β λ2k

1− λ2k
, (2.10)

with

β =

√
1− 2κ

ω
, λ =

1−
√

1− 2κ − κ

κ
, k = 1, 2, . . . , (2.11)

and for the simplified Newton methods we have

∥∥∥ zkS − z∗
∥∥∥ ≤ 2 β λ2

1− λ2
ξk−1, k = 1, 2, . . . . (2.12)

where
ξ = 1−

√
1− 2κ . (2.13)

Proof. The above theorem is essentially the theorem presented in [2] with the error
bounds (2.10) from [9]. The only thing that remains to be proved is (2.12). In order to prove
these error bounds we write

zk+1
S − z∗S = −F ′(z)−1

[
F (zkS)− F (z∗S)− F ′(z)(zkS − z∗S)

]
.
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Using (2.3) we deduce that

∥∥∥ zk+1
S − z∗S

∥∥∥ ≤ 1

2
ω(
∥∥∥ zkS − z

∥∥∥+ ‖ z∗S − z ‖)
∥∥∥ zkS − z∗S

∥∥∥ .

Since zkS , z
k−1
S ∈ B(z, ρ̂) it follows that

∥∥∥ zk+1
S − z∗S

∥∥∥ ≤ ωρ̂
∥∥∥ zkS − z∗S

∥∥∥ = ξ
∥∥∥ zkS − z∗S

∥∥∥ , k = 1, 2, . . . .

Using (2.10) for the first Newton step we obtain

∥∥∥ zkS − z∗
∥∥∥ ≤

∥∥∥ z1
S − z∗

∥∥∥ ξk−1 ≤ 2 β λ2

1− λ2
ξk−1, k = 1, 2, . . . .

It is known (see [9]) that the estimates (2.10) are sharp in the sense that for any α and
ω with α ω < .5 there is a function that satisfies the hypothesis of the Kantorovich Theorem
for which the estimates are verified with equality for all k. For the traditional form of the
Kantorovich sharp apriori bounds were obtained in [8] and [3]. The equivalence between the
bounds of [8] and [3] is proved in [9].

The estimates (2.12) are not sharp in this sense described above, but they are sufficiently
good for our purpose. The sharp estimates for the simplified Newton method given in [9]
are not in explicit form and therefore they are more difficult to use in complexity analysis.
In most textbooks (e.g. [7]) the Lipschitz condition (2.3) is replaced by the following two
conditions:

‖F ′(z)−1‖ ≤ ζ,

‖(F ′(y)− F ′(w))‖ ≤ η‖y − w‖, ∀y, w ∈ B(z, ρ).

If these conditions holds then (2.3) is clearly satisfied with ω = ζη. However, in our appli-
cation estimating ζ and η would be much more difficult and the product ζη would severely
overestimate ω which would make it impossible to obtain the desired complexity result.

3 The Linear Complementarity Problem

Given two matrices Q, R ∈ IRn×n and a vector b ∈ IRn, the horizontal linear complementarity
problem (HLCP) consists in finding a pair of vectors (x, s) such that

xs = 0
Qx + Rs = b

x, s ≥ 0.
(3.1)
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The standard (monotone) linear complementarity problem (LCP) is obtained by taking R =
−I and Q positive semidefinite. The linear programming problem (LP) and the quadratic
programming problem (QP) can be formulated as an HLCP. Therefore HLCP provides a
convenient and general framework for studying interior point methods.

Throughout this paper we assume that the HLCP (3.1) is monotone in the sense that:

Qu + Rv = 0 implies uTv ≥ 0, for any u, v ∈ IRn . (3.2)

This condition is satisfied if the HLCP is a reformulation of a QP and for many other inter-
esting classes of problems (see the excellent monograph [1]). If the HLCP is a reformulation
of a LP then the following stronger condition holds

Qu + Rv = 0 implies uTv = 0, for any u, v ∈ IRn . (3.3)

In this case we say that the HLCP is skew-symmetric. Since in the skew-symmetric case we
can often obtain sharper estimates we are going to consider this particular case as well in
this paper.

Since HLCP is uninteresting for n = 1 we will assume throughout this paper that n ≥ 2.
It is known (see [6]) that if the HLCP has an interior point (i.e., there is (x, s) ∈ IRn

++ ×
IRn

++ satisfying Qx + Rs = b), then for any parameter τ > 0 the nonlinear system:

xs = τe
Qx + Rs = b

x, s ≥ 0,
(3.4)

where e = (1, 1, . . . , 1)T is the vector of all ones, has a unique positive solution z(τ) =
d x(τ), s(τ) c. The set of all such solutions defines the central path C of the HLCP. It can be
proved that (x(τ), s(τ)) converges to a solution of the HLCP as τ → 0. Therefore one could
numerically solve the HLCP by following the central path as τ → 0. An implementation of
this approach for solving the HLCP is called a path following algorithm.

At a basic step of a path following algorithm an approximation (x, s) of (x(τ), s(τ)) has
already been computed for some τ > 0. Then the algorithm determines a smaller value of
the central path parameter

τ+ = (1− θ)τ, (3.5)

where the value θ ∈ (0, 1) is computed by some procedure. Finally one computes an approx-
imation (x+, s+) of (x(τ+), s(τ+)) and the procedure is repeated with (x+, s+, τ+) instead of
(x, s, τ).

In what follows we will show how the above basic step of a path following algorithm
can be implemented by using the Kantorovich theorem. It is convenient to introduce the
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notations

z =
[

x
s

]
, z(τ) =

[
x(τ)
s(τ)

]
, z+ =

[
x+

s+

]
, z(τ+) =

[
x(τ+)
s(τ+)

]
, etc. (3.6)

For any σ > 0 we define the nonlinear operator

Fσ(z) =
[

xs− σe
Qx + Rs− b

]
. (3.7)

The equation (3.4) defining z(τ) becomes

Fτ (z) = 0, (3.8)

while the equation defining z(τ+) can be written as

F(1−θ)τ (z) = 0 . (3.9)

We assume that the starting point z belongs to the interior of the feasible set of the
HLCP

F0 := {z = d x, s c ∈ IR2n
++ ; Qx + Rs = b}. (3.10)

Since both Newton’s method and the simplified Newton method solve linear equations ex-
actly, all the points generated by those methods will satisfy the linear equation from (3.10).
Moreover the iterates will remain strictly positive, and hence will belong to F0.

Suppose that the starting point z ∈ F0 approximates in a certain sense a point z(τ) on
the central path for some given τ > 0. We want to determine the largest possible parameter
θ ∈ (0, 1) such that z satisfies the Kantorovich Theorem for (3.9). In order to do that we
have to estimate the quantities α and ω that appear in Theorem 2.1.
Since the Jacobian of Fσ does not depend on σ we will denote

F ′(z) := F ′σ(z) =
[

S X
Q R

]
. (3.11)

In order to estimate the Lipschitz constant ω from the Kantorovich Theorem we notice that

L := F ′(z)−1(F ′(y)− F ′(y)) = F ′(z)−1
[

V U
0 0

]
, (3.12)

where U, V are the diagonal matrices corresponding to the n-dimensional vectors u, v defined
by

du, v c := y − y.
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For any z ∈ IR2n we denote

t = Lz, t = d tx, ts c, z = d zx, zs c . (3.13)

It follows that the n-dimensional vectors tx, ts are solutions of the linear system

stx + xts = uzs + vzx
Qtx + Rtv = 0.

From Lemma 4.1 (to be proved in the following section) it follows that

‖Dtx‖2
2 + ‖D−1ts‖2

2 ≤ (min xs)−1‖uzs + vzs‖2
2, (3.14)

where D is the diagonal matrix given by

D = X−1/2S1/2. (3.15)

Therefore it is convenient to introduce the following norm on IR2n:

‖q‖z :=
√
‖Dqx‖2

2 + ‖D−1qs‖2
2, ∀q = d qx, qs c ∈ IR2n . (3.16)

This norm depends on the current point z and therefore it is called a local norm. The
significance of local norms to interior point methods theory is beautifully illustrated in the
very recent monograph of Renegar [11].

We majorize the right-hand side of (3.14) noticing that by using a two-dimensional Cauchy
inequality and the above definition of the norm we can write

‖uzs + vzx‖2 ≤ ‖uzs‖2 + ‖vzx‖2

≤ ‖Du‖2‖D−1zs‖2 + ‖D−1v‖2‖Dzx‖2

≤
√
‖Du‖2

2 + ‖D−1v‖2
2

√
‖Dzx‖2

2 + ‖D−1zs‖2
2

= ‖y − w‖z‖z‖z .

Now from (3.12),(3.13),(3.14) and (3.17) we deduce that

‖Lz‖z ≤ (min xs)−1/2‖y − w‖z‖z‖z .

Hence the operator norm of L induced by our vector norm satisfies

‖L‖z ≤ (min xs)−1/2‖y − w‖z .

Thus we have obtained the following result:
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Lemma 3.1 If z ∈ F0 and F ′(z) is defined by (3.11) then

‖F ′(z)−1(F ′(y)− F ′(w))‖z ≤ ω(z)‖y − w‖z, ∀y, w ∈ IR2n

where the Lipschitz constant ω(z) is given by

ω(z) =
1√

min xs
. (3.17)

In order to verify the hypothesis of the Kantorovich Theorem for the equation Fτ (z) = 0
we also need to consider the quantity

α(z, τ) := ‖F ′(z)−1Fτ (z)‖z . (3.18)

It is convenient to introduce the Kantorovich measure of proximity

κ(z, τ) := α(z, τ)ω(z) (3.19)

as well as the optimality measure (the normalized primal-dual gap)

µ := µ(z) :=
xT s

n
. (3.20)

If for a given interior point z and a given positive parameter τ we have κ(z, τ) ≤ .5 then
the Kantorovich Theorem is satisfied and the sequences generated by Newton’s method and
the simplified Newton method with starting point z will converge to the point z(τ) on the
central path. We are ready to describe now our algorithm.

ALGORITHM 1
Given 0 < κ1 < κ2 < .5 , ε > 0, and z0 ∈ F0 satisfying κ(z0, µ(z0)) ≤ κ1;
Set k ← 0 and τ0 ← µ(z0) ;
repeat(outer iteration)

Set (z, τ)← (zk, τk) , z ← zk;
Determine the largest θ ∈ (0, 1) such that κ(z, (1− θ)τ) ≤ κ2;
Set τ ← (1− θ)τ , z ← z;
repeat(inner iteration)

Set z ← z − F ′(z)−1Fτ (z), for Newton’s method
(or z ← z − F ′(z)−1Fτ (z) for the simplified Newton);

until κ(z, τ) ≤ κ1;
Set (zk+1, τk+1)← (z, τ);

until (xk+1)T sk+1 ≤ ε.
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In Section 5 we will prove that the parameter θ computed in the outer iteration is bounded
below by a quantity of the form χ/

√
n, where χ is a positive quantity depending only on κ1

and κ2. Since the hypothesis of the Kantorovich Theorem is satisfied the inner iteration will
terminate in finite number of steps. Therefore the above algorithm is globally convergent.
More precisely we will prove that the inner iteration will terminate in at most m steps where
the number m depends only on κ1 and κ2. Therefore the total number of Newton and
simplified Newton steps required for Algorithm 1 is at most O(

√
n log((x0 T s0)/ε).

4 Some Technical Results

In this section we present some simple inequalities that will be used in the proof of our main
result. First we bound the size of the solution of the following linear system.

su + xv = a
Qu + Rv = 0 (4.1)

where z = d x, s c ∈ IR2n
++ and a ∈ IRn are given vectors. In order to treat together the

monotone case and the skew-symmetric case it is convenient to introduce the following
notation.

ς :=
{ √

2, if HLCP is monotone
1 if HLCP is skew-symmetric

. (4.2)

Lemma 4.1 The solution of (4.1) satisfies

1

ς

∥∥∥∥∥
a√
xs

∥∥∥∥∥
2

≤
∥∥∥∥
[

u
v

] ∥∥∥∥
z
≤
∥∥∥∥∥

a√
xs

∥∥∥∥∥
2

.

Proof. By dividing the first equation in (4.1) with
√

xs we obtain:

Du + D−1v = a/
√

xs,

where the diagonal matrix D is given by (3.15). It follows that

‖Du ‖2
2 +

∥∥∥D−1v
∥∥∥

2

2
+ 2uTv =

∥∥∥ a/
√

xs
∥∥∥

2

2
.

The desired inequalities are obtained by noticing that in the skew-symmetric case we have
uTv = 0 while in the monotone case we have

0 ≤ uTv ≤ 2 ‖Du ‖2

∥∥∥D−1v
∥∥∥

2
≤ ‖Du ‖2

2 +
∥∥∥D−1v

∥∥∥
2

2
.
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The above lemma allows us to establish a relationship in between α(z, τ) defined in (3.18)
and the proximity measure

δ(z, τ) :=
∥∥∥∥
√

τ

xs
−
√

xs

τ

∥∥∥∥
2

(4.3)

considered in [4] (see also [14]).

Corollary 4.2 For any z ∈ IR2n
++ and any τ > 0 we have

√
τ

ς
δ(z, τ) ≤ α(z, τ) ≤ √τ δ(z, τ),

where ς is given by (4.2).

Now we establish a relation between δ(z, τ) and δ(z, µ(z)).

Lemma 4.3 The following identity holds for any z ∈ IR2n
++ and any τ > 0

δ2(z, τ) =
τ

µ
δ2(z, µ(z)) +

(τ − µ)2

τµ
n.

Proof. The above identity can be easily verified by simplifying the right hand side.

The following obvious inequality will be often used in the sequel

ω(z) ≥ (µ(z))−1/2 . (4.4)

Corollary 4.4 For any z ∈ IR2n
++ and any τ > 0 with ςκ(z, τ) <

√
n there holds

(1− ς κ(z, τ)√
n

)µ(z) ≤ τ ≤ (1 +
ς κ(z, τ)√

n
)µ(z) , (4.5)

and

δ2(z, µ(z)) ≤ (ςκ(z, τ))2

[
1 +

(ςκ(z, τ)2

n− (ςκ(z, τ))2

]
, (4.6)

where ς is given by (4.2).
If HLCP (3.1) is skew-symmetric we also have

δ2(z, µ(z)) ≤ κ2(z, µ(z)) . (4.7)
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Proof. By taking a = τe−xs in Lemma 4.1 and using Lemma 4.3 together with (4.4) we
deduce that

ς2κ2(z, τ) = ς2ω2(z)α2(z, τ) ≥ τ ω2(z)δ2(z, τ) ≥ τ

µ
δ2(z, τ)

=
τ 2

µ2
δ2(z, µ(z)) +

(τ − µ)2

µ2
n . (4.8)

The above inequality implies

ς2κ2(z, τ) ≥ (τ − µ)2

µ2
n (4.9)

and

δ2(z, µ(z)) ≤ (ςκ(z, τ))2 +
µ2 − τ 2

τ 2
(ςκ(z, τ))2 − (τ − µ)2

τ 2
n . (4.10)

Inequality (4.9) clearly implies (4.5). By denoting

t = (ςκ(z, τ))2, τ = (1− γ)µ, where γ < 1

we have

µ2 − τ 2

τ 2
(ςκ(z, τ))2 − (τ − µ)2

τ 2
n =

(1− (1− γ)2)t− γ2 n

(1− γ)2
=: f(γ) .

The derivative of the function above is

f ′(γ) =
2 (n γ − t)

(γ − 1)3 .

We deduce that the maximum of f(γ) for γ ∈ (−∞, 1) is attained at γ = t/n and we have
f(t/n) = t2/(n− t). Inequality (4.6) follows from this observation and (4.10). Finally, (4.7)
is obtained by setting ς = 1 and τ = µ in (4.6).

In the following lemma we obtain bounds on the elements of xs in terms of the proximity
δ(z, µ(z)). The result follows from Lemma 3.2 in [5], but we give a simple proof for the sake
of completeness.

Lemma 4.5 If
δ2(z, µ(z)) ≤ 2η

then
1

1 + η +
√

2η + η2
≤ xs

µ
≤ 1 + η +

√
2η + η2 .
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Proof. We first note that

δ2(z, µ(z)) =
n∑

i=1

µ

xisi
− n .

We denote by ν an arbitrary entry of µ/(xs). Without loss of generality we assume ν =
µ/(x1s1). Then by using the inequality between the arithmetic and the harmonic mean we
can write

2η ≥ ν − n +
n∑

i=2

µ

xisi
≥ ν − n +

(n− 1)2µ
∑n
i=2 xisi

= ν − n +
(n− 1)2µ

nµ− µ
ν

= ν − n +
(n− 1)2ν

nν − 1
.

It follows that ν satisfies the following quadratic inequality:

nν2 − 2(1 + η)nν + 2η + n ≤ 0.

Hence ν must lie between the roots of the corresponding quadratic equation, i.e.,

1 + η −
√

2η + η2 − 2η/n ≤ ν ≤ 1 + η +
√

2η + η2 − 2η/n .

This implies the following bounds that are independent of n

1 + η −
√

2η + η2 ≤ ν ≤ 1 + η +
√

2η + η2 ,

and the proof is complete by noticing that the lower bound above is equal to the inverse of
the upper bound.

As an immediate consequence of Corollary 4.4 and Lemma 4.5 we obtain the following
result.

Corollary 4.6 For any z = d x, s c ∈ IR2n
++ and any τ > 0 with ςκ(z, τ) <

√
n we have

ψ−1 ≤ xs

µ(z)
≤ ψ ,

where
ψ = ψ(z, τ) = 1 + ϑ +

√
2ϑ + ϑ2 , (4.11)

ϑ = ϑ(z, τ) =
1

2
(ςκ(z, τ))2

[
1 +

(ςκ(z, τ))2

n− (ςκ(z, τ))2

]
, (4.12)

14



          

and ς is defined by (4.2).
If HLCP (3.1) is skew-symmetric we also have

%−1 ≤ xs

µ(z)
≤ % ,

where
% = %(z) = 1 + .5 κ2(z, µ(z)) +

√
κ2(z, µ(z)) + .25 κ4(z, µ(z)) . (4.13)

We end this section by finding an upper bound for κ(z, τ) in terms of the proximity
measure

δK(z, τ) :=
‖xs− τ e ‖2

τ
(4.14)

considered in [6].

Lemma 4.7 For any (z, τ) ∈ IR2n
++ × IR++ with δK(z, τ) < 1 we have

κ(z, τ) ≤ δK(z, τ)

1− δK(z, τ)
.

Proof. From the obvious relation

xs = τ − (τ − xs) ≥ τ − ‖ τ − xs ‖2 = τ(1− δK(z, τ))

we deduce that

ω(z) ≤ 1√
τ(1− δK(z, τ))

.

Also, by using (4.3) and Corollary 4.2 we obtain

α(z, τ) ≤ √τδ(z, τ) ≤ ω(z) ‖ τe− xs ‖2 = ω(z)δK(z, τ)τ .

Since κ(z, τ) = ω(z)α(z, τ) we obtain the desired bound.

5 Polynomial Complexity

In this section we return to Algorithm 1 and prove that it is globally convergent for any
choice of parameters 0 < κ1 < κ2 < .5 . More precisely we will show that at each outer
iteration the duality gap is reduced by a factor of 1−χ/

√
n where χ is a constant depending

only on κ1 and κ2. Also we will prove that each inner iteration will terminate in at most
m steps, where m depends only on κ1 and κ2. This implies that Algorithm 1 has O(

√
n)L

iteration complexity.
First we prove that all the points z produced by Algorithm 1 are strictly feasible .

15



         

Proposition 5.1 All the points z generated by Algorithm 1 belong to F0. Moreover if HLCP
(3.1) is monotone then

(1−
√

2 κ1√
n

)µ(zk) ≤ τk ≤ (1 +

√
2 κ1√
n

)µ(zk) , (5.1)

and if HLCP (3.1) is skew-symmetric then τk = µ(zk) .

Proof. First we prove that all points generated by Algorithm 1 are strictly positive. Since
z0 ∈ F0 we have z > 0 when k = 0. We also have κ(z) ≤ κ1. According to the Kantorovich
Theorem all the points z generated in the inner iteration satisfy

‖ z − z ‖z <
1−√1− 2 κ1

ω(z )
. (5.2)

We will prove that
‖ z − z ‖z < (ω(z ))−1 implies z > 0.

If z = d x, s c and z = d x, s c we can write

x = x− (x − x) = x
(
e− x −1(x − x)

)
≥
(
1−

∥∥∥ x −1(x − x)
∥∥∥
∞

)
x

Since
∥∥∥ x −1(x − x)

∥∥∥
∞

=
∥∥∥ (x s )−1/2D(x − x)

∥∥∥
∞

≤ ω(z )
∥∥∥D (x − x)

∥∥∥
∞
≤ ω(z ) ‖ z − z ‖z < 1

we deduce that x > 1. The positivity of s is proved similarly.
We will prove now that any z = d x, s c produced during the inner iteration satisfies

Q x + R s = b .

Since z ∈ F the above equality is certainly true for z = z. This property is preserved by the
Newton or the simplified Newton steps. For example a Newton step z+ = z − F ′(z)−1Fτ (z)
can be written as

su + xv = τe− xs
Qu + Rv = 0

z+ = z + du, vc, where z = dx, sc, z+ = dx+, s+c (5.3)

and we have

Q x+ + R s+ = Q x + R s + Q u + R v = Q x + R s = b .
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A similar argument applies if z+ is produced by a simplified Newton step z+ = z −
F ′(z)−1Fτ (z):

su + xv = τe− xs
Qu + Rv = 0

z+ = z + du, vc, where z = dx, sc, z = dx, sc, z+ = dx+, s+c . (5.4)

An induction argument completes our claim that all points generated by Algorithm 1 are
strictly feasible.

We prove now the second part of our proposition. Since (5.1) is an immediate consequence
of Corollary 4.5 we only have to prove that if HLCP is skew-symmetric, then

τk = µ(zk), k = 0, 1, . . . (5.5)

For k = 0 this is true because Algorithm 1 starts with τ0 = µ(z0). Since τ is updated in
the outer iteration, at the beginning of the inner iteration we no longer have τ = µ(z).
However we will prove that this property is restored after the first Newton step and then
it is preserved throughout the inner iteration by subsequent Newton or simplified Newton
steps. After a Newton step of the form (5.3) we have

x+s+ = xs + (su + xv) + uv = τe + uv .

Since uTv = 0 it follows that µ(z+) = τ .
After a simplified Newton step of the form (5.3) there holds

x+s+ = xs + (su + xv) + uv = τe + (s− s)u + (x− x) . (5.6)

Let us denote u = x − x and v = s − s. Since z, z ∈ F we have Qu + Rv = 0. Therefore
uTv = 0. Also Q(u− u) + R(v − v) = 0 and we can write

0 = (u− u)T (v − v) = uTv − (uTv + vTu) + uTv = −(uTv + vTu) .

The above inequality and (5.6) imply µ(z+) = τ .

At each step of the outer iteration we are given (z, τ) ∈ IR2n
++ × IR++ with κ(z, τ) ≤ κ1

and we want to determine the largest θ ∈ (0, 1) such that κ(z, (1− θ)τ) ≤ κ2 The following
Lemma will enable us to find a lower bound for this θ.

Lemma 5.2 For any (z, τ, θ) ∈ IR2n
++ × IR++ × (0, 1) with ς κ(z, τ) <

√
n we have

κ(z, (1− θ)τ) ≤ κ(z, τ) + θ
√

ψ(z, τ)
√

(ς κ(z, τ))2 + n ,

17



       

where ς and ψ are defined by (4.2) and (4.11) respectively.
If HLCP (3.1) is skew-symmetric we also have

κ(z, (1− θ)τ) ≤ κ(z, τ) + θ
√

%(z)
√

(ς κ(z, τ))2 + n ,

where % is defined by (4.13)

Proof. For any θ ∈ (0, 1) we have

α(z, (1− θ)) = ‖ du(θ), v(θ)c ‖z ,

where du(θ), v(θ)c is the solution of the linear system

su(θ) + xv(θ) = (1− θ)τ − xs
Qu + Rv = 0 .

It follows that
du(θ), v(θ)c = du, vc+ θdǔ, v̌c ,

where
su + xv = τ − xs

Qu + Rv = 0

and
sǔ + xv̌ = −τ

Qu + Rv = 0 .

Using (4.8) we obtain

‖ dǔ, v̌c ‖2
z ≤

n∑

i=1

τ 2

xi si
=

τ 2

µ

n∑

i=1

µ

xi si
=

τ 2

µ

[
δ2(z, µ) + n

]

= µ

[
τ 2

µ2
δ2(z, µ) +

τ 2

µ2
n

]
= µ

[
(ς κ(z, τ))2 +

τ 2 − (τ − µ)2

µ2

]

= µ
[
(ς κ(z, τ))2 +

(
1− (1− τ/µ)2

)
n
]
≤ µ

[
(ς κ(z, τ))2 + n

]
.

Since ‖ du, vc ‖z = α(z, τ), we can write

α(z, (1− θ)τ) ≤ ‖ du, vc ‖z + θ ‖ dǔ, v̌c ‖z ≤ α(z, τ) +
√

µ θ
√

(ς κ(z, τ))2 + n .

Our claim is obtained by multiplying with ω(z) and using Corollary 4.6.

18



         

Now we are in the position to find an explicit lower bound for θ in terms of κ1, κ2,
and
√

n. In order to treat the monotone case and the skew-symmetric case together it is
convenient to introduce the following notation for i = 1, 2

ψi :=





1 + ϑi +
√

2ϑi + ϑ2
i , if HLCP is monotone

1 + ηi +
√

2ηi + η2
i , if HLCP is skew-symmetric

(5.7)

where,

ϑi = κ2
i

(
1 +

κ2
i

1− κ2
i

)
, ηi =

κ2
i

2
, i = 1, 2 . (5.8)

Corollary 5.3 The parameter θ determined at each outer iteration of Algorithm 1 satisfies
the inequality

θ ≥ κ2 − κ1√
ψ1

√
ς2 κ2

1 + n
≥ χ√

n
,

where

χ = χ(κ1, κ2) =

√
2 (κ2 − κ1)√

2 + ς2κ1
2
√

ψ1

, (5.9)

with ς and ψ1 defined by (4.2) and (5.7) respectively.

Proof. The corollary is an immediate consequence of Lemma 5.2.

In next theorem we will obtain a bound on the number of steps of the inner iteration
that depends only on κ1 and κ2.

Theorem 5.4 If Newton’s method is used in Algorithm 1 then each inner iteration termi-
nates in at most N (κ1, κ2) steps, where

N (κ1, κ2) = d log2


 log2(ζN )

log2

(
(1−√1− 2κ2 − κ2)/κ2

)


 e , (5.10)

and

ζN =
(1− ς κ2/

√
2)(κ2

2 − (1−√1− 2κ2 − κ2)
2 ) κ1

2
√

2 κ2
2

√
1− 2κ2 (

√
ψ2 + 1−√1− 2κ2 ) (1 + κ1)

.

If the simplified Newton method is used in Algorithm 1 then each inner iteration terminates
in at most S(κ1, κ2) steps

S(κ1, κ2) = d log2(ζS)

log2(1−
√

1− 2κ2 )
+ 1 e , (5.11)
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and

ζS =
(1− ς κ2/

√
2)(κ2

2 − (1−√1− 2κ2 − κ2)
2 ) κ1

2
√

2
√

1− 2κ2 (1−√1− 2κ2 − κ2)2 (
√

ψ2 + 1−√1− 2κ2 ) (1 + κ1)
.

Proof. The inner iteration starts with a vector z ∈ F0 and a parameter τ ∈ IR++ such
that

κ(z, τ) ≤ κ2 (5.12)

and it terminates when a point z is obtained such that

κ(z, τ) ≤ κ1 . (5.13)

Note that z and τ are constant during the inner iteration. Since we suppose that κ2 < .5,
it follows that the sequences produced by either Newton’s method or the simplified Newton
method with starting point z converge to the solution z(τ) of the equation Fτ (z) = 0. In
what follows we will prove that (5.13) is satisfied provided ‖ z − z(τ) ‖z is small enough.
From Lemma 4.7 it follows that (5.13) is satisfied if

δK(z, τ) ≤ κ1

1 + κ1

. (5.14)

With
z = dx, sc, z = dx, sc, D = X −1/2S 1/2

we can write

‖xs− τe ‖2 = ‖xs− x(τ)s(τ) ‖2 = ‖xs− xs(τ) + xs(τ)− x(τ)s(τ) ‖2

=
∥∥∥D x D −1 s + D x D −1 s(τ)−D x(τ) D −1 s(τ)

∥∥∥
2

=
∥∥∥D x D −1 (s− s(τ)) + D −1 s(τ) D (x− x(τ))

∥∥∥
2

≤
∥∥∥D x

∥∥∥
∞

∥∥∥D −1 (s− s(τ))
∥∥∥

2
+
∥∥∥D −1 s(τ)

∥∥∥
∞

∥∥∥D (x− x(τ))
∥∥∥

2

≤
√∥∥∥D x

∥∥∥
2

∞
+
∥∥∥D −1 s(τ)

∥∥∥
2

∞
‖ z − z(τ) ‖z .

In order to bound
∥∥∥D x

∥∥∥
∞

we use Corollary 4.6 and the identity D x = (x s)1/2 to obtain

∥∥∥D x
∥∥∥
∞
≤
∥∥∥D x

∥∥∥
∞

+
∥∥∥D (x− x )

∥∥∥
∞
≤
√

ψ2 µ(z) + ‖ z − z ‖z .

Similarly we get ∥∥∥D −1 s(τ)
∥∥∥
∞
≤
√

ψ2 µ(z) + ‖ z(τ)− z ‖z .
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Because z(τ) is the solution of the equation Fτ (z) = 0 and z is produced by Newton’s
method (or the simplified Newton method) with starting point z the Kantorovich Theorem
ensures that

‖ z(τ)− z ‖z , ‖ z − z ‖z ≤
1−√1− 2κ2

ω(z)
.

Taking into account (4.4) we deduce that

√∥∥∥D x
∥∥∥

2

∞
+
∥∥∥D −1 s(τ)

∥∥∥
2

∞
≤
√

2µ(z) (
√

ψ2 + 1−
√

1− 2κ2 ) .

Therefore,

δK(z, τ) ≤
√

µ

τ

√
2 (
√

ψ2 + 1−
√

1− 2κ2 ) ‖ z − z(τ) ‖z .

It follows that (5.14) is satisfied if

‖ z − z(τ) ‖z ≤
τ√
µ

υ, (5.15)

where,

υ =
κ1√

2 (1 + κ1) (
√

ψ2 + 1−√1− 2κ2 )
.

If Newton’s method is used in the inner iteration then from the Kantorovich Theorem it
follows that (5.15) is satisfied after m Newton steps provided that

2β2 λ2m

2

1− λ2m
2

≤ τ√
µ

υ, where β2 =

√
1− 2κ2

ω(z)
, λ2 =

1− κ2 −
√

1− 2κ2

κ2

.

From Corollary 4.4 we obtain the following bound

τ√
µ

=
τ
√

µ

µ
≥ (1− ςκ2/

√
2)
√

µ . (5.16)

Using (5.16) together with the fact that

1− λ2m

2 ≥ 1− λ2
2, for m ≥ 1

and (4.4) we deduce that (5.15) is satisfied if

λ2m

2 ≤
(1− ςκ2/

√
2)(1− λ2

2) υ

2
√

1− 2κ2

.
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It is easily seen that the right hand side coincides with ζN . By taking twice the logarithm
of both sides we obtain the claim of our Theorem in case the inner iteration uses Newton
steps.

Let us analyze now the case where the inner iteration uses simplified Newton steps. Using
(2.12) we deduce in a similar fashion that the Kantorovich theorem it follows that (5.15) is
satisfied after m steps if

ξm−1
2 ≤ ζN

λ2
2

= ζS .

By taking the logarithm of both sides we obtain the claim of our theorem for the simplified
Newton method.

Corollary 5.5 Algorithm 1 terminates using at most O(
√

n log(x
0 T s0

ε
)) Newton and simpli-

fied Newton steps.

.
Proof. The argument is standard. From Corollary 5.3 it follows that

τk ≤ (1− χ√
n

)k τ0 ,

and the assertion follows by using the fact that τ0 = µ(z0) together with Proposition 5.1 and
Theorem 5.4.

It is interesting to see how the complexity depends on κ1 and κ2. Roughly speaking the
upper bounds on the number of steps of the inner iteration N and S are increasing in κ2

and decreasing in κ2− κ1, while the coefficient χ that characterizes the guaranteed decrease
of the primal dual gap at each outer iteration is increasing in κ2 − κ1 and decreasing in κ1.
One could obtain different scenarios for different ratios between κ1 and κ2. In the following
two corollaries we give some numerical values in case κ2 = 2 κ1. We note that the numerical
values given in those corollaries are only upper bounds. They are obtained by plugging
numerical values in the formulae (5.9), (5.10) and (5.11). We also note that our estimates
are true for all values of n ≥ 2. For larger values of n the estimates can be slightly improved
(see e.g. (4.5)). Also when comparing N and S one has to consider that N Newton steps
require N matrix factorizations and N backsolves, while S simplified Newton steps require
one matrix factorization and S backsolves. In case the matrices Q and R are dense one
matrix factorization requires O(n3) arithmetic operations, while one backsolve requires only
O(n2) arithmetic operations.

Corollary 5.6 If the HLCP is monotone then:

1. N (.12, .24) = 1, χ(.12, .24) > .1 ;
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2. N (.21, .42) = 2, S(.21, .42) = 5, χ(.21, .42) > .17 ;

3. N (.24, .48) = 3, S(.24, .48) = 12, χ(.24, .48) > .196 .

4. N (.245, .49) = 4, S(.245, .49) = 18, χ(.245, .49) > .199 .

Corollary 5.7 If the HLCP is skew-symmetric then:

1. N (.125, .25) = 1, χ(.12, .24) > .11 ;

2. N (.215, .43) = 2, S(.215, .43) = 5, χ(.215, .43) > .19 ;

3. N (.24, .48) = 3, S(.24, .48) = 10, χ(.24, .48) > .2 .

4. N (.245, .49) = 4, S(.245, .49) = 16, χ(.245, .49) > .21 .
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