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Guillaume Sagnol, Hans-Christian Hege, Martin Weiser

June 3, 2016

Abstract

Statistical methods to design computer experiments usually rely on a Gaussian process (GP) sur-
rogate model, and typically aim at selecting design points (combinations of algorithmic and model
parameters) that minimize the average prediction variance, or maximize the prediction accuracy for
the hyperparameters of the GP surrogate. In many applications, experiments have a tunable precision,
in the sense that one software parameter controls the tradeo� between accuracy and computing time
(e.g., mesh size in FEM simulations or number of Monte-Carlo samples). We formulate the problem of
allocating a budget of computing time over a �nite set of candidate points for the goals mentioned above.
This is a continuous optimization problem, which is moreover convex whenever the tradeo� function
accuracy vs. computing time is concave. On the other hand, using non-concave weight functions can
help to identify sparse designs. In addition, using sparse kernel approximations drastically reduce the
cost per iteration of the multiplicative weights updates that can be used to solve this problem.

Keywords: Optimal design of computer experiments, Gaussian process, Sparse kernels

1 Introduction

We consider a computer code taking an input x ∈ X (called a design point) in a compact set X ⊂ Rd
and a parameter τ specifying the time allowed for the computation, and returning an output of the
form

Y (x, τ) = η(x) + ε(x, τ), (1)

where η(·) is an unknown function and ε(x, τ) represents uncorrelated errors: E[ε(x, τ)] = 0, u 6= v ⇒
E[ε(u, τu)ε(v, τv)] = 0 for all τu, τv > 0, where E[X] stands for the expectation of X. We assume that
the experiments have a tunable precision, in the sense that the variance of the error V[ε(x, τ)] is a
decreasing function of the time τ spent to compute an approximation of η(x). Speci�cally, we assume
that there is a known parameter σ2

N (where the subscriptN stands for noise) and a known di�erentiable,
nondecreasing function w : R+ 7→ R+ satisfying w(0) = 0, such that V[ε(x, τ)] = σ2

Nw(τ)−1. Let the
experimental design (or simply the design) be represented by ξ = {xi, τi}i∈{1,...,n}, where the given
candidate points xi ∈ X are distinct, and τi ≥ 0 is the computing time spent on design point xi. Note
that τi = 0 means that no computation is carried out at xi, and formally we have V[ε(xi, τi)] = +∞.
Candidate points xi with τi > 0 are called support points and are those which are actually selected for
the design.
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We assume that a two-stage approach is used, and observations have already been collected during
the initial stage from a design ξinit = {x0

i, τ
0
i }i=1,...,n0

, with x0
i 6= xj for all i, j. The purpose of

this article is to develop e�cient algorithms for the computation of near-optimal computing times τi,
subject to a constraint on the total computing time allowed for the second stage:

∑n
i=1 τi = T . In

other words, we search for a (near-)optimal design within the class of all designs that assign a total
computing time of T , and whose support is a subset of the xi's. In practice, this two-stage approach
can be turned into a sequential one, as follows. Given an optimized design τ ∗, select one support point
xi and compute Y (xi, τ

∗
i ). Then, append {xi, τ∗i } to ξinit, decrement T by τ∗i , remove xi from the

list of candidate points, update the surrogate model for η(·), compute the next design τ ∗, and iterate.
This procedure can also be generalized to work on a parallel architecture, where several design points
can be processed simultaneously.

Our assumption about the existence of an information function w() is not common. Most authors
focus on the search for exact designs, i.e. wi = w(τi) ∈ {0, 1}, and wi = 1 indicates that the design point
xi belongs to ξ. We refer the reader to [PM12] for a comprehensive review on exact designs for computer
experiments. For the standard linear model, a popular technique is to relax the integer constraint on wi,
which led to the success story of the theory of approximate designs [Páz86, Puk93]. Approximate designs
are used most often as a heuristic to �nd good exact designs, typically by rounding. For computer
experiments, however, the total computing time is of much more importance than the number of design
points, which motivates to study the tradeo� between tunable accuracy and computing time in more
detail. We give two examples:

• In the case of Monte-Carlo simulations, the variance is inversely proportional to the number
of samples, and hence w(τ) = τ . In fact, τ can take integer values only, but we expect the
approximation to be good enough for a large number of simulation runs.

• The standard a priori error estimate for �nite element solutions of ansatz order p and mesh width
h for su�ciently regular stationary elliptic problems in Ω ⊂ Rd is ‖u − uh‖H1(Ω) = O(hp). The

optimal computational complexity is τ = O(h−d), which means τ = O(‖u − uh‖−d/pH1(Ω)), see,

e.g., [DW12]. We could thus model the error by a noise of variance V[ε(x, τ)] = O(τ−2p/d), i.e.
w(τ) = O(τ2p/d).

Note, however, that errors at two design points might be correlated, as is usually the case in �nite
element models. An alternative could be to use a Gaussian process to model the error process. We leave
this for future research, and simply assume as an approximation that the ε(xi, τi) are uncorrelated,
which might be acceptable if the xi's are far enough from each other.

Following the kriging methodology, we assume that η(x) = f(x)Tβ + Z(x), where f : Rd 7→ Rm
is a spatial regression function (generally a polynomial), β ∈ Rm is an unknown vector of parameters,
and Z is a Gaussian random �eld with zero mean and known correlation structure,

E[Z(x)] = 0, E[Z(u)Z(v)] = σ2
Z C(u,v),

where C : Rd × Rd 7→ R is a positive semide�nite kernel satisfying C(u,u) = 1 for all u ∈ X .

Denote by Y (ξ) = [Y (x1), . . . , Y (xn)]T the vector of observations associated with the design ξ. We
have

Y (ξ) ∼ N
(
F Tβ, σ2

ZC + ∆
)
, (2)

where F = [f(x1), . . . , f(xn)] ∈ Rm×n, {C}ij := C(xi,xj). and ∆ = σ2
N Diag(w(τ ))−1. We also

de�ne the signal-to-noise ratio γ = (σZ/σN )2 and Σ = C + Diag(γw(τ ))−1, so that V[Y (ξ)] = σ2
ZΣ.

The best linear unbiased estimator (BLUE) of β and its variance are given by

β̂ =
(
FΣ−1F T

)−1
FΣ−1Y (ξ), V[β̂] = σ2

Z

(
FΣ−1F T

)−1
.
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Then, the best linear unbiased predictor (BLUP) of the unknown function η at x ∈ X based on the
observations Y (ξ) is given by

η̂(x|ξ) = f(x)T β̂ + c(x)TΣ−1
(
Y (ξ)− F T β̂

)
,

where {c(x)}i := C(x,xi) is the vector of cross-covariances between x and the design points, and the
mean-squared prediction error (MSPE) is

ρ(x) := E[
(
η̂(x|ξ)− η(x)

)2
]

= σ2
Z

{
1− c(x)TΣ−1c(x) + (f(x)− FΣ−1c(x))T

(
FΣ−1F T

)−1
(f(x)− FΣ−1c(x))

}
.

The above expression reduces to ρ(x) = σ2
Z

(
1− c(x)TΣ−1c(x)

)
when the trend parameter β is known.

Note that ρ(x) depend on the design ξ through Σ. A standard approach is to choose ξ so as to minimize
the integrated mean squared error (IMSE):

IMSE(ξ) :=

∫
X
ρ(x) dµ(x).

The IMSE criterion depends on a measure µ on X , which can be used to weigh the interest of the
experimenter for knowing the value of η at x. E.g., if the goal is to minimize η(x) over X , or to
estimate the probability that η(x) lies below some threshold, µ should weigh regions of X such as to
balance the exploration/exploitation tradeo�; see, e.g., [JSW98, BGL+12].

It was shown (for the standard case where the variance of ε is not a function of τ) in [Fed96, FF97]
that model (1) can be approximated arbitrarily well by a Bayesian linear model of the form

Y (x) ' [f(x)T , g(x)T ]

 β
α

+ ε(x), (3)

where α is a random regression parameter with prior α ∼ N (0, σ2
ZIs), Is is the s× s−identity matrix,

and the function g : Rd 7→ Rs can be obtained by truncating the Mercer's expansion of the kernel
C(·, ·). In our case, recall that observations have already been collected during an initial stage at
ξinit = {x0

i, τ
0
i }i=1,...,n0 , V[ε(x, τ)] = σ2

Nw(τ)−1 and the noise is uncorrelated. Then, by using standard
results from the literature on Bayesian designs, see, e.g., [Pil91], one obtains the following approximation
of the Kriging variance for the design ξ = {xi, τi}i=1,...,n:

ρ̃(x) ' σ2
Z h(x)TM(ξ)−1h(x),

where h(x) = [f(x)T , g(x)T ]T and M(ξ) is the (scaled) Fisher information matrix for (β,α):

M(ξ) :=

n∑
i=1

γ w(τi)

 f(xi)
g(xi)

 f(xi)
g(xi)

T +

n0∑
i=1

γ w(τi)

 f(x0
i )

g(x0
i )

 f(x0
i )

g(x0
i )

T +

 0 0
0 Is

︸ ︷︷ ︸
Γ

. (4)

Further, the IMSE criterion can be approximated by a criterion of Bayesian A-optimality:

˜IMSE(ξ) =

∫
X
ρ̃(x) dµ(x) = traceM(ξ)−1L

with a coe�cient matrix L = σ2
Z

∫
X h(x)h(x)T dµ(x). We restrict our attention to the situation in

which β is estimable from the observations collected with the initial design ξinit, which ensures that Γ
is positive de�nite, and M(ξ) is invertible for all designs.

This technique was recently used by [SP10, GP16], who compute approximate designs by using
standard algorithms of Bayesian A-optimality, and use rounding heuristics to �nd exact designs. One
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disadvantage is that it requires the knowledge of a Mercer's expansion of the kernel. To tackle this
problem, a polar spectral approximation of the kernel has been used [SP10, SP15], but it is not clear
whether this can be generalized for parameter spaces of dimension d > 2. In [GP16] it is assumed that
µ has a �nite support containing the candidate points xi, so the computation of the g(xi) reduce to a
standard matrix eigenproblem. In Section 3 we establish a link between this approach and the class of
SOR kernels commonly used in machine learning.

In this article, we focus on two classes of sparse kernels, which are commonly used in Machine
Learning, and for which there is a simple, �nite Mercer's expansion. We will show in Section 3 that
using sparse kernels with s inducing points reduce the cost per iteration of the multiplicative weights
update algorithm from O(n3) to O(ns2), when the goal is to compute the weights of a design minimizing
the IMSE over n prede�ned candidate points. This reduction is crucial for computer experiments with
parameter dimension d ≥ 4, where a very large number n of candidate points is required to �ll the
space of parameters. We show further in Section 4 that the same complexity reduction can be achieved
for the search of optimal designs for the prediction of hyperparameters of the kernel. However, we point
out that the optimization problems we consider are, in general, not convex. Hence, global optimality
cannot be guaranteed, but one can implement standard strategies to try and escape local optima. One
exception are the sparse IMSE-optimal design problems studied in Section 3, which are convex when
the information function w() is concave. Finally, some numerical experiments illustrate our method in
Section 5.

The second goal of this article, covered in the next section, is to extend the theory of approximate
optimal designs to the situation in which the weights wi depend on the true design parameters τi via
an information function w().

2 Approximate designs in presence of an information function

For a design ξ = {xi, τi}i, de�neM(ξ) :=
∑n
i=1 w(xi, τi)h(xi)h(xi)

T +Γ. Throughout this section, we
assume that we are given a set X = {x1, . . . ,xn} ⊆ X of candidate points, and we consider a design
problem of the form

min
τ∈∆T

Φ(ξτ ) := traceM(ξτ )−1L, (5)

where ξτ represents the design {xi, τi}i=1,...,n. The matrix L is positive semide�nite, and the computing
times are constrained in the set ∆T := {τ ∈ Rn+ :

∑n
i=1 τi = T}. For the sake of generality, the

information function w is allowed to depend on the design point xi. For all x ∈ X , the function w(x, ·)
is assumed to be continuously di�erentiable and nondecreasing on R+. We restrict our attention to
the case of a positive de�nite Γ for the sake of simplicity (so thatM(ξτ ) is invertible for all τ ∈ ∆T ),
but we stress that the results presented here can be extended to the case of a positive semide�nite Γ.

It is well known that Φ(ξτ ) is a convex function of the vector of design weights w =
[w(x1, τ1), . . . , w(xn, τn)]T . Using the fact that Φ(ξτ ) is a nonincreasing function of w(xi, τi), standard
composition theorems yield the following:

Proposition 2.1. If the information function τ 7→ w(x, τ) is nondecreasing and concave for all x ∈ X ,
then the function τ 7→ Φ(ξτ ) is convex over ∆T .

The success of the theory of approximate designs is largely due to equivalence theorems such as the
Kiefer-Wolfowitz theorem [KW60], that give simple means to check the optimality of a design.

First we state the Karush-Kuhn-Tucker (KKT) necessary optimality conditions for a vector of design
weights τ over ∆T , which are valid even if the w(xi, ·) are not concave:
Proposition 2.2. Let L = KKT and x1, . . . ,xn be given candidate points in X . For all i ∈ {1, . . . , n},
de�ne

di(τ ) =
∂w(xi, τi)

∂τi
‖h(xi)

TM(ξτ )−1K‖2.

4



If τ is a local minimizer of Φ(ξτ ) over ∆T , then we have: ∀i ∈ {1, . . . , n}, di(τ ) ≤ 1
T

∑n
k=1 τkdk(τ ).

Moreover, the inequality becomes an equality for support points of ξτ , i.e. for all i such that τi > 0.

Proof. Observe that ∂Φ(ξτ )
∂τi

= −∂w(xi,τi)
∂τi

traceM(ξτ )−1h(x)h(x)TM(ξτ )−1L = −di(τ ). Then, the
dual feasibility and complementary slackness KKT-conditions of the optimization problem min{Φ(ξτ ) :
∀i ∈ {1, . . . , n}, τi ≥ 0,

∑
i τi = T} can be expressed as follows:

∃λ ≥ 0 : ∀i ∈ {1, . . . , n},
(

(τi = 0 and di(τ ) ≤ λ) or (τi ≥ 0 and di(τ ) = λ)
)
.

Moreover, the Lagrange multiplier λ must satisfy Tλ =
∑
i τiλ =

∑
i τidi(τ ). Substituting the value

of λ in the KKT conditions yields the proposition.

If the information functions are concave, we obtain a much stronger result. For the next theorem
we temporarily drop the assumption that the xi's are given. We characterize optimal designs over the

set Ξ =
{
ξ = {xi, τi}i=1,...,n : n ∈ N, ∀i ∈ {1, . . . , n}, xi ∈ X , τi ≥ 0,

∑
i τi = T

}
of all designs with

support points in X :

Theorem 2.3. Let L = KKT , and assume that the condition of Proposition 2.1 is satis�ed. For all
x ∈ X de�ne

d(ξ;x) =
∂w(x, τ(x))

∂τ
‖h(x)TM(ξ)−1K‖2,

where τ(x) is the computing time spent on the design point x (i.e., τ(x) = 0 if x /∈ supp(ξ) and
τ(x) = τi if x = xi ∈ supp(ξ)). Then, ξ∗ = {xi, τi}i=1,...,n minimizes Φ over Ξ if and only if

∀x ∈ X , d(ξ∗;x) ≤ 1

T

n∑
i=1

τi d(ξ∗,xi).

Moreover the above inequality becomes an equality for all support points of ξ∗.

Proof. First note that the only if part of the theorem is a simple consequence of Proposition 2.2. For
the if part, assume that the condition of the theorem holds. It implies

∀τ ′ ∈ Rn+ such that
∑
i

τ ′i = T,

n∑
i=1

τ ′i d(ξ∗,xi) ≤
n∑
i=1

τi d(ξ∗,xi).

Using the fact that ∂Φ(ξ∗)
∂τi

= −d(ξ∗,xi), this can be rewritten as:

∀ξ′ = {xi, τ ′i} ∈ Ξ,
∂Φ((1− α)ξ∗ + αξ′)

∂α

∣∣∣∣
α=0

≥ 0.

Finally, consider an arbitrary design ξ′ ∈ Ξ, and de�ne the function ψ : α 7→ Φ((1 − α)ξ∗ + αξ′).
By proposition 2.1, ψ is convex on [0, 1], and we know that ψ′(0) ≥ 0. So we have Φ(ξ′) = ψ(1) ≥
ψ(0) + ψ′(0)(1− 0) ≥ ψ(0) = Φ(ξ∗), which proves the optimality of ξ∗.

We next adapt the multiplicative weights update algorithm of Titterington [STT78] for Problem (5).
The multiplicative algorithm was originally presented in the general setting in which a function f must
be minimized over a unit simplex {w ∈ R+

n :
∑
i wi = 1}, so it can be adapted in a straightforward

manner to the case of a design problem with information functions, i.e., wi = w(xi, τi). Given an
exponent q > 0 and an initial vector τ (0) > 0, the iterations are:

∀i ∈ {1, . . . , n}, τ
(k+1)
i ← T

τ
(k)
i di(τ

(k))q∑n
j=1 τ

(k)
j dj(τ (k))q

. (6)
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In its standard version, that is, when w(xi, τi) = τi, this algorithm converges monotonically towards
an A−optimal design when q = 1

2 . The process can be accelerated by pruning candidate points
with a su�ciently low weight, which ensures that they do not belong to the support of any optimal
design [Pro13]. Convergence for a variety of optimality criteria was shown in [Yu10].

Consider now the general setting of a function f to be minimized over ∆T , with di(τ ) = ∂f(τ )
∂τi

. If the
iterations (6) converge, then the limit point τ ∗ must satisfy the necessary condition of Proposition 2.2,
under some mild conditions [GM92]. In practice, we experienced numerical convergence of the above
algorithm towards local minima of f : τ 7→ Φ(ξτ ) when q is well chosen, even in the cases where the
information functions w(xi, ·) are not concave.

3 Sparse covariance kernels

Here we consider two classes of sparse kernel functions commonly used in machine learning for Gaussian
process regression with a large number n of samples. These approximations rely on a small set of
inducing points, {u1, . . . ,us} ⊂ X , and assume that the covariance cov(Z(x), Z(y)) of the process
between the points x and y ∈ X only depends on the covariances between the ui, x and the ui, and
y and the ui. This reduces the complexity of training a Gaussian process on a dataset with n samples
from O(n3) to O(ns2). We refer to [QCR05] for a comprehensive review.

SOR-kernels. The Subset of Regressors (SOR) approximation consists in replacing the correlation
function C(x,y) by a low-rank kernel,

CSOR(x,y) = cu(x)TK−1
u,u cu(y),

where {Ku,u}i,j = C(ui,uj) is the s × s matrix of correlations between the Z(ui), and {cu(x)}i =
C(ui,x) is the s-dimensional vector of correlations between Z(x) and the Z(ui). Hence, if we let Ju
be any matrix satisfying JuJ

T
u = K−1

u,u, then the function g : x 7→ JTu cu(x) satis�es

∀(x,y) ∈ X × X , CSOR(x,y) = g(x)T g(y).

Hence, for a SOR-kernel the observation model (1) is equivalent to model (3). Indeed, Z(ξ) =
[Z(x1), . . . , Z(xn)]T ∼ N (0, σ2

ZC) has the same distribution as [g(x1), . . . , g(xn)]Tα, where α ∼
N (0, σ2

ZIs). To put it in other words, if we assume that the true kernel is CSOR, then model (3)
is exact, so that IMSE(ξτ ) = ˜IMSE(ξτ ) = traceM(ξτ )−1L, and we can use the multiplicative weights
update (6) to compute an optimal design. The complexity of computing IMSE(ξτ ) and its gradient
[d1(τ ), . . . , dn(τ )]T is O(n(s + m)2), which is O(ns2) because the dimension m of the regression pa-
rameter β is a small constant. So the cost of one iteration (6) is O(ns2). In contrast, for a full kernel
the computation involves Σ−1 and takes O(n3) operations.

There is a vast literature on the selection of inducing points ui to approximate a kernel C(·, ·)
by a SOR kernel [Tit09, CBFH15, WN15]. For example, [WN15] uses a regular grid to exploit the
Kronecker structure of Ku,u when C is a product of one-dimensional kernels, and to speed-up the
computations by using fast Fourier transforms. Note that if the points u1, . . . ,us are sampled randomly
and independently from the probability measure µ, the approximation C(x,y) ' CSOR(x,y) can be
regarded as an expansion of the form C(x,y) =

∑s
i=1 λiφi(x)φi(y), where the λi and φi(·) are the

solutions of the Nyström approximation of the eigenproblem∫
X
C(x,y)φ(y)dµ(y) = λφ(x).

6



This approximation consists in replacing the integral by 1
s

∑s
i=1 C(x,ui)φ(ui), and reduces the in�nite-

dimensional eigenproblem to a standard s×s−matrix eigenproblem [WS01]. If we choose Ju = UΛ−
1
2 ,

where UΛUT is a spectral decomposition of Ku,u, this is equivalent to the approach of [GP14, GP16],
where µ is approximated by a discrete measure µ̂ supported by the ui's (i.e., the IMSE is approximated
by a quadrature). In [GP14], the authors further suggest to choose the candidates xi in the support of
µ̂, i.e. n ≤ s. Then, g must only be evaluated at the ui's, and the vectors g(ui) (i = 1, . . . , s) are the

columns of Λ
1
2UT , hence they are orthogonal. This contrasts with our approach, where we generate a

large number of candidate points in order to �ll the design space, but use a small number of inducing
points for the sake of computation (n� s).

FITC-kernels. The FITC approximation (Fully Independent Training Conditional) is very similar to
SOR, but a diagonal noise is added to the kernel, to ensure that CFITC(x,x) = C(x,x) = 1:

CFITC(xi,xj) = CSOR(xi,xj) +
(
1− CSOR(xi,xi)

)
δij ,

If we de�ne as before the function g : x 7→ JTu cu(x), where JuJ
T
u = K−1

u,u, we obtain:

CFITC(xi,xj) = g(xi)
T g(xj) + (1− ‖g(xi)‖2)δij .

It follows that for a FITC kernel, the observation model is equivalent to

Y (x, τ) = [f(x)T , g(x)T ]

 β
α

+ ν(x) + ε(x, τ), (7)

where α is a random regression parameter with prior α ∼ N (0, σ2
ZIk), and ν(x) is an unbiased and

uncorrelated noise, which is heteroschedastic with V[ν(x)] = σ2
Z(1 − ‖g(x)‖2). Under this model, the

Fisher information matrix for (β,α) becomes (up to a scaling factor σ2
Z):

M(ξ) :=

n∑
i=1

w(xi, τi)h(xi)h(xi)
T + Γ, where w(x, τ) :=

γw(τ)

1 + (1− ‖g(x)‖2)γw(τ)
. (8)

Note that M(ξ) has the form of the Fisher information matrix of the problem studied in Section 2.
Moreover, elementary calculus shows that τ 7→ w(x, τ) is concave if τ 7→ w(τ) is concave. In this
situation, Proposition 2.1 shows that (5) is a convex optimization problem for FITC kernels.

4 Optimal designs for the estimation of kernel hyperparameters

Until now, we have assumed that the kernel function C(·, ·) was known. In practice however, the
kernel depends on a set of hyperparameters θ ∈ Rp, which must be estimated by maximum likelihood
from the set of observations Y (ξ). Recall that Y (ξ) ∼ N

(
F Tβ, σ2

ZΣθ

)
, where Σθ = Cθ + D−1,

D = Diag(γw(τ )), and we have inserted the symbol θ as subscript to stress the dependency on the
hyperparameters. Then, the p × p Fisher information matrix for the vector of parameters θ can be
derived from standard formulas:

{M θ(ξ)}ij =
1

2
trace Σ−1

θ

∂Cθ

∂θi
Σ−1
θ

∂Cθ

∂θj
. (9)

Given a current estimate of θ, we propose to search a design ξ maximizing the criterion ofD−optimality,
log detMθ(ξ). Here, note that we assume that β and σ2

Z are known. We refer to [PM12] for a review
on approaches to deal with a total Fisher information matrix for the set of parameters (β, σ2

Z ,θ). In
particular, Müller and Stehlík proposed a compound criterion with a weighing factor that balances the
goals of estimating β and estimating θ [MS10].
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We want to optimize the computing times τi associated with a large number of candidate points
xi. This is a hard optimization problem, since here the D−criterion is not convex with respect to τ .

Nevertheless we propose to use the multiplicative update iterations (6), where di(τ ) := ∂ log detMθ(ξτ )
∂τi

,
in order to identify good local optima. However, if n is very large, the computation of Mθ(ξτ ) and
di(τ ) is extremely time-consuming. It involves the inversion of the n× n matrix Σθ, and many n× n
matrix-matrix multiplications.

In this section we show that this computational burden can be reduced if sparse kernels are used.
From now on, we assume that Cθ = GθG

T
θ , where Gθ = [gθ(x1), . . . , gθ(xn)]T ∈ Rn×s. As is previous

section, the function gθ is de�ned by gθ(x) = JTu cu(x), where JuJ
T
u = K−1

u,u. From now on we set Ju
to the Cholesky factor of K−1

u,u, because this choice yields compact formulas.
First note that the low-rank decomposition makes it possible to use the Woodbury matrix identity:

Σ−1
θ = (Cθ +D−1)−1 = D −DGθ(Is +GT

θDGθ)
−1GT

θD. (10)

Then, we also need to compute derivatives of gθ with respect to θ. This is possible thanks to the
following lemma:

Lemma 4.1. De�ne the function Φ which returns the lower triangle and half the diagonal of a square
matrix:

∀M ∈ Rn×n, {Φ(M)}ij =

 Mij if i > j
1
2Mij if i = j
0 if i < j.

Then, we have: ∀x ∈ X ,

∂gθ(x)

∂θi
= JTu

∂cu(x)

∂θi
− Φ

(
JTu

∂Ku,u

∂θi
Ju

)T
JTu cu(x).

Proof. A formula for the derivative of the Cholesky decomposition X = JJT can be found in [Sär13,
Theorem A.1], and can be proved by implicit di�erentiation:

∂J

∂θ
= JΦ(J−1 ∂X

∂θ
J−T ).

The formula of the lemma can now be obtained, by applying standard formulas for the di�erentiation
of products and matrix inverse.

We can use this lemma to compute the matrices Gi := ∂Gθ
∂θi

. Now, we also de�ne G0 := Gθ to

simplify the notation. Substituting ∂Cθ
∂θi

= GiG
T
0 +G0G

T
i and (10) into (9) yields an expression for

{Mθ(ξ)}ij that depends on G0,G1, . . . ,Gp. After some simpli�cations, we obtain

{Mθ(ξ)}ij = traceA0iA0j +A00Aij ,

where for all k, l ∈ {0, . . . , p}, Akl := Bkl −Bk0(Is +B00)−1B0j and Bkl := GT
kDGl. From these

expressions, it is easy to see that Mθ(ξ) can be computed in O(ns2), which is a great improvement
compared to O(n3) for a full kernel.

Similarly, we can compute ∇τ{Mθ(ξ)}ij =
[
∂{Mθ(ξ)}ij

τ1
, . . . ,

∂{Mθ(ξ)}ij
τn

]T
in O(ns2). For all k ∈

{0, . . . , p}, de�ne P k := Gk −G0(Is +B00)−1B0k. Then, we can show that (details omitted):

∇τ{M θ(ξ)}ij = γDiag(w′(τ )) Diag
(
P iA0jP

T
0 + P jA0iP

T
0 + P 0AijP

T
0 + P jA00P

T
i

)
.

Finally, the gradient of the criterion is obtained by di(ξ) = traceM θ(ξ)
−1 ∂Mθ(ξ)

∂τi
. Hence, we have

shown that the gradient of the criterion can be computed in O(ns2) for a sparse kernel with s inducing
points. In contrast, for a full kernel one requires O(n3) operations.
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5 Numerical Experiments

We consider the Ishigami-like function η to illustrate the e�ect of the information functions:

∀x ∈ X = [0, 1]× [0, 1], η(x) = 1.1 sin(π(2x1 − 1)) + 7 sin2(π(2x2 − 1)).

First, 8 noisy observations of the function η(x) are taken, with σ2
N = 0.05, and τinit = 1

8 at each of the
8 locations indicated by yellow dots in Figure 1. These initial values are used to estimate, by maximum
likelihood, σ2

Z and the hyperparameters (`1, `2) of the Gaussian kernel

C(x,y) = e
− 1

2

[(
x1−y1
`1

)2
+
(
x2−y2
`2

)2
]

The plots of Figure 1 show some designs for the distribution of T = 1 additional hour of computing
time over a regular grid of n = 312 = 961 candidate points. The size of the red dots indicate the
time to spend on a design point, and the color in the background indicates the prior Kriging variance
(after the initial 8 observations; blue: small variance, red: high variance), according to the considered
covariance model: In Plot (a) and (b), we respectively used the SOR and FITC Kernel associated with
C(·, ·), for s = 12 inducing points (marked with black squares), that were generated in a space-�lling
fashion with a Sobol sequence; the number s = 12 is rather small, on purpose, to illustrate the e�ect
of sparsity. Plots (c)-(g) rely on a SOR kernel with s = 60 inducing points (not marked for the sake

of visibility); with that many inducing points, the relative errors between IMSE(ξ) and ˜IMSE(ξ) were
in the order of 0, 1% for the designs we computed. Also, di�erent information functions were used, cf.
Plot (h).

The plots (a),(b),(c),(e),(g) show (near-)optimal weights τi for the IMSE criterion at the speci�ed n
locations of the xi's, while (d),(f) are nearly D−optimal weights for the estimation of θ = (`1, `2). For
all computations, the matrix L = σ2

Z

∫
X h(x)h(x)T dµ(x) was computed with a Monte-Carlo method

with N = 105 samples, with µ the Lebesgue measure over [0, 1]2. The stopping criterion for the
multiplicative update iterations was

max
i=1,...,n

di(τ ) ≤ 1

T

n∑
k=1

τkdk(τ ) + ε, (11)

where ε = 10−9. Note that the design weights plotted in (a)-(c) and (g) are provably optimal (up to
the tolerance ε), because the considered optimization problems are convex. This is not the case for the
designs shown in Plots (d), (e) and (f). Here, the multiplicative update algorithm is likely to fall in
local optima, so we performed several restarts and kept the best design.

Plots (a) and (b) show the e�ect of using a sparse kernel, and are to be compared with Plot (c),
which can be considered as the optimal design for the full kernel C when w(τ) = τ . Observe that the
kriging variance tends to be underestimated with the SOR kernel (a), while it is overestimated with
the FITC kernel (b). As a consequence of the (strict) concavity of w(x, τ), the FITC design is more
spread out than the SOR design. Also, the FITC design has a slightly better e�ciency than the SOR
design (73% vs. 69%, cf. Formula (12)).

The e�ect of the information function can be seen by comparing the second column (standard case
w(τ) = τ) to the third and fourth columns. In the second column, the information function is convex
near 0, so that we need some minimal amount of computing time to get some information; see blue
curve in plot (f). As a consequence, the IMSE-optimal design for this information function are very
sparse, a feature that can be very valuable for the experimenter. In contrast, a concave information
function is used in the third column (green curve in plot (f)). This incentivizes designs with many
design points spread out over regions with a high variance.

Next, we show some results in higher dimensional spaces to illustrate the importance of using sparse
approximations of the kernel. We report results for tests in dimension d = 4 and d = 7. In each case,
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 1: Near-optimal design weights for the test function. Kernel: CSOR with s = 12 inducing
points in (a); CFITC with s = 12 inducing points in (b), and CSOR with s = 60 inducing points
in (c)-(g). Optimality criterion: IMSE in (a),(b),(c),(e),(g) and D-criterion for θ = (`1, `2) in
(d),(f). Information function: w(τ) = τ in (a)-(d); w(τ) = τ(1 − exp(− 1

4 (1 + 100τ)))3 in (e),(f);
w(τ) = τ(1 + τ)−1 in (g). These information functions are plotted in (h).

we considered 10 instances, corresponding to di�erent functions η(·); These functions were dummy
rational functions, in which we have selected the coe�cients at random.

Our experiments used Tinit = 1 hour of computing time distributed uniformly over ninit = 50 initial
observations, and aimed at distributing T = 1 additional hour of computing time over n = 1500
randomly generated candidate points for the problems in dimension 4, and n = 5300 points for the
problem in dimension 7. The function w() was set to the identity: w(τ) = τ .

For each problem, we have computed the true optimal design ξ∗ (within the subset of designs
supported over the given candidate points), by using the multiplicative update iterations (6) with

a formula for the derivative of the true criterion: di(ξ) = ∂IMSE(ξ)
∂τi

. The e�ciency of a design was
evaluated by the following formula:

efficiency(ξ) =
IMSE(ξ)−1 − IMSE(ξinit)

−1

IMSE(ξ∗)−1 − IMSE(ξinit)−1
. (12)

Here, ξinit denotes the initial design supported by the ninit initial observation points, so the numer-
ator expresses the gain of information provided by ξ, compared to the situation where no additional
measurement is performed. Figure 2 shows the e�ciency of designs computed by using a SOR approx-
imation of the kernel, for 10 instances with d = 4 (left) and d = 7 (right). In both cases, we observe
an excellent e�ciency when s ≥ 100, and even for s ≥ 70 for the instances in a 4-dimensional space.
In terms of computing time, the speed-up was on the order of x200 on average for s = 70 and d = 4,
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Figure 2: E�ciency of IMSE-optimal design, for an approximation of the kernel based on a SOR
kernel with s inducing points.

and even of x350 for s = 100 and d = 7. For the latter instances, the computations took more than 36
hours on a Linux PC with 8 cores at 3.60 GHz, while with the SOR kernel a solution was found within
6 minutes (with a tolerance parameter ε set to 10−4 in the stopping criterion (11)).
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comments and suggestions that signi�cantly improved the presentation.
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