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Abstract. In constraint programming, energetic reasoning constitutes a
powerful start time propagation rule for cumulative scheduling problems
(CuSP). This article first presents an improved time interval checking
algorithm that is derived from a polyhedral model. In a second step, we
extend this algorithm to an energetic reasoning propagation algorithm
with time complexity O(n2 logn) where n denotes the number of jobs.
The idea is based on a new sweep line subroutine that efficiently evaluates
energy overloads of each job on the relevant time intervals. In particular,
our algorithm performs energetic reasoning propagations for every job.
In addition, we show that on the vast number of relevant intervals our
approach achieves the maximum possible propagations according to the
energetic reasoning rule.

1 Introduction

The cumulative scheduling problem (CuSP) considers a set of jobs J where each
job j ∈ J is given a processing time pj ∈ ZZ>0, a resource demand dj ∈ ZZ>0 and
a scheduling interval [ej , lj ] ⊂ IR. For every job j ∈ J we want to compute start
times sj ∈ [ej , lj − pj ] such that at any point in time the resource consumption
of all jobs does not exceed the maximum capacity D ∈ ZZ>0. Equivalently, the
CuSP can be described as the feasibility problem

find s ∈ IRn

such that
∑

j∈J:sj≤t<sj+pj

dj ≤ D ∀t ∈ IR (1)

ej ≤ sj ≤ lj − pj ∀j ∈ J. (2)

Usually, CuSP feasibility tests are subroutines for more specific scheduling prob-
lems such as makespan minimization [8, 9]. A CuSP checks if a current subprob-
lem may lead to feasible solution of the main problem. If this is not the case,
the search tree can be pruned.

In order to solve the CuSP the literature proposes domain branching in com-
bination with specific feasibility and propagation algorithms. The most common
ones are Time-Tabling [6, 9, 15], Edge-Finding [7, 13], Extended Edge-Finding [14],



Time-Table Edge-Finding [8, 11, 12], Energetic Reasoning [5] and Not-First/Not-
Last Pruning [10].

This paper focuses on energetic reasoning. Except for the last, energetic rea-
soning dominates all of the stated rules. In practice, however, the weaker but
faster propagation rules are preferred over energetic reasoning due to its high
complexity of O(n3), see Baptiste et al. [5]. Therefore, it is natural to ask for
faster implementations of energetic reasoning. In this context, some approaches
aim to improve the energetic reasoning rule directly or its external conditions.
Berthold, Heinz and Schulz [4] characterize time intervals where energetic rea-
soning cannot detect infeasibility. Such intervals can be neglected in the standard
energetic reasoning algorithm which leads to a reasonable computation time im-
provement. Similarly, Derrien et al. [3] sharpen the original characterization of
relevant time intervals of Baptiste et al. [5] and apply the standard energetic
reasoning algorithm to the reduced set of intervals. Both approaches are ex-
act, that is they compute the maximum energetic reasoning propagations for all
jobs. Their complexity is O(n3). Recently, Bonifas [2] presents a new O(n2 log n)
algorithm that computes one beneficial job for each relevant interval and propa-
gates energetic reasoning on it. Unlike previous approaches, his algorithm detects
at least one possible energetic reasoning propagation. But in general, the total
number of propagations is O(1). Thus, to ensure propagations for all jobs his
algorithm generally needs to be executed O(n) times which gives a complexity
of O(n3 log n). However, the method seems practically relevant, if one focuses on
one job propagations [2]. The idea of Bonifas’ algorithm is based on a geometric
interpretation of energetic reasoning which leads to upper envelope computations
of piecewise linear functions in the plane.

In this article, we proceed from a related geometric interpretation. In con-
trast to Bonifas [2], we state a different geometric problem which allows us to
compute energetic reasoning propagations for all jobs instead of only one. Hence
our approach yields O(n) more propagations in general. In addition, for each
propagation that is found in [2] our algorithm finds an equal or stronger propa-
gation. The complexity of our algorithm is O(n2 log n) compared to the complete
O(n3 log n) algorithm in [2]. Hence, our algorithm supersedes Bonifas’ algorithm.
Compared to the exact O(n3) approach of Derrien et al. [3], our algorithm does
not provably compute the maximum energetic reasoning propagations. But we
show that our approach yields maximum propagations on the huge majority
of relevant intervals. We give a precise characterization of the corresponding
interval set.

Our paper is organized as follows. In Section 2 we introduce the concepts
of energetic reasoning. Section 3 gives an alternative characterization for the
set of relevant time intervals from polyhedral theory. From this, we deduce an
improved interval checking algorithm in Section 4. Furthermore, we extended
this algorithm by energetic reasoning propagations in Section 5. Its basis forms a
sweep line subroutine that is introduced in Section 6. In Section 7 we characterize
the set of time intervals where our algorithm performs maximum propagations.



Section 8 compares our methods to the current state of the art. Finally, we
conclude our results in Section 9.

2 Energetic Reasoning

In the following we introduce the basic concepts of energetic reasoning for CuSP,
see Baptiste et al. [5]. Assume a CuSP instance as introduced in Section 1. For
each job j ∈ J define

µj(t1, t2) = min{pj , t2 − t1,max{0, ej + pj − t1},max{0, t2 − lj + pj}} (3)

as the minimum left-/right-shift duration in the time interval [t1, t2] ⊂ IR. More-
over, define the energy overload in the time interval [t1, t2] ⊂ IR as

ω(t1, t2) =
∑
j∈J

dj · µj(t1, t2)−D · (t2 − t1) (4)

which is the slack between the consumed energy and the available energy in a
time interval [t1, t2]. If in any time interval [t1, t2] ⊂ IR the consumed energy
exceeds the available energy, that is ω(t1, t2) > 0, then the CuSP is infeasible.
The time interval of maximum energy overload can be computed inO(n2), see [5].

Besides checking infeasibility, energetic reasoning reduces the variable domain
which consists of scheduling intervals [ej , lj ] for all jobs j ∈ J . Assume a job j ∈ J
is left-shifted, that is sj = ej , then

µleft
j (t1, t2) = max{0,min{t2, ej + pj} −max{t1, ej}} (5)

defines the left-shift duration of job j in the interval [t1, t2] ⊂ IR. In addition,

ωj(t1, t2) = ω(t1, t2) + dj · (µleft
j (t1, t2)− µj(t1, t2)) (6)

denotes the overload in the interval [t1, t2] ⊂ IR that occurs if job j ∈ J is
left-shifted. The energetic reasoning propagation rule states: if there is an en-
ergy overload in the interval [t1, t2] ⊂ IR due to left-shifting job j ∈ J , that is
ωj(t1, t2) > 0, then ej is an invalid earliest start time and thus can be delayed.

Theorem 1 (Baptiste et al. [5]). Given a job j ∈ J and a time interval
[t1, t2] ⊂ IR with ωj(t1, t2) > 0 then the earliest start time ej can be updated to

ej = t2 − µj(t1, t2) +

⌈
ω(t1, t2)

dj

⌉
. (7)

Note that the right-shift case is equivalent to the left-shift case by symmetry
at time t = 0, see Derrien et al. [3]. Since there are O(n2) relevant time inter-
vals [5], the standard energetic reasoning algorithm checks Theorem 1 for all
jobs on all relevant time intervals which yields an exact O(n3) energetic reason-
ing propagation algorithm. The currently tightest characterization of the O(n2)
time intervals is given by Derrien et al. [3].



3 The Energetic Reasoning Polyhedron

Derrien et al. [3] characterize a set of relevant intervals that are sufficient for
overload checking. However, they do not state an algorithm that reduces to their
characterization. In this section, we introduce a polyhedral model from which we
derive an alternative characterization for the same set of relevant time intervals.
But our polyhedral model enables us to construct an improved overload checking
algorithm that considers a subset of intervals than the algorithm stated in [3].

First, we model the problem of computing an interval [t1, t2] ⊂ IR of max-
imum overload (4) by a simple linear program. Therefore, let t1, t2 ∈ IR be
continuous variables that represent the interval limits. In addition, the variables
µ̃j ≥ 0 model the piecewise linear expression µj(t1, t2), as given in (3), for all
jobs j ∈ J . Then for any job subset S ⊆ J with S 6= ∅ define the linear program

max
∑
j∈I

dj · µ̃j −D · (t2 − t1)

µ̃j ≤ pj ∀j ∈ S (8)

µ̃j ≤ t2 − t1 ∀j ∈ S (9)

µ̃j ≤ ej + pj − t1 ∀j ∈ S (10)

µ̃j ≤ t2 − lj + pj ∀j ∈ S (11)

t1 ≤ t2 (12)

µ̃j ≥ 0 ∀j ∈ S (13)

t1, t2 ∈ IR

in |S| + 2 variables. With respect to (4), the objective function maximizes the
energy overload in the variable interval [t1, t2] ⊂ IR, whose maximum energy is
bounded by inequalities (8)-(11) for each variable µ̃j with j ∈ S according to (3).
We define the associated polyhedron of inequalities (8) - (13) by

PS = {(t1, t2, µ̃) ∈ IR|S|+2 | (t1, t2, µ̃) satisfies (8)− (13)} (14)

which we call the energetic Reasoning polyhedron for the job subset S ⊆ J .

Lemma 1. There exists a job subset S ⊆ J such that the maximum overload
ω∗ = maxt1<t2 ω(t1, t2) equals the optimal objective value of the linear program

max
∑
j∈J

dj · µ̃j −D · (t2 − t1), (t1, t2, µ̃) ∈ PS .

Proof. Let (t∗1, t
∗
2) ∈ IR2 be the time interval of maximum overload and let

S = {j ∈ J | µj(t
∗
1, t
∗
2) > 0}. The optimal values µ̃∗j are attained at the minimum

right hand side of inequalities (8)-(11), that is µ̃∗j = µj(t
∗
1, t
∗
2) for all j ∈ J . ut

In the following we characterize the vertices of PS as they identify intervals of
maximum overload. Without loss of generality, we restrict ourselves to vertices
(t1, t2, µ̃) ∈ PS with µ̃j > 0 for all j ∈ S. Otherwise, if µ̃j = 0 for any j ∈ S



Fig. 1. Two possible shapes of the projected polyhedron Pj (here with lower and upper
bounds for t1 and t2) with mandatory part (left) or without mandatory part (right).

then job j does not contribute to the objective function, so we can equivalently
consider PS′ with S′ = S\{j}. In the following we abbreviate notation and write
Pj = P{j} and Pi,j = P{i,j}.

Lemma 2. Let S ⊆ J be a job subset with S 6= ∅ and PS 6= ∅. In addition, let
(t1, t2, µ̃) ∈ PS be a vertex of PS with µ̃j > 0 for all j ∈ S. Then either one of
the following holds:

(i) There is a job j ∈ S such that (t1, t2, µ̃j) is a vertex of Pj.
(ii) There are two distinct jobs i, j ∈ S such that (t1, t2, µ̃i, µ̃j) is the intersection

of one edge of Pi and one edge of Pj and thus a vertex of Pi,j.

In order to determine the time interval of maximum energy overload, Lemma 2
allows us to restrict to vertices of Pj or Pi,j for dedicated jobs i, j ∈ S with i 6= j.
Since the vertices of case (i) and (ii) correspond to the intersection of edges of
Pj , or Pi and Pj respectively, Lemma 2 motivates to project the edges of the
polyhedron Pj with j ∈ J to the (t1, t2)-plane. The next lemma gives a similar
geometric interpretation as presented in Artigues et al. [1].

Lemma 3. Given a job j ∈ J and assume the projection of the polyhedron Pj

to the (t1, t2)-plane. The projected line segments of the edges of Pj that contain
a vertex (t1, t2, µ̃j) of Pj with µ̃j > 0 are given by

T1(j) = {(ej , t2) ∈ IR2 | t2 ≥ lj}
T2(j) = {(t1, lj) ∈ IR2 | t1 ≤ ej}
T3(j) = {(t1, t2) ∈ IR2 | t1 + t2 = ej + lj , ej ≤ t1 ≤ min{ej + pj , lj − pj}}
TM
1 (j) = {(lj − pj , t2) ∈ IR2 | lj − pj ≤ t2 ≤ ej + pj}
TM
2 (j) = {(t1, ej + pj) ∈ IR2 | lj − pj ≤ t1 ≤ ej + pj}.

We say job j ∈ J has a mandatory part, if it holds lj − pj < ej + pj . Let
JM = {j ∈ J | lj − pj < ej + pj} denote the set of jobs with mandatory
part. Consider Figure 1. From Lemma 3 we deduce that for any job j ∈ J the



polyhedron Pj can have two combinatorial types: if j has a mandatory part or
if j has no mandatory part. If job j has a mandatory part then inequality (9)
cuts Pj which yields the additional line segments TM

1 (j) and TM
2 (j). If job j

has no mandatory part inequality (9) is dominated by inequalities (8), (10)
and (11) which implies TM

1 (j) = TM
2 (j) = ∅. Combining Lemmas 2 and 3,

define for any two jobs i, j ∈ J with i 6= j the line segment intersection points
Tj = {(ej , lj)}, T M

j = {(lj−pj , ej+pj)}, Tij =
(
T1(i) ∪ TM

1 (i)
)
∩
(
T2(j) ∪ TM

2 (j)
)

and T ′ij =
(
T1(i) ∪ TM

1 (i) ∪ T2(i) ∪ TM
2 (i)

)
∩ T3(j).

Thus, the set of relevant time intervals results as the union

T =
⋃
j∈J
Tj ∪

⋃
j∈JM

T M
j ∪

⋃
i,j∈J:i6=j

Tij ∪
⋃

i,j∈J:i 6=j

T ′ij (15)

which forms a set of points in the plane.

Theorem 2. If (t1, t2) ∈ IR2 is a time interval of maximum energy overload
then it holds (t1, t2) ∈ T .

Note that the interval set T is equivalent to the characterization of Derrien
et al. [3]. However, in the next section we derive an improved overload checking
algorithm from this characterization of projected line segments.

4 Dynamic Overload Checking Algorithm

In this section we introduce an improved overload checking algorithm that con-
siders a subset of intervals than the checker presented in [3], see Algorithm 1 in
the appendix. We modify the O(n2) overload checking algorithm of Baptiste et
al. [5]. The basic algorithm iterates over all t1 values of vertical line segments
T1(i) ∪ TM

1 (i) with i ∈ J and over all t2 values of horizontal and diagonal line
segments T2(j)∪ TM

2 (j)∪ T3(j) with j ∈ J . At each pair (t1, t2) we check for an
energy overload ω(t1, t2) > 0 which implies infeasibility (line 9).

While the overload checker of [3] iterates all possible t2 values, our algorithm
uses a dynamic list to store only those t2 values that intersect with the current
vertical t1 line segment. In this context, the following fact is crucial: for any cur-
rent t1 value, there is at most one intersecting segment of either T2(j), TM

2 (j) or
T3(j) for every job j ∈ J , see Figure 1. For non-decreasing t1 values they appear
in the sequence of either T2(j) → T3(j) → TM

2 (j) or T2(j) → T3(j) depending
on whether it holds j ∈ JM or j ∈ J \JM . Whenever we traverse the intersection
point (ej , lj) ∈ IR2 of the line segments T2(j) and T3(j) we delete the current
T2(j) line segment and add the T3(j) line segment to the list (lines 13-16). Anal-
ogously, if j ∈ JM and we traverse the intersection point (lj − pj , ej + pj) of the
line segments T3(j) and TM

2 (j) we delete the T3(j) line segment and add the
TM
2 (j) line segment to the list (lines 17-19). Moreover, if we detect a t2 value

that corresponds to a line segment TM
2 (j) or T3(j) and t1 ≥ ej +pj we delete the

t2 segment from the list because it is not defined according to Lemma 3 (lines
10-12). By construction of the line segments T1(j) and TM

1 (j) it is ensured that



Fig. 2. Figure 1 continued: The slack regions between the left-shift polyhedron P ′
j and

Pj (lower left region) and between the right-shift polyhedron P ′′
j and Pj (upper right

region). For each job j ∈ J , energetic reasoning takes effect only on such intervals.

all intersection points are traversed by the algorithm. In particular, insertions
and deletions are always performed at the current list element. Therefore, all
modifications to the original algorithm can be implemented in O(1). The num-
ber of iterated intervals remains O(n2) in general, hence the complexity of our
overload checking algorithm is also O(n2).

Note that the intersection relations
(
T2(i) ∪ TM

2 (i)
)
∩T3(i) of T ′ij in (15) are

not included in our algorithms since they are symmetric to
(
T1(i) ∪ TM

1 (i)
)
∩

T3(i) at time t = 0. We execute our algorithm also for its symmetric version to
include all relevant intervals.

5 Energetic Reasoning Propagation

In this section, we extend the overload checking algorithm of Section 4 by start
and end time propagations based on energetic reasoning, as in (7).

Extension. In principle, finding a left-shift energetic reasoning propagation for
a job j ∈ J corresponds to finding an energy overload restricting to polyhedra
P ′j and Pi for all i ∈ J \ {j}, where P ′j emerges from Pj by setting lj = ej + pj .
Analogously for right-shift propagations, where P ′′j emerges from Pj by setting
ej = lj − pj , see Figure 2. In order to include all relevant intervals that are
implied by the polyhedra P ′j and P ′′j we need to take the extended line segments

T1(j) = {(ej , t2) ∈ IR2 | t2 ≥ t1}, TM
1 (j) = {(lj − pj , t2) ∈ IR2 | lj − pj ≤ t2}

T2(j) = {(t1, lj) ∈ IR2 | t1 ≤ lj}, TM
2 (j) = {(t1, ej + pj) ∈ IR2 | t1 ≤ ej + pj}

of Lemma 3 for all jobs j ∈ J . Now these line segments corresponds to verti-
cal and horizontal lines that cross the entire interval plane t1 ≤ t2. Therefore,
any dynamic update of our overload checking algorithm of Section 4 becomes
obsolete for these line segments. Hence, only the diagonal line segments of T3(j)
for each j ∈ J are dynamically updated. This gives an equivalent but simpler



characterization of relevant intervals for energetic reasoning, as given in [3]. On
the basis of this characterization, we also get a simple O(n3) energetic reasoning
propagation algorithm which is equivalent to [3], see Algorithm 2 in the ap-
pendix. In the following we consider the set T as defined in (15) but using the
extended line segments.

Problem Decomposition. We call an energetic reasoning propagation algo-
rithm exact, if it computes

max
(t1,t2)∈T : ωj(t1,t2)>0

t2 − µj(t1, t2) +

⌈
ω(t1, t2)

dj

⌉
(16)

for all jobs j ∈ J , that is the maximum earliest start time update for all jobs j ∈ J
according to (7). In particular, problem (16) implies two nested subproblems
for each job j ∈ J . First, we have to find intervals (t′1, t

′
2) ∈ T of positive

energy overload ωj(t
′
1, t
′
2) > 0. Second, among such intervals (t′1, t

′
2) ∈ T with

ωj(t
′
1, t
′
2) > 0 we have to determine an interval (t1, t2) ∈ T that yields the

maximum update with respect to (16). Our idea is to decompose (16) and to
compute the maxima of the two incorporated functions

max
(t1,t2)∈T

ωj(t1, t2) (17)

max
(t1,t2)∈T

t2 − µj(t1, t2) +

⌈
ω(t1, t2)

dj

⌉
(18)

for all jobs j ∈ J . If for any job j ∈ J the maxima of functions (17) or (18) are
attained at an interval (t1, t2) ∈ T and it holds ωj(t1, t2) > 0 we update the
earliest start time according to (7).

The approach of Bonifas [2] reversely computes maxj∈J ωj(t1, t2) for each
relevant time interval (t1, t2) ∈ T . If the time interval (t1, t2) ∈ T attains its
maximum at job j ∈ J he updates the earliest start time ej according to (7).
Since one job can dominate on many intervals, his algorithm generally takes
O(n3 log n) to propagate all jobs. In the following we construct an O(n2 log n)
algorithm that propagates all jobs according to (17) and (18). Due to the addi-
tional computation of (18) each propagation is equivalent or stronger than in [2].
Hence, our approach dominates Bonifas’ algorithm with respect to complexity
and propagation strength.

In particular, the computation of (17) yields at least one possible energetic
reasoning propagation for every job. But in general, our approach may not de-
tect the maximum propagations in one step. Thus, we apply our algorithm until
a fixpoint is reached. To our knowledge it is unknown if the number of fixpoint
iterations for energetic reasoning is polynomially bounded. At least, it is not
strongly polynomial, see Mercier and van Hentenryck [14]. In practice, however,
it rarely takes more than two iterations to reach the fixpoint and mostly the
fixpoints of our approach and exact energetic reasoning are equal.

Geometry. The overload checking algorithm of Section 4 first loops over all t1
values and then over all t2 values with (t1, t2) ∈ T while checking for potential



energy overloads ω(t1, t2) > 0. In the following we consider a fixed iteration of
the main t1-loop for a fixed value t1.

According to fixed t1, we reformulate functions (17) and (18) equivalently as

max
(t1,t2)∈T

ω(t1, t2) + dj · (µleft
j (t1, t2)− µj(t1, t2)) (19)

max
(t1,t2)∈T

ω(t1, t2) + dj · (t2 − µj(t1, t2)) (20)

for all jobs j ∈ J by using definition (6) and the fact that we only need the
intervals (t1, t2) ∈ T where the maximum is attained. Now, the values ω(t1, t2)
with (t1, t2) ∈ T form the set of points P = {(t2, ω(t1, t2) ∈ IR2 | (t1, t2) ∈ T }
which are collected during the overload checking algorithm. The remaining two
piecewise linear functions dj · (µleft

j (t1, t2) − µj(t1, t2)) and dj · (t2 − µj(t1, t2))

will be decomposed into a set of line segments Lj in IR2, see Lemmas 4 and 5.
Geometrically in IR2, problems (19) and (20) compute for each job j ∈ J and

each line segment l ∈ Lj the point (t2, ω(t1, t2)) ∈ P in the domain of line l such
that the sum of their function values at t2 is maximal. Since by Lemmas 4 and 5
it holds |Lj | ∈ O(1), we select for each job j ∈ J the maximum value among all
line segments l ∈ Lj . In Section 6 we introduce a new sweep line algorithm that
solves this problem in O((|L|+ |P|) · log(|L|+ |P|)), where L =

⋃
j∈J Lj . From

|L| ∈ O(n) and |P| ∈ O(n) it follows that the subproblems (19) and (20) can be
solved in O(n log n), which gives a total running time of O(n2 log n).

Line Segment Decomposition. Lemmas 4 and 5 show how the functions
dj · (µleft

j (t1, t2)−µj(t1, t2)) and dj · (t2−µj(t1, t2)) can be decomposed into line
segments Lj for all jobs j ∈ J . This applies only to the left-shift case. For the
right-shift case, Lemmas 6 and 7 provide line segment decompositions for the
analogous functions dj ·(µright

j (t1, t2)−µj(t1, t2)) and −dj ·(t̄1+µj(t1, t2)). The si-
multaneous consideration of left- and right-shift propagations enables us to com-
pute all interesting propagations in one step, compare Section 7 and Algorithm 4.
We restrict both cases to their specific interval region where energetic reason-
ing propagations may occur, see Figure 2. For this, define θ1 = max{ej , t1},
θ2 = min{ej+pj , lj−pj}, θ3 = max{ej+pj , lj−pj} and θ4 = min{lj , lj+ej−t1}.

Lemma 4. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =

dj · (µleft
j (t1, t2)− µj(t1, t2)) on the interval [θ1, θ4] decomposes into

f1j (t2) = dj · (t2 − θ1) , t2 ∈ [θ1, θ2]

f2j (t2) = dj · (θ2 − θ1) , t2 ∈ [θ2, θ3]

f3j (t2) = −dj · (t2 − θ4) , t2 ∈ [θ3, θ4].

Lemma 5. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =
dj · (t2 − µj(t1, t2)) on the interval [θ1, θ4] decomposes into the linear functions

f1j (t2) = dj · t2 , t2 ∈ [θ1, lj − pj ]
f2j (t2) = dj · (lj − pj) , t2 ∈ [lj − pj , θ4].



Lemma 6. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj ] the

piecewise linear function fj(t2) = dj · (µright
j (t1, t2)− µj(t1, t2)) on the interval

[θ′,∞) decomposes into the linear function segments

f1j (t2) = dj · (t2 − θ′) , t2 ∈ [θ′, lj ]

f2j (t2) = dj · (lj − θ′) , t2 ∈ [lj ,∞).

Lemma 7. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj ] the
piecewise linear function fj(t2) = −dj · (t̄1 + µj(t1, t2)) is constant on [θ′,∞).

6 Sweep Line Algorithm

In this section we introduce a sweep line new algorithm that solves the geometric
problems (19) and (20) that occur during energetic reasoning. Compared to
Section 5, we restate the problem more generally.

Let P be a set of pairwise distinct points in IR2 where each point q ∈ P has
coordinates (xq, yq) ∈ IR2. Additionally, let L be a set of line segments in IR2

where each line segment l ∈ L is given a slope al ∈ IR, an intercept bl ∈ IR and
an interval [xl, xl] ⊂ IR. Thus, each line segment l ∈ L corresponds to the set
of points (x, y) ∈ IR2 that satisfy y = al · x + bl with x ∈ [xl, xl]. For each line
segment l ∈ L we want to compute a point q ∈ P with xq ∈ [xl, xl] that has
maximum y-distance to the line segment l. More formally, we compute

max
q∈P:xq∈[xl,xl]

al · xq + yq + bl (21)

for all line segments l ∈ L. Since bl is constant in this term we reduce to

max
q∈P:xq∈[xl,xl]

al · xq + yq (22)

for all line segments l ∈ L. If there is no q ∈ P with xq ∈ [xl, xl] we assume the
function has value −∞. Our approach is to dualize problem (22) and translate it
from the (x, y)-plane to the (a, y)-plane with respect to the slopes al of the line
segments l ∈ L, see Figure 3. In this dual setting, each point q ∈ P corresponds
to a line with slope xq and intercept yq that contains all points (a, y) ∈ IR2

with y = xq · a + yq. Moreover, each line segment l ∈ L translates to a point
(al, 0) ∈ IR2. The equivalent dual problem is to compute for each point (al, 0)
with l ∈ L the line q ∈ P with xq ∈ [xl, xl] of maximum value y = xq · al + yq.
The difficulty of the dual problem is to consider for each point (al, 0) ∈ IR2 with
l ∈ L a subset of lines q ∈ P with slopes xq in the range [xl, xl]. Therefore, an
upper envelope computation of all dual lines q ∈ P is not sufficient.

In the following we will stick to the dual setting, that means we consider P
as a set of lines and L as a set of points in IR2. A detailed pseudo-code of the
following algorithms can be found in Algorithms 5-8 in the appendix.



Fig. 3. Primal problem (left): given a set of points (xq, yq) ∈ P and a set of line
segments l ∈ L with slope al. Dual problem (right): converts to a set of lines q ∈ P
with slope xq, intercept yq and a set of evaluation points (al, 0) for all l ∈ L where the
sweep line (dashed) is evaluated. The interval tree B stores the state of the sweep line.

Sweeping (Algorithm 5). The sweep line algorithm sweeps over all points
(al, 0) ∈ IR2 with l ∈ L in non-decreasing order of al. All al values are stored
as evaluation events in a min-heap H. At each point (al, 0) we evaluate func-
tion (22), which can be done efficiently for any interval [xl, xl] by using a binary
interval tree B which stores the current state of the sweep line. While sweeping
over all al values with l ∈ L the state of the sweep line changes, so the interval
tree B must be updated dynamically. Therefore, the heap H additionally stores
resolve events which constitute events where the tree structure must be updated.
New resolve events are added dynamically during the sweep.

The main sweep line algorithm successively extracts the minimum element
from the heap H. If it is an evaluation event, we call the subroutine evaluate
and if it is a resolve event we call the subroutine resolve. The main concepts of
the sweep line algorithm are explained in the following.

Interval Tree (Algorithm 6). Let VB denote the set of nodes of the in-
terval tree B. Each tree node v ∈ VB stores four data members: an interval
[xv, xv] ⊂ IR, a dominating line πv ∈ P, a resolve point αv ∈ IR and a minimum
resolve point βv ∈ IR. The data members αv, βv and πv change dynamically while
sweeping over all al values with l ∈ L. For an initial sweep value a0 ∈ IR the tree
is build up recursively from bottom to top. The leaves of B, from left to right,
correspond to lines q ∈ P sorted by xq first and by yq second in non-decreasing
order. The data members of a leaf node v ∈ VB that is associated with one line
q ∈ P is initialized by [xv, xv] = [xq, xq], πv = q, αv =∞ and βv =∞.

Conversely, the data members of a non-leaf node v ∈ VB with child nodes
v.left ∈ VB and v.right ∈ VB are defined recursively as follows. The interval
[xv, xv] = [xv.left, xv.right] spans the intervals of the child nodes of v. Its domi-
nating line πv is equal to the line q ∈ {πv.left, πv.right} that has the higher value
of a0 · xq + yq (lines 15-16). Furthermore, for the dominating lines q = πv.left

and q′ = πv.right the resolve point αv =
yq−yq′

xq′−xq
equals the intersection point of



the lines q and q′, if xq 6= xq′ . Otherwise, if xq = xq′ set αv = ∞ (lines 18-24).
Finally, let βv = min{αv.left, αv.right, βv.left, βv.right} be the minimum value of
a resolve point of any node in the subtree rooted at v (line 14). If, during the
construction, it holds αv < βv for some v ∈ VB we add a resolve event with value
αv to the heap H (lines 22-23), see also resolve.

Evaluate (Algorithm 7). This subroutine evaluates (22) for a sweep value
al and an interval [xl, xl] with l ∈ L. For this, we descend the interval tree B
recursively from the root along nodes v ∈ VB with [xv, xv] ∩ [xl, xl] 6= ∅. For
nodes v ∈ VB with [xvxv] ⊆ [xl, xl] function (22) can be evaluated in O(1) be-
cause the dominating line πv ∈ P (line 11) yields the maximum value of (22) in
the interval [xv, xv] by construction. Therefore, the recursion descends the tree
B only along the interval limits xl and xl. Hence, one evaluation takes O(log |P|).

Resolve (Algorithm 8). This subroutine resolves a node v ∈ VB at its sweep
value αv. Recall that αv denotes the intersection value of the dominating lines
πv.left, πv.right ∈ P. Since resolving means that πv.right replaces πv.left as domi-
nating line with respect to (22) for all sweep values al > αv we set πv = πv.right.
Additionally, we set αv = ∞ since the lines πv.left and πv.right have no future
intersection because πv.right has the higher slope by construction (lines 1-3).

By its recursive definition, changing the dominating line πv ∈ P may change
the values of αu, βu and πu of all nodes u on the path from v to the root of B.
Thus, we propagate those values along this path (lines 4-18). In particular, αu

is updated only if it was not already resolved, that is αu < ∞. If, after the
propagation, it holds αu < βu for any node u on the path from v to the root of
B then the resolve event at αu is added to the heap H (line 14). This is because
we only add the resolve event at the intersection point αv to the heap H, if αv

does not change due to recursion. Otherwise, if βv ≤ αv then resolving a child
node of v may still affect the recursive value of αv. In this case, we add at most
one resolve event for each tree node which is crucial for the running time of our
algorithm. Since only data members along the path from a node v ∈ VB to the
root of B are changed, one resolve takes O(log |P|) .

Theorem 3. The sweep line algorithm runs in O((|L|+ |P|) · log(|L|+ |P|)).

Proof. The interval tree is initialized in O(|P|). The event heap H contains
at most O(|P|) resolve events and O(|L|) evaluation events, so extracting all
elements gives O((|L|+ |P|) · log(|L|+ |P|)). The main loop extracts O(|L|+ |P|)
events from the heap H and each event is either evaluated or resolved, where
each has complexity O(log |P|). Hence, the statement follows. ut

7 Exact Intervals

Finally, we characterize interval subsets Tj ⊆ T for all jobs j ∈ J where our sweep
line propagation algorithm of Section 5 is exact. That means, if the interval
(t1, t2) ∈ T yields the maximum earliest start time update (7) for job j ∈ J



and it holds (t1, t2) ∈ Tj then the sweep line propagator finds this propagation.
Therefore, recall the functions

max
(t1,t2)∈T

ω(t1, t2) + dj · (µleft
j (t1, t2)− µj(t1, t2)) (23)

max
(t1,t2)∈T

ω(t1, t2) + dj · (t2 − µj(t1, t2)) (24)

as given in (19) and (20) for fixed value t1 ∈ IR.

Lemma 8. If the slopes of the functions (23) and (24) coincide on an interval
[t2, t2] ⊂ IR then both functions on the interval [t2, t2] attain their maximum at
the same point (t1, t2) ∈ T with t2 ∈ [t2, t2], if the maximum exists.

Lemma 8 implies that the two nested subproblems (23) and (24) of the exact-
ness condition (16) attain their maximum at the same point t2 ∈ [t2, t2], if their
slopes are equal. Thus, only one function of (23) and (24) must be considered.
Since the sweep line algorithm of Section 5 computes such maxima, we obtain
exact energetic reasoning propagations on the interval [t2, t2]. This suggests to

characterize intervals where the difference dj ·(t2−µleft
j (t1, t2)) of functions (23)

and (24) is constant. Analogously for the right-shift case, we study intervals

where the function µright
j (t1, t2)− 2 · µj(t1, t2) is constant.

Recall Figure 2 and consider the following subdivision of interval areas

T A
j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , lj ], t2 ∈ [lj ,∞)}
T B
j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , θ2], t2 ∈ [ej + pj , θ4]}

T B′

j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , lj − pj ], t2 ∈ [max{θ3, θ4}, lj ]}
T C
j = {(t1, t2) ∈ IR2 | t1 ∈ [ej , θ2], t2 ∈ [t1, ej + pj ]}

where θ1 = max{ej , t1}, θ2 = min{ej + pj , lj − pj}, θ3 = max{ej + pj , lj − pj}
and θ4 = min{lj , lj + ej − t1}.

Lemma 9. For fixed value t1 ∈ [ej , lj ] the function µright
j (t1, t2) − 2 · µj(t1, t2)

has slope zero for all t2 ∈ [lj ,∞).

Lemma 10. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

one the interval t2 ∈ [ej + pj , θ4].

Lemma 11. For fixed value t1 ∈ [ej , θ2] the function µright
j (t1, t2)−2 ·µj(t1, t2)

has slope one in the interval [max{θ3, θ4}, lj ].

Lemma 12. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

zero in the interval [t1, θ2].

From Lemmas 9 and 12 we deduce that our approach is exact on the interval
sets T A

j and T C
j . Thus, we execute our algorithm also for the symmetric version

of the problem to imply exactness on their symmetric copies T A′

j and T C′

j , see



Figure 2. In contrast, Lemmas 10 and 11 show that our approach is not exact on
the symmetric interval sets T B

j and T B′

j . But in practice, both sets form only a
minor part of the whole interval region where energetic reasoning is propagated.
Fr our computational results, we implemented two versions. One version omits
the line segments that belong to the non-exact interval regions and the other
includes the slopes of both functions (23) and (24) to enhance our chance to find
the exact propagation, see Algorithm 4.

8 Computational Results

Our algorithms are implemented in C++ using Linux GCC compiler version
4.8.4 on a 3.20 GHz Intel Xeon CPU and 16GB RAM. The test set is taken from
RCPSP instances of the PSPLIB [16] and contains 480 instances of 30 jobs, 480
instances of 60 jobs and 600 instances of 120 jobs.

We implemented the basic overload checker of Derrien et al. [3] (CD) and our
improved dynamic overload checker (CC) of Section 4. As energetic reasoning
propagators, we implemented the original O(n3) propagator of Baptiste et al. [5]
(ERB) and a simpler but equivalent version of the O(n3) propagator of Derrien
et al. [3] (ERD), see Algorithm 2. Moreover, we implemented two versions of our
O(n2 log n) sweep line propagator. The full version (SWF) adds all line segments
of the exact and non-exact interval regions, compare Algorithm 4 and Section 7.
For the non-exact regions, only lines with the slopes of the corresponding over-
load and update function are added. The relaxed version (SWR) considers only
line segments of the exact interval regions. In addition to all algorithms, we apply
a fast time-tabling and precedence propagator [9].

We compute lower bounds by destructive improvement [8]. In order to show
the real performance of the algorithms we first apply the static SetTimes [17]
branching rule. To show the practical performance we also apply a dynamic
branching rule, similar to Schutt et al. [9], which stores a score value for every
job that is increased by one, if fixing this job to its earliest start time leads to a
direct failure, otherwise the score is decreased by one. We select the job with the
highest score value and break ties with the earliest start and latest completion
time. The time limit for each lower bound is 3600 seconds.

Tables 1 and 2 compare the results of the static and the dynamic branching
rule. The column opt shows the number of optimally solved instances, ∆LB
is the sum of the computed lower bounds normed to the weakest algorithm
and nodes/s is the average number of nodes per second of the optimally solved
instances. Our results show that the precise polyhedral interpretation of the
dynamic overload checker (CC) leads to a speedup of factor two compared to
the checker of Derrien et al. [3]. Due to this gain, the checker performs also very
well as standalone algorithm combined with dynamic branching. We have to
note that the PSPLIB instances are rather cumulative than disjunctive, that is
pure checkers perform very reasonable compared to pure energetic approaches.

Our sweep line propagators also show a very positive performance. In terms
of computation time, full and relaxed sweep line propagation highly dominate



Table 1. Results for the checkers and propagators using static branching.

Table 2. Results for the checkers and propagators using dynamic branching.

the previous energetic reasoning propagators by a factor up to twelve on large
instances. In terms of propagation power, however, full sweep line propagation
(SWF) is slightly inferior to the propagator of Derrien et al. [3] using static
branching. Using dynamic branching, full sweep line propagation dominates
again. In particular, relaxing the non-exact line segments (SWR) results in a
vast computational speedup where much more propagations are performed in
the same time. The relationship between almost the same propagation power
as exact energetic reasoning and much faster computation time lets the relaxed
sweep line algorithm (SWR) outperform all other energetic reasoning algorithms.

On the 120 job test set, the relaxed sweep line algorithm (SWR) further
improved four best known lower bounds: 103 (34 2), 128 (47 6), 104 (59 5), 88
(60 3) and our dynamic checker (CC) improved six additional best known lower
bounds: 116 (12 6), 218 (36 3), 119 (47 3), 128 (47 10), 124 (53 10), 126 (58 9).
The improvement is +1 for each instance, we compared with [18].

9 Conclusion

In this paper we propose an improved overload checking algorithm and a new
energetic reasoning propagation algorithm for solving the CuSP. Our approaches
are derived from a novel polyhedral interpretation of energetic reasoning. On that
basis, we develop practically efficient algorithms that improve the current state
of the art. Further research may focus on practical refinements of the presented
algorithms and the development of more sophisticated combinatorial methods
from a related polyhedral background.
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A Proofs

A.1 Proof of Lemma 2

We first show the following helping lemma.

Lemma 13. Let S ⊆ J be a job subset with S 6= ∅ and PS 6= ∅. In addition, let
(t1, t2, µ̃) ∈ PS be a vertex of PS with µ̃j > 0 for all j ∈ S. Then either one of
the following holds:

(i) (t1, t2, µ̃) satisfies three inequalities of (8)-(11) with equality and all of them
correspond to one job j ∈ S

(ii) (t1, t2, µ̃) satisfies four inequalities of (8)-(11) with equality where two cor-
respond to one job i ∈ S and two correspond to one job j ∈ S with i 6= j.

Proof. We first show that PS has full dimension. Let m = |S| and let δj ∈ IRm

be the j-th unit vector. Furthermore, let 0m, 1m ∈ {0, 1}m be the vectors that
contain m zeros or one respectively. Consider the m+2 vectors (−T, T, pj ·δj)j∈S ,
(0, T, 0m) and (T, T, 0m) where T denotes a large constant. We verify that these
vectors are linearly independent and satisfy inequalities (8)-(13). Consequently,
PS contains m+ 2 linearly independent vectors, so it has full dimension m+ 2.

It follows that the vertex (t1, t2, µ̃) ∈ PS satisfies m+2 inequalities of (8)-(13)
with equality. If it satisfies inequality (12) or (13) with equality it holds µ̃j = 0
for some j ∈ S which contradicts the assumption. Hence, we can restrict to in-
equalities (8)-(11) which yields the reduced constraint matrix A ∈ {0, 1}4·m×m+2

of the form

A =


0m 0m Im
1m −1m Im
1m 0m Im
0m −1m Im


(8)
(9)
(10)
(11)

where the first two columns of A correspond to variables t1, t2 and the last m
columns correspond to variables µ̃j with j ∈ S. Here, Im ∈ {0, 1}m×m equals
the m×m identity matrix.

Thus, the vertex (t1, t2, µ̃) ∈ PS corresponds to a selection of m+ 2 linearly
independent rows of A whose associated submatrix we denote by AB . Since every
column of AB must contain at least one non-zero entry and each row of A has
exactly one non-zero coefficient for some variable µ̃j it follows that AB contains
m rows with non-zero entries for each variable µ̃j with j ∈ S. The remaining
two rows of AB either have a non-zero entry for one job j ∈ S or for two distinct
jobs i, j ∈ S. This is equivalent to cases (i) and (ii) which proves the lemma. ut

Lemma 2. Let S ⊆ J be a job subset with S 6= ∅ and PS 6= ∅. In addition, let
(t1, t2, µ̃) ∈ PS be a vertex of PS with µ̃j > 0 for all j ∈ S. Then either one of
the following holds:

(i) There is a job j ∈ S such that (t1, t2, µ̃j) is a vertex of Pj.
(ii) There are two distinct jobs i, j ∈ S such that (t1, t2, µ̃i, µ̃j) is the intersection

of one edge of Pi and one edge of Pj and thus a vertex of Pi,j.



Proof. It either holds case (i) or (ii) of Lemma 13 because the assumptions are
equal. From the proof of Lemma 13, the polyhedra Pi and Pi,j have dimensions
three and four respectively. Case (i) of Lemma 13 implies that the projected
vertex (t1, t2, µ̃j) is a vertex of Pj .

An edge of Pj satisfies two inequalities of (8)-(11) with equality that corre-
spond to job j. Therefore, case (ii) of Lemma 13 yields that the projected vertex
(t1, t2, µ̃i, µ̃j) is the intersection of one edge of Pi and one edge of Pj and hence
a vertex of Pi,j . ut

A.2 Proof of Lemma 3

Lemma 3. Given a job j ∈ J and assume the projection of the polyhedron Pj

to the (t1, t2)-plane. The projected line segments of the edges of Pj that contain
a vertex (t1, t2, µ̃j) of Pj with µ̃j > 0 are given by

T1(j) = {(ej , t2) ∈ IR2 | t2 ≥ lj}
T2(j) = {(t1, lj) ∈ IR2 | t1 ≤ ej}
T3(j) = {(t1, t2) ∈ IR2 | t1 + t2 = ej + lj , ej ≤ t1 ≤ min{ej + pj , lj − pj}}
TM
1 (j) = {(lj − pj , t2) ∈ IR2 | lj − pj ≤ t2 ≤ ej + pj}
TM
2 (j) = {(t1, ej + pj) ∈ IR2 | lj − pj ≤ t1 ≤ ej + pj}.

Proof. By the proof of Lemma 13, it suffices to restrict to inequalities (8)-(11).
An edge of Pj satisfies two inequalities of (8)-(11) with equality. Thus, there are
six possible cases:

(i) If inequalities (8) and (10) hold with equality then it holds µ̃j = pj =
ej + pj − t1 which implies t1 = ej . By inequalities (11) and (9) it follows
t2 ≥ lj and t2 ≥ ej + pj .

(ii) If inequalities (8) and (11) hold with equality then it holds µ̃j = pj =
t2 − lj + pj which implies t2 = lj . By inequalities (10) and (9) it follows
t1 ≤ ej and t1 ≤ lj − pj .

(iii) If inequalities (10) and (11) hold with equality then it holds µ̃j = ej+pj−t1 =
t2−lj+pj which implies t1+t2 = ej+lj . By inequalities (8) and (9) it follows
t1 ≥ ej and t1 ≤ lj − pj . In addition, inequality (13) yields t1 ≤ ej + pj .

(iv) If inequalities (9) and (11) hold with equality then it holds µ̃j = t2 − t1 =
t2− lj + pj which implies t1 = lj − pj . By inequalities (10) and (8) it follows
t2 ≤ ej + pj and t2 ≤ lj . In addition, inequality (12) yields t2 ≥ lj − pj .

(v) If inequalities (9) and (10) hold with equality then it holds µ̃j = t2 − t1 =
ej +pj − t1 which implies t2 = ej +pj . By inequalities (11) and (8) it follows
t1 ≥ lj − pj and t1 ≥ ej . In addition, inequality (12) yields t1 ≤ ej + pj .

(vi) If inequalities (8) and (9) hold with equality then it holds µ̃j = pj = t2− t1.
By inequalities (10) and (11) it follows t1 ≤ ej and t2 ≥ lj . Adding both
yields lj − ej ≤ t2 − t1 = pj ≤ lj − ej which implies pj = lj − ej . Thus, it
holds t1 = ej and t2 = lj . Therefore, all inequalities of (8)-(11) are satisfied
with equality. This case is already included in cases (i)-(v).



Since ej ≤ lj − pj and ej + pj ≤ lj always holds the cases (i)-(v), in order of
appearance, correspond to the line segments T1(j), T2(j), T3(j), TM

1 (j), TM
2 (j)

which proves the lemma. ut

A.3 Proof of Theorem 2

Theorem 2. If (t1, t2) ∈ IR2 is a time interval of maximum energy overload
then it holds (t1, t2) ∈ T .

Proof. By Lemma 1 there exists a job subset S ⊆ J with S 6= ∅ such that
(t1, t2, µ̃) ∈ IR|S|+2 is a vertex of PS with µ̃j > 0 for all j ∈ S. Therefore,
Lemma 2 holds. We distinguish between cases (i) and (ii) of Lemma 2.

If case (i) holds then there is a job j ∈ S such that (t1, t2, µ̃j) is a vertex of
Pj . Since Pj is a three-dimensional polyhedron the vertex (t1, t2, µ̃j) of Pj has at
least three incident edges. By Lemma 3, the only intersection points of at least
three projected edges of Pj are (t1, t2) = (ej , lj) and (t1, t2) = (lj − pj , ej + pj),
if j ∈ JM . This case is equivalent to (t1, t2) ∈ Tj and (t1, t2) ∈ T M

j , if j ∈ JM .

Otherwise, if case (ii) holds then there are two distinct jobs i, j ∈ S such
that (t1, t2) is an intersection point of the projected edges of Pi and Pj respec-
tively. Since T1(i), TM

1 (i) are vertical, T2(i), TM
2 (i) horizontal and T3(i) diagonal

line segments the possible intersection relations are vertical-horizontal, vertical-
diagonal and horizontal-diagonal. The relation vertical-horizontal corresponds
to (t1, t2) ∈ Tij and the relations vertical-diagonal and horizontal-diagonal to
(t1, t2) ∈ T ′ij . If the line segments of jobs i and j intersect in more than one
point, we can always find an intersection point of the previous characterizations
along the intersecting line. It follows that (t1, t2) ∈ T which shows the theorem.

ut

A.4 Proof of Lemmas 4-7

Lemma 4. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =

dj · (µleft
j (t1, t2) − µj(t1, t2)) on the interval [θ1, θ4] decomposes into the linear

function segments

f1j (t2) = dj · (t2 − θ1) , t2 ∈ [θ1, θ2]

f2j (t2) = dj · (θ2 − θ1) , t2 ∈ [θ2, θ3]

f3j (t2) = −dj · (t2 − θ4) , t2 ∈ [θ3, θ4].

Proof. Since t1 ≤ θ2, the function µleft
j (t1, t2) has slope one in the interval

t2 ∈ [θ1, ej + pj ] and zero otherwise. The function µj(t1, t2) has slope one in the

interval t2 ∈ [lj − pj , θ4] and zero otherwise. Hence µleft
j (t1, t2) − µj(t1, t2) has

slope one the interval [θ1, θ2], constant slope in [θ2, θ3] and slope minus one in
[θ3, θ4]. Scaling by dj shows the statement. ut



Lemma 5. For any job j ∈ J and t1 ≤ θ2 the piecewise linear function fj(t2) =
dj · (t2 − µj(t1, t2)) on the interval [θ1, θ4] decomposes into the linear function
segments

f1j (t2) = dj · t2 , t2 ∈ [θ1, lj − pj ]
f2j (t2) = dj · (lj − pj) , t2 ∈ [lj − pj , θ4].

Proof. Since t1 ≤ θ2, the function µj(t1, t2) has slope zero in [θ1, lj − pj ] and
slope one in the interval [lj − pj , θ4]. Hence, the function t2−µj(t1, t2) has slope
one in the interval [θ1, lj − pj ] and slope zero in the interval [lj − pj , θ4]. Scaling
by dj shows the statement. ut

Lemma 6. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj ] the

piecewise linear function fj(t2) = dj · (µright
j (t1, t2)− µj(t1, t2)) on the interval

[θ′,∞) decomposes into the linear function segments

f1j (t2) = dj · (t2 − θ′) , t2 ∈ [θ′, lj ]

f2j (t2) = dj · (lj − θ′) , t2 ∈ [lj ,∞).

Proof. Since t1 ∈ t1 ∈ [ej , lj ], the function µright
j (t1, t2) has slope one in the

interval [θ′, lj ] and slope zero in the interval [lj ,∞). The function µj(t1, t2) is

constant for all t2 ∈ [θ′,∞). Hence, the function µright
j (t1, t2) − µj(t1, t2) has

slope one in the interval [θ′, lj ] and slope zero in the interval [lj ,∞). Scaling by
dj shows the statement. ut

Lemma 7. Let θ′ = max{θ3, θ4, t1}. For any job j ∈ J and t1 ∈ [ej , lj ] the
piecewise linear function fj(t2) = −dj · (t̄1 + µj(t1, t2)) is constant on [θ′,∞).

Proof. By construction, it holds µj(t1, t2) = µj(t1, θ
′) for all t2 ∈ [θ′,∞) which

is constant. Consequently, fj(t2) is constant for all t2 ∈ [θ′,∞). ut

A.5 Proof of Lemma 8

Lemma 8. If the slopes of the functions (23) and (24) coincide on an interval
[t2, t2] ⊂ IR then both functions on the interval [t2, t2] attain their maximum at
the same point (t1, t2) ∈ T with t2 ∈ [t2, t2], if the maximum exists.

Proof. Since the slope of (23) equals the slope of (24) the quotient of the func-

tions ω(t1, t2) + dj · (µleft
j (t1, t2)− µj(t1, t2)) and ω(t1, t2) + dj · (t2 − µj(t1, t2))

is constant for all t2 ∈ [t2, t2]. Hence, if there exists an interval (t1, t2) ∈ T with
t2 ∈ [t2, t2] that maximizes (23) it also maximizes (24) and conversely. ut

A.6 Proof of Lemmas 9-12

Lemma 9. For fixed value t1 ∈ [ej , lj ] the function µright
j (t1, t2)− 2 · µj(t1, t2)

has slope zero for all t2 ∈ [lj ,∞).



Proof. Both functions µright
j (t1, t2) and µj(t1, t2) have slope zero in the interval

t2 ∈ [lj ,∞), so the stated function has slope zero in this interval. ut

Lemma 10. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

one the interval t2 ∈ [ej + pj , θ4].

Proof. The function µleft
j (t1, t2) has slope zero in the interval t2 ∈ [ej + pj , θ4],

so t2 − µleft
j (t1, t2) has slope one in the interval t2 ∈ [ej + pj , θ4]. ut

Lemma 11. For fixed value t1 ∈ [ej , θ2] the function µright
j (t1, t2)−2 ·µj(t1, t2)

has slope one in the interval [max{θ3, θ4}, lj ].

Proof. The function µright
j (t1, t2) has slope one and the function µj(t1, t2) has

slope zero in the interval [max{θ3, θ4}, lj ], so the stated function has slope one.
ut

Lemma 12. For fixed value t1 ∈ [ej , θ2] the function t2 − µleft
j (t1, t2) has slope

zero in the interval [t1, θ2].

Proof. The function µleft
j (t1, t2) has slope one in the interval [t1, θ2], therefore

t2 − µleft
j (t1, t2) has slope zero. ut



B Algorithms

Notes for the algorithms:

– (j, t2, τ2) ∈ O3(t1) ⇐⇒ (j, t2 + t1, τ2) ∈ O3

– the computation of the energy overloads ω(t1, t2) is analogous to the checker
of Baptiste et al. [5] and involves dynamic slope updates














