
Master’s Thesis

On the In-Flight Rest Assignment

Problem

Ron Wenzel, B.Sc.

ron.wenzel@fu-berlin.de

March 1, 2016

Supervisors:

Prof. Dr. Ralf Borndörfer∗

Prof. Dr. Günter Rote†

Freie Universität Berlin

Department of Computer Science

∗Zuse Institute Berlin, Department for Mathematical Optimization
†Freie Universität Berlin, Institut für Informatik

Danksagung

Mein Dank gilt Prof. Dr. Ralf Borndörfer und Dr. Marika Karbstein für die

Betreuung, die vielen Besprechungen, und hilfreichen Tipps und Ratschläge, die

meine Arbeit positiv gelenkt haben.

Dank gilt auch meiner Familie, deren Unterstützung mir mein Studium und diese

Arbeit ermöglicht hat.

iii

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass diese Arbeit von niemand anderem

als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie Berichte,

Bücher, Internetseiten oder ähnliches sind im Literaturverzeichnis angegeben. Zitate

aus fremden Arbeiten sind als solche kenntlich gemacht. Die Arbeit wurde bisher

in gleicher oder ähnlicher Form keiner anderen Prüfungskommission vorgelegt und

auch nicht veröffentlicht.

Berlin, March 1, 2016
Ron Wenzel

v

Abstract

The airplane has changed the world in a tremendous way. Efficient scheduling of

airmen and aircrafts is of considerable importance for cost-effectiveness of compa-

nies.

Attentiveness of flight crew members is vital as fatigue can lead to severe accidents.

Therefore, duty times of flight crews are strictly limited. Long distance flights may

be difficult to schedule with only one set of crew members. Furthermore, pertu-

bations of the schedules may entail exchanging the entire crew, which confounds

multiday schedules. A new EU regulation introduced in-flight rest: a schedule may

extend pilots’ duty times if they rest for a certain time in designated crew compart-

ments provided aboard airplanes. Of course they have to be replaced in that period

of time.

This thesis examines the in-flight rest assignment problem, which is the decision

problem whether a given schedule allows for all crew members to take their compul-

sory rest. The problem can be seen as multimachine scheduling problem. Efficient

algorithms for special cases were developed and an alternative approach for entire

hard cases is discussed.

Preface

The following thesis is written in the first-person plural in order to include the reader

in the thoughts and ideas.

vii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 2

2 In-Flight Rest 3

2.1 European Regulations . 3

2.1.1 Cockpit Crew . 5

2.1.2 Cabin Crew . 5

2.2 Mathematical Model . 7

2.3 Simplified Model . 9

2.3.1 Extended Simplified Model . 12

2.4 Complexity . 13

3 Related Problems 15

3.1 Assignment Problems . 15

3.1.1 Assignment Problem . 15

3.1.2 Generalised Assignment Problem 16

3.2 Machine Scheduling Problems . 18

3.2.1 General Problem . 18

3.2.2 High-Multiplicity . 20

4 Algorithms for the In-Flight Rest Problem 23

4.1 Rest for Cockpit Crew and Free Choice of Accommodation 23

4.1.1 Problem . 23

4.1.2 Algorithm . 25

4.1.3 Correctness and Running Time 28

4.2 In-Flight Rest for Two Rest Length and Free Choice of Accommodation 38

4.2.1 Problem . 38

4.2.2 Algorithm . 39

4.2.3 Best-Filling Initialisation . 43

4.2.4 Generation of Rules . 44

4.2.5 Correctness and Running Time 48

ix

Table of Contents

4.3 Algorithm for Simple IFR . 50

5 Computational Results 53

5.1 Number of Rules . 53

5.2 Runtime of the Algorithm 4.2 . 55

Bibliography 59

A Examples 65

A.1 Example for Algorithm 4.1 . 65

A.2 Number of Rules . 68

B Source Code 71

B.1 Python Code for Algorithm 4.1 . 71

B.2 Python Code for Algorithm 4.2 . 72

B.3 Python Code for Converting Simple IFR to GAP 75

x

1 Introduction

1.1 Motivation

In the previous century the invention of the airplane changed the world in a tremen-

dous way. While in the early age of aviation civil flights were reserved for the

wealthy, they have now become affordable for most people in the world. Increasing

aircrafts activities each year reached an average of more than 100’000 flights per day

in 2014 [Sta14].

The airline industry demands for fast ways of scheduling their fleet and their per-

sonnel in a cost-efficient manner. Although scheduling issues emerge in different

fields of transportation, scheduling in aviation is of major importance. The costs for

aircraft maintenance and operation are very high due to demanding safety standards

and pilots earning top wages.

At the beginning schedules where made by hand but improving computers enabled

algorithmic solutions to the problem. More complex computers allow for more and

more complex mathematical models.

Most existing solutions split the big problem of airline scheduling into different sub-

problems: schedule generation, fleet assignment, maintenance routing, crew schedul-

ing [Bar+03]. First, all appropriate connections according to market demands are

generated. Then estimated number of passengers or freight determine the adequate

selection of the aircraft types. The exact assignment of aircrafts to the fleet is done

in the next step where routine maintenance checks in specific airports are considered

as well. Last, the crew members for each aircraft are assigned to specific flights. An

1

1 Introduction

efficient interface between these subproblems is vital for an efficient solution to the

complete problem.

A big problem are pertubations of the calculated schedule due to bad weather con-

ditions, accidents, strikes, and other unpredictable events. The maximal duty times

of pilots are strictly limited by the government. Long waiting times may cause

an exchange of the crew if they are not able to complete their schedule. This is

quite likely to happen during the winter time as de-icing procedures for airport and

aircraft often delay departure times.

A relatively new problem is fatigue management in airline operations. Unadapted

sleep cycles and jet leg reduce the attentiveness of crew members. Especially for

crew members in command of operating the aircraft this is crucial. Extended duty

times increase the risk of accidents enormously.

Even short naps may recover concentration and attentiveness in prolonged work

periods [Din+88]. Current legislation allows for extended duty times for cockpit

and cabin crew if they rest within their working schedule. This establishes a new

subproblem to the airline scheduling problem: the in-flight rest assignment problem

(IFR). The problem considers a rest schedule for crew members in available rest

compartments during a flight, and is closely related to the multimachine scheduling

problem.

This thesis considers the decision problem whether in-flight rest is possible in given

schedule. The entire problem is NP-complete and therefore no polynomial algorithm

can exist if P 6= NP. IFR can be represented by an integer program. In the past

decades much research was performed in integer programming, thus, good algorithms

like the simplex algorithm, which is fast in most cases, have been developed.

In this thesis we take a different approach: we focus on cases which exploit the

structure of IFR, and solve them in polynomial time.

1.2 Outline

In the second chapter we present some legal information on the in-flight rest prob-

lem, and develop mathematical models on this basis. In the third chapter we survey

related problems and give a literature overview. The fourth chapter presents poly-

nomial algorithms that solve easy cases of the in-flight rest assignment problem and

shows an approach how to solve the hard cases. The last chapter examines the

performance of the developed algorithms.

2

2 In-Flight Rest

2.1 European Regulations

The European Commission issued an EU regulation in 2014 concerning fatigue man-

agement in airplane operation. This regulation applies to cockpit crew and cabin

crew in commercial air transportation, as well as, charter operations [Eur14a]. At

the same time the European Aviation Safety Agency (EASA) published certifica-

tion specifications and guidance material [Eur14b] concerning the aforementioned

EU regulation.

A proper fatigue management is vital to the safety of crew and passengers. Therefore

the current framework of legislation provides for a restriction of flight duty periods

(FDP)1 of cockpit crew and cabin crew. Both crew types are regulated differently.

The airline has to prevent fatigue caused by night duties by granting sufficient

leisure time. Also, alternating night and day shifts, like in police services, are to be

prevented in order to circumvent sleep disorders of crew members [Eur14b].

Therefore, the maximum permitted daily FDPs are dependent on the status of

acclimatisation of the crew member to the time zone, the start time of the FDP,

and the number of included flight legs2 in the schedule of the FDP.

Table 2.1 shows the maximum duty times for crew members, who are acclimatised

to a time zone. Unacclimatised crew members or crew members with an unknown

state may only work, as if they started their FDP at the worst possible time: 17:00

- 4:59. While FDPs with many legs tend to be domestic, and therefore provide

1A flight duty period (FDP) is the total time of a work day including all flight sectors.
2A flight leg is a single flight from a departure airport to a destination airport.

3

2 In-Flight Rest

Table 2.1: Maximal flight duty times for acclimatised crew members [Eur14a]

start of FDP 1-2 legs 3 legs · · · 10 legs
5:00 - 5:14 12 hrs 11.5 hrs · · · 9 hrs

...
...

...
...

6:00 - 13:29 13 hrs 12.5 hrs · · · 9 hrs
...

...
...

...
15:00 - 15:29 12 hrs 11.5 hrs · · · 9 hrs

...
...

...
...

17:00 - 4:59 11 hrs 10.5 hrs · · · 9 hrs

a lot of opportunities to exchange the crews, it can be quite challenging to find

an appropriate crew for long distance flights as the crew cannot be changed while

airborne. Furthermore exchange crews have to be moved to oversea locations in

advance.

Disturbances in air traffic can cause huge challenges to proper scheduling. If per-

tubations occur, e.g., bad weather conditions that entail long waiting times at the

airport, the crew sometimes has to be exchanged before the first take-off in their

schedule.

However, under certain circumstances prolonged FDPs are permitted in compliance

with legislation by introducing in-flight rest. The FDP must be limited to 3 sectors,

and appropriate rest facilities must be provided. As high quality rest facilities are

not always available on board, rest in low comfort compartments is rewarded with

lower duty time extensions than rest in high comfort cabins.

Generally, the rest compartments of cockpit crew and cabin crew are separated.

Each of those may provide seats of different classes and in different quantity. For

flight crew members the quality of the rest facilities influences the maximal duty

time, and for cabin crew members it influences the minimum rest time, and therefore

indirectly the maximum duty times. Aircrafts may be equipped with the following

categories of rest facilities [Eur14b]:

Class 3 rest facility Maximum inclination of 50◦, leg and foot support, separation

at least by a curtain to provide darkness, some sound mitigation, and not

adjacent to seats occupied by passengers.

Class 2 rest facility (additional to class 3 requirements): Maximum inclination of

45◦, minimal size, reasonably free from disturbances.

4

2.1 European Regulations

Class 1 rest facility Flat or nearly flat surface (maximum angle of inclination of

10◦), separated compartment, adjustable light, isolation from noise and dis-

turbances.

2.1.1 Cockpit Crew

The rest times of cockpit crew members can only take two possible values. The crew

members in control of the aircraft during take-off and landing require a rest period

of 120 minutes, all other crew members of the flight crew need 90 minutes of rest.

For crew members to take their rest it is an obvious necessity that additional crew

members are scheduled on the flight, to replace them in their off-time. The maximal

FDPs can be lengthened according to table 2.2.

A picture of a rest compartment for cockpit crew can be seen in fig. 2.1a.

Table 2.2: Maximum extentended FDP of cockpit crew due to in-flight rest
[Eur14b]

rest facility
Class 1 Class 2 Class 3

one additional
crew member

16 hrs 15 hrs 14 hrs

two additional
crew members

17 hrs 16 hrs 15 hrs

2.1.2 Cabin Crew

For cabin crew members the necessary rest is determined by the length of the flight

duty time and the available seat classes. Table 2.3 gives an overview of the minimal

rest times.

An attentive observer might see that the increase of the rest time for extended duty

times is nearly 1.15-fold from 14:31 hrs onwards.

A rest compartment for cabin crew is pictured in fig. 2.1b.

5

2 In-Flight Rest

(a) cockpit crew (b) cabin crew

Figure 2.1: Rest compartments aboard of a Boeing 747-830 of Deutsche Lufthansa,
put to service in 2013 (photography: Ralf Borndörfer, 2015)

Table 2.3: Minimum in-flight rest for cabin crew member [Eur14b]

flight duty time
rest facility

Class 1 Class 2 Class 3
up to 14:30 hrs 1:30 1:30 1:30

14:31 hrs - 15:00 hrs 1:45 2:00 2:20
15:01 hrs - 15:30 hrs 2:00 2:20 2:40
15:31 hrs - 16:00 hrs 2:15 2:40 3:00
16:01 hrs - 16:30 hrs 2:35 3:00 —
16:31 hrs - 17:00 hrs 3:00 3:25 —
17:01 hrs - 17:30 hrs 3:25 — —
17:31 hrs - 18:00 hrs 3:50 — —

6

2.2 Mathematical Model

2.2 Mathematical Model

The in-flight rest problem in this thesis does not consider how valid schedules for

pilots may be reckoned. We focus on the decision problem whether a given set of

schedules fulfils the legal requirements for in-flight rest, i.e., if it is possible to assign

every crew member a proper time and place for his repose.

Subsequently we will develop a mathematical model to describe the in-flight rest

problem.

As flight crew and cabin crew perform their rest in different compartments the

problem can be split into two instances. The models that we create apply on both

crew types. They do not consider crew types differences as we perform a separate

calculation for the two groups.

The general problem is as follows:

2.1 Problem – In-Flight Rest Assignment Problem (IFR)

We are given the sets C = {1, . . . , n} of crew members, L = {1, . . . ,m} of

flight legs and T = {1, 2, 3} of seat classes.

Each crew member c ∈ C has the following properties:

Lc ⊆ L as set of legs that are part of c’s schedule, and

rc ∈ N as required rest.

Each seat class t ∈ T defines a function

et : N 7→ N which defines the extension of the rest time due to the seat class.

Each leg l ∈ L has the following properties:

sl,t ∈ N as number of available seats of class t ∈ T ,

pl ∈ N as number of crew members allowed for simultaneous rest, and

Al ⊆ {0, 1, . . . , dl − 1} as set of points in time at which rest is allowed

(excluding service timesa), where dl ∈ N is the time length of leg l.

We are looking for an assignment f : C 7→ L×T ×N of crew members to leg,

seat class, and start time for its rest, obeying

∀
c∈C

: f(c) = (l, t, a)⇒ l ∈ Lc, (2.2.1)

∀
c∈C

: f(c) = (l, t, a)⇒ [a, . . . , a+ et(rc)− 1] ⊆ Al, (2.2.2)

7

2 In-Flight Rest

∀
l∈L
∀

t∈T
∀

a∈Al

:
∣∣{c ∈ C|f(c) = (l, t, a′), a ∈ [a′, . . . , a′ + et(rc)− 1]

}∣∣ ≤ sl,t,

(2.2.3)

∀
l∈L
∀

a∈Al

:
∣∣{c ∈ C|f(c) = (l, t, a′), a ∈ [a′, . . . , a′ + et(rc)− 1]

}∣∣ ≤ pl.

(2.2.4)

atake-off or landing for flight crew or serving of scheduled meals for cabin crew

The constraints for a valid solution are in a less formal form:

• the crew member may only rest on a flight which is a part of his schedule

(eq. (2.2.1)),

• the complete rest duration must be within the permitted time points available

for rest (eq. (2.2.2)),

• we cannot use more rest compartments in parallel than available on the aircraft

(eq. (2.2.3)), and

• we need to obey restrictions on how many crew members may rest in parallel

as the minimum number of crew members on duty must be strictly adhered

to (eq. (2.2.4)).

As observed in the previous chapter the function et is only necessary for members of

the cabin crew (value about et(x) = 1.15t−1x). For the cockpit crew the necessary

rest does not change in different seat classes.

Not modelled, however, is the possible shortening of admissible duty times of cockpit

crew members resting on low-class seats. We cannot influence the underlying airline

scheduling problem, and therefore not change the duty time. An higher layer has

to make sure that this requirement is adhered to, and appropriate seat classes are

available. This seems manageable as the number of pilots on any flight is relatively

small (maximum of 3-4 pilots on long distance flights) while a minimum of two pilots

in duty is required at all times. Thus, in most situations at the utmost two pilots

rest simultaneously.

8

2.3 Simplified Model

2.3 Simplified Model

On closer inspection of the problem we can reduce the number of input parameters.

We can never use more rest facilities in parallel than legally admissible for simul-

taneous resting. Thus, we can discard all unusable lower-class seats and supersede

pl:

sl,t :=

sl,t for pl ≥

t∑
i=1

sl,i

pl −
t−1∑
i=1

sl,i for pl <
t∑

i=1

sl,i and pl −
t−1∑
i=1

sl,i > 0

0 otherwise

,∀l ∈ L,∀t ∈ T.

(2.3.1)

We give the set L a new connotation: now it describes a certain rest accommodation

on a certain leg which is continuously available. This works as follows:

• For every rest accommodation on a leg we produce a copy of the leg. In any

of those copies only one rest can take place in parallel.

• If no rest is allowed in certain time intervals the rest accommodations are split

in two parts at any point of unavailability. Now any rest accommodation l ∈ L
is available continuously.

• If the seat is of a lower seat class than class 1 the total availability dl is trun-

cated appropriately according to et. This is possible as our et is approximately

linear.

Therefore, the set Lc contains now all the rest accommodations that are available

on any flight of its schedule. Thus, we can disregard all leg constraints as now the

number of rest facilities is limited to the maximal permitted number of simultaneous

rests and no constraints of forbidden time intervals are to be regarded. The complete

simple model is as follows:

2.2 Problem – Simple In-Flight Rest Assignment Problem (SIFR)

We are given the sets C = {1, . . . , n} of crew members and L = {1, . . . ,m} of

rest accommodations,

Pc ⊆ L as set of permitted rest accommodations for each crew member c ∈ C,

rc ∈ N as required rest of crew member c ∈ C, and

dl ∈ N as capacity of rest accommodation l ∈ L.

9

2 In-Flight Rest

We are looking for an assignment f : C 7→ L of crew members to rest accom-

modations, obeying

∀
c∈C

: f(c) ∈ Pc, (rest in permitted accommodation) (2.3.2)

∀
l∈L

:
∑

c∈f−1(l)

rc ≤ dl. (honour accommodation’s capacity) (2.3.3)

Members of the cockpit crew have only two possible values for the required rest (see

section 2.1.1):

rc ∈ {90, 120}, ∀c ∈ C. (2.3.4)

Integer Programming Formulation

For convenience we also present problem 2.2 as an integer programming formula-

tion:

IP-Formulation for SIFR
We introduce a matrix to store the permitted accommodations:

pc,l =

{
1 if l ∈ Pc

0 if l /∈ Pc

, ∀c ∈ C, l ∈ L

We are looking for a decision variable xc,l ∈ {0, 1} for c ∈ C, l ∈ L subject to:

∀
c∈C

:
∑
l∈L

xc,l = 1 (one rest per crew member) (2.3.5)

∀
c∈C
l∈L

: xc,l ≤ pc,l (rest in permitted accommodation) (2.3.6)

∀
l∈L

:
∑
c∈C

xc,l · rc ≤ dl (honour accommodation’s capacity) (2.3.7)

Example

The following example is designed for illustration purposes only as it normally would

not require in-flight rest. Bigger instances tend to be less illustrative.

2.1 Example – Instance of a SIFR Problem

We contemplate a problem instance for cockpit crew. Let C = {A,B, . . . ,F}
be the set of crew members and C = {1, 2, . . . , 6} the set of rest accommoda-

10

2.3 Simplified Model

tions. The crew member A, C, D, and F need a rest time of 120 minutes, B,

and E need a rest time of 90 minutes.

Let us consider the following flight network.

time in hours

1 2 3 4 5 6 7 8 9 10

flight 1 A,B

flight 2 C,D

flight 3 E,F

flight 4 A,B,C,D

flight 5 A,C,E,F

flight 6 B,D

Figure 2.2: Simple flight network

Now we try to find an assignment f(c) from crew members to rest accommo-

dations. The solid arcs denote a valid solution, the dashed arcs are possible

assignments.

A120

B90

C120

D120

E90

F120

1 150

2 180

3 90

4 90

5 240

6 150

C rc Ldl

f(c)

Figure 2.3: Sound solution for the flight network in fig. 2.2.

If we regard the IP formulation we can also create an adjacency matrix:

• in every column only one number can be placed,

• the sum of each column must be at least the number in the heading,

and

• the sum of each row must be at most the number on the left.

11

2 In-Flight Rest

The grey fields are unfeasible because they are not part of the particular crew

members schedule.

rest 120 90 120 120 90 120

le
n
gh

t

A B C D E F

150 fl. 1 120

180 fl. 2 120

90 fl. 3

90 fl. 4 90

240 fl. 5 90 120

150 fl. 6 120

Figure 2.4: Adjacency matrix of the problem instance.

2.3.1 Extended Simplified Model

If the extension of the rest time due to the seat class et is not linear, as assumed

in the previous model, we give an alternative model including this as well. We call

this the extended SIFR. It includes seat classes like in IFR and respects prolonged

rest times on lower-class seats for non-linear et as well.

2.3 Problem – Extended SIFR (eSIFR)

We are given the sets C = {1, . . . , n} of crew members, L = {1, . . . ,m} of

rest accommodations, and T = {1, 2, 3} of seat classes, and

Pc ⊆ L as set of permitted rest accommodations for each crew member c ∈ C,

rc ∈ N as required rest of crew member c ∈ C,

dl ∈ N as capacity of rest accommodation l ∈ L, and

tl ∈ T as seat class of rest accommodation l ∈ L.

Each seat class t ∈ T defines a function

et : N 7→ N which defines the extension of the rest time due to the seat class.

12

2.4 Complexity

We are looking for an assignment f : C 7→ L of crew members to rest accom-

modations, obeying

∀
c∈C

: f(c) ∈ Pc, (rest in permitted accommodation) (2.3.8)

∀
l∈L

:
∑

c∈f−1(l)

etl(rc) ≤ dl. (honour accommodation’s capacity) (2.3.9)

2.4 Complexity

The problems SIFR, eSIFR, and IFR are NP-complete. Garey and Johnson gave

in Computers and intractability (1979) an overview of different NP-complete prob-

lems [GJ79]. One of these problems is multiprocessor scheduling (p. 238) which is

basically the same as examined in section 3.2.

Garey and Johnson consider the following problem instance: Let T = {1, . . . , n} be

a set of tasks, m ∈ N the number of processors, lt ∈ N the length of task t, and

D ∈ N the deadline for all processors. Is it possible to schedule all tasks on the

given processors without violating any processor’s deadline?

It is easy to see that multiprocessor scheduling can be solved with SIFR, as it

is a special case of it. We only need to set a common duration dl for all rest

accommodations and set Pc = L for any crew member. Thus, it is reducible to

SIFR in polynomial time.

MPS �p SIFR (2.4.1)

We also can solve SIFR with eSIFR and IFR, thus,

SIFR �p eSIFR, (2.4.2)

SIFR �p IFR. (2.4.3)

A solution to all these problems can be verified in polynomial time, so they are

NP-complete.

Although the entire problems are NP-complete, special cases are solvable in poly-

nomial time. We present efficient polynomial algorithms in chapter 4.

13

3 Related Problems

3.1 Assignment Problems

Assignment problems are a class of problems where tasks are to be processed by

agents. First, we describe the Assignment Problem where the set of agents and the

set of tasks are of equal size, and each agent has to process exactly one tasks. Then

we show a more generalised version of the AP where an agent may process as many

tasks as possible without exceeding his capacity.

3.1.1 Assignment Problem

3.1 Problem – Assignment Problem

Let A = {1, 2, . . . , n} be the set of agents and let T = {1, 2, . . . , n} be the set

of tasks, both equal in size.

For all a ∈ A and t ∈ T we are given

ca,t ∈ N as costs if task t is assigned to agent a.

We are looking for a bijection f : T 7→ A minimising the total costs

cost(f) =
∑
t∈T

cf(t),t.

This problem can be solved strongly polynomial. In 1955 Kuhn presented the famous

Hungarian Algorithm [Kuh55] with a time complexity bounded by O(n4) [Fra05].

15

3 Related Problems

In 1976 Lawler presented an improved version that runs in O(n3) time [JV86].

3.1.2 Generalised Assignment Problem

The generalised assignment problem (GAP) was first introduced by Ross and Soland

(1975) as a more generalised version of the assignment problem [RS75]. While each

task is assigned to an agent, it is possible to assign multiple tasks to a single agent

as long as we comply with the agent’s capacity. Each agent has different resource

requirements to complete a certain task.

More formally the generalised assignment problem is given as follows:

3.2 Problem – Generalised Assignment Problem

Let A = {1, 2, . . . ,m} be the set of agents and let T = {1, 2, . . . , n} be the set

of tasks.

For all a ∈ A and t ∈ T we are given

ca,t ∈ N as costs if task t is assigned to agent a,

ra,t ∈ N as resources required for assigning task t to agent a, and

ba ∈ N as resource units available to agent a.

We are looking for an assignment f : T 7→ A of tasks to agents, obeying

∀
a∈A

:
∑

t∈f−1(a)

ra,t ≤ ba, (respect agent’s capacity) (3.1.1)

minimising the total costs

cost(f) =
∑
t∈T

cf(t),t.

While the assignment problem is solvable in polynomial time, the GAP is NP-

complete1.

Ross and Soland described a branch-and-bound algorithm for solving GAP. They

use binary knapsacks as subproblems to determine the bounds.

A similar problem of the GAP is the general transportation problem [RS75; Lou64]

where the tasks allow for multiplicities as well, i.e., all tasks j with multiplicity kj
have to be processed by the group of agents kj times.

1The multiprocessor scheduling, which is NP-complete [GJ79], can be reduced to GAP.

16

3.1 Assignment Problems

Fisher et al. (1986) published a branch-and-bound algorithm [FJV86], which they

claim to be much faster than existing algorithms at that time, like Ross and Soland’s

[RS75] or a branch-and-bound algorithm conceived of by Martello and Toth [MT81].

It is based on lagrangian relaxation and uses stronger bounds which results in two

orders of magnitude fewer nodes in the branch-and-bound tree [FJV86].

A new approach was taken by Jörnsten and Näsberg who solved an equivalent prob-

lem of the GAP named EGAP (equivalent GAP) [JN86]. This enhances the solution

procedure based on lagrangian relaxation.

A great step forward was the algorithm presented by Guignard and Rosenwein

[GR89; Ros86]. They claimed that the algorithm is able to process up to 500 de-

cision variables while existing algorithms back then were not capable of processing

more than 100 variables. They use a dual lagrangian branch-and-bound algorithm.

The improved enumeration procedure for the branch-and-bound tree was already

presented in Rosenwein’s dissertation [Ros86], where he also reviewed existing algo-

rithms for the GAP.

In 1992 Cattrysse and Van Wassenhove compared different relaxation methods used

for bounding as well as branching strategies [CV92] and examined running times of

existing algorithms, although no exact comparisons were possible due to different

implementation and different computing environments.

Savelsbergh [Sav97] developed a branch-and-price algorithm to generate optimal

integer solutions for GAP and discussed different branching strategies.

A further improvement in solving GAP was made by De Farias and Nemhauser

(2001). They presented a family of inequalities for the polytope of the general

assignment problem [DN01]. Those may be used in a branch-and-cut approach for

faster executions and their utility is shown using a branch-and-cut solver.

Pigatti et al. presented a branch-and-cut-and-price algorithm [PDU05] which out-

performs previous algorithms and solved three of five unsolved problem instances of

the OR-library2. They also presented a new method called ellipsoidal cuts which

helps to create efficient heuristics.

The latest exact algorithm3 is given by Posta et al. [PFM12]. They solve the op-

timisation problem GAP by solving a series of decision problems. They determine

a lower bound z̄ for the optimal solution of the problem, and solve the decision

problem, whether a solution for z̄ exists or not. If no such solution exists they

increase the lower bound z̄ by one until they obtain a solution.

2Library for operations research problems: http://people.brunel.ac.uk/~mastjjb/jeb/info.
html

3according to Sadykov et al. [Sad+15]

17

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html

3 Related Problems

The decision problem is solved by a lagrangian branch-and-bound method. They

prune the branch-and-bound tree by applying effective variable-fixing rules that

exploit the fact that any job is assigned to exactly one agent.

Although their approach of successively solving a decision problem for each bound

sounds inefficient, it turns out to be very fast in practice as they obtain a fairly good

initial bound. They give some ideas why the algorithm behaves in this manner.

Variants

Krumke and Thielen (2013) examined a variant of the GAP where each agent has to

use a minimum of its resource units processing tasks if employed or has to process

no tasks at all [KT13]. This is useful if a small workload is undesirable. They

consider different versions of this GAP variant and give polynomial time algorithms

or approximations.

3.2 Machine Scheduling Problems

3.2.1 General Problem

Machine scheduling is not a single problem but a big set of different problems.

Generally it is as follows:

3.3 Problem – Machine Scheduling Problem

A Machine Scheduling Problem is the challenge of scheduling n jobs on m

machines subject to an optimality criterion. Different constraints may apply

on machines and jobs.

A scheme for describing a certain problem was first conceived of by Graham, Lawler

et al. [Gra+79] and Lawler et al. [LLK82]: the 3-field problem classification. Nowa-

days it is the most frequently used classification when discussing machine schedul-

ing.

Notation of machine scheduling problems: 3-field problem
classification by Graham et al. [Gra+79; LLK82]
Every machine scheduling problem is expressed by α|β|γ, where α describes

the machine environment, β the job characteristics, and γ denotes the opti-

mality criteria.

The machine environment α expresses the type of machines in use. The

18

3.2 Machine Scheduling Problems

simplest cases are that we have only one machine (α = 1), or that all machines

are identical (α = P). If the machines work equally, but have a different

processing speed, they are called uniform (α = Q). If the processing speed is

job dependent they are called unrelated (α = R). More complex expressions

denote multistage machine environments like open shops: a job has to be

processed consecutively by different machines.

The job characteristics β apply certain constraints on how the jobs are to

be scheduled and describe the properties of the jobs themselves. E.g., job

preemption may allow postponing of jobs for later processing (β = pmtn).

If jobs require resources, these may be restrained. Precedence constraints

(β = prec) can enforce a sequential arrangement in which jobs have to be

processed. Job properties may be given by release dates of a job, i.e., the first

possible start time of a job, and processing times.

Lastly, the optimality criteria γ describes the function that has to be opti-

mised in order to solve the given problem optimally. Prominent examples are

minimal makespan and minimal total completion timea. The makespan is the

time point where the last job exits the system, the total completion time is the

sum of all job completion times. Therefore the subject of minimal makespan

is to complete all the jobs in a minimal amount of time, while minimal total

completion time contemplates the mean completion time of the jobs.

More complex optimisation objectives are due dates dependent, e.g., minimal

tardiness, earliness, and so forth.

Examples:

• 1|prec|
∑
Cj: minimal total completion time on one machine with prece-

dence constraint

• P ||Cmax: makespan on identical machines

• Q|pmtn, prec|
∑
Cj: minimal total completion time on uniform ma-

chines with preemption and precedence constraint

aThe completion time of a job is the time point where the job leaves the system.

Most of the machine scheduling problems are NP-complete [GJ79]. Even if the

number of machines is m = 2, it is still NP-complete (the subset sum problem

can be reduced to the case m = 2). Nevertheless efficiently solvable cases exist:

for P||
∑
Cj (minimal total completion time on identical machines) an algorithm

exists running in O(n log n) time [CP01] which was developed by Conway et al.

[CMM67].

19

3 Related Problems

For a great overview on standard machine scheduling problems the reader is referred

to the book of Brucker [Bru07]. Uwazie compiled in his master’s thesis (2012) an

overview of the state of the art of solutions to minimise the makespan [Uwa12].

3.2.2 High-Multiplicity

For our purpose a specialisation of the machine scheduling problem is far more

interesting. We have only a very small set of different jobs and most of the jobs

are identical. Especially for cockpit crew only two different rest times are possible,

independent of the seat class (see section 2.1.1).

If many jobs are identical they may be partitioned into groups with a single descrip-

tion each. Those problems are referred to as High-Multiplicity Machine Scheduling

Problems due to Hochbaum and Shamir [HS91].

Single machines

Among the first who discussed an exploitation of identical jobs in the context of

scheduling was Psaraftis in 1980 [Psa80]. He described a dynamic programming

approach for scheduling them on a single machine with a basic cost function.

Hochbaum and Shamir first used the term high multiplicity scheduling problem for

this type of problem in 1991 [HS91]. They applied this concept on a single machine

as well and focused on different optimisation objectives, such as minimal weighted

number of tardy jobs, and minimal total weighted tardiness. They presented algo-

rithms with polynomial running time.

Shallcross studied a similar problem, where identical jobs are to be grouped into

batches and processed together [Sha92]. Each batch has certain setup costs and

the jobs in a batch are finished when the last job is finished. The objective is to

minimise the average time of completion. He presented an algorithms which runs in

polynomial time in the logarithms of the input parameters.

Parallel machines

The concept of high multiplicity encoding was applied on parallel machines by Gra-

not et al. [GST97]. They considered the minimisation of the total weighted com-

pletion time. As the entire problem is NP-hard they analysed special cases where

the weights of all jobs are equal or all jobs have the same costs, and discovered that

those problems can be solved in polynomial time. For the special case of equal costs

for all jobs they gave an algorithm running in O(mn+ n log n) time.

In 2001 Clifford and Posner compiled the complexity state of different high-multi-

plicity problems and showed the polynomial solvability for some problems [CP01].

They considered, for the optimisation criteria minimisation of total job completion

time and minimisation of the makespan, preemptive and non-preemptive versions,

20

3.2 Machine Scheduling Problems

different machines speeds (identical, proportional, and unrelated machines), the

decision problems, and the optimisation problems.

Filippi and Romanin-Jacur updated the complexity state of some problems examined

by Clifford and Posner (2001) and provided many exact algorithms for polynomial

solvable cases and asymptotically exact algorithms for hard cases [FR09]. They

stated that all provided algorithm have a polynomial running time and are easy to

implement.

In 2005 [Bra+05] introduced a complexity framework for single machine and non pre-

emptive high multiplicity scheduling problems [Bra+05]. In 2007 they extended this

framework to more general classes of multiplicity scheduling problems [Bra+07].

Fixed number of job execution times

If the number of different job execution times is constant, further optimisation is

possible. McCormick et al. refer to this problem as MSPC (Multiprocessor Schedul-

ing Problem with C job lengths) [MSS01].

3.4 Problem – Multiprocessor Scheduling Problem with C job lengths

Let C be the number of different job types and let l1, . . . , lC be the distinct

job lengths for those types. Furthermore

nk ∈ N is the number of jobs of type k ∈ {1, . . . , C}, and

n =
C∑

k=1

nk.

We have m machines with machine dependent deadlines of Dk, k ∈ {1, . . . ,m},
i.e., machine k is continuously available in the time interval [0;Dk]. A machine

can only process one job at a time.

The question is: does a schedule exist that processes all n jobs on the m

machines honouring all machine deadlines?

Leung showed that, if the number of different job types is fixed, the problem can

be solved in polynomial time [Leu82]. He presented an algorithm based on dynamic

programming with a time complexity of O(log p · logm · n2(C−1)), where p is the

largest execution time.

McCormick et al. proposed an improved algorithm for the case C = 2 (MSP2m)

which can be implemented to run in O(m logDmax) time, where Dmax is the latest

machine deadline [MSS01]. If D1 = D2 = . . . Dm = D they presented an algorithm

that even achieves a running time of O(log2D). They give counter examples why

their idea is not extendible on C > 2.

21

3 Related Problems

Later we will discuss an algorithm which depends on the job lengths rather than on

the machine deadline.

Detti discussed in 2008 a variant of the MSP2 [Det08]: each job may only be pro-

cessed by a machine belonging to a continuous interval {1, 2, . . . , p} where p ≤ m. All

the machines have the same deadline D. He presented an algorithm with polynomial

running time.

22

4 Algorithms for the In-Flight Rest Prob-

lem

4.1 Rest for Cockpit Crew and Free Choice of Accommo-

dation

4.1.1 Problem

We consider a special case of problem 2.2 for flight crew members (see eq. (2.3.4)):

we allow any crew member to rest in any rest accommodation, i.e., the crew stays to-

gether on the same aircrafts and will not be split during the duty time (eq. (4.1.2)).

We know that flight crew members have only two possible rest durations: 90 minutes

and 120 minutes. We notice that the possible rest periods have a greatest common

divisor of 30 minutes, so we can regard all the time periods as multiples of 30

minutes. So we can consider the rest durations as the natural numbers 3 and 4.

We restrict the rest durations rc for the crew members to 3 and 4 time units:

∀
c∈C

: rc ∈ {3, 4}. (4.1.1)

As previously announced we allow all crew members to rest in any accommodation,

that is

∀
c∈C

: Pc = L. (4.1.2)

23

4 Algorithms for the In-Flight Rest Problem

Thus we do not have to calculate the exact assignments. It is sufficient to subdivide

the provided capacities dl of rest compartments l ∈ L into blocks of size 3 and 4

such that every crew member gets a place to rest. This allows us to group the set

crew members and represent each group by a figure:

• Let q3 ∈ N be the quantity of crew members needing a rest of 3 time units.

• Let q4 ∈ N be the quantity of crew members needing a rest of 4 time units.

Furthermore, the vector of durations (dl) = (d1, d2, . . . , dm) is now reduced to full

30 minutes time periods, e.g., (7, 9, 3, 4), for possible rest durations of 210, 270, 90,

and 120 minutes. So, we want to split all durations dl into blocks of 3 and 4, i.e., b3l
and b4l .

The complete problem is as follows:

4.1 Problem
We are given two sets L = {1, . . . ,m} of rest accommodations and R = {3, 4}
of possible rest durations,

qr ∈ N as the quantity of crew members needing a rest of r ∈ R, and

dl ∈ N as capacity of rest accommodation l ∈ L.

We are looking for a subdivision of all dl, l ∈ L into r-sized blocks (r ∈ R)

denoted as brl ∈ N, obeying:

∀
l∈L

:
∑
r∈R

r · brl ≤ dl (valid subdivision) (4.1.3)

∀
r∈R

:
∑
l∈L

brl ≥ qr (accommodation for every crew member) (4.1.4)

The problem 4.1 is a special case of MSPC (problem 3.4).

Problem 4.1 is special case of MSPC (problem 3.4)
We may solve a problem 4.1 with a problem 3.4 in the following manner:

Problem 4.1 is a instance of MSPC with two possible job lengths: 3, 4. The

number of machines and the number of rest accommodations are both m.

The machine deadlines Dk are the availabilities of the rest accommodations

dl. The requested number of times slots q3 and q4 are the number of jobs n1

and n2.

C ← 2, (4.1.5)

24

4.1 Rest for Cockpit Crew and Free Choice of Accommodation

l1 ← 3, l2 ← 4, (4.1.6)

n1 ← q3, n2 ← q4, (4.1.7)

∀ l∈L
k=l : Dk ← dl. (4.1.8)

4.1.2 Algorithm

Preliminaries

For convenience we define b̃r as abbreviation for the total sum of all r-sized blocks

in our subdivision.

4.1 Definition
The expression b̃r connotes the sum of all brl in our current subdivision:

b̃r
def
=
∑
l∈L

(brl). (4.1.9)

Idea

The idea of the algorithm is that we first split all the capacities of the accommo-

dations into time slots that fill them best. In this way no usable space is wasted.

Then we transform this subdivision by applying certain rules to transform it into a

valid solution.

We refer to these rules later and give formal description of the algorithm first.

An exemplary run of the algorithm is provided in section A.1.

25

4 Algorithms for the In-Flight Rest Problem

4.1 Algorithm – IFR for Flight Crew: Problem 4.1

Input: d = (d1, d2, . . . , dm) as vector of capacities dl ∈ N \ {0, 1, 2} of

rest accommodations l ∈ L
q = (q3, q4) as required number of time slots of length 3 resp. 4

Output: (b3l , b
4
l)l∈L as subdivision of (dl)l∈L satisfying eqs. (4.1.3)

and (4.1.4)

. Initialise

1 forall l ∈ L do

2 if dl 6= 5 then

3 b4l ← dl mod 3

4 b3l ← (dl − b4l · 4)÷ 3

5 else

6 (b3l , b
4
l)← (0, 1)

. Calculate feasible subdivision

7 if b̃3 < q3 ∧ b̃4 > q4 then . blocks of 3 needed

8 forall l ∈ L do . rule 5, table 4.2

9 while b4l ≥ 1 ∧ b̃4 − q4 ≥ 1 ∧ q3 − b̃3 ≥ 1 do

10 (b3l , b
4
l)← (b3l + 1, b4l − 1)

11 else if b̃3 > q3 ∧ b̃4 < q4 then . blocks of 4 needed

12 forall l ∈ L do . rule 1, table 4.2

13 while b3l ≥ 4 ∧ b̃3 − q3 ≥ 4 ∧ q4 − b̃4 ≥ 3 do

14 (b3l , b
4
l)← (b3l − 4, b4l + 3)

15 forall l ∈ L do . rule 2, table 4.2

16 while b3l ≥ 3 ∧ b̃3 − q3 ≥ 3 ∧ q4 − b̃4 ≥ 2 do

17 (b3l , b
4
l)← (b3l − 3, b4l + 2)

18 forall l ∈ L do . rule 3, table 4.2

19 while b3l ≥ 2 ∧ b̃3 − q3 ≥ 2 ∧ q4 − b̃4 ≥ 1 do

20 (b3l , b
4
l)← (b3l − 2, b4l + 1)

. Finished

21 if b̃3 < q3 ∨ b̃4 < q4 then
. Failed.

22 if b̃3 ≥ q3 ∧ b̃4 ≥ q4 then
. Success.

26

4.1 Rest for Cockpit Crew and Free Choice of Accommodation

Best-filling Subdivision

For this algorithm to work it is crucial that the initial subdivision does not waste any

space. Table 4.1 shows such a subdivisions for certain blocks. They are calculated

by reducing the number by 4, until 3 divides it. Italicised capacities cannot be used

completely as there will always be an unused rest – nevertheless they are optimal.

capacity 1 2 3 4 5 6 7 8 9 10 11 12 (12) · · ·
blocks of 3 0 0 1 0 0 2 1 0 3 2 1 4 (0) · · ·
blocks of 4 0 0 0 1 1 0 1 2 0 1 2 0 (3) · · ·

Table 4.1: Best-filling subdivision into blocks of 3 and blocks of 4

We now give a definition when a subdivision is optimal, i.e., it is best-filling.

4.2 Definition – Best-filling Subdivision of a Duration

Let d denote a duration and br a valid subdivision of d, i.e.,
∑
r∈R

r ·br ≤ d. br is

a best-filling subdivision iff no valid subdivision br ′ of d exists with
∑
r∈R

r · br ′ >∑
r∈R

r · br.

4.3 Definition – Usable Space of a Duration

Let d denote a duration and br a best-filling subdivision of d. Then d̂ =
∑
r∈R

r·br

is the maximal usable space of d.

Transforming the subdivision

Now we can transform these blocks to other blocks in order to satisfy eq. (4.1.4).

All transformation rules are shown in table 4.2. Every transformation rule has a

penalty which shows how much time is rendered unusable.

There are two types of rules: rules that shift the balance of blocks from blocks of 3

to blocks of 4 (rules 1, 2 and 3) and rules that shift the balance in the opposite way

(rules 4 and 5).

The algorithm shifts the balance in the needed direction, therefore we only need one

set of rules during a single execution: 1, 2, 3 or 4, 5. We apply step by step the

next rule that is applicable on any set of blocks (b3l , b
4
l). We prefer rules with lower

penalty, as they render less space unusable, i.e., we apply a rule with higher penalty

only if no rule with a lower penalty can be applied.

27

4 Algorithms for the In-Flight Rest Problem

balance of penalty
blocks of 3 blocks of 4 total weighted

no. 1 -4 3 0 0
no. 2 -3 2 1 1/9
no. 3 -2 1 2 2/6
no. 4 4 -3 0 0
no. 5 1 -1 1 1/4

Table 4.2: Transformation rules from blocks of 3 to blocks of 4 and vice versa

Our solution is valid if eq. (4.1.4) holds, i.e., we have enough time slots to accom-

modate all the requested rest periods:

q3 ≤ b̃3 ∧ q4 ≤ b̃4 (4.1.10)

If at some point the overall capacity in all blocks is smaller than the overall capacity

required, as in

3b̃3 + 4b̃4 < 3q3 + 4q4. (4.1.11)

we can never transform it into a valid solution.

Notice that our initialisation prefers blocks of 3 to blocks of 4, for this renders rule

4 of table 4.2 superfluous.

4.1.3 Correctness and Running Time

4.4 Lemma
The subdivision of the initialisation in algorithm 4.1 is best-filling (defini-

tion 4.2).

Proof. Let d denote a duration. Our algorithm distinguishes the following cases:

Case 1. (d 6= 5)

Our subdivision is (b3, b4), where

b4 = d− 3 ·
⌊
d

3

⌋
,

b3 =
d− b4 · 4

3
.

28

4.1 Rest for Cockpit Crew and Free Choice of Accommodation

b4 ∈ N, because d is a integer. b3 ∈ N, because b4 ≡ d mod 3 and 4 ≡ 1 mod 3,

and therefore 4b4 ≡ d mod 3.

The complete space used by those blocks is

3 · b3 + 4 · b4 = (d− b4 · 4) + 4 · b4

= d,

thus the space is fully used, so there is no other subdivision with a better usage

and it is best-filling according to definition 4.2.

Case 2. (d = 5)

There is no subdivision which would fully use a duration of 5. So the best-filling

subdivision is a subdivision of total size 4, with a single block of 4.

4.5 Lemma
At any time in the algorithm 4.1 the following holds true:

3 · b3l + 4 · b4l ≤ dl, ∀l ∈ L (4.1.12)

Proof. As our initialisation procedure is best-filling (lemma 4.4) our condition

3 · b3l + 4 · b4l ≤ dl, ∀l ∈ L (4.1.12)

holds true after initialisation.

There are only 4 lines in algorithm 4.1 which change b3l and b4l : lines 10, 14, 17

and 20. Let b3l
′

and b4l
′

denote the old values prior to the assignment. So, for any

l ∈ L for the new assigned variables the following holds true:

line 10: 3 · b3l + 4 · b4l = 3 · (b3l
′
+ 1) + 4 · (b4l

′ − 1) = (3 · b3l
′
+ 4 · b4l

′
)− 1

line 14: 3 · b3l + 4 · b4l = 3 · (b3l
′ − 4) + 4 · (b4l

′
+ 3) = 3 · b3l

′
+ 4 · b4l

′

line 17: 3 · b3l + 4 · b4l = 3 · (b3l
′ − 3) + 4 · (b4l

′
+ 2) = (3 · b3l

′
+ 4 · b4l

′
)− 1

line 20: 3 · b3l + 4 · b4l = 3 · (b3l
′ − 2) + 4 · (b4l

′
+ 1) = (3 · b3l

′
+ 4 · b4l

′
)− 2

Thus, with 3 · b3l
′
+ 4 · b4l

′ ≤ dl, ∀l ∈ L for the values prior to the assignment

3 · b3l + 4 · b3l ≤ dl, ∀l ∈ L (4.1.12)

holds true at any time.

29

4 Algorithms for the In-Flight Rest Problem

4.6 Lemma
If one of the following conditions holds after initialisation, it holds true on

termination as well:

b̃3 ≥ q3 (4.1.13)

b̃4 ≥ q4 (4.1.14)

Proof. The algorithm distinguishes the following cases:

Case 1. (Both b̃3 ≥ q3 and b̃4 ≥ q4 hold true after initialisation.)

The algorithm does not do anything in this case as the current subdivision is

already a solution.

Case 2. (Only b̃3 ≥ q3 holds after initialisation.)

Lines 14, 17 and 20 change the b3l and therefore b̃3. The condition of the while

statements in lines 13, 16 and 19 checks priorly if b̃3−q3 is big enough to maintain

the condition in eq. (4.1.13) after the application of the rule in the following line.

For instance (b3l , b
4
l)← (b3l − 4, b4l + 3) is only executed if b̃3 − q3 ≥ 4. The other

lines are analogous.

Thus, the condition eq. (4.1.13) always holds true for
∑
l∈L

b3l = b̃3.

Case 3. (Only b̃4 ≥ q4 holds after initialisation.)

For this case we have only one rule that is applied (see line 10). This is analogous

to case 2.

4.7 Lemma
In any l ∈ L the sum of the number of executions of rule 2 and rule 3 is at

most one.

Proof.

Case 1. (The while condition of rule 1 in line 13 breaks because ∀l ∈ L : b3l ≤ 3.)

Any l ∈ L has at most 3 blocks of 3. Rule 2 requires 3 blocks of 3 for any

transformation, rule 3 requires 2 blocks of 3 for any transformation. Thus, at

most one of the two rules may be applied and only one application is possible.

Case 2. (The while condition of rule 1 in line 13 breaks, but ∃l ∈ L : b3l > 3.)

In this case b̃3 − q3 < 4 or q4 − b̃4 < 3 must hold true (condition of while loop).

Rule 2 requires 3 blocks of 3 for any transformation and produces 2 blocks of 4;

30

4.1 Rest for Cockpit Crew and Free Choice of Accommodation

rule 3 requires 2 blocks of 3 for any transformation and produces 1 block of 4.

The conditions of the while loop in lines 16 and 19 entail that at most one of the

rules 2 and 3 is applied altogether.

4.8 Theorem
The algorithm 4.1 is correct and can be implemented to run in O(m) time

and to require O(m) space.

Proof. In order to prove the correctness of the algorithm we will show the following

two statements:

1. If no solution exists, the algorithm will not find one.

2. If a solution exists, the algorithm will find a solution.

1. If no solution exists, the algorithm will not find one.

Let d, q denote a proper input to the algorithm 4.1 for which no solution exists, i.e.,

there is no fragmentation (b3l , b
4
l) obeying

3 · b3l + 4 · b4l ≤ dl, ∀l ∈ L (4.1.15)

b̃3 ≥ q3, (4.1.16)

b̃4 ≥ q4. (4.1.17)

If the algorithm would find a solution, the solution would satisfy eqs. (4.1.16)

and (4.1.17) due to line 22. Furthermore eq. (4.1.15) would hold due to lemma 4.5.

This is contradictory to the assumption.

2. If a solution exists, the algorithm will find a solution.

Let d, q denote a proper input to the algorithm 4.1 and let (β3
l , β

4
l) be a valid solution:

3 · β3
l + 4 · β4

l ≤ dl, ∀l ∈ L (4.1.18)

β̃3 ≥ q3, (4.1.19)

β̃4 ≥ q4. (4.1.20)

As our initialisation is best-filling (lemma 4.4) the following must hold true after

initialisation:

∀
l∈L

: 3 · b3l + 4 · b4l ≥ 3 · β3
l + 4 · β4

l , (4.1.21)

3 · b̃3 + 4 · b̃4 ≥ 3 · β̃3 + 4 · β̃4. (4.1.22)

31

4 Algorithms for the In-Flight Rest Problem

We can deduce from eqs. (4.1.19), (4.1.20) and (4.1.22):

b̃3 ≥ q3 ∨ b̃4 ≥ q4. (4.1.23)

If b̃3 ≥ q3 ∧ b̃4 ≥ q4 our best-filling subdivision is a solution.

So, we consider either b̃3 < q3 or b̃4 < q4 in the following two cases. For each case

either b̃3 ≥ q3 or b̃4 ≥ q4 must hold true at any point due to lemma 4.6.

Case 1. (b̃3 < q3)

As our initialisation procedure favours blocks of 3 to blocks of 4, our initial

subdivision satisfies

∀
l∈L

: b4l ≤ 2. (4.1.24)

We notice that

β̃3 + β̃4 ≤ b̃3 + b̃4 (4.1.25)

must hold true because of eq. (4.1.21) and the fact that any subdivision with

more blocks of 4 would use less blocks in total and any subdivision using less

blocks of 4 cannot have more blocks in total. The following figure illustrates this

fact:

3 · · · 3 4 4

3 · · · 3 3 4

3 · · · 3 3 3

We only have one transformation rule (line 10). This increases b3l by 1 and

decreases b4l by 1.

Equations (4.1.19) and (4.1.20) entail

β̃3 + β̃4 ≥ q3 + q4. (4.1.26)

Since b3l + b4l remains constant and eqs. (4.1.25) and (4.1.26) hold we must even-

tually get b̃3 ≥ q3. b̃4 ≥ q4 must hold true as well due to lemma 4.6. Our

subdivision is valid as lemma 4.5 shows.

Thus, we have obtained a solution which satisfies our conditions eqs. (4.1.3)

and (4.1.3). This is a contradiction to the assumption that we do not find a

solution.

32

4.1 Rest for Cockpit Crew and Free Choice of Accommodation

Case 2. (b̃4 < q4)

In order to prove this case we transform the existing solution β in a solution the

algorithm would find. Then we apply the algorithm in reverse and show that this

yields our best-filling subdivision as produced by our initialisation procedure.

Preliminaries

For abbreviation let 3 denote a block of size 3, and 4 a block of size 4.

3 3 3 3 are four blocks of 3 . 3 3 3 3 implies 3 3 3 , so a subdivision

with 5 blocks of 3 contains 3 3 3 3 , 3 3 3 , 3 3 , and 3 .

Furthermore 2 is an unused space of size exactly 2, 1 is an unused space of size

exactly 1. Thus, 2 does never imply 1 . Unused space refers to not used space

in matters of the maximal usable space (definition 4.3).

At any point in the following transformations we fill implicitly any usable gap

with 3 if possible. This entails that βl always has at most a 2 block of unused

space in d̂l.

Restricting number of 4

We now transform the existing solution β to a solution that the algorithm would

generate. First of all we assume that

β̃4 = q4, (4.1.27)

since we can always reduce the number 4 by simply deleting them due to

eq. (4.1.20).

We now exchange 3 for 4 and vice versa such that

∀
l∈L

: β4
l ≥ (d̂l mod 3). (4.1.28)

In doing so the number of 4 remains constant, the number of 3 may increase

because of our preliminary.

This process of exchanging is possible because:

• We have enough 4 in total as this is the “basis” of our best-filling sub-

division. If there were not be enough 4 , β would have less 4 as our

best-filling subdivision; as β̃4 = q4 this is the previous case.

• We can always replace 4 by 3 as it is smaller.

• If d̂l ≡ 2 mod 3 and we have only 3 , there is an unused rest 2 . We can

swap in two 4 for two 3 . Initially there have to be at least two 3 as

d̂l = 2 and d̂l = 5 is not possible (see definition 4.3).

33

4 Algorithms for the In-Flight Rest Problem

• If d̂l ≡ 2 mod 3 and we have only one 4 , there is an unused rest 1 . We

can swap in a 4 for a 3 .

• If d̂l ≡ 1 mod 3 and we have only 3 , there is an unused rest 1 . We can

swap in a 4 for a 3 .

Now simple logic shows that the following two statements hold true for any βl:

If we have an unused space of exactly 2 , we have at least 4 . (4.1.29)

If we have an unused space of exactly 1 , we have at least 4 4 . (4.1.30)

Otherwise β4
l ≥ (d̂l mod 3) would not hold true.

Minimise unused space by transformations that keep number of 4

constant

Now we transform β by completing the following steps. We only process a trans-

formation if neither of the previous ones is applicable. Note that transformations

may become applicable again. Note that neither of the transformations change

the validity of the statements (4.1.29), (4.1.30).

Let βl1 and βl2 be two subdivisions with l1, l2 ∈ L, and l1 6= l2.

(T.1) For any βl1 and βl2 with 2 :

• Does βl3 , l3 ∈ L with 3 3 3 exist? Transform 3 3 3 → 4 4 1 ,

4 2 → 3 3 , 4 2 → 3 3 .

• Do βl1 or βl2 contain a 3 ? Transform 3 4 2 → 4 4 1 , 4 2 →
3 3 .

(T.2) For any βl1 with 1 , and βl2 with 2 :

• Does βl3 , l3 ∈ L with 3 3 3 3 exist? Transform 3 3 3 3 →
4 4 4 , 4 4 1 → 3 3 3 , 4 2 → 3 3 .

• Does βl1 contain a 3 ? Transform 3 4 4 1 → 4 4 4 , 4 2 →
3 3 .

• Does βl2 contain 3 3 ? Transform 3 3 4 2 → 4 4 4 , 4 4 1 →
3 3 3 .

(T.3) Do βl1 and βl2 with 1 exist?

• Does βl3 , l3 ∈ L with 3 3 3 3 exist? Transform 3 3 3 3 →
4 4 4 , 4 4 1 → 3 3 3 , 4 4 1 → 3 4 2 .

• Do βl1 or βl2 contain a 3 ? Transform 3 4 4 1 → 4 4 4 , 4 4 1

→ 3 4 2 .

34

4.1 Rest for Cockpit Crew and Free Choice of Accommodation

In those transformations the number of 4 remains constant, and the number of

3 increases or remains constant. The exchanged blocks are equal in size, thus,

the transformations are feasible. No infinite loop is possible if the number of 3

increases. The only transformation where it remains constant is 3 4 4 1 →
4 4 4 , 4 4 1 → 3 4 2 . Here the 1 are eliminated, so no loop is possible

as well.

If our transformation eliminates all unused spaces, the new constructed blocks

are best-filling, therefore, eq. (4.1.28) must hold true. A created 4 4 1 holds a

minimum of two 4 and therefore satisfies eq. (4.1.28) as well. A created 4 2

contains one 4 more than the best-filling 3 3 . Thus eq. (4.1.28) still holds

true after all transformations.

Swap unused space to the βl afore

Now we swap the blocks of 3 to the βl more rear. We do only perform a trans-

formation if no previous is applicable. Note that transformations may become

applicable again. Let l1, l2 ∈ L and l1 < l2:

(S.1) Do βl1 containing 3 3 , and βl2 having 2 exist? Swap 3 3 and 4 2 .

(S.2) Do βl1 containing 3 3 3 , and βl2 having 1 exist? Swap 3 3 3 and

4 4 1 .

(S.3) Do βl1 containing 3 4 2 , and βl2 having 1 exist? Swap 3 4 2 and

4 4 1 .

(S.4) Do βl1 containing 3 3 3 3 , and βl2 containing 4 4 4 exist? Swap

3 3 3 3 and 4 4 4 .

(S.5) Do βl1 containing 3 4 4 1 , and βl2 containing 4 4 4 exist? Swap

3 4 4 1 and 4 4 4 .

The solution β that we have obtained now has the following properties:

(P.1) Each βl has at least as many 4 as our best-filling subdivision (eq. (4.1.28)

still holds true).

(P.2) If a βl2 with 3 3 3 3 exists, we have at most one βl1 with unused space

(see (T.2), (T.3)). For this eventuality l1 ≤ l2 must hold true (see (S.1),

(S.2)).

(P.3) If a βl2 with 3 3 3 exists, we have at most one βl1 with an unused space

of 2 (see (T.1)). For this eventuality l1 ≤ l2 must hold true (see (S.1)).

(P.4) β̃4 = q4 as this was our precondition and we never changed the number

of 4 .

35

4 Algorithms for the In-Flight Rest Problem

Run algorithm in reverse

We now set bl = βl, ∀l ∈ L and run the algorithm in reverse and show that our

b is transformed into the best-filling subdivision that our algorithm yields in its

initialisation procedure.

As b is a solution our algorithm yields success (line 22).

As we do not have a sufficient amount of 4 in this case we consider the transfor-

mations beginning in line 11. Thus, only applications of rule 1, rule 2, and rule

3 are possible. Table 4.2 shows the unused rest created on each rule application.

Only rule 2 and rule 3 create an unused space.

Lemma 4.7 states that on each bl only rule 2 or rule 3 may be applied, never

both. Further, the two rules are applied at most one time. This entails: on each

subdivision with 2 rule 3 has to be applied backwards; on each subdivision with

1 rule 2 has to be applied backwards.

Reversing rule 3

Only rule 3 produces an unused space of 2 . May lend ∈ L be the biggest element

of l ∈ L where bl contains an unused rest 2 . If no such bl exists, we skip this

step and directly proceed with reversing rule 2.

··
·

b1

··
·

b2

··
·

b3

··
·

b4

··
·

b5

··
·

b6

··
·

b7

··
·

b8

··
·

b9

··
·

b10

2 0 0 1 2 2 1 2 1 0

lend
unused
space

Figure 4.1: Begin of reverse algorithm: lend = 8

The last step of the algorithm was the application of rule 3 in lines 18 to 20.

This means the condition of the while loop in line 19 does no longer hold true

after processing lend. This is obviously the case, since b is a solution, but our

while condition requires q4 − b̃4 ≥ 1.

We walk through the l ∈ L in reverse, beginning at lend. At any bl where a 2

exists we apply the rule 3 in reverse.

··
·

b1

··
·

b2

··
·

b3

··
·

b4

··
·

b5

··
·

b6

··
·

b7

··
·

b8

··
·

b9

··
·

b10

2 0 0 1 2 2 1 2 1 0
unused
space

Figure 4.2: Reverse application of rule 3

36

4.1 Rest for Cockpit Crew and Free Choice of Accommodation

Why would the algorithm choose exactly the bl where we reversed rule 3? Rule

3 can only be applied if a subdivision has at least two 3 . If (S.1) is applied all

bl, l < lend contain at most a single 3 so no application of any rule is possible.

The algorithm can only apply rule 3 on the l ∈ L that contained 2 .

Reversing rule 2

In the next step we reverse the application of rule 2. This is analogue to the

reversal of rule 3.
··
·

b1

··
·

b2

··
·

b3
··
·

b4

··
·

b5

··
·

b6

··
·

b7

··
·

b8

··
·

b9

··
·

b10

0 0 0 1 0 0 1 0 1 0
unused
space

Figure 4.3: Reverse application of rule 2

Why would the algorithm choose exactly the bl where we reversed rule 2? (S.2)

makes sure, that no 3 3 3 exists before the last application of rule 2. Further-

more, (T.1) renders a coexistence of two 3 4 2 impossible, which would create

a 3 3 3 . (S.5) makes sure that an existing 3 4 2 (which is now a 3 3 3)

is behind the last rule 2 application of our algorithm. Thus, the algorithm does

apply the rule 2 exactly on those subdivisions where we just reversed rule 2.

Now all subdivisions are best-filling, as no unused rest is existing anymore.

Reversing rule 1

Now we reverse rule 1 in any l ∈ L as often as possible.

··
·

b1

··
·

b2

··
·

b3

··
·

b4

··
·

b5

··
·

b6

··
·

b7

··
·

b8

··
·

b9

··
·

b10

0 0 0 0 0 0 0 0 0 0
unused
space

Figure 4.4: Reverse application of rule 1

Thus,

∀
l∈L

: b4l < 3. (4.1.31)

A best-filling subdivision for blocks of size 3 and 4 requires

∀
l∈L

: β4
l ≡ d̂l mod 3. (4.1.32)

37

4 Algorithms for the In-Flight Rest Problem

This entails

∀
l∈L

: β4
l = (d̂l mod 3), (4.1.33)

and this is the definition of our best-filling subdivision.

The algorithm is correct.

Running time and space requirement

The initial breakdown of the durations into blocks is done in O(m) time, where

m = |L| is the number of rest accommodations.

The application of each rule may be performed in constant time on each rest ac-

commodation, as the number of possible applications, i.e., the number of while loop

circles, can be predetermined easily. It is not done here for convenience, the next

algorithm 4.2 shows this principle. Thus each application of a rule on the complete

set of rest accommodation may be done in O(m) time. As the number of rules is

constant, the running requirement for the rule application is O(m).

Thus, the complete algorithms runs in O(m) time.

We use for the calculation only a matrix of size 2 ×m so the space requirement is

O(m).

4.2 In-Flight Rest for Two Rest Length and Free Choice

of Accommodation

4.2.1 Problem

We will modify problem 4.1 to allow arbitrary values for the length of rests. Note

that this problem is the Multiprocessor Scheduling Problem with C job lengths with

C = 2 (see problem 3.4) named by McCormick et al. [MSS01]. They refer to this

exact problem as MSP2m and developed an algorithm (see section 3.2.2).

4.2 Problem
We are given two sets L = {1, . . . ,m} of rest accommodation and R = {r1, r2},
r1, r2 ∈ N, r1 < r2 of possible rest durations, and

qr ∈ N as the quantity of crew members needing a rest of r ∈ R,

38

4.2 In-Flight Rest for Two Rest Length and Free Choice of Accommodation

dl ∈ N, dl ≥ r1 as capacity of rest accommodation l ∈ L.

We are looking for a subdivision of all dl, l ∈ L into r-sized blocks (r ∈ R)

denoted as brl ∈ N, obeying:

∀
l∈L

:
∑
r∈R

r · brl ≤ dl (valid subdivision) (4.2.1)

∀
r∈R

:
∑
l∈L

brl ≥ qr (accommodation for every crew member) (4.2.2)

4.2.2 Algorithm

The idea behind the algorithm is the same as of the algorithm in the previous

chapter: if we first split all the accommodations’ capacities into time slots that fill

them best, we reduce all rest accommodations to the maximal usable space. Then

we transform this subdivision by applying certain rules to transform it into a valid

solution.

The outline of the algorithm is as follows:

1. Initialise (br1l , b
r2
l), l ∈ L with a best-filling subdivision of dl, l ∈ L.

2. Determine transforming direction according to total quantities (b̃r1 , b̃r2)
def
=

(
∑
br1l ,
∑
br2l): transform r1-sized blocks into r2-sized blocks, or vice

versa.

3. Produce rules for the transformation direction.

4. Apply rules successively on all legs if possible, ordered by increasing

penalty, until a solution is obtained, or abort.

Main Algorithm

First of all we give a formal description of the main algorithm.

39

4 Algorithms for the In-Flight Rest Problem

4.2 Algorithm – IFR with Two Rest Lengths: Problem 4.2

Input: r1, r2 ∈ N, 0 < r1 < r2 as possible lengths of the rest periods

g = gcd(r1, r2) as greatest common divisor of r1 and r2
q = (qr1 , qr2) as req. number of time slots of len. r1 resp. r2
d = (d1, d2, . . . , dm) as vector of capacities dl ∈ N, dl ≥ r1 of

rest accommodations l ∈ L
Output: (b3l , b

4
l)l∈L as subdivision of (dl)l∈L satisfying eqs. (4.2.1)

and (4.2.2)

. Normalise

1 if g > 1 then

2 r1 ←
r1
g
, r2 ←

r2
g

, forall l ∈ L do dl ←
⌊
dl
g

⌋
. Initialise

3 (br1l , b
r2
l)← init(r1, r2, d)

4 if qr1 − b̃r1 < 0 ∧ qr2 − b̃r2 > 0 then

5 R ← generate rules(r1, r2, r1 → r2)

6 for (o1, o2, p) ∈ R, p increasing do . it. R with incr. penalty

7 for l ∈ L do

8 ctotal ← min
(⌊

b̃r1−qr1
−o1

⌋
,
⌈
qr2−b̃

r2

o2

⌉)
. min(possible,need)

9 if ctotal = 0 then break and next rule

10 clocal ←
⌊

b
r1
l

−o1

⌋
. applications possible in (br1l , br2l)

11 c← min(ctotal, clocal)

12 (br1l , b
r2
l)← (br1l + c · o1, br2l + c · o2) . Apply rule c times.

13 else if qr2 − b̃r2 < 0 ∧ qr1 − b̃r1 > 0 then

14 R ← generate rules(r1, r2, r1 ← r2)

15 for (o1, o2, p) ∈ R, p increasing do

16 for l ∈ L do

17 ctotal ← min
(⌊

b̃r2−qr2
−o2

⌋
,
⌈
qr1−b̃

r1

o1

⌉)
18 if ctotal = 0 then break and next rule

19 clocal ←
⌊

b
r2
l

−o2

⌋
20 c← min(ctotal, clocal)

21 (br1l , b
r2
l)← (br1l + c · o1, br2l + c · o2)

22 if qr1 − b̃r1 ≤ 0 ∧ qr2 − b̃r2 ≤ 0 then
. Success!

23 else
. No solution.

40

4.2 In-Flight Rest for Two Rest Length and Free Choice of Accommodation

Now we will discuss the steps of the algorithm.

Normalising the Problem

First of all we divide the input parameters representing a time duration by gcd(r1, r2).

This is possible because of the same reason the algorithm 4.1 processed the in-flight

rest problem for 90 minutes and 120 minutes with the time durations 3 and 4.

For instance if we take r1 = 5, r2 = 10 a dl = 32 could be subdivided as follows.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

5 5 5 10 5

It is easy to see that at most 30 time units of the space is usable so we can safely

reduce the figures r1 = 5
gcd(5,10)

= 1, r2 = 10
gcd(5,10)

= 2 and dl for all l ∈ L accord-

ingly.

1 2 3 4 5 6

1 1 1 2 1

Applying Rules

After a best-filling initialisation of the rest accommodations we need to transform

our current state, if possible, into a valid solution. In order to do so we generate

the rules for the proper transforming direction. We either have too many blocks of

r1 or too many blocks of r2, otherwise there would not be a solution to our problem

instance.

Like in the previous algorithm 4.1 we apply the rules ordered by their penalty. In

order to decrease the running time of the algorithm we check how many times we

can apply a rule. ctotal denotes the maximum number of rule applications possible

to achieve our goal or the maximum possible rule applications without decreasing

the number of source blocks of our transformation too much, whichever is smaller.

clocal is the number of possible rule applications in our current rest accommodation

l.

The core of our algorithm is how to find the best-filling subdivision and how to find

proper rules.

41

4 Algorithms for the In-Flight Rest Problem

4.3 Algorithm – Best-filling Subdivision

Input: r1, r2 ∈ N, 0 < r1 < r2, gcd(r1, r2) = 1 as possible lengths of the
rest periods
d = (d1, d2, . . . , dm) as vector of capacities dl ∈ N, dl ≥ r1 of
rest accommodations l ∈ L

Output: (br1l , b
r2
l)l∈L as best-filling subdivision of (dl) (definition 4.2)

1 function init(r1, r2, d) is
. Build dictionary for optimal values smaller than r1 · r2

2 let split be an array of size r1 · r2
3 for j ∈ {0, . . . , r1 − 1} do
4 for i ∈ {0, . . . , r2 − 1} do
5 if i · r1 + j · r2 ≥ r1 · r2 then break
6 else
7 split[i · r1 + j · r2]← (i, j)

. Any unset value is set to the last proper value (no better

subdivision possible)

8 last← (0, 0)
9 forall i ∈ 0, . . . , r1 · r2 − 1 do

10 if isset(split[i]) then last← split[i]
11 else split[i]← last

. Build dictionary to resolve modulo operation for values ≥ r1 · r2
12 let mods be an array of size r1
13 forall i ∈ {0, . . . , r1 − 1} do
14 mods[i · r2 mod r1]← i

. subdivide all rest accommodations using the dictionaries

15 forall l ∈ L do
16 if dl < r1 · r2 then
17 (br1l , b

r2
l)← split[dl]

18 else
19 br2l ← mods[dl mod r1]

20 br1l ←
dl − br2l · r2

r1

21 return (br1l , b
r2
l)

42

4.2 In-Flight Rest for Two Rest Length and Free Choice of Accommodation

4.2.3 Best-Filling Initialisation

Our first step of the algorithm is to find a best-filling subdivision as initialisation

for the availabilities of all rest accommodations. An procedure that solves this is

presented in algorithm 4.3.

We will now prove that the presented subdivision procedure is indeed best-filling.

4.9 Lemma
The subdivision in algorithm 4.3 is best-filling.

Proof.

Case 1. (dl ≥ r1 · r2)
Line 19 assigns to br2l the smallest non-negative value that satisfies

br2l · r2 ≡ dl mod r1, (4.2.3)

thus, 0 ≤ br2l < r1, b
r2
l ∈ N must hold true as well which entails

br2l · r2 < r1 · r2 ≤ dl. (4.2.4)

The value br2l exists because gcd(r1, r2) = 1 due to the input requirement of the

procedure.

We may conclude from eqs. (4.2.3) and (4.2.4), that

br1l =
dl − br2l · r2

r1
∈ N, (4.2.5)

which implicates

br1l · r1 + br2l · r2 = dl, br1l , b
r2
l ∈ N. (4.2.6)

We used all the space, thus, this subdivision is best-filling.

Case 2. (dl < r1 · r2)
By its definition the array split saves for all i ∈ N, 0 ≤ i < r1 · r2 an optimal

subdivion (br1l , b
r2
l) if

br1l · r1 + br2l · r2 = i, br1l , b
r2
l ∈ N (4.2.7)

has a solution. If not it saves the subdivision of maximal value i′ which has a

solution to

br1l · r1 + br2l · r2 = i′ ≤ i, br1l , b
r2
l ∈ N. (4.2.8)

43

4 Algorithms for the In-Flight Rest Problem

This is by the definition of best-filling a best-filling subdivision.

4.2.4 Generation of Rules

In the following listing we will present the way the rules for transforming the blocks

are generated. We have two different directions for transforming: from smaller to

bigger blocks (r1 → r2) and from bigger to smaller blocks (r1 ← r2).

4.4 Algorithm – Generation of Rules

Input: r1, r2 ∈ N, 0 < r1 < r2 as possible lengths of the rest periods

rule dir ∈ { r1 → r2 , r1 ← r2 }
Output: R as ordered set of rules

1 function generate rules(r1, r2, rule dir) is
. Calculate all possible rules

2 let rules be a list

3 if rule dir = r1 → r2 then

4 for i ∈ {1, . . . , r1} do

5 n←
⌈
r2 · i
r1

⌉
6 p← n · r1 − i · r2
7 rules.append((−n, i, p))

8 else

9 for i ∈ {1, . . . , r1} do

10 t←
⌊
r2 · i
r1

⌋
11 p← i · r2 − t · r1
12 rules.append((t,−i, p))

. Discard superfluous rules

13 R ← {}
14 plast ←∞
15 forall (o1, o2, p) in rules do

16 if p < plast then

17 R ← R∪ {(o1, o2, p)}
18 plast ← p

19 return R

44

4.2 In-Flight Rest for Two Rest Length and Free Choice of Accommodation

Generation of rules

As r2 > r1 we use the r2-sized blocks as basis for our transformation rules. We

calculate how many blocks of r1 we need to produce this amout of r2-sized blocks

respectively the amount of r1-sized blocks we are able to produce.

r1 r1 r1 r1 r1

r2 r2 r2 r2

r1 r1 r1 r1

This approach results in the following rules:

r1 → r2 r2 → r1
needed r1 blocks r2 produced r1⌈

r2 · 1
r1

⌉
1

⌊
r2 · 1
r1

⌋
⌈
r2 · 2
r1

⌉
2

⌊
r2 · 2
r1

⌋
⌈
r2 · 3
r1

⌉
3

⌊
r2 · 3
r1

⌋
...

...
...

r2 r1 r2

Discarding of superfluous rules

We may discard rules of the rule set as they can be derived from existing rules. The

algorithm discards rules in line 16 by no copying them into the set of rules R. The

deletion procedure arose from an observation of the complete rule set.

The following proof shows that this is approach is feasible.

4.10 Lemma
Algorithm 4.4 does not discard any necessary rule.

Proof. 1

We have a case for each direction of transformation.
1Thanks to Jan Putzig for the idea behind this proof.

45

4 Algorithms for the In-Flight Rest Problem

Case 1. (Transformation direction r1 → r2)

Let (−ni, i, pi) ∈ rules the first rule which is deleted wrongfully from the set of

rules and let (−nl, l, pl) ∈ rules be the last rule that was added to R.

Thus, all rules (−nj, j, pj), where 0 < j < i, are representable by different

applications of rules in R.

All penalties satisfy

r1 > pj ≥ 0. (4.2.9)

As (−ni, i, pi) is deleted the following must hold true:

pi ≥ pl. (4.2.10)

For p1 and pi holds true:

p1 ≡ r2 mod r1, (4.2.11)

pi ≡ i · r2 ≡ i · p1 mod r1. (4.2.12)

We may express pi as

pi =
(
pl +

(
p1 · (i− l)

)
mod r1︸ ︷︷ ︸

<r1−p

)
mod r1. (4.2.13)

(
p1 · (i− l)

)
mod r1 < r1 − p must hold true, as

pi = (pl + x) mod r1 (4.2.14)

(with eq. (4.2.10))⇒ x ≥ r1 − p⇒ x ≥ r1. (4.2.15)

Thus, we may conclude

pi − pl =
(
p1 · (i− l)

)
mod r1 (4.2.16)

⇔ pi − pl = pi−l (4.2.17)

Now we add the rules no. l and no. i− l

nl · r1 + ni−l · r1 = l · r2 + pl + (i− l) · r2 + pi−l (4.2.18)

(with eq. (4.2.17))⇔ (nl + ni−l) · r1 = i · r2 + pi = ni · r1 (4.2.19)

Equations (4.2.17) and (4.2.19) show that we may express rule no. i as follows:

(−ni, i, pi) = (−nl − ni−l, i− l + l, pl + pi−l)

= (−nl, l, pl) + (−ni−l, i− l, pi−l). (4.2.20)

46

4.2 In-Flight Rest for Two Rest Length and Free Choice of Accommodation

Thus the rule (−ni, i, pi) is superfluous as it can be expressed with the rules no.

l and no. i − l, which are representable by the set of rules R. This is contrary

to our assumption.

Case 2. (Transformation direction r1 ← r2)

Let (ti,−i, pi) ∈ rules the first rule which is deleted wrongfully from the set of

rules and let (tl,−l, pl) ∈ rules be the last rule that was added to R.

Thus, all rules (tj,−j, pj), where 0 < j < i, are representable by different appli-

cations of rules in R.

All penalties satisfy

r1 > pj ≥ 0. (4.2.21)

As (ti,−i, pi) is deleted the following must hold true:

pi ≥ pl. (4.2.22)

For p1 and pi holds true:

p1 ≡ −r2 mod r1, (4.2.23)

pi ≡ −i · r2 ≡ i · p1 mod r1. (4.2.24)

We may express pi as

pi =
(
pl +

(
p1 · (i− l)

)
mod r1︸ ︷︷ ︸

<r1−p

)
mod r1. (4.2.25)

Thus, we may conclude

pi − pl =
(
p1 · (i− l)

)
mod r1 (4.2.26)

⇔ pi − pl = pi−l (4.2.27)

Now we add the rules no. l and no. i− l:

tl · r1 + pl + ti−l · r1 + pi−l = l · r2 + (i− l) · r2 (4.2.28)

(with eq. (4.2.27))⇔ (tl + ti−l) · r2 + pi = i · r2 = ti · r2 + pi (4.2.29)

Equations (4.2.27) and (4.2.29) show that we may express rule no. i as follows:

(−i, ti, pi) = (−i+ l − l, tl + ti−l, pl + pi−l)

= (−l, tl, pl) + (−(i− l), ti−l, pi−l). (4.2.30)

47

4 Algorithms for the In-Flight Rest Problem

Thus the rule (−i, ti, pi) is superfluous as it can be expressed with the rules no.

l and no. i − l, which are representable by the set of rules R. This is contrary

to our assumption.

The number of rules that are rendered by this algorithm are listed in section A.2

for values r1 < r2 ≤ 50, for both directions of transformation.

4.2.5 Correctness and Running Time

4.11 Theorem

Let ∇1 =
r1

gcd(r1, r2)
and ∇2 =

r2
gcd(r1, r2)

.

Then, the algorithm 4.2 can be implemented to have a worst case running

time of O
(
m∇1 + ∇1∇2

)
. It can be implemented to require O (m+∇1∇2)

space.

Proof.

Running Time

The first step of the algorithm is to divide all integer values that represent “space”

by the greatest common divisor of r1 and r2. Thus, the running time is a function

of ∇1 and ∇2 rather than r1 and r2. The greatest common divisor is an input

parameter so we do not consider its calculation.

The subdivision procedure of the algorithm requires O(∇1∇2+∇1) time for building

the look-up tables and O(m) time for processing all rest accommodations. The rules

are generated in O(∇1) time. Thus, the initialisation takes O
(
m +∇1∇2) time in

total.

The cardinality of the set of bound R is bounded by r1, as this is the number of the

initially produced rules. As the penalties are integral and the penalties of all not

deleted rules are smaller than the penalty of the first rule, we may state

|R| ≤ max
(
pr1→r2
1 , pr1←r2

1

)
+ 1

= max
(
∇2 mod ∇1, (−∇2) mod ∇1

)
+ 1. (4.2.31)

In the worst case this is no better bound than r1.

The main procedure of the algorithm processes all rules in a loop, applying them

successively on each of the m rest accommodations. The application of a rule on a

48

4.2 In-Flight Rest for Two Rest Length and Free Choice of Accommodation

single rest accommodation takes constant time. In the worst case all rules remain

applicable in total to the very end, and no early breaking is possible.

Thus, the running time for the main procedure of the algorithm is O(m∇1).

In total this results in a running time of O
(
m∇1 +∇1∇2

)
Space Requirement

The algorithm requires O(m + 1) space for the input parameters. The subdivision

procedure initialises look-up tables of size O(∇1∇2 +∇1) and saves the subdivision

in a vector of size O(m). The set of rules has a size of O(∇1).

The additional space requirement of the main procedure is constant.

Thus, the total space requirement is O (m+∇1∇2).

Although |R| = ∇1 is the worst case, we will see in section 5.1 that average number

of rules is far less.

4.12 Conjecture
The algorithm 4.2 is correct.

In this thesis we do not provide a proof for the correctness of algorithm 4.2. However,

we proved that the algorithm uses a best-filling initialisation (lemma 4.9) and that

the algorithm uses a complete set of rules (lemma 4.10).

The algorithm is a generalisation ofalgorithm 4.1 and follows the same basic princi-

ples. For algorithm 4.1 a proof of correctness is provided in section 4.1.3.

49

4 Algorithms for the In-Flight Rest Problem

4.3 Algorithm for Simple IFR

We now briefly discuss an approach to solve the complete simple IFR problem 2.2.

As stated in section 2.4 this problem is NP-complete.

The problem is very similar to the generalised assignment problem (see problem 3.2).

We can transform a SIFR in the following manner:

Transforming SIFR to GAP
First, we equate the set of crew members C with the set of tasks T , and the

set of rest accommodations L with the set of agents A. The tasks are now

rest jobs which are to be performed by a rest accommodation/agent.

T ← C (4.3.1)

A← L (4.3.2)

As the rest accommodations are now agents, the capacity constrains of rest

accommodations apply on the resource constraints of the agents:

∀ l∈L
a=l : ba ← dl (4.3.3)

The resource requirements for a rest job is the same as in our SIFR model. If

no rest is possible the resource requirement is ∞.

∀ l∈L
a=l ∀ c∈C

t=c : ra,t ←

{
rc l ∈ Pc

∞ otherwise
(4.3.4)

The costs for each possible assignment is 1, all other assignments get the costs

n + 1. Any number greater than one would be appropriate as well but n + 1

enables a branch-and-bound algorithm to discard all solutions including this

cost factor immediately.

∀ l∈L
a=l ∀ c∈C

t=c : ca,t ←

{
1 l ∈ Pc

n+ 1 otherwise
(4.3.5)

We are looking now for a solution with costs of exactly n. If the minimal costs

for this problem are bigger than n we know, that no such solution exists.

The GAP has a cost function and separate resource constraint. Thus, it is also easily

possible to modulate the extended SIFR:

50

4.3 Algorithm for Simple IFR

Variation for eSIFR
For the extended problem we may vary the resource constraint as follows.

∀ l∈L
a=l ∀ c∈C

t=c : ra,t ←

{
etl(rc) l ∈ Pc

∞ otherwise
(4.3.6)

Now lower class rest accommodations consume more resources than higher

class seats.

The latest exact algorithm for the GAP was given by Posta et al. [PFM12] (see

section 3.1.2). Posta supplied an implementation of his algorithm in C in a git

repository [Pos12].

Posta et al. solved the optimisation problem with a series of decision problems.

Thus, the source code can be altered to just solve one decision problem.

For the inquisitive reader, section B.3 provides Python code for transforming a SIFR

problem into an input for the implementation of Posta. The for-loop in main.c of

Posta’s code, containing the variable z ub for the bound z̄, must be altered to process

only one decision problem for costs of z̄ = n. Be aware that the done flag does not

necessarily state whether a solution is obtained. It may be set by a timeout. The

flag bb->found feasible in the function bb search expresses whether a solution

was found.

Performance measures were not performed as no comparison and no test data were

available. Furthermore, the implementation of Posta does not directly yield a solu-

tion to the problem and just solved the decision problem.

The problem discussed in this section should be research further in the future.

51

5 Computational Results

In this chapter we examine the algorithm 4.2 on its computational characteristics.

We have no other algorithm for comparison. McCormick et al. did not provide any

source code or computational results.

In section 4.2.5 we analysed the worse case complexity of algorithm 4.2. Now we

will analyse how the algorithm behaves in with test data.

5.1 Number of Rules

In section 4.2.5 we showed that (if gcd(r1, r2) = 1) the worst case for the cardinality

of the set of rules Rr1 is r1.

However, the average of the number of rules behaves differently. In fig. 5.1 we see

the mean cardinality of the set of rules. For any r1 = 1, . . . , 5000 we calculated how

many rules are generated with an arbitrary r2.

Thus, we note following correlation:

|Rr1| ≈
1

C
· log2

(
r1
)
, C ∈ R (5.1.1)

In a machine scheduling environment with alternating job lengths this reduces the

mean runtime.

53

5 Computational Results

4 9 16 25

1
10

100
1000

10000

|R
r
1 |

r
1

+
+

+
+

+

+
+

+
+

++ ++ + + ++ ++ + + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ + +++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ + +++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ ++++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ + + ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ + + ++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++++ ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ + + ++ ++ + + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ + + ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ +++ + ++ ++ ++ ++ ++++++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ + + ++ ++ ++ + +++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++++ ++ ++ ++++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ +++ + ++ ++++ ++ +++ +++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + +++ ++++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ + +++ ++ ++ + + ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ + + ++ ++ ++ ++++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++++ ++ ++ + + ++ ++++ ++ ++ ++ ++ ++ ++ ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++ ++ ++ +++ +++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ + +++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ + + ++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++ ++ + +++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ + +++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ + ++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++ ++ ++ +++ +++ ++++ ++ +++ +++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ + +++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ ++ + + ++ ++++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + +++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ +++ + ++ + + ++ ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ + ++ + ++ ++ ++++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++++ ++ ++ ++++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ +++ + ++ ++ ++ ++ ++++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ ++ ++ + +++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ +++ + ++ ++++ ++ ++ + + ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ + + ++ ++ ++ + +++ ++++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ + +++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ + +++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ + +++ ++ ++ + +++ ++ ++ ++ ++ + + ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ + + ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ + + ++ ++ ++ + + ++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ + +++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ ++++ ++ ++ + +++ ++++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++++++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ +++ + ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ + + ++ + +++ ++ ++ + + ++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ + + ++ + + ++ ++ ++ + +++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++++ ++ +++ + ++ ++ ++ ++ + ++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++++ ++ ++ + + ++ ++++ ++ ++ ++ ++ ++++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ ++++ ++ ++ ++ ++ + +++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++++ ++ ++ ++ ++ +++ + ++ ++ + + ++ ++ ++ ++ +++ +++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ + + ++ ++++ ++ ++ ++ ++ ++++ ++ +++ + ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++++ ++ ++++ ++ ++ ++++ ++ ++ ++ ++ + + ++ ++ ++ ++ +++ + ++ +++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ +++ ++++ ++ +++ + ++ ++ ++ ++ +++ + ++ ++ ++ ++ ++ ++ ++ +++ + ++ ++ ++ ++ + +++ ++ ++ + + ++ ++++ ++ ++ + + ++ ++ ++ ++ +++ + ++ ++++ ++ ++ ++ ++ +++ + ++ ++

F
igu

re
5.1:

A
verage

card
in

ality
ofR

d
ep

en
d
in

g
on

r
1

for
arb

itrary
r
2

54

5.2 Runtime of the Algorithm 4.2

We formulate this as a hypothesis:

5.1 Hypothesis
The average runtime for arbitrary r1 and r2 of algorithm 4.2 is

O
(
m · log2

(
r1
)

+
r1 · r2

gcd2(r1, r2)

)
(5.1.2)

5.2 Runtime of the Algorithm 4.2

The algorithm 4.2 was implemented in Python 3. The source code is provided in

section B.2. The following tests where run on a Intel R©CoreTMi7-2620M CPU @

2.70GHz with 8 GB of RAM.

Any data point depicted in the figures is a mean value of 100 test runs. We choose

to use r1 = 7 and r2 = 10 as values for our block sizes, as the number of rules for

each transformation direction is 31 Thus, we have no influence of the transformation

direction on the result. Other values for r1 and r2 were tested as well, but as they

showed no distinguishable difference, we only provide the following figures for r1 = 7

and r2 = 10.

For generating a test case a “solution” (β3
l , β

4
l) is created and transformed into the

smallest dl that contain this solution. Then a random offset ≤ r1 is added to any

dl. Now the algorithm is executed to find a solution for q3 = β̃3 and q4 = β̃4.

Influence of m

At first we analyse correlation of m and the runtime. Figure 5.2 shows that the

running time increases linearly with m.

The little steps at about 700, 1400, and 2100 could be caused by the implementation.

There is no mathematical reason why they could appear. Test cases with other r1
and r2 and other parameter variants revealed that these steps always occur at the

same positions. A possible explanation is that any increase m by 700 requires

additional resources that have to be acquired.

Influence of max(dl)

Now we examine whether the maximal size of dl, k = 1, . . . ,m has an influence on

the run time of the algorithm. Our complexity analysis stated an independence of

the runtime and dmax = maxl∈{1,...,m}(dl). Figure 5.3 approves this fact. There is no

correlation recognisable, the runtime is nearly constant for small and big possible

1We skip the rule with p = 0 for the transformation r2 → r1 as it is never applied because our
best-filling fragmentation favours blocks of r1.

55

5 Computational Results

0

0.001

0.002

0.003

0.004

0.005

0.006

0 500 1000 1500 2000 2500

ti
m

e
in

s

m

++
++

+++
+++++
+++++++
++

+++
+
+++

+++
+
+++++++++++++++++
+
++
+++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++
++
++

++++++++++++++++++++++++

+

++++++++++++++

+

++++++++++++
+++
+
+++
+++++++++++++++++

+

+++++++++++++++++++++++++++++++++++++++
+

++++++++++
+
++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++
++
++++++++++++++++++++++++
++
++

+++
+++++++++++++++++++
++
++
++++++++++++++++++++++
++++++++++++++++

+

+++++++++++++++++++++++++++++++++
++
+

++++++++
+
++++++++++

+

++++++

+

++++++++++

+

+++++++++++++++++++++++++++++++++++++
+
++++++++++++++++++++
+
++++++++++
+
++++++++++++++++++++
+
++++++++++++++

+

+++++++++++++++++

+
++++++++++++++++++++++++++
+
+++++++++++++++++++
+
++++++++++++
+
++++++++++++++++++++++++++++
+
+++++
+
+
+
+++++
+
++++++++++++
+++++++++++++++++++++++++++
+
++
+
+

++++++++++++++++++++++++

+

+++++++++
+
+++++++++++++

+

++++++++

+

++++++

+

++++++++++++++++++++
+
++++++++++++++++++
+
++++

+
+

++
+
+
++
++++++++++++++
++++
+
+++
+
++
+
+

+++

+
+++++++
++
++
++++++
+++++
+
++++++++
+++
+
+++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++

+

+++
+
++
+
++
+
+++++

+

+++++++++++++++

+
+++++++++++++++

+

+++
+
+++++++++++
+
+++++++++++++
+++++++++++++++
+++++++++++++++++
+++++++++++++++++++++
+++
+
+++++
+++
++++++++++++++++++
+++++++
+++++
+++++++++++
+++++++++
+++++++++

+

+++
+
+
+++++++++++
+
+++++++++++
+
+
+
+
+
+++
++
+
+++++
+
++++++++++
+
+
++++++

Figure 5.2: Runtime performance of algorithm 4.2 for r1 = 7, r2 = 10

values of dl. A small decline of runtime is visible for very small dmax. The reason is,

that in small dl only a few rules are applicable.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 10000 20000 30000 40000 50000

ti
m

e
in

s

max(d1, ..., dm)

+

+

+
+++++++
+++
++++
+++++++++++++
+++

+++

+

+

++
+
+++

+++
+

+++

+

+

++

+

++

+

+

++

+

+

+++

Figure 5.3: Runtime performance of algorithm 4.2 for r1 = 7, r2 = 10

56

5.2 Runtime of the Algorithm 4.2

57

Bibliography

[Bar+03] Cynthia Barnhart, Amy M. Cohn, Ellis L. Johnson, Diego Klabjan,

George L. Nemhauser, and Pamela H. Vance. “Handbook of Transporta-

tion Science”. In: ed. by Randolph W. Hall. Boston, MA: Springer US,

2003. Chap. Airline Crew Scheduling, pp. 517–560. isbn: 9780306480584.

[Bra+05] Nadia Brauner, Yves Crama, Alexander Grigoriev, and Joris Van De

Klundert. “A framework for the complexity of high-multiplicity schedul-

ing problems”. In: Journal of combinatorial optimization 9.3 (2005),

pp. 313–323.

[Bra+07] Nadia Brauner, Yves Crama, Alexander Grigoriev, and Joris Van De

Klundert. “Multiplicity and complexity issues in contemporary produc-

tion scheduling”. In: Statistica Neerlandica 61.1 (2007), pp. 75–91.

[Bru07] Peter Brucker. Scheduling algorithms. Vol. 5. Springer, 2007.

[CMM67] R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of scheduling.

Addison-Wesley Educational Publishers Inc, 1967.

[CP01] John J. Clifford and Marc E. Posner. “Parallel machine scheduling with

high multiplicity”. In: Mathematical programming 89.3 (2001), pp. 359–

383.

[CV92] Dirk G. Cattrysse and Luk N. Van Wassenhove. “A survey of algorithms

for the generalized assignment problem”. In: European journal of oper-

ational research 60.3 (1992), pp. 260–272.

[Det08] Paolo Detti. “Algorithms for multiprocessor scheduling with two job

lengths and allocation restrictions”. In: Journal of Scheduling 11.3 (2008),

pp. 205–212.

[Din+88] David F. Dinges, Wayne G. Whitehouse, Emily Carota Orne, and Martin

T. Orne. “The benefits of a nap during prolonged work and wakefulness”.

In: Work & stress 2.2 (1988), pp. 139–153.

[DN01] I.R. De Farias and George L. Nemhauser. “A family of inequalities for

the generalized assignment polytope”. In: Operations Research Letters

29.2 (2001), pp. 49–55.

[Eur14a] Europäische Kommission. Verordnung (EU) Nr. 83/2014 der Kommis-

sion. Amtsblatt der Europäischen Union. Jan. 29, 2014. url: http:

//www.lba.de/SharedDocs/Downloads/DE/B/Rechtsvorschriften/

VO_83_2014.pdf.

59

http://www.lba.de/SharedDocs/Downloads/DE/B/Rechtsvorschriften/VO_83_2014.pdf
http://www.lba.de/SharedDocs/Downloads/DE/B/Rechtsvorschriften/VO_83_2014.pdf
http://www.lba.de/SharedDocs/Downloads/DE/B/Rechtsvorschriften/VO_83_2014.pdf

Bibliography

[Eur14b] European Aviation Safety Agency. Commercial Air Transport by Aero-

plane — Scheduled and Charter Operations CS-FTL.1. Certification Spec-

ifications and Guidance Material. Jan. 31, 2014. url: https://easa.

europa.eu/document-library/certification-specifications/cs-

ftl1-initial-issue.

[FJV86] Marshall L. Fisher, Ramchandran Jaikumar, and Luk N. Van Wassen-

hove. “A multiplier adjustment method for the generalized assignment

problem”. In: Management Science 32.9 (1986), pp. 1095–1103.

[FR09] Carlo Filippi and Giorgio Romanin-Jacur. “Exact and approximate al-

gorithms for high-multiplicity parallel machine scheduling”. In: Journal

of Scheduling 12.5 (2009), pp. 529–541.

[Fra05] András Frank. “On Kuhn’s Hungarian method—a tribute from Hun-

gary”. In: Naval Research Logistics (NRL) 52.1 (2005), pp. 2–5.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractability. A

guide to the theory of NP-Completeness. Bell Telephone Labaoratories,

Incorporated. W. H. Freeman and Company, 1979. isbn: 0716710447.

[GR89] Monique Guignard and Moshe B. Rosenwein. “An Improved Dual Based

Algorithm for the Generalized Assignment Problem”. In: Operations Re-

search 37.4 (1989), pp. 658–663.

[Gra+79] Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and A.H.G. Rin-

nooy Kan. “Optimization and approximation in deterministic sequencing

and scheduling: a survey”. In: Annals of discrete mathematics 5 (1979),

pp. 287–326.

[GST97] Frieda Granot, Jadranka Skorin-Kapov, and Amir Tamir. “Using quadratic

programming to solve high multiplicity scheduling problems on parallel

machines”. In: Algorithmica 17.2 (1997), pp. 100–110.

[HS91] Dorit S. Hochbaum and Ron Shamir. “Strongly polynomial algorithms

for the high multiplicity scheduling problem”. In: Operations Research

39.4 (1991), pp. 648–653.

[JN86] Kurt O. Jörnsten and Mikael Näsberg. “A new Lagrangian relaxation

approach to the generalized assignment problem”. In: European Journal

of Operational Research 27.3 (1986), pp. 313–323.

[JV86] Roy Jonker and Ton Volgenant. “Improving the Hungarian assignment

algorithm”. In: Operations Research Letters 5.4 (1986), pp. 171–175.

[KT13] Sven O. Krumke and Clemens Thielen. “The generalized assignment

problem with minimum quantities”. In: European Journal of Operational

Research 228.1 (2013), pp. 46–55.

[Kuh55] Harold W Kuhn. “The Hungarian method for the assignment problem”.

In: Naval research logistics quarterly 2.1-2 (1955), pp. 83–97.

60

https://easa.europa.eu/document-library/certification-specifications/cs-ftl1-initial-issue
https://easa.europa.eu/document-library/certification-specifications/cs-ftl1-initial-issue
https://easa.europa.eu/document-library/certification-specifications/cs-ftl1-initial-issue

[Leu82] Joseph Y.-T. Leung. “On scheduling independent tasks with restricted

execution times”. In: Operations Research 30.1 (1982), pp. 163–171.

[LLK82] Eugene L. Lawler, Jan Karel Lenstra, and A.H.G. Rinnooy Kan. Re-

cent developments in deterministic sequencing and scheduling: a survey.

Springer, 1982.

[Lou64] Janice R. Lourie. “Topology and computation of the generalized trans-

portation problem”. In: Management Science 11.1 (1964), pp. 177–187.

[MSS01] S. Thomas McCormick, Scott R. Smallwood, and Frits C.R. Spieksma.

“A polynomial algorithm for multiprocessor scheduling with two job

lengths”. In: Mathematics of Operations Research 26.1 (2001), pp. 31–

49.

[MT81] Silvano Martello and Paolo Toth. “An algorithm for the generalized as-

signment problem”. In: Operational research 81 (1981), pp. 589–603.

[PDU05] Alexandre Pigatti, Marcus Poggi De Aragao, and Eduardo Uchoa. “Sta-

bilized branch-and-cut-and-price for the generalized assignment prob-

lem”. In: Electronic Notes in Discrete Mathematics 19 (2005), pp. 389–

395.

[PFM12] Marius Posta, Jacques A. Ferland, and Philippe Michelon. “An exact

method with variable fixing for solving the generalized assignment prob-

lem”. In: Computational Optimization and Applications 52.3 (2012),

pp. 629–644.

[Pos12] Marius Posta. Generalized Assignment Problem solver. Git repository.

GitHub. 2012. url: https://github.com/postamar/gap-solver/.

[Psa80] Harilaos N. Psaraftis. “A dynamic programming approach for sequencing

groups of identical jobs”. In: Operations Research 28.6 (1980), pp. 1347–

1359.

[Ros86] Moshe B. Rosenwein. “Design and application of solution methodologies

to optimize problems in transportation logistics”. PhD thesis. University

of Pennsylvania, 1986.

[RS75] G. Terry Ross and Richard M. Soland. “A branch and bound algorithm

for the generalized assignment problem”. In: Mathematical programming

8.1 (1975), pp. 91–103.

[Sad+15] Ruslan Sadykov, François Vanderbeck, Artur Pessoa, and Eduardo Uchoa.

“Column generation based heuristic for the generalized assignment prob-

lem”. In: XLVII Simpósio Brasileiro de Pesquisa Operacional, Porto de

Galinhas, Brazil (2015).

[Sav97] Martin Savelsbergh. “A branch-and-price algorithm for the generalized

assignment problem”. In: Operations research 45.6 (1997), pp. 831–841.

61

https://github.com/postamar/gap-solver/

Bibliography

[Sha92] David F. Shallcross. “A polynomial algorithm for a one machine batching

problem”. In: Operations Research Letters 11.4 (1992), pp. 213–218.

[Sta14] Statista GmbH. Anzahl der Flüge in der weltweiten Luftfahrt von 2009

bis 2014 (in Millionen). 2014. url: http://de.statista.com/statistik/

daten/studie/411620/umfrage/anzahl-der-weltweiten-fluege/

(visited on Feb. 22, 2016).

[Uwa12] Daniel Uwazie. “Approaches to Makespan”. Diploma thesis. Technische

Universität Berlin, Fachbereich Mathematik, 2012.

62

http://de.statista.com/statistik/daten/studie/411620/umfrage/anzahl-der-weltweiten-fluege/
http://de.statista.com/statistik/daten/studie/411620/umfrage/anzahl-der-weltweiten-fluege/

63

A Examples

A.1 Example for Algorithm 4.1

Let us consider the following input for algorithm 4.1:

d = (25, 13, 19, 12, 22, 27), (A.1.1)

q = (12, 20). (A.1.2)

We now execute the algorithms, the decisions of the algorithm are commented.

. Requiring 12 × 3 and 20 × 4 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

25
}

Acc. 1

13
}

Acc. 2

19
}

Acc. 3

12
}

Acc. 4

22
}

Acc. 5

27
}

Acc. 6

65

A Examples

. Best-filling subdivision:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 3 3 3 3 3 3 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 3 3 3 3 4
}

Acc. 3

3 3 3 3
}

Acc. 4

3 3 3 3 3 3 4
}

Acc. 5

3 3 3 3 3 3 3 3 3
}

Acc. 6

. After initalisation: need -22 × 3 and 16 × 4 .

. Starting rule (-4,3)!

. Apply on accommodation 1:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 3 3 4 4 4 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 3 3 3 3 4
}

Acc. 3

3 3 3 3
}

Acc. 4

3 3 3 3 3 3 4
}

Acc. 5

3 3 3 3 3 3 3 3 3
}

Acc. 6

. Still need -18 × 3 and 13 × 4 .

. Apply on accommodation 3:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 3 3 4 4 4 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 4 4 4 4
}

Acc. 3

3 3 3 3
}

Acc. 4

3 3 3 3 3 3 4
}

Acc. 5

3 3 3 3 3 3 3 3 3
}

Acc. 6

66

A.1 Example for Algorithm 4.1

. Still need -14 × 3 and 10 × 4 .

. Apply on accommodation 4:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 3 3 4 4 4 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 4 4 4 4
}

Acc. 3

4 4 4
}

Acc. 4

3 3 3 3 3 3 4
}

Acc. 5

3 3 3 3 3 3 3 3 3
}

Acc. 6

. Still need -10 × 3 and 7 × 4 .

. Apply on accommodation 5:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 3 3 4 4 4 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 4 4 4 4
}

Acc. 3

4 4 4
}

Acc. 4

3 3 4 4 4 4
}

Acc. 5

3 3 3 3 3 3 3 3 3
}

Acc. 6

. Still need -6 × 3 and 4 × 4 .

. Apply on accommodation 6:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 3 3 4 4 4 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 4 4 4 4
}

Acc. 3

4 4 4
}

Acc. 4

3 3 4 4 4 4
}

Acc. 5

3 3 3 3 3 4 4 4
}

Acc. 6

. Still need -2 × 3 and 1 × 4 .

. Cannot apply rule anymore (-4,3): to few resources required or available.

. Starting rule (-3,2)!

. Cannot apply rule (-3,2): to few resources required or available.

. Starting rule (-2,1)!

67

A Examples

. Apply on accommodation 1:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 4 4 4 4 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 4 4 4 4
}

Acc. 3

4 4 4
}

Acc. 4

3 3 4 4 4 4
}

Acc. 5

3 3 3 3 3 4 4 4
}

Acc. 6

. Still need 0 × 3 and 0 × 4 .

. Cannot apply rule (-2,1): to few resources required or available.

. Success! The completed subdivion is as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 4 4 4 4 4
}

Acc. 1

3 3 3 4
}

Acc. 2

3 4 4 4 4
}

Acc. 3

4 4 4
}

Acc. 4

3 3 4 4 4 4
}

Acc. 5

3 3 3 3 3 4 4 4
}

Acc. 6

A.2 Number of Rules

The following two figures show the number of rule generated by algorithm 4.4 de-

pending on r1 and r2. For many instances the number of rules is fairly small.

68

A.2 Number of Rules

T
ab

le
A

.1
:

N
u
m

b
er

of
ru

le
s

fo
r

th
e

tr
an

sf
or

m
at

io
n

d
ir

ec
ti

on
r 1
→

r 2
←r2

r
1
→

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

2
1

3
1

2
4

1
(1

)
3

5
1

2
2

4
6

1
(1

)
(1

)
(2

)
5

7
1

2
3

2
3

6
8

1
(1

)
2

(1
)

3
(3

)
7

9
1

2
(1

)
4

2
(2

)
4

8
1
0

1
(1

)
3

(2
)
(1

)
(2

)
3

(4
)

9
T

h
e

n
u
m

b
er

s
in

b
ra

ck
et

s
d
o

n
ot

sa
ti

sf
y

gc
d
(r

1
,r

2
)

=
1.

1
1

1
2

2
2

5
2

4
4

5
1
0

1
2

1
(1

)
(1

)
(1

)
3

(1
)

3
(2

)
(3

)
(5

)
1
1

1
3

1
2

3
4

3
6

2
3

3
4

6
1
2

1
4

1
(1

)
2

(2
)

2
(3

)
(1

)
(2

)
5

(3
)

5
(6

)
1
3

1
5

1
2

(1
)

2
(1

)
(2

)
7

2
(2

)
(2

)
5

(4
)

7
1
4

1
6

1
(1

)
3

(1
)

5
(2

)
4

(1
)

3
(3

)
3

(3
)

5
(7

)
1
5

1
7

1
2

2
4

3
2

3
8

2
4

6
4

4
6

8
1
6

1
8

1
(1

)
(1

)
(2

)
3

(1
)

4
(4

)
(1

)
(2

)
3

(2
)

4
(4

)
(5

)
(8

)
1
7

1
9

1
2

3
2

2
6

3
4

9
2

3
4

3
6

6
6

9
1
8

2
0

1
(1

)
2

(1
)
(1

)
(3

)
2

(2
)

5
(1

)
3

(2
)

7
(3

)
(3

)
(4

)
7

(9
)
1
9

2
1

1
2

(1
)

4
5

(2
)
(1

)
3

(3
)
1
0

2
(2

)
4

(2
)
(3

)
4

5
(6

)
1
0

2
0

2
2

1
(1

)
3

(2
)

3
(2

)
7

(2
)

3
(5

)
(1

)
(2

)
5

(4
)

3
(4

)
5

(5
)

7
(1

0
)
2
1

2
3

1
2

2
2

3
2

4
2

5
4

1
1

2
4

3
8

4
7

5
7

8
1
1

2
2

2
4

1
(1

)
(1

)
(1

)
2

(1
)

3
(1

)
(2

)
(3

)
6

(1
)

3
(3

)
(3

)
(2

)
5

(3
)

7
(5

)
(7

)
(1

1
)
2
3

2
5

1
2

3
4

(1
)

6
4

8
3

(2
)

5
1
2

2
3

(2
)

5
3

4
4

(4
)

6
8

1
2

2
4

2
6

1
(1

)
2

(2
)

5
(3

)
3

(4
)

2
(3

)
5

(6
)
(1

)
(2

)
3

(3
)

9
(3

)
5

(4
)

5
(6

)
9

(1
2
)
2
5

2
7

1
2

(1
)

2
3

(2
)

2
4

(1
)

4
3

(4
)
1
3

2
(2

)
6

4
(2

)
4

8
(4

)
6

8
(8

)
1
3

2
6

2
8

1
(1

)
3

(1
)

3
(2

)
(1

)
(2

)
9

(2
)

6
(3

)
7

(1
)

3
(2

)
3

(5
)

3
(3

)
(3

)
(5

)
6

(6
)

9
(1

3
)
2
7

2
9

1
2

2
4

2
2

7
3

5
2

3
4

5
1
4

2
4

4
5

1
0

4
5

4
8

8
7

1
0

1
4

2
8

3
0

1
(1

)
(1

)
(2

)
(1

)
(1

)
4

(2
)
(3

)
(1

)
3

(2
)

4
(7

)
(1

)
(2

)
5

(2
)

5
(2

)
(3

)
(5

)
5

(4
)

(5
)

(7
)

(9
)
(1

4
)
2
9

3
1

1
2

3
2

5
6

3
2

3
1
0

3
4

4
6

1
5

2
3

4
4

6
3

6
9

6
5

6
9

1
0

1
5

3
0

3
2

1
(1

)
2

(1
)

3
(3

)
4

(1
)

5
(5

)
2

(2
)

3
(4

)
8

(1
)

3
(3

)
7

(3
)

1
1

(3
)

4
(3

)
5

(5
)

7
(7

)
1
1

(1
5
)
3
1

3
3

1
2

(1
)

4
3

(2
)

3
8

(2
)

4
(1

)
(2

)
7

6
(5

)
1
6

2
(2

)
3

3
(4

)
(2

)
5

(4
)

4
6

(5
)

7
8

(1
0
)
1
6

3
2

3
4

1
(1

)
3

(2
)

2
(2

)
2

(4
)

3
(3

)
1
1

(2
)

4
(3

)
6

(8
)
(1

)
(2

)
3

(4
)

4
(6

)
3

(4
)

6
(4

)
9

(6
)

9
(8

)
1
1

(1
6
)

3
3

3
5

1
2

2
2

(1
)

2
(1

)
4

2
(2

)
6

2
5

(2
)
(3

)
6

1
7

2
4

(2
)

(2
)

4
1
2

4
(3

)
1
0

5
(4

)
9

(6
)

1
0

1
2

1
7

3
4

3
6

1
(1

)
(1

)
(1

)
5

(1
)

7
(2

)
(1

)
(3

)
5

(1
)

4
(4

)
(3

)
(4

)
9

(1
)

3
(2

)
(3

)
(3

)
5

(2
)

4
(4

)
(3

)
(4

)
5

(5
)

7
(8

)
(1

1
)
(1

7
)
3
5

3
7

1
2

3
4

3
6

4
3

9
4

5
1
2

3
3

3
4

7
1
8

2
3

6
8

6
7

3
4

5
4

6
6

6
8

9
1
2

1
8

3
6

3
8

1
(1

)
2

(2
)

3
(3

)
3

(2
)

5
(2

)
3

(6
)

2
(3

)
8

(4
)

5
(9

)
(1

)
(2

)
5

(3
)

3
(4

)
1
3

(3
)

7
(6

)
5

(6
)

7
(6

)
8

(9
)

1
3

(1
8
)
3
7

3
9

1
2

(1
)

2
2

(2
)

4
2

(3
)

2
6

(4
)
(1

)
3

(3
)

4
5

(6
)
1
9

2
(2

)
4

5
(3

)
6

(2
)

(3
)

4
1
1

(4
)

1
0

6
(6

)
1
0

1
1

(1
2
)
1
9

3
8

4
0

1
(1

)
3

(1
)
(1

)
(2

)
3

(1
)

3
(1

)
3

(3
)
1
3

(2
)
(2

)
(2

)
7

(5
)
1
0

(1
)

3
(3

)
3

(2
)

(3
)

(7
)

3
(3

)
6

(3
)

7
(4

)
7

(7
)

(7
)

(9
)

1
3

(1
9
)

3
9

4
1

1
2

2
4

5
2

2
8

5
1
0

3
4

7
2

3
5

5
5

7
2
0

2
4

4
4

4
6

1
4

4
5

6
4

5
5

1
0

1
0

8
1
0

1
4

2
0

4
0

4
2

1
(1

)
(1

)
(2

)
3

(1
)
(1

)
(4

)
(2

)
(5

)
3

(2
)

5
(1

)
(2

)
(3

)
3

(3
)

7
(1

0
)
(1

)
(2

)
3

(2
)

9
(4

)
(5

)
(2

)
5

(3
)

7
(4

)
(5

)
(5

)
(5

)
(6

)
9

(1
0
)
(1

3
)
(2

0
)
4
1

4
3

1
2

3
2

3
6

7
4

3
4

2
4

4
1
4

3
6

9
4

7
8

2
1

2
3

3
5

3
4

8
3

6
5

1
2

6
7

6
6

7
9

1
2

1
4

2
1

4
2

4
4

1
(1

)
2

(1
)

2
(3

)
4

(2
)

2
(3

)
(1

)
(2

)
4

(7
)

2
(2

)
4

(3
)

4
(5

)
1
1

(1
)

3
(2

)
7

(5
)

5
(4

)
1
5

(3
)

5
(4

)
(3

)
(5

)
1
1

(5
)

7
(7

)
1
1

(1
0
)
1
5

(2
1
)
4
3

4
5

1
2

(1
)

4
(1

)
(2

)
3

3
(1

)
(2

)
1
1

(2
)

3
6

(1
)

4
3

(2
)

5
(4

)
(7

)
2
2

2
(2

)
(2

)
4

(2
)

7
6

(2
)

4
8

(5
)

4
(4

)
(4

)
7

8
(7

)
(8

)
1
1

(1
4
)
2
2

4
4

4
6

1
(1

)
3

(2
)

5
(2

)
4

(2
)

9
(3

)
6

(2
)

7
(4

)
1
5

(2
)

4
(5

)
4

(4
)

6
(1

1
)
(1

)
(2

)
5

(4
)

5
(3

)
5

(8
)

3
(4

)
4

(7
)

5
(5

)
5

(7
)

7
(8

)
9

(1
1
)
1
5

(2
2
)

4
5

4
7

1
2

2
2

3
2

3
2

5
4

5
2

4
6

8
2

5
5

3
8

5
8

2
3

2
4

6
3

1
0

4
5

1
6

4
4

5
1
3

5
6

6
1
1

8
1
1

1
0

1
3

1
6

2
3

4
6

4
8

1
(1

)
(1

)
(1

)
3

(1
)

2
(1

)
(3

)
(2

)
5

(1
)

5
(3

)
(5

)
(1

)
3

(2
)
1
0

(3
)

(4
)

(6
)

1
2

(1
)

3
(3

)
(3

)
(3

)
3

(3
)

7
(2

)
(3

)
(5

)
5

(3
)

5
(7

)
(5

)
(5

)
1
1

(7
)

1
0

(1
1
)
(1

5
)
(2

3
)
4
7

4
9

1
2

3
4

2
6

(1
)

8
3

2
3

1
2

4
(2

)
6

1
6

3
4

5
4

(3
)

6
9

2
4

2
3

4
(2

)
6

4
5

9
3

4
(3

)
6

4
8

1
2

8
6

(6
)

8
1
2

1
2

1
6

2
4

4
8

5
0

1
(1

)
2

(2
)
(1

)
(3

)
7

(4
)

5
(1

)
6

(6
)

3
(4

)
(3

)
(8

)
2

(3
)

4
(2

)
5

(5
)

8
(1

2
)
(1

)
(2

)
3

(3
)

4
(2

)
5

(5
)

1
7

(3
)

(3
)

(4
)

8
(4

)
5

(4
)

6
(6

)
7

(8
)

(9
)

(1
2
)
1
7

(2
4
)
4
9

69

A Examples

T
ab

le
A

.2:
N

u
m

b
er

of
ru

les
for

th
e

tran
sform

ation
d
irection

r
1 ←

r
2

← r2r
1
→

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

2
1

3
1

2
4

1
(1

)
2

5
1

2
3

2
6

1
(1

)
(1

)
(2

)
2

7
1

2
2

4
3

2
8

1
(1

)
3

(1
)

3
(2

)
2

9
1

2
(1

)
2

5
(2

)
3

2
1
0

1
(1

)
2

(2
)
(1

)
(3

)
4

(2
)

2
T

h
e

n
u
m

b
ers

in
b
rackets

d
o

n
ot

satisfy
gcd

(r
1 ,r

2)
=

1.
1
1

1
2

3
4

2
6

3
3

3
2

1
2

1
(1

)
(1

)
(1

)
3

(1
)

4
(2

)
(2

)
(2

)
2

1
3

1
2

2
2

3
2

7
4

5
4

3
2

1
4

1
(1

)
3

(2
)

5
(2

)
(1

)
(4

)
3

(3
)

3
(2

)
2

1
5

1
2

(1
)

4
(1

)
(2

)
2

8
(3

)
(2

)
3

(2
)

3
2

1
6

1
(1

)
2

(1
)

2
(3

)
3

(1
)

5
(3

)
6

(2
)

4
(2

)
2

1
7

1
2

3
2

3
6

4
2

9
4

3
4

5
3

3
2

1
8

1
(1

)
(1

)
(2

)
3

(1
)

3
(2

)
(1

)
(5

)
5

(2
)

4
(3

)
(2

)
(2

)
2

1
9

1
2

2
4

5
2

4
3

2
1
0

5
4

7
3

3
4

3
2

2
0

1
(1

)
3

(1
)
(1

)
(2

)
7

(2
)

3
(1

)
6

(3
)

3
(4

)
(2

)
(2

)
3

(2
)

2
2
1

1
2

(1
)

2
2

(2
)
(1

)
4

(2
)

2
1
1

(4
)

4
(2

)
(3

)
6

5
(2

)
3

2
2
2

1
(1

)
2

(2
)

3
(3

)
2

(4
)

5
(2

)
(1

)
(6

)
4

(3
)

8
(3

)
4

(3
)

4
(2

)
2

2
3

1
2

3
4

3
6

3
8

3
4

2
1
2

5
6

3
5

3
4

3
3

3
2

2
4

1
(1

)
(1

)
(1

)
5

(1
)

4
(1

)
(3

)
(3

)
3

(1
)

7
(4

)
(3

)
(2

)
4

(2
)

3
(2

)
(2

)
(2

)
2

2
5

1
2

2
2

(1
)

2
3

2
5

(2
)

3
2

1
3

6
(3

)
4

9
5

7
(2

)
5

4
3

2
2
6

1
(1

)
3

(2
)

2
(2

)
4

(2
)

9
(3

)
3

(2
)
(1

)
(7

)
6

(4
)

3
(5

)
4

(4
)

6
(3

)
3

(2
)

2
2
7

1
2

(1
)

4
3

(2
)

7
3

(1
)

4
6

(2
)

2
1
4

(5
)

4
5

(2
)

5
3

(3
)

4
3

(2
)

3
2

2
8

1
(1

)
2

(1
)

3
(3

)
(1

)
(2

)
2

(5
)

3
(2

)
3

(1
)

8
(4

)
7

(3
)

1
0

(3
)

(2
)

(3
)

4
(2

)
4

(2
)

2
2
9

1
2

3
2

5
6

2
4

3
1
0

5
4

4
2

1
5

6
5

4
3

6
4

8
3

3
5

3
3

2
3
0

1
(1

)
(1

)
(2

)
(1

)
(1

)
3

(4
)
(2

)
(1

)
5

(2
)

5
(2

)
(1

)
(8

)
5

(3
)

4
(2

)
(4

)
(3

)
5

(2
)

(2
)

(3
)

(2
)
(2

)
2

3
1

1
2

2
4

2
2

4
8

5
2

6
4

4
3

2
1
6

7
5

5
4

1
1

4
3

4
7

6
3

4
3

2
3
2

1
(1

)
3

(1
)

3
(2

)
3

(1
)

3
(2

)
1
1

(3
)

7
(3

)
3

(1
)

9
(5

)
4

(3
)

3
(6

)
6

(2
)

5
(4

)
4

(2
)

3
(2

)
2

3
3

1
2

(1
)

2
3

(2
)

4
2

(3
)

4
(1

)
(4

)
3

3
(2

)
2

1
7

(6
)

7
8

(3
)

(2
)

5
(3

)
9

4
(3

)
4

5
(2

)
3

2
3
4

1
(1

)
2

(2
)

5
(3

)
7

(2
)

5
(3

)
2

(6
)

4
(4

)
3

(2
)
(1

)
(9

)
7

(4
)

5
(3

)
1
2

(4
)

4
(5

)
3

(3
)

3
(3

)
4

(2
)

2
3
5

1
2

3
4

(1
)

6
(1

)
3

9
(2

)
3

1
2

4
(2

)
(2

)
4

2
1
8

7
(4

)
(3

)
6

3
7

(3
)

3
5

(2
)

3
(2

)
3

3
3

2
3
6

1
(1

)
(1

)
(1

)
2

(1
)

2
(2

)
(1

)
(3

)
3

(1
)

5
(3

)
(3

)
(2

)
3

(1
)

1
0

(5
)

(4
)

(5
)

5
(2

)
6

(4
)

(2
)
(3

)
8

(2
)

6
(2

)
(2

)
(2

)
2

3
7

1
2

2
2

3
2

3
4

2
4

3
2

7
6

8
6

3
2

1
9

8
5

4
4

4
1
3

6
5

1
0

4
5

7
4

5
4

3
2

3
8

1
(1

)
3

(2
)

3
(2

)
4

(4
)

3
(5

)
6

(2
)

1
3

(4
)

3
(3

)
5

(2
)
(1

)
(1

0
)

6
(5

)
9

(4
)

3
(7

)
4

(3
)

6
(3

)
4

(4
)

4
(3

)
3

(2
)

2
3
9

1
2

(1
)

4
5

(2
)

3
8

(2
)

1
0

3
(2

)
(1

)
6

(3
)

5
4

(2
)

2
2
0

(7
)

6
5

(4
)

4
(2

)
(5

)
7

3
(4

)
3

5
(3

)
3

3
(2

)
3

2
4
0

1
(1

)
2

(1
)
(1

)
(3

)
4

(1
)

5
(1

)
5

(2
)

2
(7

)
(3

)
(2

)
3

(3
)

3
(1

)
1
1

(6
)

8
(3

)
(3

)
(3

)
1
4

(4
)

4
(2

)
4

(2
)

4
(3

)
(2

)
(2

)
4

(2
)

2
4
1

1
2

3
2

2
6

7
2

3
2

5
4

3
1
4

6
4

4
4

4
2

2
1

8
6

6
6

4
3

8
5

4
1
1

6
9

3
3

6
5

3
3

2
4
2

1
(1

)
(1

)
(2

)
3

(1
)
(1

)
(2

)
(3

)
(2

)
6

(2
)

4
(1

)
(5

)
(4

)
9

(2
)

3
(2

)
(1

)
(1

1
)

8
(4

)
4

(4
)

(3
)
(2

)
6

(3
)

4
(6

)
(3

)
(5

)
(2

)
(2

)
4

(3
)
(2

)
(2

)
2

4
3

1
2

2
4

3
2

2
3

5
4

1
1

4
5

2
8

4
3

5
3

3
2

2
2

9
8

5
1
0

7
4

1
5

5
5

3
5

4
5

8
7

4
3

4
3

2
4
4

1
(1

)
3

(1
)

5
(2

)
3

(2
)

9
(3

)
(1

)
(3

)
4

(2
)

1
5

(4
)

5
(5

)
7

(2
)

3
(1

)
1
2

(6
)

5
(4

)
5

(3
)

3
(8

)
5

(3
)
(2

)
(4

)
3

(3
)

5
(4

)
3

(2
)

3
(2

)
2

4
5

1
2

(1
)

2
(1

)
(2

)
4

4
(1

)
(2

)
2

(4
)

7
3

(1
)

6
7

(2
)

4
(2

)
(2

)
2

2
3

(8
)

(5
)

6
(3

)
4

5
(2

)
7

4
(3

)
1
2

(3
)
(2

)
4

4
(3

)
(2

)
5

(2
)

3
2

4
6

1
(1

)
2

(2
)

2
(3

)
3

(4
)

2
(3

)
3

(6
)

3
(3

)
2

(8
)

5
(3

)
5

(4
)

5
(2

)
(1

)
(1

2
)

7
(5

)
5

(6
)

5
(3

)
1
6

(5
)

8
(3

)
7

(4
)

1
0

(3
)

5
(3

)
6

(3
)

4
(2

)
2

4
7

1
2

3
4

3
6

4
8

3
4

3
1
2

4
3

3
1
6

5
4

1
0

3
6

4
2

2
4

9
6

9
4

6
6

3
9

7
5

3
6

5
6

3
4

3
4

3
3

3
2

4
8

1
(1

)
(1

)
(1

)
3

(1
)

7
(1

)
(2

)
(5

)
3

(1
)

4
(4

)
(2

)
(1

)
7

(3
)

3
(3

)
(3

)
(3

)
3

(1
)

1
3

(7
)

(5
)
(4

)
1
1

(3
)

4
(2

)
(6

)
(4

)
6

(2
)

6
(3

)
(4

)
(2

)
3

(2
)

4
(2

)
(2

)
(2

)
2

4
9

1
2

2
2

5
2

(1
)

2
5

1
0

6
2

5
(2

)
3

2
9

5
4

6
(2

)
4

3
2

2
5

1
0

7
(4

)
5

6
5

4
1
7

7
(3

)
5

1
3

4
3

4
9

(2
)

7
3

5
4

3
2

5
0

1
(1

)
3

(2
)
(1

)
(2

)
2

(2
)

3
(1

)
3

(2
)

7
(3

)
(2

)
(2

)
1
7

(5
)

5
(2

)
4

(3
)

3
(2

)
(1

)
(1

3
)

9
(6

)
6

(3
)

5
(4

)
3

(9
)
(4

)
(5

)
4

(7
)

7
(2

)
6

(5
)

8
(4

)
(2

)
(3

)
3

(2
)

2

70

B Source Code

B.1 Python Code for Algorithm 4.1

1 #!/usr/bin/python3

2

3 legs = [7,9,16,12,13,2]

4

5 rest = (5,10)

6

7 #best -filling subdivision

8 def subdivide(figure):

9 if figure < 3:

10 return (0, 0)

11 if figure == 5:

12 return (0,1)

13

14 b4 = figure % 3

15 b3 = (figure - 4 * b4) // 3

16

17 return (b3 , b4)

18

19 def total(legs):

20 return tuple([sum(x) for x in zip(*legs)])

21

22 def apply_rule_if_possible(blocks , req , bal3 , bal4 , durs):

23 for i in range(len(blocks)):

24 t = total(blocks)

25 while blocks[i][0] >= -bal3 and blocks[i][1] >= -bal4:

26 if not (bal3 < 0 and bal4 > 0 and req [0] - t[0] <=

bal3 and req [1] - t[1] >= bal4

71

B Source Code

27 or bal4 < 0 and bal3 > 0 and req [0] - t[0] >= bal3

and req[1] - t[1] <= bal4):

28

29 return blocks

30 blocks[i] = (blocks[i][0] + bal3 , blocks[i][1] + bal4)

31 t = total(blocks)

32 return blocks

33

34 def algo(legs , req):

35 #init

36 blocks = [subdivide(l) for l in legs]

37 t = total(blocks)

38

39 if t[0] < req [0] and t[1] > req [1]:

40 blocks = apply_rule_if_possible(blocks , req , 1, -1, legs)

41 elif t[0] > req [0] and t[1] < req [1]:

42 blocks = apply_rule_if_possible(blocks , req , -4, 3, legs)

43 blocks = apply_rule_if_possible(blocks , req , -3, 2, legs)

44 blocks = apply_rule_if_possible(blocks , req , -2, 1, legs)

45

46 t = total(blocks)

47 if t[0] >= req [0] and t[1] >= req [1]:

48 print(’Success!’)

49 else:

50 print(’Failed!’)

51

52 return blocks

53

54 b = algo(legs , rest)

B.2 Python Code for Algorithm 4.2

1 #!/usr/bin/python3

2 import math

3

4 d = [30555 , 20847 , 18803 , 20386 , 12188 , 12313 , 25526 , 13629 , 27349 ,

36081, 27634, 26996 , 26221 , 40293 , 27438 , 34475 , 14256 , 17029 ,

12709 , 38824 , 23378 , 14332 , 38348 , 8107, 41965 , 38428 , 20855 ,

4048, 41864, 43943, 9589, 7506, 9725, 29969, 25682, 5905, 2635,

9303, 17933, 34795, 41709, 8712, 10376, 29019, 20375, 6518,

33828 , 30221 , 36662 , 36550]

5

6 q = (1259 , 1281)

7

8 r1 = 101

9 r2 = 809

10

11 def init(d, r1 , r2):

12 split = [None] * (r1 * r2)

72

B.2 Python Code for Algorithm 4.2

13 for j in range(0, r1):

14 for i in range(0, r2):

15 if i*r1 + j*r2 >= r1*r2:

16 break

17 else:

18 split[i*r1 + j*r2] = (i, j)

19 last = (0,0)

20 for i in range(0, r1*r2):

21 if split[i] == None:

22 split[i] = last

23 else:

24 last = split[i]

25

26 mods = [None] * r1

27 for i in range(0, r1):

28 mods[(i*r2) % r1] = i

29

30 res = [None] * len(d)

31

32 for i in range(0, len(d)):

33 if d[i] < r1*r2:

34 res[i] = split[d[i]]

35 else:

36 b2 = mods[d[i] % r1]

37 b1 = int((d[i] - b2 * r2)/r1)

38 res[i] = (b1 , b2)

39

40 return res

41

42

43

44 def generate_rules(r1 , r2 , norm_dir):

45 all_rules = []

46 if norm_dir: #r1 ->r2

47 for i in range (1, r1 + 1):

48 need = math.ceil(r2*i / r1)

49 penalty = need*r1 - i*r2

50 all_rules.append((-need , i, penalty))

51 else:

52 for i in range (1, r1 + 1):

53 trans = (r2*i) // r1

54 penalty = i*r2 - trans*r1

55 all_rules.append ((trans , -i, penalty))

56

57 rules = []

58 penalty = r2 #infinity

59 for i in range(0, len(all_rules)):

60 (a, b, pen) = all_rules[i]

61 if pen < penalty:

62 rules.append ((a, b, pen))

63 penalty = pen

73

B Source Code

64

65

66 rules.sort(key=lambda r: r[2])

67 return rules

68

69 def total(blocks):

70 return tuple([sum(x) for x in zip(* blocks)])

71

72 def diff(a, b):

73 (a1, a2) = a

74 (b1, b2) = b

75 return (a1 -b1 , a2 -b2)

76

77 def apply_rule(b, n, rule , times):

78 (b1, b2) = b

79 (n1, n2) = n

80 (bal1 , bal2 , pen) = rule

81 return ((b1+bal1*times , b2+bal2*times), (n1 -bal1*times , n2 -bal2

*times))

82

83 def algo(d, r1 , r2 , q):

84 gcd = math.gcd(r1 ,r2)

85 if gcd > 1:

86 r1 = r1 // gcd;

87 r2 = r2 // gcd;

88 d = [e // gcd for e in d]

89

90

91 b = init(d, r1, r2)

92

93 #calculate how much is required (n: needed)

94 (n1, n2) = diff(q, total(b))

95

96 if n1 <= 0 and n2 <= 0:

97 return b

98 elif n1 < 0:

99 rules = generate_rules(r1, r2, True)

100 for (bal1 , bal2 , pen) in rules:

101 if n2 <= 0:

102 break

103 for i in range(0, len(b)):

104 times = (-n1)//(-bal1) #how often possible in total

105 times = min(math.ceil(n2/bal2), times) #how often

needed in total

106 if times <= 0:

107 break

108

109 (b1 , b2) = b[i]

110 if b1 < -bal1: #not sufficient in this subdivision

111 continue

112 times = min(b1//(-bal1), times)

74

B.3 Python Code for Converting Simple IFR to GAP

113

114 (b[i], (n1 ,n2)) = apply_rule ((b1, b2), (n1, n2), (

bal1 , bal2 , pen), times)

115

116 elif n2 < 0:

117 rules = generate_rules(r1, r2, False)

118 for (bal1 , bal2 , pen) in rules:

119 if n1 <= 0:

120 break

121 for i in range(0, len(b)):

122 times = (-n2)//(-bal2) #how often possible in total

123 times = min(math.ceil(n1/bal1), times) #how often

needed in total

124 if times <= 0:

125 break

126

127 (b1 , b2) = b[i]

128 if b2 < -bal2: #not sufficient in this subdivision

129 continue

130 times = min(b2//(-bal2), times)

131

132 (b[i], (n1 ,n2)) = apply_rule ((b1, b2), (n1, n2), (

bal1 , bal2 , pen), times)

133

134 if n1 > 0 or n2 > 0:

135 return None

136

137 return b

138

139

140 b = algo(d, r1, r2, q)

B.3 Python Code for Converting Simple IFR to GAP

1 #!/usr/bin/python3

2

3 crew_cnt = 6

4 acc_cnt = 6

5

6 crew_rest = [120, 90, 120, 120, 90, 120]

7 acc_avail = [150, 180, 90, 90, 240, 150]

8

9 accs = [[1,2],[3,4],[5,6],[1,2,3,4],[1,3,5,6],[2,4]]

10

11 infty = max(acc_avail) + 1

12

13 costs = [[crew_cnt +1 for x in range(crew_cnt)] for y in range(

acc_cnt)]

14 res = [[infty for x in range(crew_cnt)] for y in range(acc_cnt)]

75

B Source Code

15

16 for a in range(acc_cnt):

17 for crw in accs[a]:

18 res[a][crw - 1] = crew_rest[crw - 1]

19 costs[a][crw - 1] = 1

20

21

22 #costs 2x

23

24 #acc_avail

25

26 def savetofile(file , str):

27 f = open(file ,"w")

28 f.write(str)

29 f.close ()

30

31

32 #no. accommodation , no. crew members

33 out_str = "{0} {1}\n".format(acc_cnt , crew_cnt)

34

35 #cost matrices for assignments

36 for a in range(acc_cnt):

37 cost = costs[a]

38 for c in cost:

39 out_str += str(c)+" "

40 out_str += "\n"

41

42 #resource matrices for assignments

43 for a in range(acc_cnt):

44 re = res[a]

45 for r in re:

46 out_str += str(r)+" "

47 out_str += "\n"

48

49 #capacities of accommodations

50 for a in range(acc_cnt):

51 out_str += str(acc_avail[a])+" "

52

53

54 savetofile("inflight_rest_gap", out_str)

76

	Introduction
	Motivation
	Outline

	In-Flight Rest
	European Regulations
	Cockpit Crew
	Cabin Crew

	Mathematical Model
	Simplified Model
	Extended Simplified Model

	Complexity

	Related Problems
	Assignment Problems
	Assignment Problem
	Generalised Assignment Problem

	Machine Scheduling Problems
	General Problem
	High-Multiplicity

	Algorithms for the In-Flight Rest Problem
	Rest for Cockpit Crew and Free Choice of Accommodation
	Problem
	Algorithm
	Correctness and Running Time

	In-Flight Rest for Two Rest Length and Free Choice of Accommodation
	Problem
	Algorithm
	Best-Filling Initialisation
	Generation of Rules
	Correctness and Running Time

	Algorithm for Simple IFR

	Computational Results
	Number of Rules
	Runtime of the sec:tworestlen:alg

	Bibliography
	Examples
	Example for alg:cmpltpilot34
	Number of Rules

	Source Code
	Python Code for alg:cmpltpilot34
	Python Code for sec:tworestlen:alg
	Python Code for Converting Simple IFR to GAP

