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Perfect f -Matchings and f -Factors in
Hypergraphs - A Combinatorial Approach

Isabel Beckenbach∗ † Robert Scheidweiler‡

April 6, 2016

Abstract
We prove characterizations of the existence of perfect f -matchings in

uniform mengerian and perfect hypergraphs. Moreover, we investigate
the f -factor problem in balanced hypergraphs. For uniform balanced hy-
pergraphs we prove two existence theorems with purely combinatorial
arguments, whereas for non-uniform balanced hypergraphs we show that
the f -factor problem is N P-hard.

Keywords: perfect f -matchings in hypergraphs, f -factors in hypergraphs, men-
gerian hypergraph, balanced hypergraph, perfect hypergraph, Hall’s Theorem

1 Introduction
We investigate conditions for the existence of perfect f -matchings and f -factors
in hypergraphs generalizing bipartite graphs, namely balanced, mengerian, and
perfect hypergraphs. For the subclass of unimodular hypergraphs, which are
hypergraphs with a totally unimodular incidence matrix M , Hoffman charac-
terized in [Hof60] when the system

f ≤Mx ≤ g, l ≤ x ≤ u (1)

has a solution. He called his result (which was not proven in [Hof60]) “the most
general theorem of the Hall type” as many Hall type theorems (existence of a
system of distinct representatives, perfect matchings in bipartite graphs, flows
in networks, etc.) can be reduced to it. Sixteen years later Hoffman published
a proof of a slight generalization of this theorem (see [Hof76]).

Hoffman’s result includes a characterization of the existence of perfect f -
matchings and f -factors in unimodular hypergraphs generalizing the known
ones for bipartite graphs (see for example [LP86] or [Hof60], [Hof76] as the
incidence matrix of a bipartite graph is totally unimodular):
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Namely, a bipartite graph G = (V,E) with vertex partition V = A ∪ B has
a perfect f -matching if and only if

f(A) = f(B) and
f(S) ≤ f(Γ(S)) for all S ⊆ A. (2)

Here, Γ(S) := {v ∈ V \ S | v is adjacent to s ∈ S} denotes the neighborhood of
a set of vertices, and we define f(U) :=

∑
v∈U f(v) for a set of vertices U ⊆ V.

Furthermore, G has an f -factor if and only if

f(A) = f(B) and
f(S)− f(T ) ≤ |{e ∈ E | e ∩ S 6= ∅, e ∩ T = ∅}| for all S ⊆ A, T ⊆ B. (3)

Balanced, perfect, and mengerian hypergraphs do not have totally unimodular
incidence matrices in general. Nevertheless, these classes are considered as gen-
eralizations of bipartite graphs to hypergraphs. In the following we will show
that conditions similar to (2) and (3) hold for some of these classes as well.

In Section 2 we proof three theorems, namely Theorem 2.2, Theorem 2.4,
and Theorem 2.6, which can be interpreted as a generalization of Ore’s deficient
variant of Hall’s Theorem, condition (2), and Hall’s Theorem for balanced hy-
pergraphs (see [CCKV96]), respectively. Therefore, we introduce a new concept
of neighborhood in hypergraphs.

Section 3 deals with the f -factor problem in uniform balanced hypergraphs.
We state two existence characterizations, a one-set and a two-set condition.
The first one is proven using a min-max theorem given in [ST15]. Whereas
the second one can be derived from Theorem 2.4 using a construction which
reduces the f -factor problem in uniform balanced hypergraphs to the perfect
f -matching problem.

Finally, in Section 4 we show that the f -matching and the f -factor problem
areNP-hard for non-uniform balanced hypergraphs. Moreover, it turns out that
for non-uniform mengerian hypergraphs even the perfect matching problem is
NP-hard. This justifies that we mainly investigate uniform hypergraphs in the
other sections.

As a last step, we comment on our work and give some directions for future
work. We would like to mention that it is possible to obtain some of the results
by linear programming methods. However, our main contribution are the purely
combinatorial arguments given in this paper.

2 Perfect f-Matchings
In this section we investigate the perfect f -matching problem in two classes
of hypergraphs generalizing bipartite graphs, namely mengerian and perfect
hypergraphs. Formally, a perfect f -matching is defined as follows.

Definition 2.1. Let H = (V,E) and f : V → Z≥0 be given. An f -matching is
a function x : E → Z≥0 such that∑

e∈E:v∈e
x(e) ≤ f(v)

for every vertex v ∈ V . An f -matching is called perfect if equality holds for
every v ∈ V .
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2.1 Perfect f-Matchings in Mengerian Hypergraphs
In this subsection we investigate the perfect f -matching problem in mengerian
hypergraphs and give some existence characterizations. First, we need the no-
tion of vertex-expansion in order to define a mengerian hypergraph.

Definition 2.2. Let H = (V,E) be a hypergraph, λ ≥ 0 an integer, and v ∈ V.
Expanding a vertex v by λ means replacing v by λ new vertices v1, . . . , vλ, and
each hyperedge e which contains v by λ new hyperedges e1 = e \ {v}∪ {v1},. . .,
eλ = e \ {v} ∪ {vλ}. If λ = 0, we delete v and all hyperedges e containing v.
Given f : V → Z≥0 the expansion of H by f is the hypergraph Hf obtained
from H by expanding each vertex v by f(v).

Furthermore, we denote by ν(H) the maximum size of a matching (set of
disjoint hyperedges) inH, and by τ(H) the minimum size of a vertex cover (a set
of vertices intersecting each hyperedge at least once). We say that a matching
M is perfect, if its hyperedges cover every vertex of the hypergraph. With these
notions we can define a mengerian hypergraph.

Definition 2.3. A hypergraph H is called mengerian if ν(Hf ) = τ(Hf ) for
every expansion Hf of H.

By Kőnig’s Theorem (see e.g. [LP86]) a bipartite graph G satisfies ν(G) =
τ(G). As the expansion of a bipartite graph is bipartite as well, every bipartite
graph is mengerian. Thus, mengerian hypergraphs can be interpreted as a
generalization of bipartite graphs.

We say that a hypergraph is r-uniform if all hyperedges have the same size
r. If furthermore the vertex set of an r-uniform hypergraph can be partitioned
into r subsets such that each hyperedge intersects each of the r subsets exactly
once, the hypergraph is called r-partite. In general, an r-partite hypergraph is
r-uniform but not the other way around. However, for ideal hypergraphs, which
are hypergraphs for which the vertex cover polytope

PC :=
{
x ∈ RV

∣∣∣∣∣ ∑
v∈e

xv ≥ 1 for all e ∈ E, 0 ≤ x ≤ 1
}

is integral, an r-uniform hypergraph is also r-partite.

Theorem 2.1. Let H = (V,E) be an ideal hypergraph. If H is r-uniform, then
H is r-partite.

Proof. We prove the theorem by induction on r. For r = 1 the claim is trivial.
Now, suppose r ≥ 2. We show that there is a vertex cover C ⊆ V covering

every hyperedge exactly once. The vector z ∈ RV with zv := 1
r is an element

of PC , and can therefore be written as a convex combination of the vertices of
PC . The vertices of PC are exactly the incidence vectors of vertex covers of H.
Thus, there exist k vertex covers Ci with incidence vectors χCi for i = 1, . . . , k
and λ1, . . . , λk ≥ 0 such that

∑k
i=1 λi = 1 and z =

∑k
i=1 λiχ

Ci . For every
hyperedge e we have

1 =
∑
v∈e

zv =
∑
v∈e

k∑
i=1

λiχ
Ci
v =

k∑
i=1

λi|e ∩ Ci| ≥
k∑
i=1

λi = 1. (4)
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Inequality (4) implies that |e∩Ci| = 1 for all i = 1, . . . , k. We choose any of the
k vertex covers to be C, and consider the hypergraph H/C := (V \ C, {e \ C |
e ∈ E}). As |e ∩ C| = 1 for all e ∈ E, the hypergraph H/C is (r − 1)-uniform,
and, by Theorem 78.2 in [Sch03], H/C is still ideal. By induction, there exists
a partition V1, V2, . . . , Vr−1 of V \ C such that |(e \ C) ∩ Vi| = 1 for all e ∈ E,
i = 1, . . . , r− 1. We obtain a partition V1, V2, . . . , Vr := C of V such that every
hyperedge e contains exactly one vertex from each Vi, i = 1, . . . , r.

As mengerian hypergraphs are also ideal, an r-uniform mengerian hyper-
graph is always r-partite. In the remainder we will write H = (V1, V2, . . . , Vr, E)
if H is an r-partite hypergraph with vertex classes V1, . . . , Vr, i.e., |e ∩ Vi| = 1
for i = 1, . . . , r, and all e ∈ E.

The following definition will be useful to characterize the existence of a
perfect f -matching in an r-partite hypergraph by reducing it to a problem in
an (r − 1)-partite hypergraph.

Definition 2.4. Let H = (V1, V2, . . . , Vr, E) be a mengerian r-partite hyper-
graph, and let i1, . . . , it ∈ {1, . . . , r} with i1 < i2 < · · · < it for a natural number
t < r. Moreover, let sets S1 ⊆ Vi1 , S2 ⊆ Vi2 , . . . , St ⊆ Vit for t < r be given.

HS1,...,St
is the (r− t)-partite hypergraph with vertex set V \ (

t⋃
k=1

Vik ) and edge

set {e \ (S1 ∪ S2 ∪ . . . ∪ St) | e ∈ E with e ∩ Si 6= ∅ for i = 1, . . . , t}.

The next remark shows that this construction preserves the mengerian prop-
erty.

Remark. Observe that the constructionHS1,...,St can be achieved by first delet-
ing the vertices Vi1 \ S1 ∪ . . . ∪ Vit \ St, and then contracting S1, . . . , St. By
Theorem 79.1 in [Sch03] both operations preserve the mengerian property.

In the following, we slightly abuse notation, i.e., withHf
S respectivelyHf

S1,...,Sr−1

we will denote (HS)f respectively (HS1,...,Sr−1)f . Thereby, we restrict the ex-
pansion function f implicitly to the vertex set of HS respectively HS1,...,Sr−1 .

Now, we can prove a generalization of the defect version of Hall’s Theorem
for the f -matching problem in r-partite, mengerian hypergraphs.

Theorem 2.2. Let H = (V1, V2, . . . , Vr, E) be an r-partite mengerian hyper-
graph, and let f : V → Z≥0 a function. It holds that

ν(Hf ) = f(Vi)− max
S⊆Vi

(f(S)− ν(Hf
S)).

Proof. Let x : E → Z≥0 be a maximum size f -matching and S ⊆ Vi attaining
the maximum of f(S) − ν(Hf

S). As mentioned above, we restrict f and also
x to HS by setting fS : V \ Vi → Z≥0, fS(v) = f(v) for all v ∈ V \ Vi and
xS : E(HS)→ Z≥0, xS(e \ S) = x(e) for all e ∈ E with e ∩ S 6= ∅. Then, xS is
an fS-matching of HS , thus ν(Hf

S) ≥
∑
e∈E:e∩S 6=∅ xS(e\S) =

∑
e∈E:e∩S 6=∅ x(e).
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We get

f(S)− ν(Hf
S) ≤ f(S)−

∑
e∈E:e∩S 6=∅

x(e)

=
∑
v∈S

(f(v)−
∑

e∈E:v∈e
x(e))

≤
∑
v∈Vi

(f(v)−
∑

e∈E:v∈e
x(e))

= f(Vi)−
∑
e∈E

x(e) = f(Vi)− ν(Hf ).

In particular, ν(Hf ) ≤ f(Vi)−maxS⊆Vi
(f(S)− ν(Hf

S)).
For the other direction, let C be a minimum f -size vertex cover of H. Then

f(C) = τ(Hf ) = ν(Hf ) holds because H is mengerian. We claim that C \ Vi
is a vertex cover of HVi\C . All hyperedges of HVi\C are of the form e \ {v} for
e ∈ E(H) and some v ∈ Vi \ C with v ∈ e. This implies that ∅ 6= e ∩ C =
(e \ {v}) ∩ C = (e \ {v}) ∩ (C \ Vi), thus C \ Vi is a vertex cover of HVi\C . It
follows that

f(Vi)− max
S⊆Vi

(f(S)− ν(Hf
S)) ≤ f(Vi)− f(Vi \ C) + ν(Hf

Vi\C)

= f(Vi ∩ C) + τ(Hf
Vi\C)

≤ f(Vi ∩ C) + f(C \ Vi)
= f(C) = ν(Hf ).

In the case of bipartite graphs and f ≡ 1, Theorem 2.2 boils down to Ore’s
deficient variant of Hall’s Theorem.

Corollary 2.3. Let H = (V1, V2, . . . , Vr, E) be an r-partite mengerian hy-
pergraph, with a given function f : V → Z≥0 such that f(Vi) = f∗ for all
i = 1, . . . , r. H has no perfect f -matching if and only if there exist Si ⊆ Vi for
i = 1, . . . , r − 1 such that

ν(Hf
S1,...,Sr−1

) < f(S1) + . . .+ f(Sr−1)− (r − 2)f∗.

Proof. By Theorem 2.2 and the fact that Hf
S1,...,Sk,Sk+1

= ((HS1,...,Sk
)Sk+1)f

there exists Sk+1 ⊆ Vk+1 such that

ν(Hf
S1,...,Sk

) = f(Vk+1)− f(Sk+1) + ν(Hf
S1,...,Sk,Sk+1

)

for every 1 ≤ k ≤ r − 1. Applied iteratively, we get

ν(Hf
S1

) = f(V2)− f(S2) + ν(Hf
S1,S2

)

= . . . =
r−1∑
i=2

(f(Vi)− f(Si)) + ν(Hf
S1,...,Sr−1

).
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Figure 1: An example of a hypergraph H = (V,E), a set S ⊆ V (yellow), and
the three sets in N (S) (black).

Furthermore, H has no perfect f -matching if and only if ν(Hf ) < f∗. This
implies, that there exists S1 ⊆ V1 with ν(Hf

S1
) < f(S1). As a result the desired

inequality

ν(Hf
S1,...Sr−1

) = ν(Hf
S1

) + f(S2) + . . .+ f(Sr−1)− (r − 2)f∗

< f(S1) + . . .+ f(Sr−1)− (r − 2)f∗

follows.

In order to generalize the results of the existence of f -matchings in bipartite
graphs to r-uniform mengerian hypergraphs we introduce a new concept for the
neighborhood in hypergraphs. Compared to the graph case it will be defined
slightly different, i.e., the neighborhood in a hypergraph will be a set of subsets
of V and not just one subset of V .

Definition 2.5. Let H = (V,E) be a hypergraph. The neighborhood N (A) of
A ⊆ V is defined by

N (A) := {B ⊆ V \A |B is (inclusionwise-)minimal such that
if e ∩A 6= ∅, then e ∩B 6= ∅ ∀e ∈ E}.

If G = (V,E) is a graph and S ⊆ V a stable set then N (S) contains only the
neighborhood Γ(S) of S. In general hypergraphs the neighborhood can contain
more than one minimal set (compare Figure 1), and it can be empty.

Now, we prove a characterization for the existence of perfect f -matchings in
uniform mengerian hypergraphs as an application of Corollary 2.3. It is a direct
generalization of characterization (2) stated in Section 1.

Theorem 2.4. Let H = (V1, . . . , Vr, E) be an r-uniform, mengerian hypergraph,
and let f : V → Z≥0 be a function. H has a perfect f -matching if and only if

(a) f(V1) = f(V2) = . . . = f(Vr) and

(b) f(X) ≤ f(Y ) for all X ⊆ V1, Y ⊆ V \ V1, Y ∈ N (X).

Proof. Suppose H has a perfect f -matching x : E → Z≥0. Then (a) holds
because for every i = 1, . . . , r we have

f(Vi) =
∑
v∈Vi

f(v) =
∑
v∈Vi

∑
e∈E:v∈e

x(e) =
∑
e∈E
|e ∩ Vi|x(e) =

∑
e∈E

x(e).
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For (b), let X ⊆ V1, Y ⊆ V \ V1, Y ∈ N (X). As Y is in the neighborhood of X
we have e∩Y 6= ∅ for all e ∈ E with e∩X 6= ∅. It follows that |e∩Y | ≥ |e∩X|
for all e ∈ E because |e ∩ X| ≤ 1, and if |e ∩ X| = 1, then |e ∩ Y | ≥ 1 as
Y ∈ N (X). This yields

f(X) =
∑
v∈X

∑
e∈E:v∈e

x(e) =
∑
e∈E
|e ∩X|x(e) ≤

∑
e∈E
|e ∩ Y |x(e) = f(Y ).

For the other direction, supposeH has no perfect f -matching and f(Vi) = f∗

for i = 1, . . . , r. By Corollary 2.3 there exist sets Si ⊆ Vi for i = 1, . . . , r − 1
with ν(Hf

S1,...,Sr−1
) < f(S1) + . . .+ f(Sr−1)− (r − 2)f∗.

The hypergraph HS1,...,Sr−1 is 1-uniform and consists of all singleton hy-
peredges {v} such that there exist vertices si ∈ Si, i = 1, . . . , r − 1 with
{s1, . . . , sr−1, v} ∈ E. Let Sr := {v ∈ Sr | {v} ∈ E(HS1,...,Sr−1)} be the
set of these vertices. A maximum size f -matching in HS1,...,Sr−1 consists just of
f(v) copies of {v} for each v ∈ Sr, thus ν(Hf

S1,...,Sr−1
) = f(Sr).

Now, we define the sets X ⊆ V1 and Ỹ ⊆ V \ V1 as X := S1 and Ỹ :=
(V2 \ S2) ∪ (V3 \ S3) ∪ . . . ∪ (Vr−1 \ Sr−1) ∪ Sr. With this definition we have

f(Ỹ ) = f(Sr) +
r−1∑
i=2

(f(Vi)− f(Si))

= ν(Hf
S1,...,Sr−1

)−
r−1∑
i=2

f(Si) + (r − 2)f∗ < f(S1) = f(X).

Let e be a hyperedge with e ∩X 6= ∅. If e ∩ Si = ∅ for some i = 2, . . . , r − 1,
then e ∩ Ỹ ⊇ e ∩ (Vi \ Si) 6= ∅. Otherwise, e ∩ Si 6= ∅ for i = 1, 2, . . . , r − 1, and
thus e ∩ Ỹ = e ∩ Sr 6= ∅. Therefore, Ỹ is a superset of some Y ∈ N (X) and,
since f(Ỹ ) < f(X), also f(Y ) < f(X) holds.

In the case of bipartite graphs, the condition of the foregoing theorem is
equivalent to Condition (2) stated in Section 1.

All the results stated so far hold just for uniform mengerian hypergraphs. For
non-uniform mengerian hypergraphs we can state the following two conditions.

Lemma 2.5. Let H = (V,E) be a mengerian hypergraph with s := min{|e| |
e ∈ E}, r := max{|e| | e ∈ E}, and f : V → Z≥0 a function on the vertices of
H.

(a) If H has a perfect f -matching then f(A) ≤ (r− 1)f(B) for all A ⊆ V and
B ∈ N (A).

(b) If f(A) ≤ (s− 1)f(B) for all A ⊆ V and B ∈ N (A) then H has a perfect
f -matching.

Proof. (a) Can be shown by a straightforward calculation.

(b) Suppose H has no perfect f -matching, then, from the equation ν(Hf ) =
τ(Hf ), we obtain a vertex cover C of H such that f(C) < f(V )/s. With
A := V \C we get f(A) = f(V )−f(C) > (s−1)f(C). Because of e∩C 6= ∅
for all e ∈ E we can choose a minimal set B ⊆ C with B ∈ N (A). Clearly,
also the inequality f(A) > (s− 1)f(B) holds.
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s − 1

1 1 1 1

1 1 1 1

1 1 1 1

. . .

. . .

. . .

...
...

...
...

s − 1

1 1 1 1

1 1 1 1

1 1 1 1

s−1 vertices
for each (red) edge

s
edges

Figure 2: Sharpness Example for Lemma 2.5 b).

Remark. For non-uniform hypergraphs the conditions in Lemma 2.5 are only
sufficient or necessary but in general not both. Moreover, the constants r − 1,
s− 1 in (a) and (b) are best possible as the following examples show:

(a) Let H = (V1, V2, . . . , Vr, E) be the complete r-partite hypergraph with
|V1| = |V2| = . . . = |Vr| = r, i.e., E consists of all rr hyperedges
{v1, v2, . . . , vr} with v1 ∈ V1, v2 ∈ V2, . . . , vr ∈ Vr. It is easy to show
that H is mengerian and has a perfect matching. With f ≡ 1 and choos-
ing A := V \V1 and B := V1 ∈ N (A) we obtain f(A) = |A| = (r−1)|B| =
(r − 1)f(B). Thus (r − 1) cannot be replaced by some smaller natural
number.

(b) For every s ≥ 3 we construct a hypergraph on

Vs := {v∗} ∪ {vij | 1 ≤ i ≤ s, 1 ≤ j ≤ s− 1}

with hyperedge set

Es := {Vs} ∪ {{v∗, vi1, vi2, . . . , vis−1} | 1 ≤ i ≤ s},

and let f : Vs → Z≥0 be defined by f(v∗) := s − 1 and f(v) := 1 for all
v ∈ Vs \{v∗} (compare Figure 2). With these definitions Hs is mengerian,
the minimum size of a hyperedge in Es is exactly s, and Hs := (Vs, Es)
has no perfect f -matching. However, we claim that f(A) ≤ sf(B) for all
A ⊆ Vs, B ∈ N (A). We distinguish whether v∗ ∈ A or v∗ /∈ A. In the first
case, B ∈ N (A) has to contain at least one vertex vij for every i = 1, . . . , s,
and by minimality it contains exactly one, e.g. B := {vs−1

1 , . . . , vs−1
s }.

Then f(A) is maximum if A := {v∗} ∪ {vij | 1 ≤ i ≤ s, 1 ≤ j ≤ s− 2}. For
that choice of A ⊆ Vs and B ∈ N (A) we have

f(A) = s− 1 + s(s− 2) = s(s− 1)− 1 < s(s− 1) = sf(B).

If v∗ /∈ A, then f(A) is maximum and f(B) minimum for A := Vs \ {v∗}
and B := {v∗}. In this case, we still have f(A) = s(s − 1) = sf(B).
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Altogether, this example shows that (s − 1) in Lemma 2.5 (b) cannot be
replaced by a larger natural number.

2.2 Perfect f-Matchings in Perfect Hypergraphs
In this subsection we look at the perfect f -matching problem in another class
of hypergraphs generalizing bipartite graphs, namely so-called perfect hyper-
graphs. By a result of Lovász in [Lov72] a perfect hypergraph can be defined in
the following way (compare Chapter 82 in [Sch03]).
Definition 2.6. A hypergraph H = (V,E) is called perfect if a perfect graph G
on V exists such that the maximal hyperedges of H correspond to the maximal
cliques of G.

This graph theoretical characterization allows us to show that Hall’s condi-
tion for balanced hypergraph of [CCKV96] also holds for uniform perfect hy-
pergraphs. We can even show that it gives rise to a characterization for the
existence of perfect f -matchings.
Theorem 2.6. Let H = (V,E) be a perfect r-uniform hypergraph, f : V → Z≥0
be a given function. H has no perfect f -matching if and only if there exists a
pair R,B ⊆ V of disjoint node sets such that |e∩R| ≥ |e∩B| for all hyperedges
e ∈ E but f(R) < f(B).
Proof. By an easy counting argument, H cannot have a perfect f -matching if
such a pair R,B exists.

Now, suppose H has no perfect f -matching. Let G be a perfect graph on V
such that the hyperedges of H correspond to the maximal cliques of G. On the
one hand, as G is perfect, there exists an r-coloring of the vertices V . Let S be
the color class of this coloring with the smallest f -value. Then, S is a stable
set with f(S) ≤ f(V )/r. On the other hand, G has a stable set S̃ of f -value
greater than f(V )/r. This follows from the fact that every minimum size set of
cliques covering each vertex v at least f(v)-times must have size greater than
f(V )/r, otherwise it would correspond to a perfect f -matching of H.

Now, we set R := S \ S̃, B := S̃ \ S. It follows that

f(R) = f(S)− f(S ∩ S̃) < f(S̃)− f(S ∩ S̃) = f(B).

Furthermore, |e ∩B| ≤ 1 holds for all e ∈ E as S̃ is a stable set of G and every
hyperedge e ∈ E corresponds to a maximal clique in G. If |e ∩ B| = 1, then
1 = |e ∩ S̃| − |e ∩ (S̃ ∩ S)|, in particular it follows that |e ∩ (S̃ ∩ S)| = 0. This
and the fact that S intersects every maximal clique of G, and thus every e ∈ E,
exactly once implies |e∩R| = |e∩ S| = 1. Altogether, we have |e∩R| ≥ |e∩B|
for all e ∈ E.

The theorem above implies that every uniform perfect hypergraph satisfies
Hall’s condition. This is not true for non-uniform perfect hypergraphs, as the
following example shows:
Example. Consider the hypergraph H on the vertex set {1, 2, 3, 4} with hy-
peredges {1, 2, 4}, {2, 3, 4} of size three, and edges {2, 3}, {3, 4}, {2, 4} de-
picted in Figure 3. This hypergraph is perfect because the maximal hyperedges
{1, 2, 4}, {2, 3, 4} correspond to the maximal cliques in the perfect graph

G = ({1, 2, 3, 4}, {{1, 2}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}).
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3

2 4

1

3

2 4

1

Figure 3: Example showing that Theorem 2.6 does not hold for non-uniform
perfect hypergraphs.

H has no perfect matching, however, one can check that |R| ≥ |B| for all disjoint
vertex sets R,B ⊆ V with |e ∩R| ≥ |e ∩B|.

3 f-Factors in Balanced Hypergraphs
In this section we consider the f -factor problem in balanced hypergraphs which
were defined by Berge as follows:

Definition 3.1 ([Ber89]). Let H = (V,E) be a hypergraph. A cycle of length k
inH is an alternating sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 such that vk+1 = v1,
the vertices v1, v2, . . . , vk are distinct, the hyperedges e1, e2, . . . , ek are distinct,
and vi, vi+1 ∈ ei for i = 1, . . . , k.

A cycle v1, e1, v2, e2, . . . , vk, ek, vk+1 is called strong if ei ∩ {v1, . . . , vk} =
{vi, vi+1} for all i = 1, . . . , k. H is balanced if H does not contain any strong
cycle of odd length.

Balanced hypergraphs form a subclass of mengerian hypergraphs. This was
shown by Fulkerson, Hoffman, and Oppenheim using linear programming argu-
ments ([FHO74]).

Remark. [BSS16] With combinatorial methods this result can be proven using
a similar idea as in [ST15]. Instead of considering a relaxation of matchings use
relaxed vertex covers. Therefore, introduce penalty costs for edges which are
not covered and proceed along the lines of the proof of Theorem 1 in [ST15].

Now, we define formally what an f -factor in a hypergraph is.

Definition 3.2. Let H = (V,E) and f : V → Z≥0 be given. An f -factor of H
is a subset F ⊆ E such that |{e ∈ F | v ∈ e}| = f(v) for all v ∈ V .

Our next theorem is a characterization of the existence of f -factors in uni-
form balanced hypergraphs.

Theorem 3.1. Let H = (V,E) be a balanced, r-uniform hypergraph with vertex
partition V = V1 ∪ V2 ∪ . . . ∪ Vr. H has an f -factor if and only if

(a) f(V1) = f(V2) = . . . = f(Vr) and
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(b) f(S)− f(V1) ≤
∑
e∈E:|e∩S|≥1 (|e ∩ S| − 1) for all S ⊆ V .

Proof. First, suppose H has an f -factor F ⊆ E, then for every S ⊆ V the
following holds:

f(S)− f(V1) =
∑
v∈S

degF (v)−
∑
v∈V1

degF (v) =
∑
e∈F
|e ∩ S| −

∑
e∈F
|e ∩ V1|

≤
∑

e∈F :|e∩S|≥|e∩V1|

(|e ∩ S| − |e ∩ V1|)

≤
∑

e∈E:|e∩S|≥1

(|e ∩ S| − 1).

Choosing S = Vi yields f(Vi) − f(V1) ≤ 0 and by the same argument f(V1) −
f(Vi) ≤ 0.

For the other direction, suppose H has no f -factor and (a) holds. Then the
optimal value of

min
∑
e∈E

x(e)∑
e3v

x(e) ≥ f(v) for all v ∈ V

0 ≤x(e) ≤ 1 for all e ∈ E

is larger than f(V )/r as H is r-uniform and balanced. Now, we use Theorem
1 of [ST15] but apply it to the dual hypergraph H∗ with d = f and penalty
costs b(e) = 1 for all e ∈ E. This shows that there exists S ⊆ V with f(S) −∑
e:|e∩S|≥1(|e ∩ S| − 1) > f(V )/r. Rearranging this inequality and using (a)

yields the desired contradiction to (b).

Observe that the foregoing theorem gives a one-set condition. For bipartite
graphs it is equivalent to a known condition by Heinrich et al. [HHKL90].

The next theorem establishes an alternative characterization which gener-
alizes Condition (3) mentioned in Section 1 for f -factors in bipartite graphs
to uniform, balanced hypergraphs. We just state the idea of a combinatorial
proof and omit details. Note, that it can also be proven by linear programming
arguments.

Theorem 3.2. Let H = (V,E) be a balanced r-uniform hypergraph with vertex
partition V = V1 ∪ V2 ∪ . . . ∪ Vr. H has an f -factor if and only if

(a) f(V1) = f(V2) = . . . = f(Vr) and

(b) f(X) − f(Y ) ≤ |{e ∈ E | e ∩ X 6= ∅, e ∩ Y = ∅}| for all X ⊆ V1 and
Y ⊆ V \ V1.

In order to give a chain of combinatorial arguments we reduce Theorem 3.2
to Theorem 2.4 using the following new construction that generalizes the one
described by Lovász and Plummer in Chapter 10 of [LP86] for graphs.

Let H = (V1, V2, . . . , Vr, E) be an r-partite hypergraph. We will define an
auxiliary hypergraph H̃ = (Ṽ , Ẽ). In H̃ each hyperedge e of H is replaced

11



v1 (v2, 1, e) (v1, 3, e)

(v4, 3, e)

(v3, 2, e) (v4, 2, e)

(v3, 1, e)

v2

(v1, 1, e)

(v2, 2, e) (v1, 2, e)

(v2, 3, e)

v3v4 (v3, 3, e) (v4, 1, e)

Figure 4: Construction of H̃.

by 2r − 1 new hyperedges in such a way that the balancedness is preserved.
Formally, the construction of H̃ works as follows:

For every hyperedge e = {v1, v2, . . . , vr} of the original hypergraph H we
introduce r(r − 1) new vertices (vi, j, e) where 1 ≤ i ≤ r, 1 ≤ j ≤ r − 1, and for
every e we define 2r − 1 new hyperedges by

e1 := {v1, (v2, 1, e), (v3, 2, e), . . . , (vr, r − 1, e)},
e2 := {(v1, 1, e), (v2, 2, e), . . . , (vr−1, r − 1, e), vr},

...
ei := {(v1, i− 1, e), (v2, i, e), . . . , (vr−i+1, r − 1, e), vr−i+2,

(vr−i+3, 1, e), (vr−i+4, 2, e), . . . , (vr, i− 2, e)},
...

er := {(v1, r − 1, e), v2, (v3, 1, e), (v4, 2, e), . . . , (vr, r − 2, e)},
er+j := {(v1, j, e), (v2, j, e), . . . , (vr, j, e)} for all 1 ≤ j ≤ r − 1.

We set Ṽ := V (H) ∪ {(vi, j, e) | ∀e ∈ E, vi ∈ e, 1 ≤ j ≤ r − 1} and
Ẽ := {e1, . . . , e2r−1 | e ∈ E}. An example of this construction for r = 4
and an edge e = {v1, v2, v3, v4} is depicted in Figure 4. One can prove that
the resulting hypergraph H̃ has a perfect f -matching if and only if H has an
f -factor. Moreover, the construction preserves balancedness. Thus, H̃ is men-
gerian. Translating the condition of Theorem 2.4 for H̃ to H yields Theorem
3.2.
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4 Complexity Results
In the foregoing sections we dealt mainly with uniform hypergraphs which is
justified by the fact that most non-uniform existence questions turn out to be
hard. Indeed, the f -factor problem is NP-complete for non-uniform balanced
hypergraphs.

Theorem 4.1. Let H = (V,E) be a balanced hypergraph and f : V → Z≥0 be a
function on the vertices of H. Deciding whether H has an f -factor, respectively,
a perfect f -matching is NP-complete.

Proof. The two problems are clearly in NP. In the following, we show that
3-dimensional matching, which is one of Karp’s 21 NP-complete problems
[Kar72], is reducible to the f -factor problem in balanced hypergraphs. The
same reduction works for the perfect f -matching problem as well.

An instance of the 3-dimensional matching problem consists of an arbitrary
three-partite hypergraph H = (V,E) with vertex set V = V1 ∪ V2 ∪ V3 and
|V1| = |V2| = |V3|. One has to decide whether H has a perfect matching. Given
such an instance, we define an auxiliary balanced hypergraph H̃ := (Ṽ , Ẽ) as
follows (compare Figure 5).

• The vertex set Ṽ is the union of V1, V2, V3, E and four new elements he,1,
he,2, he,3, he,4 for every e ∈ E.

• The hyperedge set Ẽ consists of all edges {v, e} for all e ∈ E and v ∈ e,
together with all edges of the form {he,i, e} for e ∈ E, i = 1, 2, 3, 4, and
all hyperedges {he,1, he,2, he,3, he,4, e} for e ∈ E.

We define a function f : Ṽ → Z≥0 by f(v) = 1 = f(he,i) for all v ∈ V , e ∈ E,
i = 1, 2, 3, 4, and f(e) := 4 for all e ∈ E.

The hypergraph H̃ defined in this way is balanced because a strong odd
cycle cannot contain any hyperedge of size 5, and the remaining edges form a
bipartite graph. It remains to show that H has an f -factor if and only if the
3-dimensional matching instance is a ‘Yes‘ instance.

Suppose there exists a perfect matchingM ⊆ E of H. We define an f -factor
F ⊆ Ẽ of H̃ by

F :={{v, e} | e ∈M,v ∈ e} ∪ {{he,1, he,2, he,3, he,4, e} | e ∈M}
∪{{he,i, e} | e /∈M, i = 1, 2, 3, 4}.

I.e., for e ∈ M take the blue hyperedges and for e /∈ M the red ones in Figure
5. Then the degree of every vertex e ∈ E in (Ṽ , F ) is four and the degree of the
other vertices is one, therefore F is an f -factor of H̃.

On the other hand, let F ⊆ Ẽ be an f -factor of H̃. By the construction of H̃
and f , for every e ∈ E we have either {he,1, he,2, he,3, he,4, e} ∈ F or {he,1, e},
{he,2, e}, {he,3, e}, {he,4, e} ∈ F but not both. We define a perfect matching
M ⊆ E of H by

M := {e ∈ E | {he,1, he,2, he,3, he,4, e} ∈ F}.

For every v ∈ V there exists e ∈ E such that {v, e} ∈ F which implies that the
hyperedge {he,1, he,2, he,3, he,4, e} lies in F . In particular, every v ∈ V is covered
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Figure 5: The Gadget of the Complexity Reduction.

by some e ∈ M . Suppose there exist two distinct e, e′ ∈ M covering the same
v ∈ V . e, e′ ∈ M means {he,1, he,2, he,3, he,4, e}, {he′,1, he′,2, he′,3, he′,4, e′} ∈ F
which implies {v, e}, {v, e′} ∈ F . However, the degree of v in (Ṽ , F ) is exactly
one. Thus, M is a perfect matching of H.

Remark. The proof shows that the f -factor and the perfect f -matching prob-
lem are NP-complete for non-uniform, balanced hypergraphs of rank at least
five. A balanced hypergraph of rank at most three has a totally unimodular
incidence matrix, and therefore the f -factor and the perfect f -matching prob-
lem can be solved in polynomial time by linear programming. So the only open
case is rank four. As there is a balanced hypergraph of rank four such that the
system Ax = f, x ≥ 0 has a fractional but no integral solution, it is likely that
both problems remain NP-complete for non-uniform, balanced hypergraphs of
rank four.

The perfect f -matching problem can be solved in polynomial time in uniform
mengerian hypergraphs because an r-uniform mengerian hypergraph has a per-
fect matching if and only if ν(Hf ) = f(V )/r. In this case a perfect matching
can be calculated by solving a linear program. In the non-uniform case even the
perfect matching problem (f ≡ 1) is NP-hard.

Corollary 4.2. Deciding whether a mengerian hypergraph has a perfect match-
ing is NP-complete.

Proof. Let H = (V,E) be a balanced hypergraph, and f : V → Z≥0 a func-
tion. H has a perfect f -matching if and only if Hf has a perfect matching.
Furthermore, Hf is mengerian because for every function g : V (Hf ) → Z≥0 it
holds that (Hf )g = Hh where h : V → Z≥0 with h(v) =

∑
i=1,...,f(v) g(vi) for

all v ∈ V . Thus, ν((Hf )g) = τ((Hf )g) for all g : V (Hf ) → Z≥0. Of course,
the number of vertices and hyperedges of Hf depend on the values of f but in
the reduction of the 3-dimensional matching problem to the perfect f -matching
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problem in balanced hypergraphs we had f(v) ≤ 4 for all v ∈ V . This shows,
that there is also a polynomial time reduction of the 3-dimensional matching
problem to the perfect matching problem in mengerian hypergraphs.

Conclusion
We proved several existence conditions for perfect f -matchings and f -factors in
classes of “bipartite hypergraphs” via combinatorial arguments. There are still
some classes left which generalize bipartite graphs and were not mentioned so
far, for example normal hypergraphs or arboreal hypergraphs. It turns out that
the f -matching problem is already NP-hard for uniform arboreal hypergraphs
of rank at least four (Reduce a 3-dimensional matching instance H to an f -
matching problem by putting an auxiliary vertex into all edges ofH.). Therefore,
uniform and normal hypergraphs of rank three and balanced hypergraphs of
rank four are the only interesting cases left. Additionally, further necessary
and sufficient conditions for the existence of factors and perfect f -matchings in
“bipartite hypergraphs” can be investigated.
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