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Polyhedral Results for the Edge Capacity Polytope

Stan P.M. van Hoesel!  Arie M.C.A. Kosterf ~ Robert L.M.J. van de Leensel!
Martin W.P. Savelsbergh®

Abstract

Network loading problems occur in the design of telecommunication networks, in many
different settings. The polyhedral structure of this problem is important in developing so-
lution methods for the problem. In this paper we investigate the polytope of the problem
restricted to one edge of the network (the edge capacity problem).

We describe classes of strong valid inequalities for the edge capacity polytope, and we
derive conditions under which these constraints define facets. As the edge capacity problem
is a relaxation of the network loading problem, their polytopes are intimately related. We,
therefore, also give conditions under which the inequalities of the edge capacity polytope
define facets of the network loading polytope. Furthermore, some structural properties are
derived, such as the relation of the edge capacity polytope to the knapsack polytope. We
conclude the theoretical part of this paper with some lifting theorems, where we show that
this problem is polynomially solvable for most of our classes of valid inequalities.

The derived inequalities are tested on (i) the edge capacity problem itself and (ii) a
variant of the network loading problem. The results show that the inequalities substantially
reduce the number of nodes needed in a branch-and-cut approach. Moreover, they show the
importance of the edge subproblem for solving network loading problems.

1 Introduction

The network loading problem (NLP) occurs in telecommunications problems where demand for
capacity for multiple commodities is to be realized by inserting capacity into a given network.
The capacity can be placed in different sizes, usually multiples of each other. We restrict
ourselves to a single capacity size, although many of the ideas presented in this paper can be
extended in case multiple capacity sizes are available. Along with a capacity plan a routing of
all commodities is to be determined to obtain a capacity plan that facilitates the demands of
all commodities. This problem has been studied in many variants with respect to network lay-
out, capacity usage, and routing possibilities. Routing of the demand can be done by reserving
capacity on a subnetwork that consists of a path between the endpoints of a commodity only
(non-bifurcated routing), or of a set of paths (bifurcated routing). We only consider the non-
bifurcated case which is also studied by Gavish and Altinkemer [10] and Brockmdiller et al. [7, 8].
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For the bifurcated case we refer to Magnanti et al. [16, 17]. With respect to capacity usage
one can distinguish unidirectional and bidirectional capacity usage, i.e., if an edge contains
a unit of capacity this unit can either be used in one or in both directions of the edge. In
most studies the unidirectional (or undirected) case is studied. Exceptions are Bienstock and
Giinlik [6] and Bienstock et al. [5], who study the bidirectional case. In the sequel we consider
both possibilities. Moreover, we show that the models of the corresponding NLPs have many
common aspects. With respect to network lay-out we do not specialize us. For instance, we
do not take reliability requirements into account. For the design of survivable networks with
bifurcated routing we refer to Wessily [20] and the references therein, for non-bifurcated routing
to Van de Leensel [15]. Also generalizations like network design with multicast commodities are
not considered (cf. Bienstock and Bley [4]). However, this paper considers the relaxation of NLP
to a single edge of the network, the so-called edge capacity problem (ECP). We are specifically
interested in the polyhedral structure of the polytope of ECP as it is an important substructure
of all network loading models.

The edge capacity polytope with a single capacity type can be viewed as a 0—1 knapsack problem
with a single integer variable representing the capacity of the knapsack. The closely related knap-
sack problem with a single continuous capacity variable is studied by Marchand and Wolsey [18].
They employ valid inequalities of the standard 0-1 knapsack problem (see Balas [1], Hammer
et al. [13], Wolsey [21]) to obtain valid inequalities for the extended model by projection and
lifting. The edge capacity polytope itself has also been studied by Brockmiiller et al. [7, 8], who
derive valid and facet defining inequalities for the edge capacity polytope. Magnanti et al. [16]
study the version of the polytope in which the binary variables are relaxed to real variables and
derive a complete description of the corresponding polytope.

In this paper we derive various new results for the edge capacity polytope. In Section 2 we discuss
four non-bifurcated network loading problems and formulate the associated edge capacity models
corresponding to individual capacity constraints. Although valid inequalities for individual
constraint models obviously yield valid inequalities for the overall model, in Section 3 we derive a
much stronger result, which implies that facet defining inequalities for the edge capacity polytope
(often) correspond to facet defining inequalities for the network loading problem. In Section 4
we derive some basic results on facet defining inequalities for the edge capacity polytope, which
facilitate the subsequent analysis. Section 5 introduces lower convex envelope inequalities as a
general framework for valid inequalities for the edge capacity polytope. Given the interpretation
of the edge capacity polytope as a knapsack polytope with variable capacity, Section 6 shows how
any valid inequality for related knapsack polytopes can be transformed into a valid inequality for
the edge capacity polytope by integer lifting. Integer lifting is usually a complicated process, but
in Section 6 we show that for cover inequalities, this lifting process can be done efficiently. Both
the class of lower convex envelope inequalities and the class of lifted knapsack covers include
the so-called c-strong inequalities developed by Brockmiiller et al. [7]. Some new properties that
indicate the importance of c-strong inequalities in the description of the edge capacity polytope
are mentioned in Section 7. In Section 8 we discuss the directed edge capacity polytope, that is
the edge capacity polytope with a capacity constraint for both directions. New valid inequalities
and lifting results are obtained. Finally, the computational importance of the developed theory
is the subject of Section 9.



2 Models for Network Loading Problems

Let G = (V, E) be an undirected connected graph with node set V' and edge set E. Given the
graph G we define the arc set A, which contains two directed arcs (i,7) and (4,4) for all edges
e = {i,j7} € E. Let Q be a set of demands (commodities). Each element g € @ is a triple
(s9,t9,d7), with s9,t7 € V, s9 # t9, representing a commodity with demand size d? € ZJ that
must be routed from source node s? to sink node t? on a single path through the network. To
route a set of commodities on an arc, sufficient capacity must be available on the corresponding
edge. The capacity on an edge is determined by the number of capacity units installed on the
edge, where each unit has a base capacity A\ € Z(T . The goal is to minimize the costs of the
installed capacity in the network while ensuring that all commodities can be routed from source
to sink simultaneously.

We assume that for each commodity g € ) there exist at least two node-disjoint paths from
source node to sink node (node-disjoint, except for the nodes s? and ¢%). If this assumption is
not satisfied, the graph G contains a separating vertex, hence the problem can be decomposed
into smaller problems that do satisfy the assumption.

To formulate this problem as an integer program, let z;; € Zg’ be the number of capacity units
installed on edge {i, 7}, and let fz%‘ be a binary variable indicating whether the commodity ¢ € @
is routed via arc (i,j) € A or not. If ¢;; represents the costs per base capacity unit on edge
{i,j} € E, then the model reads:

min Z CijTij (1)

{i,j}eE
1 ifq=49
st Y fE->"fE={ -1 ifi=t1  VYgeQ,VieV (2)
J J 0 otherwise
Az > > dU(fE+ 1) V{i.jt € E 3)
€Q
iqj’ ]ql € {Oa 1}a Tij € Zo+ Vq € Q’ V{Z’J} €E (4)

This model is called the undirected non-bifurcated flow model, and the corresponding set of
feasible solutions is denoted UNF M. The capacity on an edge is undirected because installed
capacity can be used by traffic in both directions, i.e. the required capacity on an edge is
determined by the sum of forward and backward flow on the edge. It is called non-bifurcated
since the demand of a commodity has to be routed on a single path (i.e. the demand cannot
be bifurcated). Finally, flow variables on individual arcs are used to model the routing of a
commodity from source node to sink node.

Instead of using flow variables on individual edges to model routing restrictions, one can also
use binary variables z] representing whether a certain path p € P? (the set of all possible paths
for the commodity g) is used to route the commodity ¢ from source node s? to sink node t?. We
assume that P? only contains simple paths, that is paths that visit each node at most once. If
PZ%- C P17 denotes the set of paths for commodity ¢ that contain arc (7, 7), then this leads to the



following undirected non-bifurcated path model UN PMwith feasible solution set:

min Z CijTij (5)

{ij}eE
s.t. Z zl=1 Vg e Q (6)
peP4
Mg > Y diZ V{i,j} € E (7)
4€Q pe P UPY,
28 €{0,1}, zy5 € Z§ Vge Q, Vpe PI, V{i,j} € E (8)

Depending on the exact application and level of aggregation, capacity that is installed on edges
in the network can also be directed, i.e. each unit of capacity installed on an edge {i,j} gives a
capacity of A on both corresponding arcs (7, j) and (4,4), and capacity consumption is directed
as well. This leads to the following directed non-bifurcated flow model DN F M, with feasible
solution set:

min Z CijTij (9)

{i.j}eE
1 ifg =44
s.t. S-S "fh=q -1 ifi=1 VgeQ,VieV (10)
J J 0 otherwise
Azig > Y dUff V{i,j} € E (11)
q€Q
Azig > Y dUff, V{i,j} € E (12)
q€Q
Z'qja ]qi € {07 1}7 Tij € ZE)'— Vq € Q’ V{Zaj} €EE (13)

Similar to the undirected case, one can model the directed case using path variables. This
directed non-bifurcated path model DN PM, with feasible solution set reads:

min Z CijTij (14)

{i.j}eE
5.t. do=1 Vg€ Q (15)

pEPY

Az > Y dizd v{i,j} € E (16)
9€Q pe Py,

Az >y Y did V{i,j} € E (17)
9€Q pe Py

20 €{0,1}, =y € Z§ VgeQ, Vpe PI, V{i,j} € E (18)

Both the directed and the undirected version of the problem are N'P-hard. Here we will only
prove our claim for the directed case, but from the proof it immediately follows that the undi-
rected case is N'P-hard as well. We need the following problem definitions.
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MINIMUM COVER (see Garey and Johnson [9])
INSTANCE: S = {s1,9,...,5p} and a family C of subsets of S, and an integer £ < |C]|.
QUESTION: Does there exist a family C’ of C of at most £ sets such that Uycerd = S7?

DIRECTED NON-BIFURCATED NETWORK LOADING PROBLEM

INSTANCE: Graph G = (V, E), a set Q of commodities (s9,t4,d?), with d? € Z] for
each g € @), integer capacity ), cost coefficients c;; € Z(‘)" for every {i,j} € E, and a
nonnegative integer L.

QUESTION: Does there exist a feasible solution for problem DNFM with solution
value less than or equal to L7

Proposition 2.1 The DIRECTED NON-BIFURCATED NETWORK LOADING PROBLEM is strongly
NP-complete.

Proof. It is easy to see that the DIRECTED NON-BIFURCATED NETWORK LOADING PROBLEM
is in N'P. Next, given an instance of MINIMUM COVER, construct a graph G as follows. Let
V = 8UCU{sink}. Let C; be an element in C. Introduce an edge {s;,C;} if s; € C;, and an edge
{Cj, sink} for all C; € C (see Figure 1). Next define a commodity (s;, sink, 1) for each s; € S, and

1 {1,2} S ={1,2,3}
9 {2,3} sink ¢ ={{1,2},{2,3},{3}}
3 {3}

Figure 1: Transformation of an instance of MINIMUM COVER to DIRECTED NON-BIFURCATED
NETWORK LOADING PROBLEM

let A = n. The capacity costs are defined by c(,, ¢.3 = [C| + 1 for all 4 and j and c(c; sink} = 1
for all j. Finally let L = ¢+ |S|(|C| + 1). This is clearly a polynomial transformation. We
leave it to the reader to verify that a problem instance for MINIMUM COVER with affirmative
answer corresponds to an instance with affirmative answer for the DIRECTED NON-BIFURCATED
NETWORK LOADING PROBLEM, and vice versa. |

In this paper we focus on the polyhedral structure of the associated polytopes. More precisely, we
study the convex hull of sets related to individual edge capacity constraints in the formulations.
Hence, we define the following sets, which are defined by a single (denoted with X)) or double



(denoted with Y') edge capacity constraint.

XUF = {(2, 1) € Z§ x {0,139+ Amyy > D peq d(F + )}
XPT = {(w,f) € 2§ x {0,119 2 dayy > ¥ o dUfS)

YR = {(z,f) € Z§ x {0,139+ Azij > 3 o dIf, Amijg > 3 0 dUfL}

P2+ |PY
XIP = {(2,2) € 2 x {0,120 BT Agiy > 700 e paups d02,
ZpEPiquijli zp <1,Vg € Q}
P2
XPP = {(z,2) € Z§ x {0,1}=qcc P P A2y 2 Y geq Lpers 12,
ZpEPiqj Zg <l,vqe Q}
q q
Yz’?P = {(z,2) € Z(T x {0, 1}2‘1“9 PlHIFL Azij > ZqEQ Z;DEP% dizi,

Azij > quQ ZpEP]‘?i diz],

2pepsops 7 < 1}

Obviously any valid inequality for these polytopes is valid for the corresponding original problem.
In Section 3 we prove the stronger result that for the undirected models any non-trivial facet
defining inequality for these polytopes is also a facet defining inequality for the corresponding
original problem. For the directed models the same result holds for the edge models that
incorporate capacity constraints in both directions on the edge.

3 The Strength of Facets of the Edge Capacity Polytope for
Network Loading Problems

In this section we state some basic results about the dimension of polytopes related to the
problems introduced in the previous section. More importantly, we show that non-trivial facet
defining inequalities for the polytopes related to a single edge constraint are non-trivial facet
defining inequalities for the polytopes corresponding to the original problem.

3.1 Path Formulation

Proposition 3.1 The dimension of both conv(UNPM) and conv(DNPM) are equal to |E| +
2geP = 1)

Proof. The number of edge capacity variables equals |E| and the number of path variables
equals ) o |P?. Since the number of linearly independent equality constraints equals |Q)],
this leads to an upper bound on the dimension of |E| + }_ .o(|P?] — 1). Next, we state 1 +
|E|+3_4cq(|P?] —1) affinely independent feasible solutions, which proves our claim. In the first
solution each commodity g € @ is routed via an arbitrarily chosen path p € P4, and the capacity



equals the total low on an edge rounded up to the nearest multiple of A\. Given this solution we
can install an extra capacity unit on each edge, which yields another |E| affinely independent
solutions. Finally, for each commodity ¢ € @ and each path p € P?\ {p} we construct a solution
by keeping the routing of all other commodities fixed as in the first solution, but replacing path
P by path p for commodity ¢, and installing additional capacity if needed. The qEQ(\Pq| -1)
vectors that are obtained are affinely independent since each solution contains a path variable
that is not used in any other solution vector. |

The following lemma, indicates that the number of path variables in the formulation, and there-
fore the dimension of the corresponding polytope, can become exponentially large in terms of
the size of the graph.

Lemma 3.1 The number of distinct simple paths (a path without node repetition) between any
pair of nodes in a complete graph on |V| nodes equals |(|V| — 2)'e], if |V] > 3.

Proof. Let u,v € V, then there remain |V| — 2 nodes that may function as intermediate nodes
on a path from u to v. Since for a given number of k£ intermediate nodes, the number of possible
orders equals k!, the total number of paths between nodes u and v in a complete graph equals

S 2 (V)i = S A = Y (v

(Vl-2—

To analyze this sum, note that (for n = |V| — 2)

Zz Oz'_nZzO'_nZZO nzz n+11'_n'e_nzz n+1l

Moreover, since

1 _ ! ! !
MY Zniid = mrr t iy T gy o
1 1 1
< i + D)2 + it 1) + ...

ppad] (n—fl—l)i =1<1, forn>1(ie, V> 3),

it holds that

n!z?zol,: nle —n! > 2 n+1l,: [nle]

This completes the proof. |

Proposition 3.2 Let g € Q,p € PY. The trivial inequalities z} > 0 are valid and facet defining
for conv(UNPM) and conv(DNPM).

Proof. Let § € Q and p € P1. W.Lo.g. we assume that the path p for commodity § as chosen in
the first solution vector of the proof of Proposition 3.1 satisfies p # p. But then all of the vectors
but one as constructed in the proof of Proposition 3.1 satisfy zg = 0. Hence, we have identified
|E| + > eq(|P!] — 1) affinely independent vectors in the convex hull of feasible solutions that
satisfy the inequality at equality, which completes the proof. |



Theorem 3.1 Any non-trivial facet defining inequality for conv(Xg-P) is a non-trivial facet
defining inequality for conv(UNPM).

Proof. Let a;jzij > D20 e PLUPY, bizl — ¢ be a non-trivial facet defining inequality for
conv(X{”). If k denotes the dimension of conv(X[/") then k =1 + > gco(IPE] + |Pfi), since
the polytope con’u(Xg-P) is full dimensional. For each g € Q, let p? ¢ P; U Pj; be a path that
does not visit arc (7,7) nor (4,7). Now consider the polytope

T = conv({(x,z)EUNPM:zg:(],VqEQ,Vpgé(PZ%-UP;IZ-U{]?"})}).

This polytope is the convex hull of the set of solutions for the restricted network loading problem
where a commodity ¢ € @ can only be routed on path p? or on a path that visits edge {i,7}-
Using Proposition 3.1 the dimension of T thus is |E|+ )7 o (|Pi;|+|Pf]) = k+|E| - 1. First we
show that the inequality a;;zij > 30D pe PLUPY, bz} — c is also a facet defining inequality for
T by constructing k+|E|—1 affinely independent solution vectors in T' that satisfy the inequality
at equality. Note that there exist k affinely independent vectors (z,z) € X{JJ-P that satisfy the
inequality at equality. Given such a vector (Z,Z) we define a vector (%, %) € T as follows. For
all g € Q, let z} = z] for all p € PZ U P]gi, ég =1if ZpePijPfi zi =0, ég = 0 otherwise, and
zZp =0 for all p ¢ (Plg U P;IZ- U {p?}). Moreover, define Z;; = Z;; and Zy, = queQ d?], for all
{u,v} # {i,7}. Then these k vectors (Z,z) € T are also affinely independent. Moreover, for
any of these given vectors, we can install one additional unit of capacity on any of the edges
{u,v} # {i,7}, which leads to |E| — 1 additional vectors. All of these k + |E| — 1 vectors are
affinely independent and satisfy the inequality at equality, hence, the inequality is also facet
defining for the polytope 7.

Next, we prove that maximal sequential lifting applied to a variable that is fixed to zero in the
polytope T yields a lifting coefficient zero, which implies that the inequality is also facet defining
for the conv(UNPM). Thus, let § € Q and let p ¢ (P;; U P]‘-Ii U {p?}). If we apply maximal

lifting on the variable zg to obtain a valid inequality a;;jTij > D> co D pe PLUPY, bizg + bgzg -,

then the lifting coefficient bg is determined by

q _ : o q.q
by = min {aijzy quQ Epepfjuqui bpzp + c}-
(:C,Z)EUNPM:z%:l,

23=0Vq€Q Vp¢ (P} UP]U{p*,57})

Since the facet defining inequality under consideration is non-trivial, there exists a solution
(z,%) € T with ég = 1 that satisfies the inequality at equality. Now consider the solution vector
that is obtained by replacing path p by p for commodity ¢g. This yields a solution vector that is
feasible for the minimization lifting problem and has objective value zero since the coefficient of
the variable z;g is zero in the facet defining inequality. Since the lifting coefficient is nonnegative
it then follows that it must be zero. Repeating this argument for all remaining variables that
are currently fixed to zero yields the desired result. |

Theorem 3.2 Any non-trivial facet defining inequality for conv(Yéf’P ) is a non-trivial facet
defining inequality for conv(DNPM).



Proof. Similar to the proof of Theorem 3.1. |

Proposition 3.3 The following statements are equivalent :

(i). An inequality ax > bT 2z — ¢ which is a non-trivial facet defining inequality for conv(Xi?P)
is a non-trivial facet defining inequality for conv(DNPM).

(ii). ¥4 € Qji : 3Q C Qij \ {d}, X yeq b? — ¢ = amax{[d?], [qu(z dqb
(iii). Vg € Qji - 3Q C Qi \ {d}, [quQ dQ] > [d7] and Yoeqb?—c=a [quQ dﬂ

(iv). Y4 € Qji: the mazimization problem

max 0
s.t. af = quQij\{ti} blw? — ¢
02 quQi]‘\{‘j} dtwt
0 € Z§,w? € {0,1},Vq € Qi; \ {g}

has an optimal objective value 8* > |—d‘j-|.

Proof. It is fairly easy to see that (i7) = (iv) = (i%i) = (4i). Hence, we will restrict ourselves
to prove that (i) <= (i7). Suppose (ii) holds. Similar as in the proof of Theorem 3.2 we can
lift variables zg for ¢ € Qj; and p € P;-Iz-. The maximal lifting coefficient bg for such a variable
equals

by = min g_, {021 = (Cocau\10) Loers 85 - 0}

It is easy to see that vl > 0 since otherwise the starting inequality was not valid. The conditions
of (ii) now give that the minimum is indeed zero. This argument can be repeated for all variables
zg for ¢ € Qj; and p € P]'-ji. As a consequence, the inequality is facet defining for conv(YifP )-
Now, Theorem 3.2 gives the desired result.

The reversed claim is easy to see. If no subset @ C Q;; \ {} satisfies the conditions as posed
in (ii), then the lifting coefficient as determined by the minimization problem described in the

above, will not be equal to zero. Hence, the inequality can be strengthened, and does not define
a facet of conv(DNPM). [ ]

3.2 Flow Formulation

Proposition 3.4 The dimension of both conv(UNFM) and conv(DNF M) are equal to |E| +
QI(IA] = V[ +1).

Proof. The number of edge capacity variables equals |E| and the number of flow variables equals
|Q|-|A|. Furthermore, since for each commodity there are |V| flow balance constraints, of which



|V| — 1 are linearly independent, an upper bound on the dimension is given by |E| + |Q|(|4] —
|V |+ 1). To prove that this bound is tight we show that there exist no other implicit equalities
in the model. Stated differently, if

D tigren YiiTij + Xgeq 2pigyernBig i + Biiff) =6

is satisfied by each solution in UN F M, we prove that this equality is a linear combination of
the model equalities.

Let {u,v} € E, and let (z, f) € UNFM. Next, define a solution (Z, f) as f = f, Tuy = Tup + 1
and Z;; = x;; for all {i,j} # {u,v}. Because both solutions satisfy the equality, it holds that
ayy = 0, and since the edge was chosen arbitrarily it follows that a;; = 0 for all {i,j} € E.

Next we show that for all ¢ € @) and for all cycles C in the graph it holds that Z (ij)eC ﬂ”
Since any cycle in the graph can be decomposed into a collection of simple cycles (i.e. cycles
that visit each node at most once) it follows that we only have to prove this claim for simple
cycles.

Let ¢ € Q and C a simple cycle in the graph. First we consider the case that C is a 2-cycle (a cycle
of two arcs, say (u,v) and (v,u) for some u,v € V). Since there exist two node disjoint paths
from s? to t? in the graph, there exists a path from s? to ¢¢ that does not contain edge {u,v}.
Let (z, f) € UNFM be a solution that uses this specific path for the routing of commodity ¢.
Given this solution, let (Z, f) € UNFM be a solution that employs exactly the same routing
strategy for all commodities g € @, except that commodity ¢ is additionally routed on arcs (u,v)
and (v,u). Since both solutions satisfy the equality and «;; = 0 for all {4, j} € E it follows that
,B'gv + ,Bgu = 0.

Now we consider the case that C is not a 2-cycle. Let p be a simple path from s? to ¢7 in the
graph. If the number of nodes on the path p that are also on the cycle C' is less than or equal
to one, then we use similar arguments as before to show that Z(i,j)ec ﬂl‘-]j = 0. Let sohition
(z,f) € UNFM use path p for the routing of commodity §. Next, define solution (Z, f) to
be a solution that employs exactly the same routing for all commodities ¢ € @), except that

commodity § is also routed on cycle C'. Comparing the two solutions, and using the fact that
a;j =0 for all {4,75} € E, it follows that Z(i,j)ec ﬁgj =0

If the number of nodes on path p that are also on the cycle C is greater than or equal to 2, then
define v1 as the first, and v, to be the last node on the path that is also on the cycle. As a result,
path p can be decomposed into three parts p1, po, p3, where p; is a path from s? to vy, po is a
path from v; to ve, and p3 is a path from v, to t4. Similarly, the cycle C can be decomposed into
a path C1 from vq to v9 and a path Cs from vy to v1. Given these definitions, we can construct
two new paths from s to ¢4 in the graph. The first path can be represented as pi,C1,p3 and
the second path as pi, Cj,p3, where C} is the reversed path of Cy. Let (z,f) € UNFM be a
solution that uses the first path for the routing of commodity ¢. Given this solution, define a
solution (z, f) € UNF M that employs the same routing strategy for all commodities ¢ € Q\ {4},
but uses the second path for commodity ¢. Since both solutions satisfy the equality it follows
that Z (i,J)€C1 ﬂq Z( J)eCs ,8 = 0. Exploiting the fact that 7. for all ¢ € Q and for

all {i,5} € E, it follows that Z(i,j)ec ﬁi] 2 oG,)eC ﬁzy + 2 (i), B i, = 0, which proves our
intermediate claim.

10



Next, for all ¢ € Q, for all 1 € V and a path p from s? to 7 in the graph, let H;'I = E(i,j)ez; ﬁiqj. We
claim that the value of u! is independent of the selected path p. To verify this claim, let p1, p2
be two paths from s? to i in the graph, and let pl, p2 be the reversed paths. Then p1 Uph forms a
cycle, hence, Z(” )ep1Up} [3 = 0. Using = — ]Z it then follows that qum = Zqu ij’
thus indeed, the value of p is 1ndependent of the selected path from s? to .

If we multiply the flow conservation equalities of the model UNF M by these multipliers and
add them all up, we obtain the following expression:

quQ Zzevﬂz (Z Z ) = quQ Z{i,j}eE{(ug - q') ]‘-2+(u§—u§) iqj}
= ZqEQZ{z,g}EE( i q+ )

This implies that the equality is indeed a linear combination of the model equalities. |

Proposition 3.5 Let ¢ € Q and (i,j) € A. The trivial inequalities f; > 0 are valid and facet
defining for conv(UNFM) and conv(DNFM).

Proof. Analogous to the proof of Proposition 3.2. [ |

Theorem 3.3 Any non-trivial facet defining inequality for conv(Xg-F) is a non-trivial facet
defining inequality for conv(UNFM).

Proof. Analogous to the proof of Theorem 3.1. |

Theorem 3.4 Any non-trivial facet defining inequality for conv(YDF) is a non-trivial facet
defining inequality for conv(DNFM).

Proof. Analogous to the proof of Theorem 3.2. |

Proposition 3.6 The following statements are equivalent :

(i). An inequality ax > b’ f — ¢ which is a non-trivial facet defining inequality for conU(Xi?F)
is a non-trivial facet defining inequality for conv(DNFM).

(ii). V3 € Qji:3Q C Qi \ {d}, X geq b — ¢ = amax{[dl] , [Z,cqd?|}
(iii). ¥4 € Qji - 3Q C Qi \ {d} [quQ ] > [di] and Y,eob —c=a [qua dq]

(iv). V4 € Qji: the mazimization problem

max 0
s.t. af = ZqEQij\{é} blw? — ¢
02> ZqEQij\{@} dtwt
0 € Z§,w? € {0,1},Vq € Qi; \ {g}

has an optimal objective value 0% > [d‘j].

Proof. Analogous to the proof of Proposition 3.3. |

11



4 Characteristics of the Edge Capacity Polytope

In Section 2 we introduced six different polytopes restricted to a single edge of the original
model. The edge models Xi[j]-F , Xier_P , Xi?F , Xi?P are similar. They describe a knapsack with
variable integer capacity. Since the associated polyhedra are the same, in this and the following
sections we use easier notation and a redefinition of the edge capacity model that captures all of
the aforementioned edge models. We show that optimizing a linear function over the polytope
is an N'P-hard problem in general. Next, we state the dimension of the polytope, discuss its
trivial facets and derive a general form of a facet defining inequality. The main result in this
section is a shifting theorem, which indicates that the complete set of facet defining inequalities
for the edge capacity polytope can be obtained from a related edge capacity polytope in which
the demands satisfy d? € (0, 1] for all ¢ € Q). Moreover, we provide bounds on the coefficients in
a facet defining inequality, and derive necessary and sufficient conditions under which the model
inequality yields the complete description of the edge capacity polytope.

Consider a set @ of items (commodities) and let d? € Q" represent the size (demand) for an
item ¢ € Q (normalized to the base capacity A). Let the integer variable z denote the number
of capacity units selected and let the binary variables f? indicate whether or not an individual
item g is selected. The edge capacity set is then defined as

X ={(@,f) € 7§ x {0,119 s 2 > 3, g drf1} (19)

Given an arbitrary objective function (§,7) € Z x Z/9!, the problem of minimizing the objective
over the set X is N'P-hard in general. To formalize this statement, we define the following
decision problems.

EDGE CAPACITY PROBLEM

INSTANCE: Set of items (), demand size d? € ZE')' , for all ¢ € @), objective coefficients
v4 € Z, for all q € @), objective coefficient § € Z, capacity coefficient A € Zg', and an
integer K € Z.

QUESTION: Does there exist a vector (z, f) € Zg x{0,1}/9l such that Az > > g d1f1
and 6z + > oI fI< K7

PARTITION (see Garey and Johnson [9])
INSTANGE: Set of items A, size s € Zg, for all ¢ € A, with 4 s¢ even.
QUESTION: Does there exist a subset A C A such that DT =2 geaas??

Theorem 4.1 EDGE CAPACITY PROBLEM is N P-complete.

Proof. It is easy to verify that EDGE CAPACITY PROBLEM is in NP. Next, we show that
PARTITION reduces to EDGE CAPACITY PROBLEM. Given an instance of PARTITION, define an
instance of EDGE CAPACITY PROBLEM as follows. Let @ = AU {G}, d? = s, for all ¢ € A, and
d? = 1. Next define ¥4 = —d?, for all ¢ € A, and v¢ = —2. Finally, let A\ = %quA s141,
6 = X and K = —1. This is obviously a polynomial transformation. Next it remains to show
that an instance of PARTITION yields an affirmative answer if and only if the corresponding
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instance of EDGE CAPACITY PROBLEM yields an affirmative answer. If A C A is a set of items
satisfying quA 89 = quA\A s%, then the solution (z, f) defined as z =1, f¢=1,q € AU{q},
f% = 0 otherwise, gives a vector satisfying the required conditions. Conversely, if there exists
a vector (z, f) which satisfies Az > quQ d?f? and 0x + quQ ~v9f?7 < —1, then it is easy to
see that x > 0, since z = 0 would imply that f7 = 0 for all ¢ € @), a contradiction with the
fact that dz + 7 f has negative value. Moreover, if z > 2, then éz + 77 f > 2A + 7 f >
20 = XVt = 2geast 23,487 —2=0. Hence, z = 1. Next, from éz +9Tf < -1
it follows that 47 f < —X\ — 1 which implies |y"f| > A+ 1. From Az > d’f it follows that
quQ d?f? < \. Since for each element in A it holds that d? = —~9, the only way that |y’ f|
can be greater than ) o d?f?is if f4 = 1. But then it follows that both dogea Y fI< =A+1
and dogeadlfT < A-1 which is equivalent to Dogeadlft=x-1= %quA s9. Hence, let
A={qe A: f1=1}, then A is the required subset. [ |

Let D? = [d?] be the smallest integer greater than or equal to d?, and let 7? = d?+1—D1? € (0, 1]
be the ‘fractional’ part of the demand. Similarly, for a subset S C @, let d(S) = qus dq,
D(S) = [d(S)] and r(S) = d(S) + 1 — D(S). Finally, define e° € {0,1}9 as the characteristic

vector of a set S, i.e. ef =1if 4 € S and zero otherwise.

Lemma 4.1 The dimension of conv(X) is |Q| + 1.

Proof. The vectors (z,f) = (0,0), (z,f) = (1,0) and (z, f) = (DY, el?) for all ¢ € Q yield
|Q| + 2 affinely independent vectors in X. [ |

Proposition 4.1 For all ¢ € @, the trivial inequalities f¢ > 0 and f? < 1 define facets of
conv(X).

Proof. For f7 >0, |Q| + 1 affinely independent solutions (z, f) € X are given by (0,0), (1,0)
and (D%, ¢e) for all i € @\ {g}. For f7 <1, |Q|+ 1 affinely independent solutions (z, f) € X are
given by (DY, e9), (D? 4+ 1,e?) and (D({i,q}),el"?}) for alli € Q\ {q}. [ ]

Proposition 4.2 (Brockmiller et al. [7]) Each non-trivial facet of conv(X ) can be written in
the form ax > quQ b1f1 — ¢, with a,c € Za', b? e Zg‘, for all g € Q.

Proof. A non-trivial facet defining inequality is of the form ax > quQ b?f9 — c. The fact that
¢ > 0 follows from the fact that the all zero solution (z, f) = (0,0) does not satisfy the inequality
if ¢ < 0. Next, since for any solution (z, f) € X we can increase the value of the capacity variable
to an arbitrarily large integer number without violating its feasibility, it follows that ¢ < 0 cannot
be the case. Furthermore, if a = 0 then the resulting inequality quQ bif? < cis a linear
combination of the trivial inequalities and the inequality 0 < 1. Hence, a > 0. Now suppose
there exists a ¢ € Q with b7 < 0. Since the facet defining inequality is non-trivial there exists
a solution (z, f) € X with f_q' = 1 that satisfies the inequality at equality, az = - o b7 fa—
Define the solution (Z, f) as I = Z, fq =0, f1=fiforallqe Q \ {¢'}. Then (z, f) e X
but az —~a:1: = ququfq —c=bf7 + ZqEQ\{q}bqfq —c< b fT 4+ ZqEQ\{q}b fa—

> qeqb?f? — c which is in contradiction with the validity of the inequality. Hence, 7 > 0 for
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all ¢ € Q. Finally, the fact that any non-trivial facet defining inequality has rational coefficients
(and can therefore be written with integer coefficients) follows from the fact that all extreme
points of the set are rational. |

Theorem 4.2 (Shifting Theorem,)
Let i € Q and p € Z such that d* + u > 0, and define

X(i,p) = {(m,f) € Z§ x {0,119 : 2 > (& + W) + Tpeor iy dqfq}. (20)
Then the inequality

T 2> eqblfl—c (21)

is a non-trivial facet defining inequality for conv(X) if and only if

2> (0 +p) P+ e b —c (22)
is a non-trivial facet defining inequality for conv(X (i, p)).

Proof. Note that we only need to prove that any facet defining inequality for conv(X) can be
converted as indicated to a facet defining inequality for conv(X (i, u)), since the converse then
directly follows for a suitable choice y' = —p. First, we prove validity. Let (z, f) € X (i,p),
then (z — uf’, f) € X, hence 7 — pf? > > qeqb?f? — ¢ which implies that z > (b + p) f* +
quQ\{i} b1f?—c. Next, let (z1, f1),---, (%|Q+1, fl@|+1) be |Q|+1 affinely independent solutions
of X that satisfy (21) at equality. Then (z1 + pff, f1), ..., (#g/+1 + 'uf\iQ\—l—l’ fiq+1) satisfy (22)
at equality, and they are also affinely independent. |

Theorem 4.3 Let ax > quQ bif? — ¢ be a non-trivial facet defining valid inequality for
conv(X) with a,c € Z§, and b1 € ZJ for all ¢ € Q. Then b? = ad? if d? is integer, and
b? € {a(D?—1),...,aD%} if d? is not integer, for all g € Q.

Proof. Let ¢ € Q and let (z0, fo) € X be a solution with fJ = 0 that satisfies the facet defining
inequality at equality. Moreover, let Qp = {g € Q : f§ = 1}. Then aD(Qp) = >_ 4cQ, 07 — c and
since ¢ ¢ Qo it follows from validity that aD(Qo U {q}) > (3 ,cq, b7 — ¢) + b7 = aD(Qo) + b7
This yields an upper bound on b7 since we conclude b7 < aD(Qo U {q}) — aD(Qy)-

Similarly, let (z1, f1) € X be a solution with f7 = 1 that satisfies the facet defining inequality
at equality, and define Q1 = {¢g € Q : f{ = 1}. Again, aD(Q;) = > qcq, b7 —c and since ¢ € Q1
it follows from validity that aD(Q1\ {g}) > (3_,cq, b — ¢) — b7 = aD(Q1) — b%. This implies a
lower bound on b9, namely b7 > aD(Q1) — aD(Q1 \ {3}).

If d9 is integer, then both the lower and upper bound are equal to ad? which proves the first
part of our claim. If d? is not integer, then b7 < aD(Qo U {g}) — aD(Qo) < aD? and b7 >
aD(Q1) — aD(Q1\{q}) = a(D? - 1). u

Theorem 4.4 The model inequality is the unique facet defining inequality for the polyhedron
conv(X) if and only if d? € Zg, for all g € Q.
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Proof. If d9 ¢ Z§ for some § € Q, then the fractional solution (z, f) = (d?,e{?}) is an extreme
point of the LP-relaxation that satisfies all the model inequalities. If d? € Zg' for all ¢ € @, then
by Theorem 4.3 we have that in every inequality z > ) qeq V! f? — ¢ that defines a non-trivial
facet of conv(X), b? = d? for all ¢ € Q. If ¢ > 0, then the resulting inequality is dominated by
the model inequality. Hence, the model inequality z > ) qeq @ f4 defines the only non-trivial
facet in this case. |

5 Lower Convex Envelope Inequalities

Using the results of Section 4, the analysis of the edge capacity polytope can be greatly facil-
itated. By Theorem 4.3, commodities with an integer demand can be dealt with easily given
a valid inequality on the remaining commodities. Furthermore, for the remaining commodities
one can concentrate on the fractional part of the demand of a commodity, i.e. first assume all
demands d? € (0, 1), generate facets, and use Theorem 4.2 to obtain facets for the problem with
the actual demand sizes. Stated differently, one could view the demand value as the sum of
two parts, namely the integer part D? — 1 and the ’fractional part’ ¢ € (0,1]. Likewise, the
value of a coefficient of a commodity in a facet defining inequality can be viewed as the sum of
two parts. Theorem 4.2 explains the part of the coefficient that originates from the integer part
DY —1 of a commodity’s demand. The other part of the coefficient in a facet defining inequality
which needs to be explained stems from the “fractional” part of a commodity’s demand, that is
r?. Much of the analysis in this section therefore considers demand values d? = r? € (0, 1] for
all ¢ € Q. Still, all propositions and theorems are stated such that the results are also valid for
arbitrary demand values d9.

Since the values r? are somewhat comparable in size for the different ¢ € Q (r? € (0, 1] for all g),
one could expect this second part of a commodity’s coefficient in a facet defining inequality to
be somewhat comparable in size as well. In this section we therefore introduce a class of valid
inequalities called lower convex envelope inequalities, which are based on this idea. This class
of valid inequalities is defined on a projection of the set X. We show two different types of facet
defining inequalities that may arise in the class of lower convex envelope inequalities. Moreover,
we show that lifting lower convex envelope inequalities to obtain valid inequalities for X itself
can be performed in polynomial time. We start with the definition of a projection of the edge
capacity polytope.

Definition 5.1 Let Q°, Q' C Q be disjoint subsets of Q. Then X(Q°, Q') defined by
X(Q",Q) ={(z,f)eX:f1=0vYqeQ’ f1=1VqeQ"}

is the projection of X on the space with f4 =0 for all ¢ € Q° and f9 =1 for all g € Q".

This projected edge set can be seen as a set of vectors in (|Q| + 1)-dimensional space. Instead

of representing the set X (Q% Q') in (|Q| + 1)-dimensional space, one can also plot all vectors

in X(Q° Q') in two-dimensional space, as in the example Figure 2. Let S = Q \ (Q° U Q).

The horizontal axis of this figure measures ) ¢ f? and the vertical axis measures the value of
the capacity variable z. Hence, a solution (z, f) € X(Q°, Q') is represented by a point with
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coordinates (},cq f9,2) in the two-dimensional figure. Similarly as in (|Q| + 1)-dimensional
space, an inequality az > b €S f? — c that is satisfied by all solutions in this two-dimensional
space yields a valid inequality for the set X (Q°, Q'). Note that these inequalities have the same
coeflicient for all ¢ € § in the inequality. We consider the strongest possible valid inequalities
arising from the two-dimensional space. These inequalities describe the lower convex envelope
of the set of solutions in X (Q°, @), as indicated in Figure 2.

T2 ges [ Q={1,2,3,4}

%> Y, 142 di = 0.6 for all g € Q
Q' =0,Q" = {4}
S ={1,2,3}

1 ZqES fq

Figure 2: Lower Convex Envelope Inequalities

Assume that the commodities in S are ordered such that d* < d? < ... < dIS |, and for k =
1,...,|S|, let Sy = {1,...,k}. Then the set of lower convex envelop inequalities basically
describes the lower convex envelope of the points (k, D(Q' U S;)) for k = 1,...,|S| in two-
dimensional space. The following proposition states bounds on the slope of a lower convex
envelope inequality.

Proposition 5.1 Ifax > ques f9—c is a lower convex envelop inequality for the set X (Q°, Q')
with demand values d? =19 € (0,1] for all ¢ € Q, then the slope b/a of the lower convex envelope
inequality satisfies 0 < b/a < 1.

Proof. Consider a lower convex envelope inequality az > b3y ¢ f¢ — ¢ for X (Q°% Q). The
slope b/a of the lower convex envelope inequality is determined by two distinct points in the two-
dimensional picture that satisfy the inequality at equality. Let (k1, D(Q'USy,)) and (ko, D(Q'U
Sk,)) be two such points with k1 < k. Then b/a = (D(Q' U Sk,) — D(Q! U Sk,))/ (ks — k1).
Since Sk, C Sk, it follows that the numerator is nonnegative, which together with k1 < ko
implies that b/a > 0. Furthermore, S, C Sk, together with d? € (0,1] for all ¢ € S implies that
D(Q'U Sy,) — D(Q' U Sk,) < ko — k;. Hence, b/a < 1. [ |

Next we derive necessary and sufficient conditions under which there exists a lower convex
envelope inequality az > bzqe g f9 — ¢ with slope b/a = 1 that is also facet defining for

conv(X(Q° Q')). We use the following definition.
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Definition 5.2 Let Q' C Q and S C Q with SN Q' = . Then
n(Q",8) =X ,cs D!+ D(QY) ~D(SUQRY) (23)

In words, n(Q', S) measures the surplus in capacity for the set of items Q' U S if D(Q') units
of capacity have already been ‘installed’ for the set of items Q' and an additional DY units of
capacity are installed for each item ¢ € S. Note that the value of n(Q!,S) does not change if
demand data r?¢ € (0, 1] are considered instead of the real demand data d?, for all g € Q.

Theorem 5.1 If there exists a lower convex envelope inequality ax > queS f4 — ¢ with slope
b/a =1 for the edge capacity set with demand values d? = r? € (0, 1], then the inequality

T2 Y qes DIf1+ D(QY) —n(Q, 5) (24)

is valid for conv(X(Q°, Q1)) with arbitrary demand data d? for all ¢ € Q. Moreover, this is a
facet defining lower convez envelope inequality for conv(X(Q%, Q%)) if and only if D(Q* U S\
{qg}) =D(Q*US) — D1 for allg € S.

Proof. First consider d? = r? € (0,1] for all ¢ € S. If there exists a lower convex envelope
inequality az > qus f9 — ¢ with slope b/a = 1, then the point (|S|,D(Q' U S)) satisfies that
inequality at equality. Hence, for ¢ = b = 1 it follows that ¢ = qu s f1—DQ'US) =
doges DT+ D(QY) — D(Q') — D(Q'US) = n(Q',S) — D(Q'). This yields the lower convex
envelope inequality z > > o f7+ D(QY) — n(Q',S) for demand values d? € (0,1], for all
q € S. Applying Shifting Theorem 4.2 for elements g € S to obtain a valid inequality for the
real demand data yields the desired inequality (24).

Now we prove that the remaining conditions are sufficient to guarantee that the inequality is
facet defining for conv(X (Q°,Q')), which has dimension |S|+ 1. This follows from the fact that
the vectors (D(Q'US), e?'YS) and (D(Q*US\{q}),e? YSMa) for all ¢ € S yield | S| +1 affinely
independent vectors in X (Q°, Q') that satisfy that inequality at equality.

Conversely, let ¢ € S. If D(Q' U S\ {G}) # D(Q' US) — DY then the solution (z, f) = (D(Q' U
S$\{g}), e?"US\{2}) is not on the face of the valid inequality z > Ypes Df1+D(QY) —n(Q, S).
For any set T C S\ {4} it holds that D(Q* U S\ {4}) < D(Q'UT) + 2 qes\(Tufgy) D7 Hence,

the vector (D(Q' U T),teUT) does not satisfy the inequality at equality, since D(Q' U T) >
D(Q'US\{a}) = Xges\rugan D! > Lges\iay D! — ¢~ Lges\rugay D = Lger D? — . Thus
there exists no solution (z, f) € X(Q% Q') with f@ = 0 that satisfies the inequality at equality.
As a result, the face of the inequality is a subset of the face defined by the inequality f¢ < 1,
which implies that the inequality is not facet defining. |

Under the conditions of the above theorem, there exists a facet defining lower convex envelope
inequality with slope equal to one for conv(X(Q°,Q')). In this case one can also identify
conditions such that there exists a second facet defining lower convex envelope inequality for
this polytope. This is the subject of the following theorem.

Theorem 5.2 Consider X(Q°, Q') for demand data d? =19 € (0,1]. Assume that D(Q' U S\
{q}) = D(Q' U S) — DY for all g € S such that there exists a lower convex envelope inequality
with slope equal to one. If D(Q' U Sisj-1) = D(Q*uU S|s|—2), then
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(i). there exists a second lower convex envelope inequality ox > qus f4 4+ 9 through point
(ISI = 1,D(Q' U Si5/_1)) in the two-dimensional figure for demand data d? = r? € (0,1].

(7). the slope 1/a of this lower convex envelope inequality equals

_ D(Q'US) —1-D(Q'USy)
la = k—o‘fi’éu{ IS|—1—% }

for demand data d? =r? € (0,1] for all g € S.
(iii). the constant § of this lower conver envelope inequality equals § = aD(Q*US) — (|S|+a—1)

(iv). the inequality
ar > Y cs{a(DT—1) +1}f9 + aD(Q'US) - (IS| +a—1) (25)

is a facet defining lower convex envelope inequality for conv(X(Q, Q")) with arbitrary
demand data d? for all g € Q.

Proof. The lower convex envelope inequality as discussed in Theorem 5.1 is the most right
lower convex envelope inequality of the lower convex envelop, with slope equal to one. This
first inequality is guaranteed to exists due to the conditions of the theorem and the point
(IS| —1,D(Q" U S|g1-1)) = (|S| - 1, D(Q" US) — 1) is on the corresponding line. Because of the
second condition D(Q'US|s 1) = D(Q'US|s|_2), the point (|S|—2, D(Q'US|s)_)) is not on this
line. Hence, there exists a second lower convex envelope inequality az > €S f946 through the
point (|S|—1, D(Q! US|s—1)). Apart from this point, there exists a second point (F, D(Q'US))
on this second lower convex envelope inequality, for some k € {0,...,|S| — 2}. Since the lower
convex envelop inequality must be valid, it follows that its slope is equal to the maximal slope
between point (|S| — 1, D(Q' U S) — 1) and (k, D(Q' U Sk)), over all k € {0,...,|S| — 2}.

Since the point (|S|—1, D(Q*US |s|-1)) is on the line of this new lower convex envelope inequality
and d? = 7 € (0,1] for all ¢ € S, it holds that § = aD(Q' U S|g/_1) — Zq65|5|71 fi=a(D(Q'U
S)—1)—|S|+1=aD(Q'US)— (|S| + a—1). Finally, if we apply Shifting Theorem 4.2 to
the items g € S then the desired inequality is obtained. The fact that this is facet defining for
conv(X (Q°, Q")) follows from the fact that the solution vectors (D(Q' U S \ {q}), e? VS\14}) for
all ¢ € S all satisfy the inequality at equality. Moreover, the vector (z, f) = (D(Q'US}), eQIUSk)
for the value of k € {0,...,|S| — 2}, such that the point (k, D(Q' U S})) is also on the line, also
satisfies the inequality at equality. This yields |S|+ 1 affinely independent vectors in X (Q°, Q')
on the face of the inequality, hence it is facet defining. |

Theorem 5.3 Any lower convex envelope inequality for conv(X(Q°, Q")) with demand data
d? = r? € (0,1] for all ¢ € S can be written in the form azx > queS f? — ¢ for certain
a,b,c € Zg§, and with b < a < |S|). Magzimal lifting of this inequality to obtain a valid inequality
for X can be done in polynomial time.

Proof. Each lower convex envelope inequality is defined by two points, say (k1, D(Q' U Sk,))
and (k2, D(Q'USk,)) in the two-dimensional figure, for some k1, ko € {0,...,|S|}, with k; < k.
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The slope b/a of such a line is then the quotient of D(Q' U Sk,) — D(Q' U Sk,) and ko — k1, and
both the numerator and denominator are bounded by |S|. Hence, the inequality can be written
in a form with a,b,c € Z§ and a < |S|. The fact that b < a is already shown in Proposition 5.1.

Using inductive arguments, one can show that the lifting coefficients b? obtained by maximal
sequential lifting of variables in ¢ € Q° U Q! also satisfy b7 < a < |S|. Now consider the lifting
process for a variable f4,§ € Q°, then the value of the lifting coefficient b is given by

bl = min(w,f)EX(QO\{@},Ql)Cf‘izl{a’x — quES fq + C}

Note that the optimal value of the variable z in this minimization problem is bounded by |Q)|.
Moreover, for a fixed value of z, the problem simplifies to a knapsack problem. Therefore,
the problem can be solved by computing at most |Q| knapsack problems. Moreover, each of
these knapsack problems has an objective function in which each coefficient b is bounded by |S|.
This implies that an upper bound on the optimal value of each individual knapsack problem is
given by O(|Q|?), hence, they can be solved in O(|Q|®) time. The lifting coefficient can thus
be determined in O(|Q|*) time, since it involves at most |Q| knapsack problems. A similar
argument holds for the lifting of a variable in Q'. Since the total number of variables to be
lifted is bounded by |Q|, the complete lifting process can be performed in O(|Q|®) time. [ |

6 Integer Lifting of Knapsack Inequalities

In this section we state a different approach to obtain the two types of valid lower convex
envelope inequalities for the edge capacity polytope as mentioned in the previous section. We
show that they can be obtained from valid inequalities for a related 0-1 knapsack polytope by
integer lifting techniques. Two observations can be made regarding this integer lifting procedure.
First of all, the computation of these inequalities, i.e. the computation of the lifting coefficients
is NP-hard in general. Secondly, any valid inequality for the knapsack polytope will in general
lead to zero, one or two valid inequalities for the edge capacity polytope. For the special case of
valid cover inequalities for the knapsack polytope, we show that the lifting process can be done
in polynomial time. Moreover, at least one valid inequality for the edge capacity polytope will
be obtained from each cover inequality. Finally, we identify necessary and sufficient conditions
under which two distinct valid inequalities for the edge capacity polytope are obtained from a
single cover inequality for the 0-1 knapsack polytope.

Definition 6.1 Let Q°,Q', S be a partition of Q, and let T € ZJ with > D(Q' U{q}) for all
g€S. Let b=z —d(Q"), then X(Q°, Q',Z) is a knapsack set defined by

{(z,f) €eX:f1=0Yg€ Q" f1=1Vge Q',z =7}
~ {fe{0,1}15: 3 gdif? < b}

X(Q°% Q" 7)

X(Q° Q',7) is the projection of X on the space with f7 = 0 for all ¢ € Q°, f¢ = 1 for all
g € Q', and z = z. Note that the condition z > D(Q' U {q}) for all ¢ € S implies that
dim(conv(X(Q°, Q',x))) = |S|, that is, the knapsack polytope is fully dimensional.
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Theorem 6.1 (Wolsey [22]) Let Q°,Q', S be a partition of the set Q, and let T € Z(')" be an
integer with > D(Q' U {q}) for all ¢ € S. If qus 74f9 < 710 is a valid inequality for
X(Q° Q',7) then qus 79f1 < 10 + a(x — ) is a valid inequality for X(Q°, Q") if and only if

o= max {M}gag min {m}::a(]

T€LTw>T T—z z€Z$:D(Q1)<z<7T -z

where
n(w) = max {$,es 7011 X e df? <z —d(@"), f7 € {0,1},Vg € 5.

Moreover, if 2 o mf? < 70 is a facet defining inequality for conv(X(Q°, Q',Z)) and o < oY,
then 3, comlf?< 7'+ ab(z—2) and D qes ™1 < 70+ aV(z—Z) are facet defining inequalities

for conv(X(Q°, Q1))

To determine o’ and oV we can solve the knapsack problem 7(zY) by dynamic programming
where zU is an appropriately chosen upper bound on the value of the capacity variable z, for
instance z¥ = D(Q' U S). In general, o” < oV does not necessarily hold, in which case integer
lifting is not possible. Next we describe the main result of this section.

Theorem 6.2 Let Q°,Q', S be a partition of the set Q such that S # 0, and let T € ZO+ satisfy
z>D(Q'U{q}) for allqg€ S. If S is a minimal cover for the knapsack polytope X (Q°, Q', %),
then

(i). integer lifting of the minimal cover inequality can be done in polynomial time,
(i3). if d9 € (0,1] for allg € S, then 1 = a* < Y,
(iii). if d? € (0,1] for all g € Q, then oV > 1 if and only if D(Q' U Sig-1) = D(Q' U Sj5)—2),

(iv). the resulting facet defining inequalities for conv(X (Q°, Q1)) are:

T > YesDUf1+D(QY) -n(Q,S) (26)

oz > Y es{a¥(D1-1) + 111+ D(Q' U S) — (18] + ¥ —1). (27)

Proof. The knapsack problem that needs to be solved in order to determine the lifting coef-
ficients has the same objective coefficients for all items. Hence, a sorting algorithm can solve
the knapsack problem in polynomial time. To prove the remainder of the theorem, assume that
d? € (0,1] for all ¢ € S. Since S is a minimal cover, 3 . ¢\ ;3 @7 < z—d(Q') for alli € S. Hence,
from d? € (0,1] for all ¢ € @ it follows that in the special case of a minimal cover inequality
n(z) = |S| for all x > Z, and hence, the maximum value for o’ is attained for x = Z + 1, which

yields a® = 1. For x < Z, it is easy to see that n(z) < n(z + 1) — 1. Therefore, for z < 7 it
holds that (7° —n(z))/(z —z) > (z — x)/(Z — =) = 1, such that a¥ > o.

Next, if D(Q' U Sis/-1) > D(Q'u S|s|—2) then there exist 4,5 € S such that n(QY, S\ {i,5}) =
n(Q', S \ {i}), which implies n(z — 1) = |S| — 2, and hence oV < 1. Together with oV > 1
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this yields oV = 1. Conversely, if n(Q',S \ {i,j}) # n(Q',S \ {i}) for all i,j € S, then
n(z — 1) < |S| — 3. Hence, for x = z — 1 the quotient (7° — 7(z))/(Z — z) is strictly greater
than 1. Moreover, again using n(z) < n(z + 1) — 1 it follows that the quotient can never attain
the value 1, for z < z.

Finally, since S is a minimal cover and d9 € (0,1] for all ¢ € S, it follows that z = D(Q'US) — 1.
Substitution of this value in the inequalities as described in Theorem 6.1 and applying the
Shifting Theorem 4.2 yields the required inequalities. |

Example 6.1 Consider an instance of the edge capacity polytope with three items, and let d' =
0.4,d> = 0.4,d® = 1.4. First we transform the data such that d? € (0,1] for all ¢ € Q hence we
consider the data ' =12 =73 = 0.4. Let Q° = Q' = 0,5 = {1,2,3} and define z = 1. Hence,
we are analyzing the set X (Q°, Q',Z) with the knapsack inequality

0.4f' +0.4f2 +04f3 <1

for which S is a minimal cover. Applying integer lifting to the cover inequality f* + f2+ f3 < 2
leads to lifting coefficients o = 1,aY =2, and the resulting inequalities read

s > fiHfif-
20 > fl4 [Pt f8

which are facet defining for the edge capacity polytope on the transformed data r',r2,73. Applying
the shifting theorem to obtain inequalities which are facet defining for X with the original data

leads to the facet defining inequalities

T
2z

> fr+firef-1

> L2+

Note that if we had applied the same technique to the original demand data directly, and for the
value T = 2, again the set S is a minimal cover for the associated knapsack polytope. However,
if integer lifting is applied to the cover inequality f' + f2 + f3 < 2 in this case, then the lifting
coefficients are o = 1,aY = 0, implying that integer lifting would not be possible.

To conclude, note that (26) and (26) are equivalent to (24) and (25), respectively. As a conse-
quence, Theorem 5.3 holds and lifting of (26) and (26) can be done in polynomial time as well.
This in contrast to the lifting problem of minimal covers for the knapsack polytope, which is
still open (cf. [11]).

7 (C-strong Inequalities

This section analyzes lifted cover inequalities for the value o = 1. We will show that the lifting
of fixed 0—1 variables in the sets Q° and Q' can be done efficiently and that the resulting inequal-
ities are equivalent to c-strong inequalities as described by Brockmiiller et al. [7]. Subsection 7.1
states some new properties of c-strong inequalities, which indicate the importance of this class
of valid inequalities in the polyhedral description of the edge capacity polytope.
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Theorem 7.1 Let Q°,Q',S,T be a partition of the set Q. If

5> Y DU LY (DI - 1) -

geS qeT
is a facet defining inequality for conv(X(Q°, Q")) then
(i). ¢=n(Q",S) - D(Q")
(ii). if mazimal lifting is applied to G € Q° to obtain a facet defining inequality
x> qus Dift+ quT(Dq —-1)f1+ ﬂqfq —C
for conv(X (Q°\ {¢}, Q")) then
B@:{Dé ifri>1-r(SUQh)

D?—1 otherwise
(iii). if mazimal lifting is applied to G € Q' to obtain a facet defining inequality
2 Y es DU+ Yger(DT = 11+ fI(f1-1) — ¢
for conv(X (Q°%, Q" \ {g})) then
M:{Dq ifri>1-r(5UQ\ {g})

Di—1 otherwise

(iv). the lifting can be done in polynomial time and leads the facet defining inequality for
conv(X), for a certain partition Q,Q \ Q of the set Q:

x> 3 DU+ Y eo0D? = D= n(0,Q)
Proof. If the inequality is facet defining then it must be tight for some solutions. Hence,
¢ = MaX(gf)ex(Q0,Q) {qus DIft+3 0 cr(DT—1)f7— :v}
Yges D1 = D(Q1US) =n(Q',S) - D(Q)

Next, if § € QU is lifted, then the lifting problem reads

A1 = ming, ex(@n(a).@1uia) 17~ ges DU = ger(D7 = 1D+ cf

and the minimum for this problem is attained for f¢ = 1if g € S and f¢ =0if¢g € T, and
= D(Q' USU{g}). This implies that
Bl = D@Q'USU{G}) — e DT+ n(Q4,8) — D(QY)
DQ'USU{gH) - D(Q'US)
which yields the required result. If § € Q' is lifted, a similar reasoning holds. The fact that
lifting can be done in polynomial time now follows directly. |

These lower convex envelope inequalities with slope 1 are the so-called c-strong inequalities as
developed by Brockmiiller et al. [7], which we will redefine in the next subsection.
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7.1 Properties of C-strong Inequalities

In this section we list some properties of c-strong inequalities which indicate the importance of
this class of valid inequalities in order to get a good approximation of conv(X). Before we do
so, we repeat some definitions and results from Brockmiiller et al. [7].

Definition 7.1 (Brockmiiller et al. [7]) A set S C Q is called c-strong if c =} .5 D7 — D(S).
The set is mazimal c-strong if S\ {i} is c-strong, for all i € S, and S U {i} is not c-strong for
alli € @\ S. Note that a set S is c-strong if and only if ¢ <3 s(1 —77) < (c+1). Moreover,
c=n(0,S).

Proposition 7.1 (Brockmiiller et al. [7]) Let S C Q be a c-strong set. Then

2> DU+ Y (DI-1)fI-c (28)

qes qeQ\S

is a facet defining inequality for conv(X) if and only if S is mazimal c-strong.

Lemma 7.1 Let S C Q be a c-strong subset, with S U {i} (c+ 1)-strong for alli € Q\ S. If
S\ {G} is (c — 1) strong for G € S, then (S \ {q}) U{i} is c-strong, for alli € Q\ S.

Proof. Let i € @\ S. The fact that SU{s} is (c+1)-strong implies that (c+1) <3 o (1
r?) < (c+2). Similarly, since $\{g} is (c—1)-strong implies that (c—1) <} cq\5(1—77) <c
Suppose that } ¢ s\ q1uqi} (1 = r9) < ¢, then a contradiction is obtained since (1 — rd) € [0,1)
and e gy (1—79) = (c+1). Suppose that 3° ¢ ¢\ (410153 (1—79) = (c+1), then a contradiction
is obtained since (1 —79) € [0,1) and > ges\(g(1—r%) < c. Hence, ¢ < 37 c g ranugp (1 —79) <
(¢ + 1), which proves our claim.

Proposition 7.2 Let z > 3] o b1f7—c, (c € Zg, b1 € Z§ for all ¢ € Q) be a facet defining
inequality for conv(X ). Then this inequality is a c-strong inequality.

Proof. Follows directly from Theorem 7.1 and Theorem 4.3. |

Proposition 7.3 FEach vertex of conv(X) is on a face defined by a facet defining c-strong in-
equality.

Proof. Let (Z,f) be a vertex of conv(X), and let S := {q € Q : f? = 1}. Let ¢ =
qu 5 D7 — D(S), such that S is c-strong. Then (z, f) is on the face defined by the inequality
T 2> ,e5DIf1 +quQ\5(Dq —1)f79—c. If there exists a § € Q\ S such that SU{g} is c-strong,
add ¢ to the set S. Repeat this process until no items can be added to the set S without violating
the fact that the set remains c-strong. Let S; represent this new set of commodities. Note that
(z, f) is also on the face defined by the inequality z > 2 oges, DU+ Y geons, (DT - 1) f1 —c.
Next, if there exists a ¢ € S; such that S; \ {G} is not c-strong but (¢ — 1)-strong, then
remove § from S;. After this removal, (z,f) is on the face defined by the inequality =z >
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qusl\{q} Dif9 + qu(Q\Sl)u{q}(Dq —1)f9— (¢ —1). Again, repeat this process until one ob-
tains a set Sp which is co-strong and such that So \ {¢} is ce-strong, for all ¢ € S2. Lemma 7.1
implies that Sy U {¢} is more than cy-strong, such that S is indeed maximal cy-strong. Hence
the inequality x >3- o, DIfT+ 30 co\g, (DT — 1) f7 — co defines a facet of conv(X). [ |

Moreover, in several special cases each facet of the edge capacity polytope is either a model
inequality or a c-strong inequality.

Proposition 7.4 If the set Q is 0-strong, then conv(X) is completely described by the trivial
inequalities and the 0-strong inequality © > quQ Difa,

Proof. Given an arbitrary objective function (8,7) € Z x Z/9! which is to be minimized over all
solutions in X, let M(d,) be the corresponding set of optimal solutions. We will show that for
each possible vector (d,7), the set M(d,7) is a subset of a face described by either one of the
trivial inequalities or the O-strong inequality. We distinguish a number of cases.

e § < 0, then the primal solution is unbounded, hence M (4,v) = 0.

e §>0,79 >0, for some § € Q. Then M(d,7) C {(z, f) : f4 =0}.

e §=0,71 <0, for some § € Q, then M(d,7) C {(z, f) : fI=1}.

e 0 =0,71=0, for all ¢ € Q, then M (4,7) equals the set X itself.

e §>0,71=0, for all g € Q. Then M(4,v) C{(z,f): f4 =0} for all g € Q.

¢ 0>0,7=0forallgeT,y?<0forallge Q\T. Let (z,f) € M(J,y) be an arbitrary
optimal solution, and let S := {g € Q : fe = 1}. Since @ is 0-strong, the same holds
for the set S. Moreover, since § > 0, z = D(S) = >_qes DY. Hence, the solution (z, f)
satisfies the 0-strong inequality at equality.

Proposition 7.5 If the set Q is |Q| — 1-strong, then conv(X) is completely described by the
trivial inequalities and the 0-strong inequalities x > DIf?, for all ¢ € Q.

Proof. Given an arbitrary objective function (8,7) € R x R? which is to be minimized over
all solutions in X, let M (4,7) be the corresponding set of optimal solutions. We will show that
for each possible vector (d,7), the set M (d,7) is a subset of a face described by either one of
the trivial inequalities or one of the 0-strong inequalities. We distinguish the same cases as in
the proof of Proposition 7.4. The first 5 cases are analogous, so we restrict ourselves to the last
case. Hence, § > 0,79 =0, for all g € T and 77 < 0 for all ¢ € Q\ T. Let (z, f) be an arbitrary
optimal solution in M(d,y). Note that z < 1, since the set is |Q| — 1-strong and § > 0. Let
g = argmingeg? (hence ¥4 < 0). If z = 1 holds in an optimal solution, then surely fé =1,
and if Z = 0 in an optimal solution, then f4 = 0. Hence, M(6,7) C {(z, f) : = > DIf4}. [ |

Corollary 7.1 If |Q| < 2 then the polytope conv(X) is completely described by the trivial in-
equalities and c-strong inequalities.

Proof. If || < 2, then the set @ is either 0-strong or |@Q| — 1-strong, hence, the previous
propositions prove our claim. |
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8 The Directed Edge Capacity Polytope

This section reports on the directed edge capacity polytopes YZJDF and Yi]DP , as described in
Section 2. We derive a class of valid inequalities and identify conditions under which the valid
inequalities are facet defining. Next, we show that sequential lifting for the directed edge capacity
polytope is NP-hard in general, even for lifting orders which first lift all flow variables in the

same direction.

Define the directed edge capacity polytope Y, where f? is a binary variable that denotes whether
commodity ¢ is routed on the forward arc and h? represents whether the commodity ¢ is routed
on the backward arc, as follows:

Y ={(z,f,h) € Z x {0,1}291 1 2 > 33 0 dUf % > Y o d?hT}
Proposition 8.1 Let § € QQ and let o € Zg’ such that 1 < a < D4. Then

x > af‘j-l-ZqEQ(Dq—oz)hq (29)
s a valid inequality for Y .

Proof. Consider an arbitrary feasible solution (z, f, f_L)_ €Y and let Q={qeQ:h1 =1} If
Q| =0, then Z > DIf? > af! = af 1+ 3 (D! — a)h. If |Q| > 1, then

T 2 [ma‘X{quQ e, quQ d'h?}] > D(Q)
= EqEQ(Dq - Ot) + ZqEQ(a - 1) + [ZqEQ T-l]—|
> Yo —a)+(@-1)+1>afl+ 3 (D!~ a)hl
which proves our claim. [ |

Proposition 8.2 Let ¢ € Q. If

(i). a=1
(ii). Vg € Q : DI > D4

(iii). Vg € Q\ {4} :3Q C Q, with |Q| =2, [Z,cq7?| =1, and D(@) > D({g,q})
then (29) is facet defining for conv(Y).

Proof. The dimension of conv(Y) is 2|Q| + 1. We give 2|Q| affinely independent vectors in Y’
satisfying the inequality at equality. These vectors are

* (z,f,h) =1(0,0,0)
o (z,f,h) = (D%,el, ed), for all g € Q
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e (z,f,h) = (D(Q),el,e?), for all g € Q \ {4}

Example 8.1 Consider an instance of the set Y with |Q| = 4 and the demands are d* =
1.8,d2 =2.1,d® =2.6,d* =3.2. If § =1, then the inequalities

z > fr+ bt + 2R% + 2R + 3K%
z>h+ 2?25 + 354

are valid and facet defining for conv(Y').

As follows from Section 7, 0-strong inequalities which are facet defining for conv(X) can be
obtained by starting with the valid inequality z > 0 for conv(X(Q,0)) (i.e. the polytope in
which all f variables are set equal to zero), and then applying sequential lifting to the set
of commodities (). This lifting can be done in polynomial time as a result of Theorem 7.1. A
similar approach could be employed to obtain facet defining inequalities for the directed polytope
conv(Y'). First one could fix all variables (both f and h variables) to zero, and next one could
apply sequential lifting on the valid inequality z > 0. However, we show that lifting under an
arbitrary lifting order is an AN'P-hard problem in general.

SUBSET SUM (cf. Garey and Johnson [9])
INSTANCE: A set of items A, a size s? € Zg for all g € A, and a positive integer B.
QUESTION: Does there exist a subset A C A such that }° 5s7=B?

LIFTING FOR DIRECTED EDGE CAPACITY MODEL

INSTANCE: A set of commodities (), a demand size d? € Z(‘)" for all ¢ € @, and a
capacity A € ZO+ (this defines an instance of Y, using the inequalities z > Y €0 d4 fe
and z > 37 o d?h?, where d? = d9/)\). A complete order m on a set of variables
T = Ugeq(f? U hY), a specific variable z € T' and an integer K € Z{.

QUESTION: If maximal lifting is applied to the inequality = > 0 in the lifting order 7
to obtain a facet defining inequality for Y, is the lifting coefficient of variable z less
than or equal to K ?

Proposition 8.3 LIFTING FOR DIRECTED EDGE CAPACITY MODEL is N'P-complete.

Proof. We show that SUBSET SUM polynomially reduces to LIFTING FOR DIRECTED EDGE
CAPACITY MODEL. Given an instance of SUBSET SUM, construct an instance of LIFTING FOR
DIRECTED EDGE CAPACITY MODEL as follows. Let @ = {1,2,3} U A, A\ = B, and define

q _ o . _ quAdq 1 _
d? = s\ +1), for all ¢ € A. Define an integer m = | =25~ |, and let & = (m + 1)\ +

1,d?> = (m+ DX+ X —1,d> = (2m + 4)X + A2, Define the order 7 on T as f!, f2, f9,Vq €
A, R3 h?, b, h9,Vq € A, f3. Finally, let z = h3 and K = 1.
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Next we show that an instance for SUBSET SUM yields an affirmative answer if and only if the
corresponding instance for LIFTING FOR DIRECTED EDGE CAPACITY MODEL yields an affirmative
answer. For convenience, we will use d1 = d4 /A throughout the proof. First, note that, starting
with = > 0, after lifting the variables f1, f2, f9,Vq € A the valid inequality reads

z > 0T f = [d'f 4 ([d*] = 1) f2 + 3 e 4([d7] — 1) f1

Next, if we apply maximal lifting to variable A% and if A C A is a subset with ) gcis! = B,
then the lifting coefficient 5% for the variable h?® satisfies

b = ming ;peyne—1, -0 ni—ovgeq\(3{T — (b7 )}

| max{d?, d({1,2} U A)}| = Senapuadf
2m+44+ XA —-2m+3+X)=1=K

IN

Conversely, let (Z, f, h) be the vector for which the minimum value less than or equal to K = 1
in the lifting problem is attained, and let @ = {g € Q : f7=1}. If 1 ¢ Q, then }° 5 d? < di
and hence,

B = ming ;peyasot, oo pr—oveeo\ 3z — (07 )}
> di—(bTf)=2m4+4+XA—(m+ 1+, 8) >3+A>K

since m > qu 189, Hence, f! = 1. Similarly, one can prove that f? = 1. Next define
A={gecA:f1=1}, and let p = > 4eis? Ifp < B, then d({1,2} U A) < d4, thus,

B o= B qb?=2m+4+X-(2m+3+p)=A-p+1>K
80, p < B cannot be the case. If p > B, then J({I,Z}UA)>J‘7, hence,
B = E-Y . qb"=2m+3+p+[}]-Cm+3+p) =[§]>2>K

hence, neither p > B can be the case. But this yields that quj s =p = B, hence A is the
required subset. u

9 Computational Issues

To test the effect of the developed theory on the solvability of network loading problems we im-
plemented a Branch-and-Cut algorithm, using A Branch-And-CUt System (ABACUS), version
2.2 [19], in combination with CPLEX 6.5 [14]. The algorithm was executed on a Sun Ultra-1
m140 workstation with 128MB internal memory. The program was tested on two sets of in-
stances. First, we tested the quality of the valid inequalities for the edge capacity polytope
with a set of randomly generated edge capacity instances. Second, we compare the results of
the Branch-and-Cut algorithm with/without these inequalities for instances of the DNFM (or
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DNPM) model. These latter instances were made available to us by KPN Research, Leidschen-
dam, The Netherlands.

This section is divided in three parts. In Section 9.1, we discuss the computational aspects of the
separation of the different inequalities. Next, in Section 9.2, we compare the different separation
techniques for the randomly generated edge capacity instances. Finally, in Section 9.3 the results
for the real-life instances of KPN Research are presented.

9.1 Separation of Valid inequalities

In the Sections 5, 6, and 7.1, several (overlapping) classes of valid inequalities for the undirected
edge capacity polytope are described. The separation problem for the already known c¢-strong
inequalities is described by Brockmiiller et al. [7]. They show that for a given value of ¢, finding
the most violated c-strong inequality requires solving a knapsack problem. They propose heuris-
tic methods to find the most violated inequality for values ¢ = 0,1,2, and our computational
experiments support their findings that this method yields good results.

Besides c-strong inequalities, the more general class of lower convex envelop inequalities have
been introduced in this paper. Although lifting of lower convex envelope inequalities can be
performed in polynomial time (as described in Section 5), there remain several unsolved issues
regarding the separation of these inequalities. In order to obtain the most violated inequality in
this class, it is yet unclear what choice of starting polytope X (Q°, Q') should be employed, and
which lifting order to use. We therefore propose to search for violated lower convex envelope
inequalities as follows. For a given LP-solution (Z, f) and an arbitrary arc (i,5) € A, let S be the
set of commodities with fractional routing variables on the arc (S ={¢g € Q :0 < ;% <=1}).
Moreover, let Q° = {¢ € Q : ;3 = 0}, and Q' = (. Then one can easily construct a two-
dimensional picture similar to Figure 2 containing all feasible solutions on the subset of variables
(Uges fiqj) U z, and define all corresponding lower convex envelop inequalities for this subset of
variables. After we found a violated lower envelope for X (Q°, Q') we lift the variables of Q° in
order of non-increasing reduced cost.

A third way to obtain violated inequalities for the edge capacity is through the relation with
the knapsack polytope (cf. Section 6). For a given LP-solution (z, f), we consider for every arc
(i,5) € A the knapsack polytope X (Q°, Q',%), with Q° = {¢ € Q : _fj =0}, Q' ={qeqQ:
fiqj =1}, and Z = [Z]. The search for a violated cover inequality is done in the way proposed by
Gu et al. [12]. After a violated cover is found, first the z variable is lifted, and afterwards the
remaining flow variables (including the sets Q° and Q') according to the order defined in [12].

Besides the inequalities for the undirected edge capacity polytope, in Section 8, the two-side
inequalities are proposed. For a given arc (i,7) € A and a fixed value of «, finding the most
violated two-side inequality (29) is an easy task. For a given LP-solution (z, f) a violated two-side
inequality exists if and only if there exists an element § € @ such that « fg >z—). g€ Q(Dq—a) *qu
Since the right hand side of the latter inequality is a constant for the given LP-solution, finding
the most violated two-side inequality on arc (7, j) for the specific value of « (if one exists) is
equivalent to finding the maximal value fg over all commodities ¢ € ). This can be done by
any sorting algorithm. Likewise as for ¢-strong inequalities, computational experiments indicate
that two-side inequalities should only be considered for small values of ¢, for instance a € {1, 2}.
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Apart from the inequalities for the edge capacity polytope as described in this paper, we also
incorporated some other classes of well-known valid inequalities for network loading problems.
Cut-set inequalities are used quite extensively for network loading problems (see for instance
Barahona [2], Magnanti et al. [16, 17], Bienstock and Giinlik [6], among others). Given a
partition of the node set V' into two sets S and T, let d[S,T] denote the accumulated demand
of all commodities with source node in S and sink node in 7. Then it is clear that the total
capacity on the edges in the cut §[S, T'] should exceed this accumulated demand since all of these
commodities must cross the cut. Since, capacity can only be installed in integer amounts, the
cut-set inequalities read

S iarestsr @ > max{[d[S, T, [dIT, )1} (30)

Likewise, three partition inequalities (based on a partition of the node set into three sets) have
been considered (see [6]), as well as the general K-cuts (see Barahona [3]). For small to medium
sized graphs as considered in our experiments an exact separation that considers all possible
partitions of the graph can be performed reasonably fast, and is therefore used.

9.2 Computational results Edge Capacity instances

To compare the performance of the different ways of separating inequalities for the edge capacity
polytope, we have generated 20 instances of this single edge problem. For |Q| = 10, 25, 50, 100
commodities, we constructed 5 instances each with A = 155 and d? uniformly distributed in
the domain {10,...,155}. As optimization criterion we minimize Az — quQ c?f? with 7 a
randomly generated integer in the range [0.8d?,1.2d7] for all g € Q.

Four different strategies are compared: branch-and-bound (B&B), c-strong separation (¢-STR),
lower envelope separation (LCE), and separation of lifted knapsack covers (COVER). As enu-
meration strategy we selected Best-First-Search with an initial upper bound of 0.

In Table 1 the results are compared on the number of nodes in the Branch-and-Cut tree, the
number of added violated inequalities, and the CPU time. The table shows that with separation
of lower envelope inequalities not only the smallest branch-and-cut trees are obtained, but also
the number of added cuts is minimized (compared with the other strategies). This indicates that
with this strategy very effective inequalities are added. The CPU time of LCE, however, is less
attractive. This is due to the more complex lifting procedure. The order of variable lifting for
lifted knapsack covers is even more complex which explains the CPU times in this case. In most
cases the largest number of violated inequalities has been found with the separation of c-strong
inequalities. It should be mentioned, however, that the results also show that the performance
of the different strategies strongly depends on the individual instances. For example, the c-
strong separation performs badly compared with the other ones on instance ecp050b, whereas
it outperforms LCE and COVER on the instance ecp025b in both the number of nodes and
cuts. A more detailed investigation of the computations learns that (almost) all lower envelope
inequalities with slope 1 are also generated with the c-strong procedure. Therefore, we propose
a combination of c-strong separation with separation of the lower envelope inequalities for the
network loading instances.
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9.3 Computational results Network Loading instances

For the network loading problem we can either implement a Branch-and-Cut algorithm based
on the flow formulation DNFM as described by (9)-(13) or based on the path formulation
DNPM as described by (14)-(18). For a suitable choice of the set of paths for the commodities,
and the exclusion of cycles from the flow formulation, it holds that every feasible solution to
the former formulation corresponds to a feasible solution to the latter formulation, and vice
versa. Consequently, the optimal values are the same. More importantly, this property also
holds for the LP-relaxations of the formulations, even after the addition of valid inequalities
as discussed in the sequel. Still, we implemented both formulations to test whether either of
the two formulations would yield better results due to the difference in number of variables.
Moreover, standard branching strategies use fixing of variables. If a path variable related to a
certain commodity is fixed to its upper bound, then the routing of that specific commodity is
completely known. Fixing a flow variable for a certain commodity to its upper bound only gives
limited information on the routing for that specific commodity. Hence, this might also lead to
different running times for both formulations. Although it is hard to draw general conclusions
from the limited set of instances available to us, our computational experiments indicated that
for larger graphs the exponential growth of the number of path variables is a serious problem.
The computational results stated in the sequel are therefore obtained using the flow formulation.

Besides the class of lower envelope inequalities, and the two-side inequalities of Section 8,
for network loading problems, also the already mentioned cut-set inequalities and three par-
tition inequalities are available. To show the importance of both the edge-related inequalities,
as well as the cut-related inequalities, we compare 4 different strategies: branch-and-bound
(B&B), separation of edge-related inequalities (EDGE), separation of non-edge-related inequal-
ities (NONEDGE), and separation of all available inequalities (ALL). For the last strategy we
consider two variants; with and without an initial upper bound obtained with the heuristics
described in [15] (ALL+UB). In all other cases the algorithm starts without an upper bound.
To compare the through quality of the inequalities no primal heuristics are implemented at the
nodes of the branch-and-cut tree. Computational experiments show that the DiveAndBest enu-
meration strategy (Depth-First-Search until a first integer solution is found, Best-First-Search
afterwards) performs best for all strategies (in case of an initial upper bound this strategy results
in a Best-First-Search).

In Table 2 we compare the quality of the lower bounds derived by the different strategies in the
root node of the branch-and-cut tree. The comparison is done for fifteen real-life instances of
KPN Research. These instances are defined on complete graphs in the range of 4 to 8 nodes, and
for each graph size three different instances with fully dense non-symmetric demand matrices
were available. The name of each instance, stated in the first column, refers to the number of
nodes in the graph (first digit), whereas the second number in the name defines the demand
matrix. Besides the lower bounds obtained with the different strategies, the table states the
optimal value (if available), and an upper bound obtained with the heuristics described in [15]
(used in the second variant of the strategy ALL). In case the branch-and-cut algorithms could
not produce an optimal solution within acceptable time and memory requirements, the best
global lower bound is given.

In Table 3 statistics concerning the number of branch-and-cut nodes, the number of added valid
inequalities, and the computation times are reported. The results in both tables show that
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Instance lower bound root node optimal | upper

B&B | EDGE | NONEDGE ALL value | bound

(LP value)

kpn 4.3 1.74 | 2.68 3.00 | 3.00 3 3
kpn 410 5.81 | 7.17 6.75 | 7.19 8 8
kpn_4_20 11.61 | 13.00 12.67 | 13.00 13 13
kpn 5.3 1.89 | 3.02 3.75 | 3.75 4 4
kpn 5_10 6.32 | 7.98 7.67 | 8.50 9 9
kpn_5_20 12.64 | 15.04 13.77 | 15.06 16 16
kpn_ 6_3 1.94 | 3.39 411 | 4.11 5 5
kpn 6_10 6.45 | 8.07 8.11 | 8.36 9 10
kpn_6_20 12.90 | 15.30 14.08 | 15.47 16 17
kpn_7_3 1.95 | 3.79 4.42 | 4.42 6 6
kpn_7_10 6.52 | 8.35 8.54 | 8.81 10 10
kpn_7_20 13.03 | 15.38 14.59 | 15.73 17 18
kpn_8_3 217 | 4.29 4.89 | 4.89 7 7
kpn_8_10 722 | 9.44 9.74 | 9.83 11 12
kpn_8_20 14.45 | 17.15 16.44 | 17.33 19 21

Table 2: Computational results for KPN network loading instances: values

the network loading problems become very difficult in case the difference between the optimal
value and lower bound of the root node is larger than one. This observation holds for all
strategies: kpn_5_20 and kpn_6_20 are already too difficult for the NONEDGE strategy, whereas
the instance kpn_6_10 cannot be solved with the EDGE strategy. The results of the NONEDGE
strategy also indicate that the cut and three-partition inequalities are less powerful in case of
larger demands. For the EDGE strategy the relation between the size of the demands and the
difficulty of the instance is less clear. In fact, the percentage of the gap closed in the root
node by the edge-related inequalities increases as the demand increases, whereas the percentage
decreases for the NONEDGE strategy. This observation agrees with our theoretical results that
only the fractional part of the demand is important. Another, more surprising, observation that
can be made is that not in all cases the separation of more inequalities results in a better overall
performance of the algorithm. The instances kpn 5_10, kpn_5_20, and kpn_6_20 can be solved
more efficiently with separation of only the edge-related inequalities than with separation of all
inequalities. Also the addition of an initial upper bound does not improve the performance of
the algorithm in all cases (see for instance kpn_6_10).

Finally, we have to conclude that for graphs as small as 8 nodes the inequalities are not strong
enough to solve the instances to optimality. For the instance kpn_8_3 the optimal value can be
determined by the combinatorial argument that at least 7 links are needed to have a connection
between every pair vertices. Since, an upper bound of 7 is also available we can conclude that this
is the optimal value. The branch-and-cut algorithms, however, cannot produce a lower bound
better than 6 within acceptable time and memory requirements. Also for the other two instances
with 8 nodes the branch-and-cut algorithm is not able to solve them. The optimal values for these
instances are obtained by solving a preprocessed version of the linear programming relaxation
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(with the violated inequalities added in the root node) with the CPLEX integer programming
solver. The computation of these optimal values took respectively 3,606 and 163,586 seconds.

10 Concluding Remarks

The computational results of the previous section show that the edge capacity polytope is
an important substructure of the network loading problem in the sense that its strong valid
inequalities increase the value of the LP-relaxation quite substantially. Similar results were
obtained by Bienstock and Bley [4], who applied the results of this paper to a multicast network
design problem. We did, however, not take into account the inequalities that concentrate on
larger structures than a single edge within the network loading problem. Therefore, a potential
gain on our results may lie in finding valid inequalities for more general structures of the integer
programming formulation, such as cuts in the graph. Although cut-set inequalities (or the
more general partition inequalities) are facet defining for bifurcated versions of network loading
problems (see [6, 17]), for non-bifurcated network loading problems this is in general not the case,
and several possibilities for strengthening arise. We have performed some initial computational
experiments to test the effect of a strengthening of a cut-set inequality, but so far the gain has
been limited.
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