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ABSTRACT 

In this paper it is shown that for highly nonuniformly refined tri­
angulations the condition number of the BPX preconditioner for el­
liptic finite element problems grows at most linearly in the depth of 
refinement. This is achieved by viewing the computational available 
version of the BPX preconditioner as an abstract additive Schwarz 
method with exact solvers. 
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INTRODUCTION 

The recently introduced BPX preconditioner of B R A M B L E / P A S C I A K / X U 

[5] for elliptic finite element problems has drawn a lot of attention to it due 
to several interesting features: 

• its condition number estimate is independent of the space dimension 
[5,15] 

• it is fully parallel [5] 

• it can be easily extended to preconditioners of other problems like prob­
lems arising from semidiscretization in time of a parabolic problem 
[3,4,15] 

The theory presented in [5, 15] yielded as condition number estimate K = 
0(j2) for a large class of problems on quasi-uniform triangulations of refine­
ment depth j . This result was recently improved in several ways: 

• For highly nonuniform triangulations YSERENTANT [18] showed that 

• By means of a strengthened Cauchy-Schwarz inequality ZHANG (Courant 
Institute, New York) obtained K = O(j) for quasi-uniform triangula­
tions, [14]. 

• By means of best approximation arguments in Besov-Sobolev spaces 
OSWALD [11] obtained that K = 0(1) on quasi-uniform triangulations. 

This paper is devoted to the proof of K = O(j) for highly nonuniform 
triangulations, thus combining the results of YSERENTANT and ZHANG. 

This can be achieved by viewing the computational available version of the 
BPX preconditioner in a new way: directly as an abstract additive Schwarz 
method with exact solvers. This interpretation seems to be known in the do­
main decomposition community but was not consequently used for purposes 
of a proof. DRYA/WIDLUND viewed instead in [7] the orthogonal projection 
version of the BPX preconditioner as an additive Schwarz method with inex­
act solvers, Xu considered in [16] the computational version as a multilevel 
domain decomposition method. 

Our interpretation as an additive Schwarz method with exact solvers is 
conceptually simple, allows to apply the well developed proof machinery of 
the additive Schwarz methods and helps to clarify the understanding of the 
computational version of the BPX preconditioner. A special feature of our 
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proof is — in contrast to all other known proofs — that we do not use the 
weighted L2-projections, which constitute the orthogonal projection version 
of the BPX preconditioner. 

In Section 1 we provide some notation used in the following sections. Sec­
tion 2 briefly discusses abstract additive Schwarz methods as a general con­
struction principle for preconditioners and provides the proof machinery. 

Section 3 gives the interpretation of the computational BPX version as an 
additive Schwarz method. 

Section 4 derives a bound for the smallest eigenvalue of the preconditioned 
system. Here the stability and approximation results of YSERENTANT [18] 
for certain restriction or quasi-interpolation operators come into play. 

In Section 5 a constant bound for the largest eigenvalue is derived by using 
orthogonalities introduced by colorings of the triangulations and a strength­
ened Cauchy-Schwarz inequality between subspaces generated by those col­
orings. 

In Section 6 we discuss the implication for the orthogonal projection ver­
sion of the BPX preconditioner and the connection to the hierarchical basis 
preconditioner. 
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1. TRIANGULATIONS AND FINITE ELEMENT SPACES 

Let fi C IR2 be a bounded simply connected polygonal domain and TD 
a boundary piece of Q which is assumed to be composed of straight lines. 
Introducing the space of weak solutions 

Hh(ü) = {u e H\ü) I U\VD = 0} 

we consider the variational problem for some /* G (H^VL))*: Find u € 
Hl

D{tt) such that 
a(u,v) = /*(u) 

for all v € H})(Q,). The bilinear form a(-, •) is defined by 

f 2 

We assume that a,j € L°°(Q) and ay = â ,-. 
A triangulation T of the polygonal domain Ct is given as the set of triangles 

resulting from a simplicial partition of Q. 
We start with a coarse triangulation % of Cl with the property that the 

Dirichlet boundary piece YD is composed of edges of triangles T 6 %• 
We assume that there are positive constants 0 < S < 1 < A and w(T) such 

that 
2 2 2 

(l.i) Su(T) E tf < E «»(*)&* < M r ) E £2 

.=1 »,fc=i »=i 

for all T € 73, almost all x € T and all £ € IR2. Thus a(-,-) is a symmetric, 
bounded and coercive bilinear form on H}j(ü). 

In addition to the usual (semi-)norms || • ||0 and | • |i of L2(ti) and H1^), 
we introduce the semi-inner product 

(u,u)i|n0 = E / diudivdx 
, = i -^o 

for fioCfi measurable with induced norm \u^ÜQ = (U,U)I\Q0. Furthermore 
we introduce the weighted H1 (Ü) semi-inner product 

2 , 

(w,u)i;T0 = E w ( r ) E / diudivdx, 

3 



which induces the seminorm |w|i;To = (u, «)I ;T0 , and the weighted L2(fi) inner 
product 

u{T) 
(U,V)0;%= E <^\frjT

UVdX> 
T6T0 

which induces the norm ||ii||o;To = (u>u)o;T0-
Relation (1.1) may now be written as 

(1.2) 6 |u |? .T o<a(U ,u)<A|tz |? ; T o . 

The triangulation T0 is refined several times, giving a family of nested 
triangulations TQ,Ti,... ,Tj. A triangle of 7Jt+i is either a triangle of % or 
is generated by subdividing a triangle of Tt into four congruent triangles 
or into two triangles by connecting one of its vertices with the midpoint of 
the opposite side. The first case is called a regular or red refinement and 
the resulting triangles as well as the triangles of the initial triangulation are 
called regular triangles. The second case is an irregular or green refinement 
and results in two so-called irregular triangles. 

However, the irregular refinement has the character of a closure which we 
force by the following rule: 

(Tl) Each new vertex of 7jt, i.e., a vertex which does not belong to 7fc_i, is 
a vertex of a triangle which was generated by regular refinement. 

The irregular refinement is potentially dangerous because interior angles 
are reduced. Therefore, we add the following rule: 

(T2) Irregular triangles may not be further refined. 

This rule insures that every triangle of any triangulation 7jk is geometrically 
similar to a triangle of the initial triangulation T0 or to a green refinement 
of a triangle in %. These triangulations are meanwhile standard and have 
been introduced by BANK et al. in [1]. 

The index of the final triangulation will always be denoted by j and will 
be fixed in most of the following considerations. 

By the depth of a triangle 

re U^ 
jt=0 

we mean the number of successive ancestors in the family of triangulations. 
If we add the rule 

(T3) Only triangles of depth k — 1 are refined for the construction of Tk, 
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we get the following expression for the depth of a triangle T G \Jk-Q % 

depth(T) = min{0 < k < j \ T G Tk}. 

Equipped with rule (T3) we can uniquely reconstruct the sequence 7 ^ , . . . , 7}_i 
from the knowledge of the initial triangulation T0 and the final triangulation 
Tj alone, without knowing the actual dynamic refinement process leading 
to Tj in an adaptive algorithm, see [6]. However, if we choose the data-
structures representing the triangulation cleverly, the sequence %,TX,... ,1) 
is implicitly given. For example this is the case in the adaptive FEM code 
KASKADE, cf. RoiTZSCH [12] or LEINEN [10]. 

The refinement structure (T1)-(T3) implies the property of local quasi-
uniformity, i.e., the existence of a positive constant K depending only on the 
local geometry of the initial triangulation % such that 

( U ) ^ < K 

for all T, T' G Tk such that T D V ± 0. Here h(T) denotes the diameter of a 
triangle. 

Corresponding to the triangulations Tk we have finite element spaces 
Sk- Sk consists of all functions which are linear on each triangle T £Tk and 
continuous on fi. Furthermore they vanish on the Dirichlet boundary piece 
YD. Because the triangulations are nested we have 

So C Si C . . . C Sj C H&Sl). 

Let Mk = {x[k\ ..., ijft'} be the set of vertices of triangles in Tk, which do 
not lie on the Dirichlet boundary piece To. 

The nodal basis. The set Tk — {i>[k\ •• • ,il>$} of nodal basis functions, 
where 

r/>\k){x\k)) = 6u for l<i,l<nk, 

forms a basis of Sk- For ^ € Tk we denote by x$ G Nk the supporting point 
of ip, i.e. 

VM = !• 
Structuring of the nodal bases of varying index k. We set 

i) * = (Jr*> 
it=o 

ii) tfo = To, 

Hi) $k = Yk\Tk-i, whenever 1 < k <j. 
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[3, Lemma 4.1] states the easily proven fact that the set $ is the disjoint 
union of the sets #*, A; = 0 , . . . , j . For ^ € * we denote the set of indices, 
for which a nodal basis function ip occurs, by 

K+ = {k\ v> € r fc}. 

Here we abbreviate the first resp. the last occurrence of V> in a set Tk by 

i) A$ = minify, 

ii) k^ = m a x ^ . 

2. T H E ABSTRACT SETTING OF ADDITIVE SCHWARZ METH­

ODS 

The abstract framework of additive Schwarz methods as introduced by 
D R Y J A / W I D L U N D [7, 8] can be viewed as a general construction principle 
for preconditioners of elliptic finite element equations. Moreover it provides 
methods for the analysis of such preconditioners. 

Let V be a finite dimensional vector space with the two inner products 
a(-, •) and (•,•). Let {K}£Li ^ e a family of subspaces of V such that 

(2.1) V^Vi. 

Define the projections 7r,-,a,- : V —* Vi as 

(iCiU,Vi) = (u,V{) and a(o\ti,u,-) = a(u,i>;) 

for all Vi 6 Vi. Furthermore define the representation operators A : V —+ V 
and Ai : V —>• V through 

(Au, v) = a(u,v) and (AjU,-,i>;) = a(tt,-,u,-) 

for all u,v € V resp. Ui,Vi € V. Observe that 

(2.2) KiA = AiO{. 

The corresponding additive Schwarz method transforms the equation Au = f 
into an equivalent one 

o-u = / ' , 

"W^WS>^>.'f«^^V^^«T*'^'-"':»*TC«*------*->'-',';,<*^'s';" 



where a denotes the sum of the Ritz projections cr,-

(2-3) <x = i > . 
1=1 

This transformed equation will be solved iteratively. Thus the aim of additive 
Schwarz methods is to find subspace decompositions (2.1) such that /c(a) is 
small. 

It can be easily seen with the help of (2.2) that 

a = BA 

with 

(2.4) B = Y,A-\i. 
«=i 

Hence a good additive Schwarz method yields a good preconditioner B for A 
since 

K(O) = K(BA). 

The following meanwhile well-known Lemma provides a technique of bound­
ing the smallest and largest eigenvalue of a. 

LEMMA 1. 

i) Let there exists a positive constant CQ such that for all u € V we get a 
decomposition u = ]Cj=i ui> ui £ K'> such that 

N 

(2.5) ^a (u t - ,u . ) < Coa(u,u). 
«=i 

Then we get the estimate for u € V 

CQ1O(U, U) < a(au,u). 

ii) Let there exist constants e,-j for i,j = 1 , . . . , N such that the following 
Cauchy-Schwarz like inequality 

a(u{, Uj) < eija(ui, tz,-)1/2a(«j, Uj)lft 

holds for Ui € Vi, Uj 6 Vj. Then we get the estimate 

a(o~u,u) < p(E)a(u,u) 

for u € V where p(E) denotes the spectral radius of the matrix E = 

" lA i / i ^ i -

An elementary proof of i) may be found in [13], of ii) in [9]. 
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3. BPX AS AN ADDITIVE SCHWARZ METHOD 

Now we turn to the finite element equations. The following considerations 
strongly rely on the notation introduced in Section 1. 

We specify the subspace decomposition (2.1) to be 

with V$ = span{V>}. 
Corresponding to the considerations of the last section we introduce the 

projections T0, <T0 : Sj —• <So and ir^,a^, : Sj —• V^ defined as 

(7r0w,Uo)o;T0 = (u,v0)0.To and a(a0u,v0) = a(u,v0) 

for all v0 6 <So and 

(7r^u,^)o;To = (u,i>)o;% and a(o>u,V>) = a(u,^>) 

for all V> € * . 
Furthermore we introduce the representation operators Ak : Sk —» <Sfc and 

A^-.V^ -* V^ by 

(Afclifc,t;fc)o;To = a(Wfc,Ufc) 

for all Ufc, Ufc € «Sfc, fc = 0 , 1 , . . . , j , and 

(A^VOojTo = a(i>,i>) 

for all 0 € * . 
The preconditioner of A,- which corresponds to the abstract version (2.4) 

is given by 

A straightforward computation shows that for u € Sj and iß E $ 

r i K ^ ) O ; T Q , 
A * ^ ~ a(V>,V0 

Thus 

(3-1) BjU = A 0 -V o U + E%T7f^ 

for u £ Sj. This is just the computational available version of the BPX pre­
conditioner as considered by YsERENTANT[18], cf. especially the discussion 
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around formulas [18, (5.46)-(5.48)]. Note that for the application of Bj in a 
conjugate gradient method the values (u,iß)0;To are already known and need 
not to be computed, as explained in [4, 18]. 

An estimate of the condition number of 

BjAj = a — <7o + /] oy, 

will be obtained with the help of Lemma 1. 

4. A BOUND FOR THE SMALLEST EIGENVALUE 

In order to bound the smallest eigenvalue of a by means of Lemma Li 
we have to specify the splitting for which the estimate (2.5) can be shown. 
An effective estimate of this kind relies strongly on the existence of linear 
restriction operators 

Rk '. Sj —* Sk 

for k = 0 , 1 , . . . , j such that certain approximation and stability results hold. 
If we specify Rk = Mk, where the Mjt are the quasi-interpolation operators 
introduced by YSERENTANT in [18, (4.11)], then [18, Lemma 4.2] gives the 
approximation estimate 

(4-1) W- Rk)u\\lr0 < c*2fjA-k \u\l>To, 

for k = 0 , 1 , . . . , j , and [18, Lemma 4.4] gives the stability estimate 

(4-2) \Rku\lr0 < clfj\u\lTo, 

for k = 0 , 1 , . . . , j . Here the constants cj, c\ depend only on the local geome­
try of the initial triangulation % and the constant fj measures the jumps of 
u> as follows: 

^ = maxr/(T) 

with 
_ m a x { o ; ( r ) | r e T o , r n r ^ 0 } 

^ ' min{o;(r') | V € T0, V D T ^ 0} ' 

REMARK 1. Note that we also could take the Rk as the weighted L2-
projections Qk : L2(ti) —> Sk defined by 

(QkU,Vk)o;T0 = (u,Vk)o;To 

for all Vk € Sk- For these projections the same estimates as (4.1) and (4.2) 
hold by [18, Theorem 4.3/4.5]. 
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These restriction operators induce the splitting 

u = «o + X Uk 

fc=i 

with 
Uj = U- Rj-\U, Uk = {Rk - -Rfe_i)u 

for k = 1 , . . . , j - 1 and u0 = RoU. Put ü = Yll=i uk = u - u0, üfc = uk for 
fc = 1,. . . , j and ü0 = 0. Since ük € Sk for & = 0 , 1 , . . . , j we can decompose 
as follows 

j i 

k=0 fc=o i/>er* 

= E 
where we have put u^, = ß(u, V>)V' with 

/?(u,V0 = YJ ükM-

We thus end up with the decomposition 

(4.3) u = «o + X] UV-

where u0 € £0 and u ,̂ € V^. 
First we estimate ]C/,g$ a(u^,, u^,) from above by a(u,u). Usage of the 

inverse inequality [18, Lemma 3.3] together with (1.2) yields 

(4.4) £ a(u+,ut) < Atfo £ /?2(u,V) 4**(</V/>)o;T0, 

where the constant I<o depends only on the shape regularity of the triangles of 
the initial tri angulation T0. With the help of the Cauchy-Schwarz inequality 
we estimate 

2 

ß2M) = X 2"* (2kük(Xi,)) 
k€K^ 

< U'"1 £4*M^)|2. 
keKj, 
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Insertion in (4.4) yields 

(4.5) £ <»(«,,«,) < UKo£,4k E M^)|2(^)o;T0. 

The last expression can be further estimated by means of the following 
Lemma. 

LEMMA 2. For u € Sk the estimates 

1 

2 ^(u,«)o;T0 < E \UM\2(^^)o;To < 2 (« , u)0;T0 

holds. 

Proof. We have 

E l « ( a * m * ) o * = £ ^ ( i E \T\ E K*)l2' 

The estimates of [4, Lemma 2.3] show that 

\fydx<\ E m E N*)|a<2/ti3dz 
T D T&T„,Tct *eAT*nr , • / r 

for any T € 7^. Thus the Lemma follows by the definition of (•, -)o;To-

Replacing the discrete term in (4.5) in this way gives 

(4.6) E«K>^)<|A^oE4"lklfc-
V-€* k=l 

By the approximation estimate (4.1) we get 

and 

llflfclliro * 2(||(/-JR fc)"llo;r0 + l l ( j r -^- i )" l lo ; ro) 

for fc = l , . . . , j - 1. 
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The missing term a(u0,u0) can be easily bounded by a(u,u) with the help 
of the stability estimate (4.2). Thus we obtain by (1.2) the following estimate 
of type (2.5): 

a(u0,u0) + 52 a(u^,u,j,) < cofj—(j + 1) a(u,u) 

for the decomposition (4.3), where CQ depends only on the local geometry of 
the initial triangulation TQ. 

Lemma l.i shows that we have proven the following 

THEOREM 1. There exists a positive constant CQ, depending only on the 
local geometry of the initial triangulation %, such that 

C 1 

for all u G Sj. 

5. A BOUND FOR THE LARGEST EIGENVALUE 

Here we have to establish orthogonalities and some strengthened Cauchy-
Schwarz inequalities in order to estimate a(cru, u) effectively from above. 

First we consider colorings of 7^: A coloring of T^ is a mapping 

X f c:jV f c->{l,2,.. . ,X(T f c)}, 

such that x(xi) ^ x{x2) for xx,x2 € Sfk connected by an edge of Tk. A 
well known, easily proven theorem ([2, Chap. 12, Theorem 12]) states that a 
minimal x(^fc) < 5 can always be found. The famous four color theorem of 
APPEL/HAKEN shows that even x(T~k) < 4 for the minimal x(^fc)- W e t a k e 
for the following a four coloring of the Tk. 

We put for i = 1 , . . . ,4 

n = {</> e rfc | xfc(^) = *'}• 

Obviously the tp € r*fe are mutually orthogonal for fixed i, k with respect to 
a(-, •) and any other inner products involving integrals of functions and their 
derivatives. Thus the operators 

ak,i = X] o-j, 

12 



are in fact orthogonal projections 

°k,i • Sj -> vi = span($i n ri). 
Hence the new decomposition (remember that \& is the disjoint union of the 
sets tpfc) 

3 4 

O- = or0 + X XI °r*.«* 
A:=0 »=1 

implies that for w 6 Sj 

3 4 

/K j \ <*(<"*» U) = 0(<70W, <To«) + J2 E a{°~k,iU, (Xk,iU) 
^ ' Jfe=0»=l 

< (l+4(i + l))a(u,u). 
However, we intend to improve that upper bound for the largest eigenvalue 

of a. This improvement relies on a strengthened Cauchy-Schwarz inequality 
for the spaces Vk

%, which follows from the next two Lemmas. 

LEMMA 3. There exist constants^ < 7o < 7i depending only on the shape 
regularity of triangles of the initial triangulation TQ, such that for u € spanTj. 

7 o E K ^ ) l 2 < H ? < 7 i E K**)la 

holds. 

Proof. Since u = £v>€r*' u(x^)ij) and those tp are mutually orthogonal 
with respect to the if1(n)-inner product we have 

HI = E K**)laW?-

Now by the usual affine-transformation technique we see that there exist 
constants 70,71 with the asserted properties such that 

7o < M i < 7i 

for all tff'E \P. This proves the Lemma. • 

LEMMA 4. For u € Sk, v eV,% with I > k the inequality 

(u,v)isr0 - c ( " 7 f ) 'MifliMiflö 

holds, where the positive constant c depends only on the local geometry of the 
initial triangulation TQ. 
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Proof. The proof is inspired by the proof of YSERENTANT's [17, Lemma 

2.7]. 
Consider a fixed triangle t £ Tk. Decompose v = v0 + ux with 

and 

0e*inr;,^ef\9f 

As we have ^ = 0 on the boundary of T and u is linear on T we get by 
partial integration 

(u,vi)i\f = ° 

hence 

(« ,v) i | f = (u»t>o)i|f-

Define T as the boundary strip of T consisting of all those triangles T € %. 
such that 

(*) there exists a 0 € fy fl T] such that T C supp ^ fl f and x ,̂ € df. 

Since uo is identically zero in T outside Y we get 

(u,u)1(j. = («,uo)i|r < |u|i|r |u0|i|r. 

By Lemma 3, more precisely its proof, we estimate 

hlxir < 7i J2 h(*v)|2=7i Yl \vM\2 

< 7i E W**)l3 < ~-K\f. 
^etfinrj^er 7 o 

On the other hand the derivatives of u are constant on T. This gives 

I«IV = jfjl-liif 

Thus we have to estimate the ratio | r | / |T | . 
Take any T G 7 J which belongs to T and take ^ € \&( as the corresponding 

nodal basis function with property (*). Now [3, Lemma 6.10] states the 
existence of a triangle T" £ 7j, 2" C supp T/> with depth T" = / such that I" 
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is regular. Because of xj € V D T the the local quasi-uniformity property 
(1.3) states 

jh(T) < h{T) < Kh(T). 

Since V is regular there is due to (T2) and (T3) a regular T" € Tk such that 
T' C T" and therefore due to the regular refinement over I — k steps 

h(T) = 2-V-Vh(T"). 

Due to x^ € T D T" the same argument as above yields 

jh(f) < h(T") < Kh(f). 

Thus we get 

-L2-V-kh(f) < h(T) < K22-V-Vh(T). 

We can restate these inequalities as follows : There exist positive constants 
ao, cci such that for any T 6 7/ which belongs to T the estimate 

m<-(i) 
/-it 

iri 

holds and there are at most N such triangles where N is bounded by 

N<—2 
a0 

1 nl-k 

Hence we end up with the estimate 

El < £i (IN l~k 

\f\ ~ ocQ V2> 

Summarizing we get 

l-k 

{u,v)llf<c\-y=\ H | t | u | 1 | f , 

where c has the asserted property. Summing over all triangles T 6 Tk with 
t C T for a fixed T G % gives with an application of the Cauchy-Schwarz 
inequality 

(v,v)ip ^ c ( " 7 f ) M I I T M H T -
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Thus we can estimate 
i-k 

(^)i;To = E w ( T ) K w V ^ c ( - V ) S "(T)\U\HT\V\I\T 

1 ^~k 

• 

Application of (1.2) gives the strengthened Cauchy-Schwarz inequality. 

COROLLARY 1. There exists a positive constant c depending only on the 
local geometry of the initial triangulation TQ such that 

A / 1 V'-*1 

a(vtv)<c-T-[-7=) a(u,u)1/2a(v,v)lft 

for any u € V£, v € VJ*. 

Usage of this inequality yields for o~i = Ylk=ocrk,i, z = 1 , . . . ,4, by Lemma 
l.ii that , 

a(aiU,u) < c—p(E)a(u,u) 
6 

with E = {2"''-fc'/'2}f)fc_0. The spectral radius of this matrix can be estimated 
as 

Thus 
4 A 

a(au,u) = V]a(a,u,u) < cx— a(u,u) 
i=o b 

where ci depends only on the local geometry of TQ. 
We have therefore proven the following 

THEOREM 2. There exists a positive constant c\ depending only on the 
local geometry of the initial triangulation % such that 

a(BjAjU,u) < Ci—a(u,u) 

for all u £ Sj. 
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REMARK 2. We proved in fact the somewhat sharper result 

a{BjAjU,u) < min f c i y , l + 4 ( j + 1)J a(u,u). 

This estimate helps to explain why for small j one can observe sometimes a 
linear dependence of the largest eigenvalue on j . 

6. CONSEQUENCES AND REMARKS 

1. Tracing the arguments of [18] from formulas (5.46)-(5.48), i.e., the 
discussion of our Bj, backward to [18, Theorem 4.6] we get for the orthogonal 
projection version 

Bjl=A0QQ + j^±k{Qk-Qk_x) 
fc=i 

(the operators Qk have been introduced in Remark 1) of the BPX precondi-
tioner the following 

THEOREM 3. There exist positive constants CQ,CI depending only on the 
local geometry of the initial triangulation % such that 

Ä^c0(j + l) (^"1" ," ) - {AjU,U) ~ ^Bfu^ 

for all u €. Sj. 

For the dependency on 8 and A one has to consider first the bilinear form 
(•,-)i;r0 instead of a(-,-)> i-e-> 6 = A = 1, and thereafter transform back to 
the final result by means of (1.2). 

2. Theorem 3 may be extended to the case mes(r£j) = 0. One considers 
the space Konst = span{l} and the quotient space 

«Sj/VConst = So/Vcaast + 2 ^ V^/V^onst-

Observe that V^jVcaast — V^ and that a(-, •) can be defined canonically on 
Sj/Konst- Since Sj/Vconat S Sj 9 K ^ t , where the last term denotes the 
orthogonal complement of Konst in Sj with respect to (•, ^O-TQ, one can also 
define (•, -^To on Sj/Vconat. The Poincare inequality states the coercivity of 
a(-, •) on Sj/Vconst and all the considerations of the last sections can be done 
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on that space in a canonical way. Reinterpretation of Theorem 3 in terms of 
the space Sj is possible since this theorem does not involve an inversion of 
any Ak. This yields the validity of the theorem even in the case mes(r£>) = 0, 
a fact which is used in [4]. 

3. The hierarchical basis preconditioner of YSERENTANT [17] is given in 
our setting as the additive Schwarz method with exact solvers corresponding 
to the direct subspace decomposition 

Sj=So® 0 V*, 

where ^u C ^ denotes the set of all hierarchical basis functions of a depth 
greater or equal than one. Thus the hierarchical basis preconditioner 

BHu = A0
lir0u + 2^ ' i> 

consists simply of fewer terms in the last sum compared to the computational 
BPX preconditioner Bj of (3.1). 

Since we have less freedom in decomposing u € Sj for an estimate like (2.5), 
Lemma 1 shows that the thus obtained bound for the smallest eigenvalue of 
BHAJ must be smaller than the one for BjAj. 

This helps to understand why more terms in the sum improve the relation 
^min(BHAj) = 0(l/j2), which is known to be optimal, to ^^(BjAj) = 
0(1/j) or even better. 

Note that the usual estimate for the hierarchical basis preconditioner Bjj 
can be obtained along the same lines of Section 4 and 5 using the stability 
property [18, Theorem 3.1] and approximation property [18, Theorem 3.2] of 
the interpolation operators and the strengthened Cauchy-Schwarz inequality 
[17, Lemma 2.7]. 
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