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1 Introduction

Dynamical process simulation is the central tool nowadays to assess the mod-
elling process for large scale physical problems arising in such fields as biology,
chemistry, metallurgy, medicine, and environmental science. Moreover, suc-
cessful numerical methods are very attractive to design and control economical
plants at low costs in a short time. Due to the great complexity of the estab-
lished models, the development of fast and reliable algorithms has been a topic
of continuing investigation during the last years.

One of the important requirements that modern software must meet today is
to judge the quality of its numerical approximations in order to assess safely the
modelling process. Adaptive methods have proven to work efficiently providing
a posteriori error estimates and appropriate strategies to improve the accuracy
where needed. They are now entering into real-life applications and starting to
become a standard feature in simulation programs. The present paper reports
on one successful way to construct discretization methods adaptive in space and
time, which are applicable to a wide range of practically relevant problems.

We concentrate on heat and mass transfer problems which can be written in
the form

B(z,t,u, Vu)Oyu = V - (D(z, t,u, Vu)Vu) + F(z,t,u, Vu) , (1)

supplemented with suitable boundary and initial conditions. The vector—valued
solution w = (uy,... ,umy)7 is supposed to be unique. This problem class in-
cludes the well-known reaction—diffusion equations and the Navier—Stokes equa-
tions as well.

In the classical method of lines (MOL) approach, the spatial discretization
is done once and kept fixed during the time integration. Discrete solution values
correspond to points on lines parallel to the time axis. Since adaptivity in space
means to add or delete points, in an adaptive MOL approach new lines can arise
and later on disappear. Here, we allow a local spatial refinement in each time
step, which results in a discretization sequence first in time then in space. The
spatial discretization is considered as a perturbation, which has to be controlled
within each time step. Combined with a posteriori error estimates this approach
is known as adaptive Rothe method. First theoretical investigations have been
made by BORNEMANN [7] for linear parabolic equations. LANG and WALTER



[26] have generalized the adaptive Rothe approach to reaction—diffusion systems.
A rigorous analysis for nonlinear parabolic systems is given in LANG [28]. For
a comparative study, we refer to DEUFLHARD, LANG, and NOWAK [16].

Since differential operators give rise to infinite stiffness, often an implicit
method is applied to discretize in time. We use linearly implicit methods of
Rosenbrock type, which are constructed by incorporating the Jacobian directly
into the formula. These methods offer several advantages. They completely
avoid the solution of nonlinear equations, that means no Newton iteration has
to be controlled. There is no problem to construct Rosenbrock methods with
optimum linear stability properties for stiff equations. According to their one—
step nature, they allow a rapid change of step sizes and an efficient adaptation
of the spatial discretization in each time step. Moreover, a simple embedding
technique can be used to estimate the error in time satisfactorily. A description
of the main idea of linearly implicit methods is given in Section 2.

Stabilized finite elements are used for the spatial discretization to prevent
numerical instabilities caused by advection—dominated terms. To estimate the
error in space, the hierarchical basis technique has been extended to Rosenbrock
schemes in LANG [28]. Hierarchical error estimators have been accepted to pro-
vide efficient and reliable assessment of spatial errors. They can be used to
steer a multilevel process, which aims at getting a successively improved spatial
discretization drastically reducing the size of the arising linear algebraic systems
with respect to a prescribed tolerance (BORNEMANN, ERDMANN, and KORN-
HUBER [8], DEUFLHARD, LEINEN and YSERENTANT [17], BANK and SMITH [2]).
A brief introduction to multilevel finite element methods is given in Section 3.

The described algorithm has been coded in the fully adaptive software pack-
age KARDOS at the Konrad-Zuse—Zentrum in Berlin. Several types of em-
bedded Rosenbrock solvers and adaptive finite elements were implemented.
KARDOS is based on the KASKADE-toolbox [18], which is freely distributed
at ftp://ftp.zib.de/pub/kaskade. Nowadays both codes are efficient and reliable
workhorses to solve a wide class of PDEs in one, two, or three space dimensions.
To demonstrate the performance of our adaptive approach, in Section 4 we will
present two practically relevant problems occuring in combustion theory and
brine transport in porous media.

2 Linearly Implicit Methods

In this section a short description of the linearly implicit discretization idea is
given. More details can be found in the books of HAIRER and WANNER [23],
DEUFLHARD and BORNEMANN [15], STREHMEL and WEINER [37]. For ease of
presentation, we firstly set B=1I in (1) and consider the autonomous case. Then
we can look at (1) as an abstract Cauchy problem of the form

Ou = f(u), wu(te) =uo, t>to, (2)

where the differential operators and the boundary conditions are incorporated
into the nonlinear function f(u). Since differential operators give rise to infinite



stiffness, often an implicit discretization method is applied to integrate in time.
The simplest scheme is the implicit (backward) Euler method

Unpt1 = Up + Tf(Un+1) 3 (3)

where 7 = t, 11 —t, is the step size and u,, denotes an approximation of u(t)
at t = t,. This equation is implicit in w41 and thus usually a Newton-like
iteration method has to be used to approximate the numerical solution itself.
The implementation of an efficient nonlinear solver is the main problem for a
fully implicit method.

Investigating the convergence of Newton’s method in function space, DEUFL-
HARD [13] pointed out that one calculation of the Jacobian or an approximation
of it per time step is sufficient to integrate stiff problems efficiently. Using w,,
as an initial iterate in a Newton method applied to (3), we find

(I-=1dn)Kn = 7f(un), (4)
Up+l = Up + K, y (5)

where J,, stands for the Jacobian matrix 9, f(uy). The arising scheme is known
as the linearly implicit Euler method. The numerical solution is now effectively
computed by solving the system of linear equations that defines the increment
K,,. Among the methods which are capable of integrating stiff equations effi-
ciently, linearly implicit methods are the easiest to program, since they com-
pletely avoid the numerical solution of nonlinear systems.

One important class of higher—order linearly implicit methods consists of
extrapolation methods that are very effective in reducing the error, see DEUFL-
HARD [14]. However, in the case of higher spatial dimension, several drawbacks
of extrapolation methods have shown up in numerical experiments made by
BORNEMANN [6]. Another generalization of the linearly implicit approach we
will follow here leads to Rosenbrock methods (ROSENBROCK [35]). They have
found wide-spread use in the ODE context. Applied to (2) a so—called s—stage
Rosenbrock method has the recursive form

i—1 i—1
(I — T4 Jn) Kn,' = Tf(un+2a,~j Kn]) + TJn Z’Yij Knj s 1= 1(1)8, (6)
j=1 j=1

Untl = Up + Z sznz ) (7)

i=1

where the step number s and the defining formula coefficients b;, a;;, and ;; are
chosen to obtain a desired order of consistency and good stability properties for
stiff equations (see e.g. HAIRER and WANNER [23], IV.7). We assume 7;; =v>0
for all 4, which is the standard simplification to derive Rosenbrock methods with
one and the same operator on the left—hand side of (6). The linearly implicit
Euler method mentioned above is recovered for s=1 and y=1.



For the general system
B(ta u)atu = f(tau) ’ U(to) =up, t>to, (8)

an efficient implementation that avoids matrix—vector multiplications with the
Jacobian was given by LuBicH and ROCHE [31]. In the case of a time- or
solution—dependent matrix B, an approximation of d;u has to be taken into
account, leading to the generalized Rosenbrock method of the form

i—1
1 i
™ =T )

+ (B(tn,un) — B(t:,Us)) Z;, i =1(1)s,

where the internal values are given by

i—1 i—1
i
ti=ty+ oy, Ui=un+ Y ayUnj, Zi=(1_ai)zn+Z£Unj;
Jj=1

=1

and the Jacobians are defined by

Ta = Bu(f(tu) = B WD umyit o
Cn = 615 (f(t7 U) - B(t7 u)z)W:u"’t:t"’ZZz" ’

This yields the new solution

8
Untl = Up + Zmz Uni

i=1
and an approximation of the temporal derivative O;u

i

- 1
Zngl = Zn + )M (; > (cij = 56)Unj + (0 — 1)z) -

i=1 j=1

The new coefficients can be derived from a;j;, v;;, and b; [31]. In the special
case B(t,u) =1, we get (6) setting Un;i=73_,_; ;7ijKnj, i=1,... ,s.
Various Rosenbrock solvers have been constructed to integrate systems of the
form (8). An important fact is that the formulation (8) includes problems of
higher differential index. Thus, the coefficients of the Rosenbrock methods have
to be specially designed to obtain a certain order of convergence. Otherwise, or-
der reduction might happen. In [32, 31], the solver ROWDAIND2 was presented,
which is suitable for semi—explicit index 2 problems. Among the Rosenbrock
methods suitable for index 1 problems we mention Ros2 [12], RowpA3 [33],
Ros3P [29], and RODASP [36]. More informations can be found in [28]. For the
convenience of the reader, we give the defining formula coefficients for R0s2



v = 1.707106781186547¢ + 00

a1 = 0.000000000000000e + 00 | ax = 0.000000000000000e + 00
a2 = 5.857864376269050e — 01 | a2 = 1.000000000000000e + 00
az2 = 0.000000000000000e + 00

ci1 = 5.857864376269050e — 01 | s11 = 0.000000000000000e + 00
c21 = 1.171572875253810e + 00 | s21 = 3.431457505076198e — 01
c22 = 5.857864376269050e — 01 | s22 = 0.000000000000000e + 00
11 = 1.707106781186547¢ + 00 | o1 = 0.000000000000000e + 00
v2 = —1.707106781186547e + 00 | o2 = 5.857864376269050e — 01
m1 = 8.786796564403575e — 01 | 1 = 5.857864376269050e — 01
my = 2.928932188134525¢ — 01 | 72 = 0.000000000000000e + 00

Table 1: Set of coefficients for Ros2 [12].

and ROWDAIND2 in Tab. 1 and Tab. 2, respectively. Both Rosenbrock solvers
have been used in our simulations presented here.

Usually, one wishes to adapt the step size in order to control the temporal
error. For linearly implicit methods of Rosenbrock type a second solution of
inferior order, say p, can be computed by a so—called embedded formula

ﬂn+1 = up-+ Z sznz )
S 1 1

Zpt1 = zn+Zm, ;Z cij — 8ij)Unj + (05 — l)zn) ,
— =

where the original weights m; are simply replaced by ;. If p is the order
of up41, we call such a pair of formulas to be of order p(p). Introducing an
appropriate scaled norm || - ||, the local error estimator

Tt = [|ung1 — g || + [|7(2n41 = Znga) || (10)
can be used to propose a new time step by

T < TOLr, )1/ S

Tn—1

(11)

Tn+l =
m Tn+1 Tn+l

Here, TOL,; is a desired tolerance prescribed by the user. This formula is re-
lated to a discrete PI-controller first established in the pioneering works of
GUSTAFFSON, LUNDH, and SODERLIND [21, 20]. A more standard step size
selection strategy can be found in HAIRER, N@RSETT, and WANNER ([22], I1.4).



v = 3.000000000000000e — 01

a11 = 0.000000000000000e + 00 | 21 = 0.000000000000000e + 00
a2 = 1.666666666666667¢ +00 | a2 = 5.000000000000000e — 01
az2 = 0.000000000000000e + 00 | @3 = 1.000000000000000e + 00
az1 = 1.830769230769234e + 00 | a4« = 1.000000000000000e + 00
a3z = 2.400000000000000e + 00

asz3 = 0.000000000000000e + 00

aq1 = 1.830769230769234e + 00

as2 = 2.400000000000000e + 00

as3 = 0.000000000000000e + 00

asqa = 0.000000000000000e + 00

ci1 = 3.333333333333333e + 00 | s11 = 0.000000000000000e + 00
c21 = 1.246438746438751e + 00 | s21 = 5.555555555555556e + 00
c22 = 3.333333333333333e + 00 | s22 = 0.000000000000000e + 00
c31 = —1.226780626780621e + 01 | s31 = —4.239316239316217e + 00
cz2 = 4.266666666666667¢ + 01 | s32 = 8.000000000000000e + 00
c33 = 3.333333333333333e + 00 | s33 = 0.000000000000000e + 00
ca1 = 5.824628046850726e — 02 | sa1 = —4.239316239316217e + 00
ca2 = 3.25925925925925% + 00 | s42 = 8.000000000000000e + 00
c43 = —3.703703703703704e — 01 | s43 = 0.000000000000000e + 00
caq = 3.333333333333333e + 00 | s4a = 0.000000000000000e + 00
v1 = 3.000000000000000e — 01 | o1 = 0.000000000000000e + 00
v2 = 1.878205128205124e — 01 | o2 = 1.666666666666667¢ + 00
v3 = —1.000000000000000e + 00 | o3 = 2.307692307692341e — 01
v4 = 0.000000000000000e + 00 | o4 = 2.307692307692341e — 01
m1 = 1.830769230769234e + 00 | 1 = 2.214433650496747¢e + 00
ma = 2.400000000000000e + 00 | 72 = 1.831186394371970e + 00
m3 = 0.000000000000000e + 00 | 73 = 8.264462809917363e — 03
mg = 1.000000000000000e + 00 | 724 = 0.000000000000000e + 00

Table 2: Set of coefficients for ROWDAIND2 [32, 31].




Rosenbrock methods offer several structural advantages. They preserve con-
servation properties like fully implicit methods. There is no problem to construct
Rosenbrock methods with optimum linear stability properties for stiff equations.
Because of their one—step nature, they allow a rapid change of step sizes and
an efficient adaptation of the underlying spatial discretizations as will be seen
in the next section. Thus, they are attractive for solving real world problems.

3 Multilevel Finite Elements

In the context of PDEs, system (9) consists of linear elliptic boundary value
problems possibly advection—-dominated. In the spirit of spatial adaptivity a
multilevel finite element method is used to solve this system. The main idea of
the multilevel technique consists of replacing the solution space by a sequence of
discrete spaces with successively increasing dimension to improve their approx-
imation property. A posteriori error estimates provide the appropriate frame-
work to determine where a mesh refinement is necessary and where degrees of
freedom are no longer needed. Adaptive multilevel methods have proven to be
a useful tool for drastically reducing the size of the arising linear algebraic sys-
tems and to achieve high and controlled accuracy of the spatial discretization
(see e.g. BANK [1], DEUFLHARD, LEINEN, and YSERENTANT [17], LANG [27]).

Let T}, be an admissible finite element mesh at ¢t = ¢,, and SZ be the as-
sociated finite dimensional space consisting of all continuous functions which
are polynomials of order ¢ on each finite element T' € Tp,. Then the standard
Galerkin finite element approximation U/, € S} of the intermediate values Up;
satisfies the equation

(L, UL, ¢) = (rnis¢)  forall ¢ € SY, (12)

where L, is the weak representation of the differential operator on the left—
hand side in (9) and r,,; stands for the entire right-hand side in (9). Since the
operator L, is independent of i its calculation is required only once within each
time step.

It is a well-known inconvenience that the solutions U, may suffer from
numerical oscillations caused by dominating convective and reactive terms as
well. An attractive way to overcome this drawback is to add locally weighted
residuals to get a stabilized discretization of the form

(Lo Upiy8) + D (L Upisw(@))r = (rnis$) + Y (rniyw(@))r,  (13)

TeTh TeTh

where w(¢) has to be defined with respect to the operator L,, (see e.g. FRANCA
and FRrREY [19], LUBE and WEIss [30], ToBiskAa and VERFURTH [38]). Two
important classes of stabilized methods are the streamline diffusion and the
more general Galerkin/least—squares finite element method.

The linear systems are solved by direct or iterative methods. While direct
methods work quite satisfactorily in one-dimensional and even two—dimensional



applications, iterative solvers such as Krylov subspace methods perform consid-
erably better with respect to CPU—time and memory requirements for large two—
and three-dimensional problems. We mainly use the BicGSTAB-algorithm [40]
with ILU-preconditioning.

After computing the approximate intermediate values U,’;i a posteriori er-
ror estimates can be used to give specific assessment of the error distribution.
Considering a hierarchical decomposition

Sit=siezZi, (14)

where Z,’i'H is the subspace that corresponds to the span of all additional basis
functions needed to extend the space S} to higher order, an attractive idea of
an efficient error estimation is to bound the spatial error by evaluating its com-
ponents in the space Zg“ only. This technique is known as hierarchical error
estimation and has been accepted to provide efficient and reliable assessment
of spatial errors (BORNEMANN, ERDMANN, and KORNHUBER [8], DEUFLHARD,
LEINEN and YSERENTANT [17], BANK and SMITH [2]). In LANG [28], the hi-
erarchical basis technique has been carried over to time-dependent nonlinear
problems. Defining an a posteriori error estimator E! 11 € ZZH by

Epyi =B+ Z miEpy; (15)

i=1

with Eﬁo approximating the projection error of the initial value u, in Zg'H
and E!; estimating the spatial error of the intermediate value U, the local
spatial error for a finite element T' € T}, can be estimated by 5y := ||[E", [|7.
The error estimator E" 41 is computed by linear systems which can be derived
from (13). For practical computations the spatially global calculation of E? 11
is normally approximated by a small element—by—element calculation. This
leads to an efficient algorithm for computing a posteriori error estimates which
can be used to determine an adaptive strategy to improve the accuracy of the
numerical approximation where needed. A rigorous a posteriori error analysis
for a Rosenbrock—Galerkin finite element method applied to nonlinear parabolic
systems is given in LANG [28]. In our applications we applied linear finite
elements and measured the spatial errors in the space of quadratic functions.

In order to produce a nearly optimal mesh, those finite elements T having
an error nr larger than a certain threshold are refined. After the refinement
improved finite element solutions U/, defined by (13) are computed. The whole
procedure solve—estimate-refine is applied several times until a prescribed spa-
tial tolerance [|E", ||| <TOL, is reached. To maintain the nesting property of
the finite element subspaces coarsening takes place only after an accepted time
step before starting the multilevel process at a new time. Regions of small errors
are identified by their n—values.



4 Applications
4.1 Stability of Flame Balls

The profound understanding of premixed gas flames near extinction or sta-
bility limits is important for the design of efficient, clean—burning combustion
engines and for the assessment of fire and explosion hazards in oil refineries,
mine shafts, etc. Surprisingly, the near-limit behaviour of very simple flames
is still not well-known. Since these phenomena are influenced by bouyant con-
vection, typically experiments are performed in a pg environment. Under these
conditions transport mechanisms such as radiation and small Lewis number
effects, the ratio of thermal diffusivity to the mass diffusivity, come into the
play. Seemingly stable flame balls are one of the most exciting appearances
which were accidentally discovered in drop—tower experiments by RONNEY [34]
and confirmed later in parabolic aircraft flights. First theoretical investigations
on purely diffusion—controlled stationary spherical flames were done by ZEL-
DOVICH [42]. 40 years later his flame balls were predicted to be unstable [11].
However, encouraged by the above new experimental discoveries, BUCKMASTER
and collaborators [9] have shown that for low Lewis numbers flame balls can
be stabilized including radiant heat loss which was not considered before (see
Fig. 1 for a configuration of a stationary flame ball). Nowadays there is an
increasing interest in high—quality pug space experiments necessary to assess the
steady properties and stability limits of flame balls (see NASA information at
http://cpl.usc.edu/SOFBALL/sofball.html).

Heat and

Combustion Pr oducts//

Radiation |
Flame

(Reaction Zone)

Figure 1: Configuration of a stationary flame ball. Diffusional
fluxes of heat and combustion products (outwards) and of fresh
mixture (inwards) together with radiative heat loss cause a zero
mass—averaged velocity.



Although analytical modelling has identified the key physical ingredients of
spherical premixed flames, quantitative confirmation can only come from de-
tailed numerical simulations. Usually, spherically symmetric one-dimensional
flame codes are used to investigate steady properties, stability limits, and dy-
namics of flame balls (see e.g. BUCKMASTER, SMOOKE, and GIOVANGILI [10],
Wu, RONNEY, COLANTONIO, and VANZANDT [41]). Higher dimensional simula-
tions are very rare due to their great demand for local mesh adaptation in order
to resolve the thin reaction layers. In BOCKHORN, FROHLICH, and SCHNEIDER
[4] and KAGAN, SIVASHINSKI [25] two—dimensional computations of flame balls
were presented. Three—dimensional investigations using parallel architectures
were published in BOCKHORN, FROHLICH, GERLINGER, and SCHNEIDER [5].

The mathematical model we shall adopt is that of [4] which is based on the
constant density assumption. In dimensionless form it reads

OT —V°T = w-—s,
aY—ivW = —w
T Le - )
B BT -1)
= 2 vy L S 1
v 2Le” “P\1+a@ -1/ (16)
s = CiTll_Ti
(Ty = Tu)t

Here, T:=(T—T,)/(Ts—T,) is the nondimensional temperature determined by
the dimensional temperatures T, T',, and T, where the indices u and b refer to
the unburnt and burnt state of an adiabatic plane flame, respectively. Y repre-
sents the mass fraction of the deficient component of the mixture. The chemical
reaction rate w is modelled by an one-step Arrhenius term incorporating the
dimensionless activation energy (3, the Lewis number Le, and the heat release
parameter o := (Tb —Tu) / T,. Heat loss is generated by a radiation term s mod-
elled for the optically thin limit. The strength of the radiative loss is mainly
determined by the constant ¢ which depends on the Stefan—Boltzmann constant
and the Planck length. These relatively simple equations are widely accepted
to capture much of the essential physics of flame balls [9, 10]. Comparisons
of analytical treatments to experimental results provide strong evidence of the
model’s validity.

In the following computations, the conditions have been chosen similar to the
experiments made by RONNEY [34] for a 6.5% Ha—air lame. We set T, = 300K,
Ty, =830K, Le = 0.3, 3=10, and derive a = 0.64. In [34], additional CF3Br
as a tracer concentration in the mixture was used to increase the heat loss by
radiation. Low concentration of CF3Br yields cellular instability of the flame
balls, whereas for increased heat loss due to an increased concentration of the
tracer stable flame balls can be observed. To simulate this behaviour we use
different values of ¢ in (16), here ¢=0.01 and ¢=0.1.
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Figure 2: Two-dimensional flame ball with Le = 0.3, ¢ = 0.01.
Iso—thermals T'=0.1,0.2,...,1.0 at times t=10 and 30.

The computational domain has to be sufficiently large in order to avoid any
disturbance caused by the boundary. Typically, sizes of 100 times the flame
ball radius are needed to obtain domain—independent solutions due to the long
far—field thermal profiles [41]. In those cases, the conductive fluxes at the outer
boundary are zero. We consider domains Q = [~L, L]¢, d = 2,3, with L =200
according to the initial flame radius ro € [0.2,2.5]. As initial conditions we take
the analytic solution for a steady plane flame in the high activitation energy
limit [4, 5] and use in some calculations a local stretching to generate an elliptic
front. In the following we report on two different scenarios, unstable and quasi—
stationary flame balls.

Unstable two—dimensional flame balls. We set ¢ =0.01 and take an initial
elliptic flame with axis’ ratio of 1 : 4. After a short time an instability develops
which results in a local quenching of the flame as can be seen in Fig. 2 and
Fig. 3. After a while the flame is splitted into two separate smaller flames,
which separate again and continue propagating. It can nicely be seen that the
dynamic spatial mesh chosen by our adaptive algorithm for TOL = 0.005 is
well-fitted to the behaviour of the solution. More grid points are automatically
placed in regions of high activity in order to resolve the steep solution gradients
within the thin reaction layer.

Quasi—stationary two—dimensional flame balls. Fixing ¢ = 0.1 in (16) and
varying the initial radii for a circular flame in a large number of calculations,
we found quasi—stationary flame ball configurations. In Fig. 4 we have plotted

11



0.01.

—dimensional flame ball with Le = 0.3, ¢

Figure 3: Two

10, 30, and corresponding grids.

Reaction rate w at times ¢
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INTEGRAL OF REACTION RATE

15 20 25 30
TIME

Figure 4: Two-dimensional flame ball with Le = 0.3, ¢ = 0.1.
Integrated reaction rate for different initial radii.

the evolution of the integrated reaction rate fQ w(t, z, y)dxdy for selected initial
radii. For too small and too large radii the flame is quickly extinguished. In
between we observe a convergence process to a quasi-steady state characterized
by a very slow decrease of the integrated reaction rate. The corresponding flame
diameter is around 2. Similar results for ¢=0.05 were reported in [4].

Splitting of three—dimensional flame balls. In the three—dimensional case we
get a more complex pattern formation. Just to give an impression we select one
typical example taken from [5]. Starting with an ellipsoid having axis’ ratio of
1:1:2, the flame ball is splitted along the z—axis due to the thermo—diffusive
instabilities and further splitting occur afterwards (see Fig. 5). Although we
were able to detect certain parameter regions for extinction resulting from ex-
cessive heat loss, we have not found configurations that are stable for longer
time periods yet. This is the subject of current research.

4.2 Brine Transport in Porous Media

High—level radioactive waste is often disposed in salt domes. The safety assess-
ment of such a repository requires the study of groundwater flow enriched with
salt. The observed salt concentration can be very high with respect to seawater,
leading to sharp and moving freshwater—saltwater fronts. In such a situation,
the basic equations of groundwater flow and solute transport have to be mod-
ified (HASSANIZADEH and LEIINSE [24]). We use the physical model proposed
by TROMPERT, VERWER, and BLoM [39] for a non-isothermal, single-phase,
two—component saturated flow. It consists of the brine flow equation, the salt

13



Figure 5: Three-dimensional flame ball with Le = 0.3, ¢ = 0.1.
Iso—thermals T'=0.8 at times t=0.0,2.0,5.0, and 8.0.
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transport equation, and the temperature equation and reads

np(Bop+v0w+adT)+V-(pq) = 0, (17)
npdw +pq-Vw + V- (pJ*) = 0, (18)
(nep+ (1 =n)p*c®)OT + pcq-VT +V-JT = 0, (19)

supplemented with the state equations for the density p and the viscosity p of
the fluid

p = poexp(a(T —To) + B(p —po) + ) ,

p = po(1.0+ 1.85w — 4.0w?).
Here, the pressure p, the salt mass fraction w, and the temperature T are
the independent variables, which form a coupled system of nonlinear parabolic

equations.
The Darcy velocity q of the fluid is defined as

K
a=-—(Vp-yrg),
7
where K is the permeability tensor of the porous medium, which is supposed

to be of the form K =diag(k), and g is the acceleration of gravity vector. The
salt dispersion flux vector J* and the heat flux vector J7 are defined as

JY = - ((ndm +arl|q|) I+ %qu) Vw,

JT

AL — A
- ((H+AT|q|>I+ %qof) vr,

where |q|=+/q”q.

Writing the system of the three balance equations (17)—(19) in the form (8),
we find for the 3 x 3 matrix B

npf  npy npo
Bp,w,T)=| 0 np 0
0 0 mnep+ (1—n)p°c®

Since the compressibility coefficient g is very small, the matrix B is nearly
singular and, as known (HAIRER and WANNER [23], VI.6), linearly implicit
time integrators suitable for differential algebraic systems of index 1 do not
give precise results. This is mainly due to the fact that for § =0 the matrix
B becomes singular and additional consistency conditions have to be satisfied
to avoid order reduction. We have applied the Rosenbrock solver ROWDAIND2
[31], which handles both situations, =0 and 8#0.
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n | porosity 0.4
permeability 1010 m?
d,, | molecular diffusion 0.0 m2s~1
ar | transversal dispersivity 0.002 m
ar, | longitudinal dispersivity 0.01 m
¢ | heat capacity 4182 Jkg 1K!
c® | solid heat capacity 840 Jkg 1K1
% | heat conductivity 4.0 Jstm 1Kt
Ar | transversal heat conductivity | 0.001 Jm 2Kt
Ar, | longitudinal heat conductivity | 0.01 Jm2K-1
p° | solid density 2500 kgm™3
po | freshwater density 1000 kgm—3
Ty | reference temperature 290 K
po | reference pressure 10° kgm™1s~2
a | temperature coefficient -3.0-10* | K1
compressibility coefficient 4.45-1071° | ms2kg!
salt coefficient In(1.2)
to | reference viscosity 1073 kgm~ts7!

Table 3: Parameters of the two—dimensional brine transport model.
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An additional feature of the model is that the salt transport equation (18)
is usually dominated by the advection term. In practice, global Peclet numbers
can range between 102 and 10%, as reported in [39]. On the other hand, the tem-

perature and the flow equation are of standard parabolic type with convection
terms of moderate size.

Db =Dpo
Opw =20
T =0

(L,1)

=0 g =0
0T =0 T =0

vb o 00
\ G2 = Qv /
w = Wy
X

T=T,

Figure 6: Two—dimensional brine transport. Computational domain and
boundary conditions for ¢ > 0. The two gates where warm brine is

injected are located at (z,y) : £ <2< &, L <z < y=0.

Two—dimensional warm brine injection. This problem was taken from [39].
We consider a (very) thin vertical column filled with a porous medium. This
justifies the use of a two-dimensional flow domain Q = {(z,y) : 0 < z,y < 1}
representing a vertical cross—section. The acceleration of gravity vector points

downward and takes the form g=(0,—g)%, where the gravity constant g is set
to 9.81. The initial values at t=0 are

p(z,y,0) =po + (1 —y)pog, w(z,y,0) =0, and T(z,y,0) =Tp.
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Figure 7: Two-dimensional brine transport. Distribution of salt
concentration at ¢ =500, 5000, 10000, and 20000 with correspond-
ing spatial grids.

The boundary conditions are described in Fig. 6. We set wy = 0.25, Ty =
292.0, and g, =10~%. The remaining parameters used in the model are given in
Table 3.

Warm brine is injected through two gates at the bottom. This gives rise to
sharp fronts between salt and fresh water, which have to be resolved with fine
meshes in the neighbourhood of the gates, see Fig. 7. Later the solutions smooth
out with time until the porous medium is filled completely with brine. Our
computational results are comparable to those obtained in [39] with a method
of lines approach coupled with a local uniform grid refinement. In Fig. 8 we
show the time steps and the degrees of freedom chosen by the KARDOS solver
to integrate over ¢ € [0,2 - 10*]. The curves nicely reflect the high dynamics at
the beginning in both, time and space, while larger time steps and coarser grids
are selected in the final part of the simulation.

Three—dimensional pollution with salt water. Here, we consider Problem III
of [3] and simulate a salt pollution of fresh water flowing from left to right
through a tank Q = {(z,y,2) : 0 < 2z < 2.5,0 <y <0.5,0 < 2z < 1.0} filled
with a porous medium. The flow is supposed to be isothermal (o = 0) and
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incompressible (8 =0). Hence, the problem consists now of two PDEs with a
singular 2 x 2 matrix B(p,w) multiplying the vector of temporal derivatives.
The acceleration of gravity vector takes the form g=(0,0, —g)T.

Step Size Control
1000

100 |

10 ¢

01F

LOG10(STEP SIZE)
=
T

0.001

L L L L
0.001 0.01 0.1 1 10
LOG10(TIME)

Degrees of Freedom

L L L
100 1000 10000

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

NUMBER OF POINTS

T T T T T T T T

I T Y T SR S S N

0 L L L L
0.001 0.01 0.1 1 10
LOG10(TIME)

L L -
100 1000 10000

Figure 8: Two-dimensional brine transport. Evolution of time
steps and number of spatial discretization points for TOL; =

TOL,=0.005.

The brine having a salt mass fraction ws =0.0935 is injected through a small
slit S ={(z,y,1) : 0.375 < z < 0.4375, 0.25 < y < 0.3125} at the top of the
tank. We note that the slit chosen here differs slightly from that used in [3].

The initial values at ¢=0 are taken as

p(z,y,2,0) = po + (0.03 — 0.012x + 1.0 — 2)pog, w(z,y,2,0)=0,

and the boundary conditions are

p=p(z,y,2,0), w=0,
p=p(z,y,2,0), Opw =0,

g =0, Opbw=0,

g3 =0, Ohw=0,

pgs = —4.95-10~2 | w = w; = 0.0935,
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The parameters used in the three-dimensional simulation are given in Tab. 4.
Additionally, the state equation for the viscosity of the fluid is modified to

p = pio(1.0 + 1.85w — 4.1w? + 44.5w%) .

In Fig. 9 we show the distribution of the salt concentration in the plane y =
0.28125 after two and four hours. The pollutant is slowly transported by the
flow while sinking to the bottom of the tank. The steepness of the solution is
higher in the back of the pollution front, which causes fine meshes in this region.
Despite the dominating convection terms no wiggles are visible, especially at the
inlet. An interesting observation is the unexpected drift in front of the solution
— a phenomenon which was also observed by BLOM and VERWER [3].

n = 035 vy = In(2) | ndn = 107°
kK = 718-107'' | ar = 0.001 ar, = 0.01
po = 0.0 uwo = 0.001 po = 1000

Table 4: Parameters of the three-dimensional brine transport model.

5 Conclusion

Dynamical process simulation of complex real-life problems advises the use of
modern algorithms, which are able to judge the quality of their numerical ap-
proximations and to determine an adaptation strategy to improve their accuracy
in both the time and the space discretization. The paper presented a combina-
tion of efficient linearly implicit time integrators of Rosenbrock type and error—
controlled grid improvement based on a multilevel finite element method. This
approach leads to a minimization of the degrees of freedom necessary to reach a
prescribed error tolerance. The savings in computing time are substantial and
allow the solution of even complex problems in a moderate range of time.
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