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Abstract

The problem of allocating operating rooms (OR) to surgical cases is a challenging
task, involving both combinatorial aspects and uncertainty handling. We formulate this
problem as a parallel machines scheduling problem, in which job durations follow a log-
normal distribution, and a �xed assignment of jobs to machines must be computed. We
propose a cutting-plane approach to solve the robust counterpart of this optimization
problem. To this end, we develop an algorithm based on �xed-point iterations that iden-
ti�es worst-case scenarios and generates cut inequalities. The main result of this article
uses Hilbert's projective geometry to prove the convergence of this procedure under mild
conditions. We also propose two exact solution methods for a similar problem, but with
a polyhedral uncertainty set, for which only approximation approaches were known. Our
model can be extended to balance the load over several planning periods in a rolling
horizon. We present extensive numerical experiments for instances based on real data
from a major hospital in Berlin. In particular, we �nd that: (i) our approach performs
well compared to a previous model that ignored the distribution of case durations; (ii)
compared to an alternative stochastic programming approach, robust optimization yields
solutions that are more robust against uncertainty, at a small price in terms of average
cost; (iii) the longest expected processing time �rst (LEPT) heuristic performs well and
e�ciently protects against extreme scenarios, but only if a good prediction model for the
durations is available. Finally, we draw a number of managerial implications from these
observations.

1 Introduction

The operating theater (OT) is one of the most expensive hospital resources. Recent studies
indicate that in certain hospitals, surgical interventions concentrate up to 70% of all patient
admissions, and as much as 40% of the total expenses [18]. The management of the OT
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is a very complex task, which involves several hierarchical decision levels and combinatorial
aspects for many di�erent types of resources (operating rooms, surgeons, nurses, anesthe-
siologists, etc.), all this in an uncertain environment (surgical durations, emergency cases,
availability of recovery beds). For this reason, there has been a considerable e�ort to develop
optimization procedures to improve the management of resources in the operating theater;
we refer the reader to [27] for a comprehensive review of the operations research literature on
OT management.

This paper focuses on the problem of allocating operating rooms to elective patients,
typically on the day prior to operation. More precisely, the goal is to assign operating rooms
(OR) to a list of patient blocks, that is, groups of elective patients to be operated one after
another by the same surgical team. This is a crucial planning step for the so-called block-

scheduling system (cf. [27]), in which individual surgeons or surgery specialties have prede�ned
slots of OR-time allocated in a periodic schedule (the Master surgery schedule, MSS), and
cases must be booked within these slots.

The problem of managing the operating rooms is characterized by a very strong stochas-
ticity; see e.g. [49]. In particular, it is well known that durations exhibit a close �t with
the lognormal distribution, see e.g. [48, 31] and the references therein. This uncertainty fre-
quently leads to operations that exceed the planned OR-time in one slot of the MSS. The
excess of OR-time is known as overtime, and induces high costs for the hospital. The need
to take into account the uncertainty, and to exploit distributional information on durations
is thus extremely important, all the more so as lognormal variables are heavy-tailed. This
suggests the use of robust optimization techniques, which aim at protecting against extreme
scenarios. The problem we study is a variation of a robust optimization problem introduced
in [19]. The only di�erence is in the model: we speci�cally take into account that durations
are lognormal, which allows us to de�ne a natural uncertainty set in terms of likely scenarios.

The e�ciency of the OT can be measured by a combination of the number of under-
utilized hours and the number of over-utilized hours in the operating rooms [20]. However, a
few days before the day of surgery, the sta� has already been scheduled, and so [20] claims that
under-utilized time does not cause a loss of revenue for the surgical suite. This is consistent
with [36], where it is shown that on a short-term perspective, the goal is solely to minimize
the overtime in the OR. Also, we consider a �xed cost for opening an OR, as proposed in
the model of [19]. However, under-utilization of the OR can still have indirect costs on a
rather short-term perspective (even with a �xed sta�ng). This happens, e.g., when the load
of surgeries is not balanced uniformly among several operating days. In this case, it might be
well-suited to postpone some patients to a later day. Our model can easily be adapted to the
situation in which the decision maker may cancel some jobs, or on the contrary when he may
accept more jobs than initially planned, by using a rolling horizon with deferral costs. This
situation naturally occurs in settings where the OR allocation problem is to be solved for a
sequence of several planning periods; in this case, the ability to postpone (or bring forward)
a job to a later (or earlier) planning period can help to balance the overtime over the whole
planning horizon.

Since the end of the 90's, many papers have demonstrated the bene�ts of robust opti-
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mization (RO) to handle uncertainty. In many cases, the method o�ers tractable mathemat-
ical formulations which are much easier to solve than their stochastic programming counter-
parts [7, 9]. Moreover, RO o�ers the possibility to tune the budget of uncertainty to choose
the tradeo� between performance and robustness.

Another traditional selling point for these approaches is that no distributional information
for the uncertain parameters is required. In the context of surgery scheduling however, we
already mentioned that lognormality of the durations can be assumed, and we want to take
advantage of this. We point out that most statistical studies on prediction models for the
distribution of surgery durations, such as [31, 47], focus on the procedure time only. In our
approach however, the relevant duration is the total duration of patient blocks, which consists
of the sum of the procedure times, set-up times, and clean-up times of all patients in this
block. In practice, most patient blocks contain between one and three surgical cases, and we
think that the lognormal model is still a good model for the whole block duration. Indeed,
it has been proposed to approximate the sum of lognormal distributions by the lognormal
variable that matches its �rst two moments, which is the well-known Fenton-Willkinson ap-
proximation [23]. It is used routinely in �nancial engineering and other �elds, such as signal
processing, and provides a reasonable approximation for a range of lognormal parameters [14].
Another possibility would be to match three moments of the 3-parameters lognormal (which
has an additional shift parameter), which has also been proposed in [48] to model surgery
durations; it would be straightforward to extend our robustness model to the case of shifted
lognormal distributions.

The fat-tail behaviour of the lognormal makes it likely that standard uncertainty models,
such as the ellipsoidal uncertainty model of Ben-Tal and Nemirovsky [7] or the cardinality-
constrained uncertainty model of Bertsimas and Sim [9], will o�er a rather poor model of
the real-life setting. To remedy this problem, we propose to use robust optimization with an
uncertainty model which protects against all scenarios in a con�dence region of the lognormal
distribution. This turns robust optimization into a risk assessment technique (cf. Proposi-
tion 3.5), as other approaches relying on the conditional value-at-risk (CVaR), cf. [45], or the
ordered weighted average (OWA); see [30].

To the best of our knowledge, one of the �rst papers to consider the problem of allocating
operating rooms to a list of surgical procedures is [41], who proposed a mixed integer pro-
gramming (MIP) formulation to minimize the under- and overutilization of the ORs. This
paper makes the assumption that all the procedures of a given practitioner are performed in
the same OR. This is also the approach that we adopt here (patients to be operated by the
same surgical team are grouped in a block), for two main reasons:

1. When a surgeon performs two procedures in two di�erent ORs, there is a risk that the
�rst procedure takes longer than expected, which induces waiting time in both ORs
and generates overtime. In contrast, it is known that planning all the procedures of one
surgeon in a single OR is a guarantee of stability, cf. [21], a feature desired by many
OR planners, in particular at the Charité hospital in Berlin.

2. Mathematical formulations allowing a practitioner to change the OR within a day are
much harder to solve, because we need to take synchronization issues into account. The
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resulting problem is a stochastic RCPSP (Resource constrained project scheduling prob-
lem). While several MIP formulations are available for the deterministic RCPSP [33],
in the stochastic setting precedence models must be used. These models su�er from re-
lying on big-M constraints to avoid that two procedures performed by the same surgeon
take place at the same time, which leads to weak relaxations and very long computing
times.

We are aware that in some cases, in particular when the number of surgeons is a bottleneck
for the planning, it might be better to let practitioners alternate between two rooms, so they
can perform a surgery in room B while room A is being cleaned-up and prepared for the
next patient. This is the approach used for example in [43, 44], where MIPs are proposed
to solve a deterministic resource constrained scheduling problem. There are also stochastic
programming approaches for the problem with room-changing surgeons: [35] scheduled one
surgeon operating in two ORs, and [6] used the L-shaped method to solve a stochastic MIP
model (with big-M's), for the case where surgeons may change room but have a prede�ned
sequence of patients to operate in a given order.

The popularity of robust optimization techniques can also be observed in the literature
on OT management. A non-exhaustive list of recent contributions using robust optimization
follows: in [28], RO is used to allocate slack times in each OR to reduce the risk of overtime;
an RO model is proposed in [1] to allocate patients to OR-blocks (in a block-scheduling
system), by considering their individual due-dates; a closely related paper is [46], where a
similar problem is handled by means of chance-constrained optimization, by assuming normal
distribution of the surgical durations; a distributionally robust model is proposed in [37], to
select elective admission ratios in order to balance bed occupancy.

We build on a robust optimization problem introduced by [19]. This paper presented
an MIP model (called MRORA) to �nd an optimal allocation of the ORs, robust against all
duration scenarios d for the patient blocks in the uncertainty set

D
MRORA

= {d ∈ Rn : ∀i, `i ≤ di ≤ ui;
∑
i

di − `i
ui − `i

≤ τ}, (1)

where `i and ui are lower and upper bounds for the duration of the ith patient block, and
the parameter τ controls the budget of uncertainty. It was shown very recently [3] that the
MIP model of [19] is inexact: this MIP only minimizes an upper bound of the worst case cost
over D

MRORA
. In order to compare our approach (in which the uncertainty set consists of likely

scenarios of the lognormal distribution) to the case of the popular budgeted uncertainty set
D

MRORA
, we need to solve the robust allocation problem over D

MRORA
exactly. Another original

contribution of our paper is that we present two methods to solve the robust allocation
problem over D

MRORA
.

Mathematically, the problem introduced in [19] is a parallel machine scheduling problem.
In recent years, robust machine scheduling problems attracted a lot of attention. For exam-
ple, [30] proposed approximation and pseudo-polynomial time algorithms to optimize a risk
measure (ordered weighted averaging aggregation, OWA) of the makespan, with a run-time
proportional to 2k, where k is the number of considered scenarios in the uncertainty set.
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Many papers focus on the problem of minimizing the sum of completion times: [11] proves
the NP-hardness of the robust counterpart of this problem, when the uncertainty set is a
budget polytope à la Bertsimas and Sim [9]. A scenario-based robust counterpart for the
problem of minimizing the sum of completion times is studied in [51]: An MIP model and a
2-approximation algorithm are proposed. A variant of this problem with sequence-dependent
setup times is also studied in [29], with the help of metaheuristics. The problem of maximiz-
ing the probability that the sum of completion times does not exceed a prescribed threshold
was handled with a branch-and-bound procedure in [2], under normality assumptions on job
durations.

Contrarily to the aforementioned approaches, the relevant criterion for the allocation of
operating rooms is the total tardiness of the machines, which has not been investigated much
from a robust optimization perspective. This criterion is however equivalent to the criterion
of extensible bin packing, for which performance bounds of simple heuristics have been derived
in the deterministic setting [17] and in the online setting [5].

This paper is organized as follows: In Section 2 we present a generalization of the ro-
bust OR allocation problem introduced in [19] for an arbitrary uncertainty set D, and a
cutting-plane approach to solve it. This solution procedure relies on the ability to solve the
separation problem for the set D, that is, the problem that generates new cuts by identifying
the worst case scenario for a given allocation. Section 3 is concerned with the solution of
this separation problem. We show how to solve the separation problem for the set D

MRORA
in

Section 3.1, and for a con�dence region Dr of the lognormal distribution in Section 3.2. In
particular, our main result is stated in Proposition 3.3; we show with the help of Hilbert's
projective metric that �xed-point iterations can be used to solve very e�ciently the separa-
tion problem, although this is a non-convex optimization problem. Then, we propose two
alternative solution approaches in Section 4: the �rst one is a reformulation approach to solve
exactly the problem introduced in [19] for robust optimization over a polyhedral uncertainty
set (such as D

MRORA
). The resulting MIP is not compact in general, but it is if we restrict our

attention to instances with a bounded number of operating rooms. The second approach is a
sample average approach (SAA) to approximate the stochastic programming counterpart of
the OR allocation problem. An important extension of our model is presented in Section 5:
it allows one to use a rolling horizon approach, in which we also select the patients that will
be operated for the next operating day. We present numerical results for the application
to OR management in Section 6, in which we present an extensive comparison of di�erent
optimization and heuristic approaches. These experiments suggest a number of managerial
implications which we present in Section 7. In particular, the longest expected processing time

�rst (LEPT) heuristic performs well and e�ciently protects against extreme scenarios, but
only if a good prediction model for the durations is used. Hospitals should hence invest in the
development of accurate data-driven predictors for the case durations, rather than relying on
surgeons' estimates only for the allocation of patient blocks to ORs, a claim also supported,
e.g., by [24].

Throughout this article, we adopt the terminology of the parallel machines scheduling
literature, because we believe that the problem studied here could have other �elds of appli-
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cation. Hence, patient blocks are called jobs and operating rooms are called machines.

2 Problem Formulation

Throughout this article, plain italics denote scalars and lowercase boldface symbols denote
vectors. In particular, the vector with elements vi is denoted by v. The symbol Diag(v)
represents the diagonal matrix with elements vi on the diagonal, and 0n is the zero vector
of dimension n. We use the notation R+ for the set of nonnegative real numbers, and ‖ · ‖p
denotes the usual `p−norm. The expected value of a random variable X is denoted by E[X],
and P[E] stands for the probability of the event E.

We denote by J and M the sets of jobs and machines, of respective cardinality n and
p. The binary variable zm indicates whether machine m ∈ M is activated, and the binary
variable xjm tells whether job j is allocated to machine m. Each job must be allocated to
one activated machine, so the set of all feasible solutions reads

X :=

{
(x, z) ∈ {0, 1}n×p × {0, 1}p :

∀j ∈ J ,
∑

m∈M xjm = 1;
∀j,m ∈ J ×M, xjm ≤ zm

}
.

Denote by Tm the time available on machine m (if it is activated), cfm the �xed cost for
activating machine m and com the cost of overtime per unit of time on machine m. If the
duration of job j is dj > 0, the total cost of an allocation (x, z) ∈ X can be measured as

F (x, z;d) :=
∑
m∈M

cfmzm + com

∑
j∈J

xjmdj − Tm

+

,

where (u)+ := max(u, 0) denotes the nonnegative part of u ∈ R.
We consider the problem of �nding the allocation (x, z) minimizing the costs, while pro-

tecting ourselves against a set of likely scenarios D. This leads to the following robust opti-
mization problem:

min
(x,z)∈X

max
d∈D

F (x, z;d). (2)

We propose to use a cutting plane approach to solve Problem (2). Given a �nite set
of scenarios D̂ = {d(i) : i ∈ S} ⊆ D, we �rst observe that the restricted master problem
min(x,z)∈X maxd∈D̂ F (x, z;d) can be formulated as a mixed integer linear program:

min
x,z,∆,δ

∑
m∈M

cfmzm + ∆ (3a)

s.t. δim ≥
∑
j∈J

xjmd
(i)
j − zmTm, ∀i ∈ S,∀m ∈M, (3b)

δim ≥ 0, ∀i ∈ S,∀m ∈M, (3c)

∆ ≥
∑

m∈M
comδim, ∀i ∈ S, (3d)

(x, z) ∈ X (3e)
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The objective function (3a) minimizes the �xed cost
∑

m c
f
mzm and the robust overtime

cost ∆, equations (3b) and (3c) de�ne the overtime δim for machine m and scenario d(i),
and (3d) makes sure that ∆ is the worst case overtime cost over all scenarios in D̂. Finally, (3e)
ensures that (x, z) is a valid allocation.

We also point out that when several machines have the same values for cfm, com and Tm,
it is possible to strengthen the above formulation by using symmetry-breaking constraints;
see [19].

Now, we introduce the separation problem, which, given a current solution (x, z) of the
restricted master problem (3), �nds the worst scenario within the uncertainty set D,

max
d∈D

F (x, z;d). (4)

The cutting plane algorithm to solve Problem (2) can be summarized as follows. We
assume that a reference scenario (or nominal scenario) d̂ ∈ D is given. For example, this
can be the mean scenario d̂i = E[di], but this is not necessary. Start with D(1) = {d̂}. At
iteration k ∈ N, solve Problem (3) for D̂ = D(k) and set (x(k), z(k)) to the optimal solution.
Then, solve Problem (4) with (x, z) = (x(k), z(k)), insert the worst case scenario d(k) in the
restricted uncertainty set, D(k+1) = D(k) ∪ {d(k)}, and iterate.

It is straightforward that at each iteration, the optimal value of Problem (4) is an upper
bound for the value of (2), while the optimal value of (3) provides a lower bound. Clearly,
this process �nishes after a �nite number of steps, because X is �nite, and x(j) = x(k) with
j < k would indicate that the process has converged at iteration k; cf. [38]. This cutting-plane
approach is summarized in Algorithm 1, where we use an additional tolerance parameter ε > 0
to speed-up the convergence.

We also point out that we can re�ne this approach, by using lazy constraints that add
scenarios while the branch-and-bound tree of Problem (3) is being explored, see [8] for more
details.

As mentioned in the introduction, this work is motivated by an application to surgery
scheduling, where each job typically follows a lognormal distribution. In the next section, we
show how to solve Problem (4) e�ciently for adequate uncertainty sets.

3 Solving the separation problem

3.1 Separation problem over the MRORA uncertainty set

We recall the de�nition of the MRORA uncertainty set:

D
MRORA

= {d ∈ Rn : ∀j, `j ≤ dj ≤ uj ;
∑
j∈J

dj − `j
uj − `j

≤ τ}, (5)

where `j and uj are lower and upper bounds for the duration of job j, and τ is a parameter to
control the budget of uncertainty. As stated in the introduction, [19] proposed a compact MIP
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Algorithm 1 (ROBUST_CUTS)

Input: Instance de�ned by: J ,M, D ⊆ RJ+ ,
∀m ∈M, com, c

f
m, Tm ∈ R+,

nominal scenario d̂ ∈ D,
tolerance parameter ε > 0;

Output: ε−approximate solution (x∗, z∗) of Problem (2).
1: L← 0
2: U ← +∞
3: D̂ ← {d̂}
4: while U > (1 + ε)L do

5: (x, z)← optimal solution of the restricted master problem (3)
6: F ∗ ← optimal value of the restricted master problem (3)
7: L← max(L,F ∗)
8: d∗ ← optimal solution of the separation problem (4)
9: if F (x, z;d∗) < U then

10: U ← F (x, z;d∗)
11: (x∗, z∗)← (x, z)
12: end if

13: D̂ ← D̂ ∪ {d∗}
14: end while

15: return (x∗, z∗)
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formulation for the robust OR allocation problem with respect to this uncertainty set, but
this formulation was recently shown to be inexact [3]. The problem can still be solved exactly
by using the cutting plane procedure presented in the previous section. To do this, we need
to solve the separation problem (4) for the uncertainty set D

MRORA
. We show that it is possible

to solve this problem e�ciently in this section. Alternatively, a reformulation approach is
presented in Section 4.1, where an equivalent MIP model is presented for Problem (2), when
D is polyhedral.

For a given solution (x, z) ∈ X , the separation problem (4) over D
MRORA

takes the form:

max
d∈D

MRORA

∑
m∈M

cfmzm + com

∑
j∈J

xjmdj − Tm

+

. (6)

Now, we will show that the objective function can be linearized, at the cost of an enumeration
over all 2p subsets of machines. For instances with a reasonable number of machines (say,
p ≤ 20), this is not critical, since each of the 2p subproblems are very easy to solve. Observe
that for all u ∈ R, we have u+ = maxε∈{0,1} εu. We can use this to reformulate each term
with a (·)+ as a maximum over εm ∈ {0, 1}:

F (x, z;d) =
∑
m∈M

cfmzm + com max
εm∈{0,1}

εm
(∑
j∈J

xjmdj − Tm
)
.

Then, we can switch the order of the maximization over ε ∈ {0, 1}p and over d ∈ D
MRORA

, so
the separation problem (6) is equivalent to

max
ε∈{0,1}p

max
d∈D

MRORA

∑
m∈M

cfmzm + comεm

∑
j∈J

xjmdj − Tm

 . (7)

To solve this problem, we can solve the inner maximization problem for the 2p values of the
vector ε ∈ {0, 1}p. After a change of variables dj = `j + (uj − `j) rj , for a �xed vector ε, the
inner problem becomes∑

m∈M
cfmzm − comεmTm + max

r

∑
j∈J

∑
m∈M

xjmc
o
mεm(`j + (uj − `j) rj) (8)

0 ≤ rj ≤ 1 (∀j ∈ J )∑
j

rj ≤ τ

This is a particular linear programming (LP) problem, which can be solved analytically.
Indeed, we recognize a fractional knapsack problem, for which the greedy algorithm is well-
known to be optimal [16]. More precisely, denote by δ the vector with components δj =∑

m∈M xjmc
o
mεm(uj − `j), and assume that the components of δ are sorted as δj1 ≥ δj2 ≥

· · · ≥ δjn . Then, a solution to Problem (8) is obtained by setting rj = 1 (i.e., dj = uj) for
the jobs j1, . . . , jbτc, rj = τ − bτc (i.e., dj = `j + (τ − bτc)(uj − `j)) for the job j = jdτe, and
rj = 0 (dj = `j) for the remaining jobs.
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3.2 Separation problem over a lognormal con�dence region

If we assume that log dj ∼ N (µj , σ
2
j ), it is natural to consider an uncertainty set of the form

Dr := {d ∈ Rn+ : log(d) ∈ Er}, where Er :=
{
y ∈ Rn :

∑n
j=1 σ

−2
j (yj − µj)2 ≤ r2

}
for some

r > 0. Note that the set Dr de�ned above is simply a log-transformation of some con�dence
ellipsoid of the multivariate normal law N (µ,Diag(σ)2). Here, the parameter r allows to
tune the budget of uncertainty, larger values of r leading to larger uncertainty sets. We shall
discuss the choice of r in Section 3.3.

By using the same technique as in the previous section, Problem (4) may be reformulated
as

max
ε∈{0,1}p

max
d∈Dr

∑
m∈M

cfmzm + εmc
o
m(
∑
j∈J

xjmdj − Tm), (9)

which reduces to solving the inner maximization problem for the 2p values of the vector
ε ∈ {0, 1}p. Now, we make the change of variables yj = log dj . For a �xed ε, the value of the
inner maximization problem equals∑

m∈M
cfmzm − εmcomTm + max

y∈Er

∑
j∈J

vje
yj , (10)

where we have set vj :=
∑

m∈M εmc
o
mxjm ≥ 0. If we put aside the trivial case v = 0, the

necessary Karush-Kuhn-Tucker (KKT) conditions for the maximization problem in (10) can
be stated as follows:

Lemma 3.1. Let v ∈ Rn+,v 6= 0, and let the vector y be an optimal solution of the problem

maxy∈Er
∑

j∈J vje
yj , then there exists a Lagrange multiplier λ > 0 such that{

∀j ∈ J , λ(yj − µj)σ−1
j = σjvje

yj∑
j∈J (yj − µj)2σ−2

j = r2.
(11)

Proof. The optimization problem of the lemma has a single constraint, which is clearly active
at the optimum (i.e., y lies on the boundary of Er). Hence, the optimum cannot be at
y = µ, which means that the gradient of the constraint does not vanish at the optimum. So
the constraint is quali�ed, and y must satisfy the Karush-Kuhn-Tucker (KKT) optimality
conditions (see, e.g., [42]), which reads: ∃λ ∈ R:

∀j ∈ J , λ(yj − µj)σ−2
j = vje

yj [stationarity] (12a)∑
j∈J

(yj − µj)2σ−2
j ≤ r

2 [primal feasibility] (12b)

λ ≥ 0 [dual feasibility] (12c)

λ(r2 −
∑
j∈J

(yj − µj)2σ−2
j ) = 0 [comp. slackness] (12d)

This can be further simpli�ed to the condition (11) of the lemma, by observing that λ cannot
be equal to 0 (take a j such that vj > 0, then Equation (12a) implies yj > µj and λ > 0).
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We can �nd the value of λ by substituting (yj − µj)σ
−1
j = λ−1σjvje

yj in the second

equation: λ = r−1(
∑

j σ
2
j v

2
j e

2yj )1/2. Substituting back in the �rst equation, we �nd that for
all j ∈ J ,

(yj − µj)(rσj)−1 = σjvje
yj (
∑
j

σ2
j v

2
j e

2yj )−1/2.

In other words, the vector w := Diag(rσ)−1(y − µ) is a �xed point of the map g : w 7→
f(w)/‖f(w)‖ which maps the unit sphere of Rn onto itself, where

f(w) := σ ◦ v ◦ exp(µ+ rσ ◦w),

the exponential is elementwise, and ◦ denotes the Hadamard (elementwise) product: (a◦b)i =
aibi.

The next results give a su�cient condition � almost always satis�ed in practice, cf. dis-
cussion in Section 3.4 � which guarantees that �xed point iterations of g converge, and we
can use the �xed point to �nd a global optimum of (10). To do this, we prove the following
result, which relies on Hilbert's projective metric dH on the cone K := {x ∈ Rn : x > 0}.
It is de�ned by ∀x,y ∈ K, dH(x,y) := log maxi

xi
yi

+ log maxj
yj
xj
; see [13]. Note that dH is

actually a metric over the space of rays of the cone K. However, dH de�nes a metric over the
subsets K(1) := {x ∈ K : ‖x‖1 = 1} or K(2) := {x ∈ K : ‖x‖2 = 1}.

We list hereafter a few important properties of dH , which are proved e.g. in [39]:

(i) ∀x,y ∈ K, dH(x,y) = 0 implies x = αy for some α > 0

(ii) ∀x,y ∈ K, dH(x,y) = dH(y,x)

(iii) ∀x,y ∈ K, ∀λ > 0, dH(x, λy) = dH(x,y)

(iv) ∀x,y ∈ K, ∀u ∈ K, dH(u ◦ x,u ◦ y) = dH(x,y)

(v) (K(2), dH) is a complete metric space.

The next result gives the Lipschitz constant of the (elementwise) exponential function
over K(2). It will be useful to ensure the convergence of �xed point iterations of g:

Theorem 3.2. The function h : x 7→ exp(x) is contractant for Hilbert's projective metric

over K(2), with a global Lipschitz constant equal to 1√
2
:

∀x,y ∈ K(2), dH
(
h(x), h(y)

)
≤ 1√

2
dH(x,y).

The proof of this result is included in the appendix. It relies on an intermediate result
(Theorem A.1), which gives a formula to compute local Lipschitz constants for a function
de�ned over K(2). We are now ready to prove the following proposition, which gives a simple
condition ensuring the convergence of the �xed point iterations.

Proposition 3.3. Assume that for all j ∈ J , rσj <
√

2. Then, there exists a point w∗ ∈ K(2)

such that the �xed point iterations g(g(· · · g(w0))) converge to w∗ for all w0 ∈ Rn. Moreover,

y∗ := µ+ rDiag(σ)w∗ is a global optimum of Problem (10).
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Algorithm 2 (LOGNORMAL_ADVERSE)

Input: Instance de�ned by: ∀m ∈M, com, c
f
m, Tm ∈ R+,

Parameters for the uncertainty set Dr: µ ∈ Rn,σ ∈ Rn+, r > 0,
Solution of the RMP (x, z),
tolerance parameter ν > 0.

Output: ν−approximate solution d ∈ Dr of Problem (4).
1: OPT ←

∑
m∈M cfmzm BInitialization, for the case ε = 0p

2: d∗ ← exp(µ) B in fact, any d ∈ D is optimal when ε = 0p

3: for all ε ∈ {0, 1}p, ε 6= 0p do
4: vj ←

∑
m∈M εmc

o
mxjm (∀j ∈ J )

5: w(0) ← 0n
6: ∆← +∞
7: i← 0
8: while ∆ > ν do
9: f ← σ ◦ v ◦ exp(µ+ rσ ◦w(i))
10: w(i+1) ← f

‖f‖2
11: ∆← ‖w(i+1) −w(i)‖2
12: i← i+ 1
13: end while

14: d← exp(µ+ rσ ◦w(i))

15: OPTε ←
∑

m∈M cfmzm + εmc
o
m(
∑

j∈J xjmdj − Tm)
16: if OPTε > OPT then

17: OPT ← OPTε
18: d∗ ← d
19: end if

20: end for

21: return d∗

Proof. If vj = 0 for some j ∈ J , then it is clear that the �xed-point iterates w(k) = gk(w0)

will satisfy w(k)
j = 0 for all k ≥ 1. So we assume without loss of generality that vj > 0 for all

j ∈ J for the rest of this proof.
Note that the existence of a �xed point of g is guaranteed by Brouwer's theorem (see [26]),

and any �xed point must lie in K(2). By using the properties of Hilbert's projective metric,
we �nd that

∀x,y ∈ K, dH
(
g(x), g(y)

)
= dH

(
f(x), f(y)

)
= dH

(
exp(rσ ◦ x), exp(rσ ◦ y)

)
≤ r‖σ‖∞dH(ex, ey).

In the above expression, the �rst equality follows from Properties (ii) and (iii), and the second
equality follows from (iv). Therefore, Theorem 3.2 implies that g is contractant for Hilbert's
metric over K(2) if r‖σ‖∞ <

√
2. Since (K(2), dH) is a complete metric space (property (v)),

12



Banach's �xed point theorem ensures the uniqueness of a �xed point w∗ and the convergence
of �xed point iterations when r‖σ‖∞ <

√
2; cf. [26]. In this case, y∗ := µ + rσ ◦w∗ is the

unique solution of the necessary conditions (11), so y∗ maximizes
∑

j vje
yj over Er.

Our approach is summarized in Algorithm 2, which can be used to solve the separation
problem at line 8 of Algorithm 1; the condition of Proposition 3.3 ensures that this procedure
converges.

3.3 Choice of the parameter r

Care must be taken in setting the value of r de�ning Er, to avoid overconservatism. Indeed,
the optimal solution of Problem (2) does not only protect against scenarios in Dr, but also
against all duration scenarios in D̄r = {d − u : d ∈ Dr,u ≥ 0}. For the lognormal model
log dj ∼ N (µj , σ

2
j ), we can give an analytical formula for the probability that a scenario lies

in D̄r:

Lemma 3.4. If the job durations are lognormal and independent, log dj ∼ N (µj , σ
2
j ), then

the probability Pn(r) := P[d ∈ D̄r] is given by

Pn(r) := Φ(r)n − (Φ(r)− 1

2
)n +

1

2n
Fχ2

n
(r2), (13)

where Φ is the standard normal cumulative distribution function (CDF), and Fχ2
n
is the CDF

of the χ2-distribution with n degrees of freedom.

Proof. The probability that d lies in D̄r is the same as the probability that the vector with
coordinates Xj = σ−1

j (log dj − µj), which has a standard multivariate normal distribution
X ∼ N (0, I), lies in the set S = {y−u : y ∈ Rn, ‖y‖2 ≤ r, u ≥ 0}, which corresponds to the
grey area depicted in Figure 1 for the case n = 2. De�ne S1 = {y ∈ Rn : yj ≤ r, ∀j ∈ J },
S2 = {y ∈ Rn : 0 ≤ yj ≤ r, ∀j ∈ J }, S3 = {y ∈ Rn+ : ‖y‖2 ≤ r}, and observe that

S = S1 \ (S2 \ S3), with (S2 \ S3) ⊆ S1 and S3 ⊆ S2.

In Figure 1, the set S1 corresponds to the quadrant below the point A, and S2 \ S3 is the
region denoted by stripes, which is the di�erence between the �cube� S2 with corners A and
O and the part S3 of the ball of radius r that is situated in the positive quadrant. Hence,
from the inclusion-exclusion principle we have

Pn(r) = P[X ∈ S1]− P[X ∈ S2] + P[X ∈ S3].

Finally, the result of the lemma follows from the analytical expressions of P[X ∈ Si], i = 1, 2, 3.
For S1 and S2, these probabilities are easily obtained because the Xj 's are independent:
P[X ∈ S1] =

∏
j∈J P[Xj ≤ r] = Φ(r)n and P[X ∈ S2] =

∏
j∈J P[0 ≤ Xj ≤ r] = (Φ(r) −

Φ(0))n = (Φ(r) − 1
2)n. For S3, we use the symmetry of N (0, I) around 0 and the de�nition

of the χ2 distribution:

P[X ∈ S3] =
1

2n
P

[
n∑
i=1

X2
i ≤ r2

]
=

1

2n
Fχ2

n
(r2).
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r

r

log(d1)−µ1
σ1

log(d2)−µ2
σ2

A

O

Figure 1: The probability Pn(r) that d ∈ D̄r is equal to the probability that a random vector
X ∼ N (0, I) ∈ Rn lies in the grey area. The formula (13) expresses this probability as the di�erence
between the probability of the quadrant below A and the striped region.

For a con�dence level α, we can hence choose r by solving the equation Pn(r) = 1 − α.
Then, Problem (2) minimizes an upper bound of the (1− α)−quantile of F (x, z;d):

Proposition 3.5. Assume that the dj's follow independent lognormal distributions, with

log dj ∼ N (µj , σ
2
j ). Let (x∗, z∗) be the optimal solution of the robust parallel machines

scheduling problem (2) and let F ∗ := maxd∈Dr F (x∗, z∗;d) be its optimal value, where

Dr :=

d ∈ Rn+ :

n∑
j=1

σ−2
j (log dj − µj)2 ≤ r2


and Pn(r) = 1− α. Then,

P
[
F (x∗, z∗;d) ≤ F ∗

]
≥ 1− α.

Proof. We know that F (x∗, z∗;d) ≤ F ∗ for all d ∈ Dr, by de�nition of F ∗. But this is also true
for all scenarios that are dominated by a scenario in Dr, i.e., for d ∈ D̄r := Dr−Rn+. It follows
that P

[
F (x∗, z∗;d) ≤ F ∗

]
≥ P[d ∈ D̄r] and by construction P[d ∈ D̄r] = Pn(r) = 1− α.

3.4 Discussion on the assumptions of Proposition 3.3

Estimates of µj and σj usually come from an analysis of historical data. It seems reasonable
to assume that one can obtain estimates σj ≤ 0.5, because σj = 0.5 already allows huge
deviations from the nominal scenario: 95%-con�dence interval is [0.37mj , 2.67mj ], where
mj := eµj is the median of dj . In this situation, if we choose r by solving Pn(r) = 1− α, the
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condition r‖σ‖∞ <
√

2 is satis�ed for n ≤ 21 jobs at the robustness level α = 0.05, and for
n ≤ 45 at α = 0.1.

4 Alternative approaches

4.1 Pseudo-compact MIP reformulation for polyhedral uncertainty

In this section, we present an alternative to the cutting plane approach of Section 3.1, which
works when D is any nonempty polyhedral set of the form D := {d : Ad ≤ b} (in particular,
this includes the case D = D

MRORA
). We will show that Problem (2) can be reformulated as

a single MIP, but its size grows as 2p (hence the term pseudo-compact in the title of this
section). For the motivating OR allocation problem, at the scale of a department with p ≤ 6
operating rooms, our computational results show that this approach is more e�cient than the
cutting planes, cf. Table 1.

By using the formulation (7) of the separation problem, the robust allocation problem can
be reformulated as

min
(x,z)∈X ,∆

∑
m∈M

cfmzm + ∆ (14)

s.t. ∀ε ∈ {0, 1}p, max
{d:Ad≤b}

∑
m∈M

comεm (
∑
j∈J

xjmdj − Tm) ≤ ∆.

This is an optimization problem in which the optimal value of an LP appears in some
constraints. By using a standard technique of robust optimization, see e.g. [7], we can refor-
mulate it as a set of equivalent linear constraints, by dualizing the maximization problems.
Indeed, from the strong duality theorem of Linear Programming (see, e.g., [12]), we have

max
d

∑
m∈M

∑
j∈J

comεmxjmdj = min
y≥0

bTy (15)

s.t. Ad ≤ b s.t. aTj y =
∑
m∈M

εmc
o
mxjm (∀j ∈ J ),

where aj denotes the jth column of A (strong duality holds since D is nonempty, so the primal
problem is feasible). Now, enumerate the 2p − 1 vectors of {0, 1}p \ {0} as ε(1), . . . , ε(2p−1)

(note that the trivial case ε = 0 can be left aside, since it simply yields the constraint ∆ ≥ 0).
Plugging the equality (15) in each constraint of Problem (14) yields the following

Proposition 4.1. Assume that the polyhedral uncertainty set D := {d : Ad ≤ b} is nonempty.
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Then, the robust allocation problem (2) is equivalent to the following MIP:

min
x,z,∆,{yi}

∑
m∈M

cfmzm + ∆ (16)

s.t. bTyi −
∑
m∈M

comε
(i)
m Tm ≤ ∆ (∀i = 1, . . . , 2p − 1)

aTj yi =
∑
m∈M

ε(i)m c
o
mxjm (∀i = 1, . . . , 2p − 1,∀j ∈ J )

yi ≥ 0 (∀i = 1, . . . , 2p − 1)

∆ ≥ 0, (x, z) ∈ X .

4.2 Stochastic Programming

Since robust optimization sometimes leads to overconservative solutions, which may be poor
on average, it is also natural to compare the proposed robust optimization approach to
stochastic programming, in which the expected value of the cost is minimized:

min
(x,z)∈X

Ed[F (x, z;d)]. (17)

The multicut L-shaped algorithm of Birge and Louveaux [10] was used in [19] to solve
Problem (17). However, in our situation generating optimality cuts requires to evaluate
Ed[F (x∗, z∗;d)] and its subgradient, which is a costly process when durations dj are log-
normally distributed. To avoid this computational burden, we use the sample average ap-

proximation (SAA) method to approximate Problem (17). This approximation method has
already been used in the context of OR management. This is the case, e.g., in [35], who used
it to set the starting time of surgical cases, in the situation where there is a single surgeon
operating in several ORs. Theoretical convergence results for the SAA method were studied
in [32], and are illustrated for a resource allocation problem presenting some similarities with
Problem (17).

We sample NS duration scenarios d(1), . . . ,d(NS) and solve the following MIP, which is a
small variation of (3), except that there is a term accounting for the average overtime in the
objective function, instead of the worst case overtime.

min
x,z,∆,δ

∑
m∈M

cfmzm +
1

NS

NS∑
i=1

∆i (18a)

s.t. δim ≥
∑
j∈J

xjmd
(i)
j − zmTm, ∀i ∈ {1, . . . , NS},∀m ∈M, (18b)

δim ≥ 0, ∀i ∈ {1, . . . , NS},∀m ∈M, (18c)

∆i ≥
∑

m∈M
comδim, ∀i ∈ {1, . . . , NS}, (18d)

(x, z) ∈ X (18e)
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5 Extension: job selection and cancellation

We mentioned in the introduction that our model could be extended to handle the situation in
which the decision maker can cancel planned jobs, or insert new ones. This can be modelled
by assigning a penalty λj to each job that we decide to postpone to a later planning period.
Of course, we can set a prohibitively high penalty to the jobs that must be selected in the
considered time period. Since it is not mandatory anymore to select all jobs, the equalities
∀j ∈ J ,

∑
m∈M xjm = 1 de�ning the feasibility set must be replaced by inequalities: ∀j ∈

J ,
∑

m∈M xjm ≤ 1. We must also add some terms in the objective function of the restricted
master problem (3) to account for the penalties of non-selected jobs. So the objective function
becomes:

min
x,z,∆,δ

∑
m∈M

cfmzm + ∆ +
∑
j∈J

λj(1−
∑
m∈M

xjm). (3a')

Finally, note that these modi�cations do not a�ect the separation problem, so we can still
use Algorithm 2 to solve it.

In practice, it is possible to use a dynamic rule to update the deferral costs λj over a
rolling horizon. We next present a brief sketch of this idea. We start with a pool of jobs J
that can be allocated to the �rst time period. After each planning period, non-selected jobs
are inserted in the pool of jobs for the next period, while their deferral costs λj are increased
by some factor, so as to penalize long waiting times. It is also possible to set a due-date for
job j, by setting λj to a very high value if j has not been selected until the due date.

6 Computational results

This section presents numerical results for the application to OR management that motivated
this study. Our instances are based on real data from the department of general surgery of
the Charité university hospital in Berlin. The data is presented in the next subsection. Then,
we describe the di�erent solution methods to be compared in Section 6.2, and we de�ne some
performance metrics in Section 6.3; the in�uence of the expected workload of the instance is
discussed in Section 6.4; then, we study the e�ect of the opening costs cfm in Section 6.5. Our
robust optimization approach is compared to the earlier robust optimization model of [19]
and the new exact solution approaches for the robust counterpart over D

MRORA
in Section 6.6;

�nally, we evaluate the di�erent strategies with respect to the true durations in Section 6.7.

6.1 Data and instances

We use maximum likelihood estimators to �t the parameters of a lognormal model for the
durations of 20, 849 surgical procedures performed in the years 2011�2015, and for the time
required to prepare and clean-up the OR before and after each operation. Our model is
similar to [47], and relies on characteristics of the patient, operation, and surgical team. This
model � which will be the object of a future publication � was tested using cross validation.

We construct a set I of N = 348 instances of the OR allocation problem for several
regular working days (weekends and holidays excepted) of the period 2015�2016, so there is
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Figure 2: Distribution of the quantity
log dobsj −µj

σj
, for the 4028 patient blocks of the set of

instances I, together with the probability distribution function of a standard normal variable
N (0, 1).

no overlap with the training set used by our prediction model. To construct these instances,
we group all patients operated by the same surgeon in a block. Note that the duration dj
includes both the total surgical duration for patients in block j and the turnover times, that
is, the amount of time needed to clean-up and prepare the room between the patients. Our
model gives a prediction for the mean and the variance of each activity within a block. Then,
we use the Fenton-Willkinson approximation mentioned in the introduction to �t a lognormal
distribution for the total duration of each patient block, log dj ∼ N (µj , σ

2
j ). To illustrate

the quality of our duration model, denote by dobs
j the true (observed) duration of block j. If

the proposed model log dj ∼ N (µj , σ
2
j ) is correct, then the variables zj =

log dobsj −µj
σj

should

be independent samples from the standard normal distribution N (0, 1). The distribution of
these variables for the 4028 patient blocks of our instances is depicted in Figure 2, and there
is a close �t with the standard normal distribution indeed.

We point out that the Charité hospital in Berlin actually performs both elective and
emergency surgery. To accommodate with our model for the allocation of ORs in an elective
facility, we handle emergency patients as elective patients when creating our instances. The
set of instances I can be downloaded1 as a .json �le which indicates, for each instance, the
number p of available ORs and their capacity Tm. In addition, it gives the number n of
patient blocks, and for each block, the parameters µj and σj resulting from our prediction
model. The �le also indicates the true (observed) duration dobs

j of each patient block, as well
as the duration dsched

j that was initially planned for block j in the OR schedule. We point
out that in the list of instances, the condition of Proposition 3.3 is satis�ed 98% of the time
at the con�dence level α = 0.3, and 75% of the time with α = 0.05. Even when the condition

1http://page.math.tu-berlin.de/~sagnol/data/instances_OR_allocation_v2.json
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ρ̂ ρobs ρsched

Figure 3: Distribution of the workload of the 348 instances without emergency. Left: ex-
pected workload ρ̂. Middle: observed workload ρobs, according to the true durations. Right:
scheduled workload ρsched, according to the planned durations.

is not satis�ed, the �xed point iterations always converge in our experiments.
We denote by d̂j = exp (µj + 1

2σ
2
j ) the expected duration of patient block j, and we de�ne

the expected workload of an instance as

ρ̂ =

∑
j∈J d̂j∑
m∈M Tm

,

which is a simple measure of how likely overtime will occur. Indeed, whenever ρ̂ ≥ 1 the
expected time required to perform all the operations is longer than the regular opening time
of the ORs. The distribution of ρ̂ over our 348 instances is displayed in Figure 3 (left).
The expected workload seems to be centered at ρ̂ = 1, but it varies a lot, typically ranging

in the interval [0.7, 1.3]. This is in accordance with the observed workload ρobs =
∑

j∈J d
obs
j∑

m∈M Tm
,

cf. Figure 3 (middle), which exhibits a similar distribution (although ρ̂ is a bit more dispersed
than ρobs). This indicates that the load of operating rooms could be better balanced among
the operating days. One reason is that hospitals like the Charité in Berlin currently rely on
surgeons' estimates of the durations to book OR time in the available slots. Figure 3 (right)

shows that the scheduled workload ρsched =
∑

j∈J d
sched
j∑

m∈M Tm
is much smaller than the observed

workload; it mostly lies in the interval [0.6, 1.1]. This is due to the fact that surgeons tend
to underestimate the procedure durations (the average of the dsched

j 's is 16% lower than the
average of the true durations dobs

j 's), so that their patients �t in the allowed OR time [24].
In contrast, the bias of our prediction model is of only 1.13%, and we think that the use of
such models could lead to a much improved workload balance.

For all our instances, except in Section 6.5 where we evaluate the e�ect of the opening
costs, we use a value of cfm = 30 and com = 1 (∀m ∈M). In other words, opening a room yields
the same cost as 30 minutes of overtime. The choice of this particular value is motivated by the
payment policies of surgeries in the German healthcare system: For short-term planning, the
cost of opening a new room for the hospital should be negligible, since the sta�ng is already
�xed. However, health insurances pay a lump sum corresponding to 30 min. of OR time
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to the hospital for each turnover [22], that is, the non-surgical time between two successive
surgeries. Using one less room increases the number of turnover by one, and thus, allows the
hospital to claim an additional reimbursement for 30 min. of overtime.

6.2 Solution methods

We shall next present detailed results for the N = 348 instances of the set I. For each
instance, we compare the quality of several scheduling strategies listed below; the �rst three
solution methods also depend on a parameter α specifying the level of robustness.

• The LRS (lognormal robust schedule) is the schedule solving Problem (2) for an uncer-
tainty set of the form Dr = {d ∈ Rn+ :

∑n
j=1 σ−2

j (log dj−µj)2 ≤ r2}. We compute it by
using Algorithm 1 with a tolerance parameter of ε = 0.01; unless stated otherwise, the
separation subproblems are solved with a tolerance parameter ν = 10−6 in Algorithm 2.
The parameter r de�ning the set Dr is set by solving the equation Pn(r) = 1 − α,
cf. (13).

• We solve the robust MIP called MRORA in [19]. As shown in [3], this MIP minimizes an
upper bound of Problem (2) for the uncertainty set D

MRORA
de�ned in Equation (1). We

follow the rule suggested in [19] to set the value of the parameters `j , uj and τ de�ning
D

MRORA
, as follows: For each j ∈ J , we set `j and uj to the α

2 - and (1− α
2 )-percentile of

dj , respectively, so [`j , uj ] is a (1 − α)−con�dence interval for dj . Then, τ is set using
the newsvendor rule described in [19, Section 6.1].

• We also implement two algorithms that solve (exactly) Problem (2) for the uncertainty
set D

MRORA
. On the one hand, the cutting plane procedure with the separation technique

described in Section 3.1, and on the other hand, the reformulation as a MIP with O(2p)
constraints, cf. Section (4.1). We denote these two allocation strategies as M-CP and
M-MIP, respectively.

• To study the tradeo� between stochastic programming and robust optimization, we
compute a solution by using the sample average approximation to stochastic program-
ming (SAA), as described in Section 4.2.

• As a reference, we use the solution provided by the longest expected processing time
(LEPT) heuristic for the nominal scenario d̂. It basically consists in sorting all cases
by decreasing order of (expected) duration d̂j . Then, each case is allocated to one OR
in a greedy fashion, by choosing the OR that causes the least increase in overtime.
We repeat this procedure by considering that only the k ORs with the most capacity
are open, for k = 1, . . . , p; see [19] for a more detailed description. This solution is
known to give excellent results when the goal is to minimize the expected value of
F (x, z;d) [19], and yields an approximation guarantee of 13

12 in the deterministic case,

when all ORs have the same capacity T , and the �xed costs of opening are cfm = T [17].
Note that in our setting (and in [19]), LEPT is a �xed-assignment policy, in which each
block is allocated to an OR before the execution of the schedule. In some other work on
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Figure 4: Comparison of the uncertainty sets Dr(red) and D
MRORA

(blue), for durations log d1 ∼
N (4, 0.252), log d2 ∼ N (5, 0.352) at a robustness level 1− α = 0.9.

stochastic scheduling on parallel machines, the term �LEPT� denotes the static priority
rule in which jobs are started as early as possible, in the order of decreasing expected
processing time, see e.g. [50].

• Finally, for the sake of comparison, we also computed other heuristic solutions, which
are constructed exactly as above, but the jobs are considered in a di�erent order: In SV

(shorter variance �rst) and in LV (larger variance �rst), the jobs are sorted by increasing

or decreasing order of variance (eσ
2
j − 1)e2µj+σ2

j , respectively. Also, to evaluate the
bene�ts of using our statistical prediction model � compared to the situation in which the
planner only knows the scheduled duration of the cases, we compute the LSPT heuristic
(longest scheduled processing time �rst), in which the jobs are sorted in decreasing order
of dsched

j .

Note that the solutions M-MIP (or M-CP) and LRS only di�er by the underlying uncertainty
set. Figure 4 illustrates Dr and DMRORA

for an example in two dimensions.

6.3 Evaluation of solution quality

The quality of a solution (x, z) can be evaluated by di�erent quality indicators, such as the
mean or upper percentiles of the random variable F (x, z;d). We evaluate these statistics
by means of Monte-Carlo simulations with Nmc = 106 runs. In what follows, we denote by
MEAN(SOL) the mean of F (x, z;d), where (x, z) is the solution returned by the procedure
SOL ∈ {LRS, MRORA, M-CP, M-MIP, LEPT, LV, SV, LSPT, SAA}. Similarly VaRα(SOL) is the Value-
at-risk α of the cost, that is, the (1− α)th percentile of F (x, z;d).
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In order to compare two solutions called SOL and REF, we also introduce the notation

MEAN(SOL|REF) :=
MEAN(SOL)

MEAN(REF)
,

VaRα(SOL|REF) :=
VaRα(SOL)

VaRα(REF)
.

For example, if VaR0.1(LRS|LEPT) < 1 for some instance, then the 90th percentile of F (x, z;d)
is lower for LRS than for the reference solution LEPT. The percentage of opened rooms in a
solution is denoted by %ROOM(SOL) = 1

p

∑
m zm. To evaluate the robustness of a solution

(x, z), we also denote by maxF(D) the objective function of Problem (2) for the uncertainty
set D. that is, maxd∈D F (x, z;d).

6.4 Robustness vs. expected workload

We plot in Figure 5 the ratio of VaR0.1(LRS) to VaR0.1(LEPT), where the LRS solution was
computed at the robustness level 1−α = 0.90 and 1−α = 0.70. The plot indicates the value
of this ratio for the N = 348 instances of the set I, plotted against the expected workload ρ̂.
Since the goal of robust optimization is to protect against extreme scenarios, we expect the
90th percentile of the cost function to be lower for LRS than for LEPT. The plots show this
trend indeed, especially for instances where ρ̂ is small. There are only minor di�erences
between the plots for the values α = 0.1 and α = 0.3; for instances with ρ̂ ∈ [0.8, 0.1], it
seems that the LRS solution yields better results more often with α = 0.3 than with α = 0.1.
There is no contradiction to the result of Proposition 3.5, because LRS only minimizes an
upper bound of VaRα.

When the expected workload is large (ρ̂ ≥ 1.1), we observe that both LRS and LEPT have
a similar quality (with respect to 90th percentiles). One explanation is that for �over�lled�
instances, both solutions tend to open all ORs, and balance the overtime between all rooms
(because we have ∀m ∈ M, com = 1). As a result, when ρ̂ is large it is likely that all rooms
are in overtime, in which case the cost equals F̂ (d) :=

∑
m c

f
m + (

∑
j dj −

∑
m Tm). So both

VaR0.1(LRS) and VaR0.1(LEPT) is very close to the 90th percentile of F̂ (d). In other words, it
is not possible to be protected against extreme scenarios in instances with large values of ρ̂.
In the next sections, we will often restrict our attention to instances with a smaller expected
workload. In particular, we denote by I ′ the subset of the N ′ = 261 instances satisfying
ρ̂ ≤ 1.1.

6.5 E�ect of the �xed costs of opening cf

When the opening costs and overtime costs are the same for all ORs (∀m ∈ M, cfm =

cf , com = co), we only need to study the e�ect of the ratio cf

co (because we can rescale the cost
function F (x, z;d), so its dependence in co and cf only occur through this ratio). Hence, we
assume co = 1 and we study the e�ect of the �xed opening costs cf .

We plot the percentage of opened ORs (averaged over all instances of the set I ′) in
Figure 6 (upper left), for three di�erent solutions (the robust solutions LRS and M-MIP are
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Figure 5: Value of the ratio VaR0.1(LRS|LEPT), where the LRS solution is computed at the robustness
level α = 0.1 (left) and α = 0.3 (right), for N = 348 instances, plotted against the expected workload
ρ̂ of each instance.

computed for α = 0.3). As could be expected, the number of utilized ORs decreases when the
�xed cost cf for opening an OR increases. However, we see that di�erent solution concepts
lead to di�erent numbers of ORs. The stochastic programming solution SAA tends to use
less rooms than the LRS and M-MIP solutions, which is an indicator for the robustness of LRS
and M-MIP. We see on the lower left plot of Figure 6 that SAA is always better than LEPT in
terms of means, while LRS only beats LEPT for small values of cf . The solution LRS protects
best against extreme scenarios for small values of cf (Figure 6, lower right), but it seems
that it becomes overconservative as cf grows, which could explain the fact that LRS opens
more rooms than M-MIP for large values of cf . Finally, the geometric mean of CPU times is
plotted in Figure 6 (upper right): SAA and LRS are much faster to compute than M-MIP, and
the computing times are also less sensitive to the opening costs cf . We point out that all
MIPs are solved using CPLEX 12.6 [15] on a PC with 8 cores at 3.60 GHz.

6.6 Comparison of solution strategies

In this section, we �rst compare di�erent quality indicators of the solutions, for three groups
of instances with particular values of expected workload: the set I1 contains the N1 = 126
instances such that ρ̂ ≤ 0.95, I2 contains the N2 = 98 instances such that (0.95 < ρ̂ ≤ 1.05),
and I3 consists of the N3 = 122 remaining instances. Table 1 indicates, for each group of
instances and each solution SOL, the average number of iterations required by the cutting plane
procedure (if any), the geometric mean of the CPU-time (in seconds), and the percentage of
instances solved within a time limit of 10 minutes. Then, we show the average value of
MEAN(SOL), VaR0.1(SOL) and VaR0.05(SOL), and the worst case of the cost F () over the
uncertainty sets Dr and DMRORA

. All robust solutions are computed at the risk level α = 0.3.
The lognormal robust schedule LRS is computed for three di�erent values of the tolerance

parameter ν of the separation algorithm (Algorithm 2). The value of ν seems to have very
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Figure 6: Evolution of the percentage of used ORs (upper left), geometric mean of CPU times
(upper right), average ratio of the mean cost (lower left) and of the 90th percentile of the
costs (lower right) to the reference solution LEPT, for three di�erent solutions: SOL∈ {LRS,
M-MIP, SAA}.

little e�ect on quality of the returned solution, and has only a limited e�ect on the CPU time,
since most of the computing time is spent solving the MIPs, not the separation problems.
Besides, for the three values of ν the algorithm returns exactly the same schedules for all
instances of I2 and I3.

We observe that LRS requires a shorter time than MRORA for instances with a large ex-
pected workload, and a longer time for instances with a small value of ρ̂. Instances with a
lower expected workload are harder to solve, and require more cutting planes, which a�ects
the computing time. Although some instances require many iterations to reach the desired
tolerance ε in Algorithm 1, we already get a good solution in a much shorter time. In prac-
tice, setting a limit on the computing time can be used to keep short computations, without
impacting too much the quality of the returned solution. To check this fact, we recompute the
solution LRS, by imposing a time limit of 10 seconds. The optimal solution (with respect to
the LRS-criterion maxF(Dr)) is found in 343 out of 348 instances. For the other 5 instances,
the deviation to the optimal criterion is always less than 1.3% in our experiments.

24



instances I1(ρ ≤ 0.95)

SOL #it. CPU (s) freq CPU<lim MEAN VaR0.1 VaR0.05 maxF(Dr) maxF(D
MRORA

)

LRS (ν = 10−6) 24.5 2.03 100.0% 220.2 333.2 398.9 296.9 341.6
LRS (ν = 10−10) 24.4 2.33 100.0% 220.2 333.4 399.1 296.9 340.4
LRS (ν = 10−14) 24.7 2.38 100.0% 220.0 332.8 398.5 296.9 339.1
MRORA � 0.51 100.0% 217.4 331.3 403.8 334.6 306.7
M-MIP � 3.29 100.0% 217.6 333.0 406.6 338.0 300.0

M-CP 76.2 9.53 90.4% 217.7 333.0 407.1 338.6 300.3
LPT � � 100.0% 230.9 385.5 469.7 409.0 418.7
SAA � 0.52 100.0% 214.3 338.2 413.3 354.8 355.6

instances I2(0.95 < ρ ≤ 1.05)

SOL #it. CPU (s) freq CPU<lim MEAN VaR0.1 VaR0.05 maxF(Dr) maxF(D
MRORA

)

LRS (ν = 10−6) 7.3 0.31 100.0% 376.4 611.5 718.2 605.0 665.1
LRS (ν = 10−10) 7.3 0.36 100.0% 376.4 611.5 718.2 605.0 665.1
LRS (ν = 10−14) 7.3 0.37 100.0% 376.4 611.5 718.2 605.0 665.1
MRORA � 1.61 100.0% 386.9 617.8 723.8 617.4 622.6
M-MIP � 7.14 100.0% 385.8 617.2 723.3 616.8 616.0

M-CP 95.2 65.80 77.5% 385.7 618.4 723.4 615.9 617.1
LPT � � 100.0% 380.5 625.1 735.8 648.8 689.1
SAA � 0.94 100.0% 369.9 613.5 725.6 635.2 698.9

instances I3(1.05 < ρ)

SOL #it. CPU (s) freq CPU<lim MEAN VaR0.1 VaR0.05 maxF(Dr) maxF(D
MRORA

)

LRS (ν = 10−6) 2.1 0.06 100.0% 797.9 1158.1 1304.6 1243.3 1255.1
LRS (ν = 10−10) 2.1 0.07 100.0% 797.9 1158.1 1304.6 1243.3 1255.1
LRS (ν = 10−14) 2.1 0.07 100.0% 797.9 1158.1 1304.6 1243.3 1255.1
MRORA � 1.31 100.0% 810.6 1160.7 1304.2 1244.8 1193.5
M-MIP � 0.46 100.0% 811.3 1162.3 1305.8 1245.2 1192.9

M-CP 10.7 0.16 99.2% 812.0 1162.2 1305.2 1245.2 1192.9

LPT � � 100.0% 786.9 1149.8 1297.5 1245.1 1223.8
SAA � 0.87 100.0% 771.8 1147.3 1296.7 1245.0 1249.8

Table 1: Comparison of di�erent quality indicators for three groups of instances, for the robust
solutions LRS, MRORA, M-MIP and M-CP at the level α = 0.3, as well as the solutions LEPT and
SAA. The LRS solution was computed for three di�erent values of the tolerance parameter ν
of the lognormal separation algorithm (Algorithm 2).

Interestingly, the cutting plane procedure over the uncertainty set D
MRORA

(i.e., the solution
M-CP) requires much more iterations than for the uncertainty set Dr of the lognormal law.
We think that this is due to the combinatorial structure of the worst case scenarios in D

MRORA

(roughly speaking, one extreme scenario for each subset of dτe job durations which reach
their upper bounds, see Section 3.1). Therefore, the reformulation approach M-MIP is faster
than the cutting plane approach M-CP. For M-CP also, we see that instances with a medium
expected workload are harder to solve. All but one instances of I3 can be solved within the
time limit of 600 s, while we can solve only 77.5% of the instances of I2 in the same amount
of time.

It is also interesting to look at the last column of the table, to compare the solutions MRORA,
M-MIP and M-CP, which all aim at minimizing the quantity maxF(D

MRORA
). The solution M-MIP

is always optimum. The value of maxF(D
MRORA

) for M-CP is a bit higher, which is explained
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Figure 7: Mean value of the ratios MEAN(SOL|SAA), VaR0.1(SOL|SAA) and VaR0.02(SOL|SAA)
over N ′ = 261 instances of I ′ (expected workload ρ̂ ≤ 1.1), as a function of the robustness
parameter α, for SOL = LRS and SOL = M-MIP.

because for some instances, there is still a small positive optimality gap after the time limit
of 600 seconds. The average gap between MRORA and M-MIP is always small, which suggests
that the MIP of [19] gives a very good approximation for the robust optimization problem
over the uncertainty set D

MRORA
. This gap is the largest for the instances with a low expected

workload; for I1, it is of approximately 2.3%.

Then, we study the e�ect of the robustness parameter α. Figure 7 shows results for the
N ′ = 261 instances satisfying ρ̂ ≤ 1.1. The sensibility of LRS and M-MIP to the robustness
parameter α is shown on the x-axis (on the left-hand side of the �gure, α is small and we
protect ourselves against very unlikely scenarios, while on the right-hand side, α → 1 so
we basically consider the nominal scenario only). The y-axis shows the mean value (over
the 261 instances) of the ratios MEAN(SOL|SAA), VaR0.1(SOL|SAA) and VaR0.02(SOL|SAA) for
SOL ∈ {LRS, M-MIP}.

On this plot, we observe that the LRS solution is better than M-MIP in terms of mean and
upper percentiles, for all values of α ∈ [0, 1]. As expected, SAA is always better than both
robust solutions (LRS and M-MIP) in terms of mean (the goal of stochastic programming is to
minimize the expected value of the cost), but for some values of α, the robust solutions LRS
and M-MIP are better in terms of upper percentiles, so they protect against extreme scenarios
indeed. Nevertheless this gain seems to be rather marginal: for example, at α = 0.4 the LRS
solution is, on average, 2.1% better than SAA in terms of 90th percentile, at the price of an
increase of 1.6% for the expected cost. As α approaches zero, the robust solutions tend to
focus on very unlikely scenarios. This improves on SAA for very high percentiles, but yields a
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Figure 8: Distribution of the true costs over the instances of I', for di�erent solutions. The
table below the �gure indicates the mean, median, third quartile, and 9th decile of the costs,
for each solution method.

large increase of the mean cost, especially for M-MIP.

6.7 Evaluation of allocation strategies with real observed time

We can evaluate the di�erent allocation strategies by simulating the costs F (x, z;dobs) that
would have occurred for the true duration scenario dobs. The distribution of the true costs
over the N ′ = 261 instances of I' is depicted, for several solutions, on the box-plot of Figure 8.
The large rectangle goes from the �rst quartile to the third quartile of each distribution, and
the bar in the middle indicates the median. The smaller bars above and below the rectangle
are located at the 1st and 9th decile of the distribution of the true costs. The blue dots
indicate the costs of the 10% best scenarios and the 10% worst scenarios. The mean, median
(VaR0.5), third quartile (VaR0.25), and 9th decile (VaR0.1) of the costs of each solution is
displayed under the x-axis. The LRS and M-MIP solutions are computed at both the risk levels
α = 0.1 and α = 0.3. In addition, we have computed a solution called ORACLE, by solving the
deterministic allocation problem for the true scenario dobs.

This simulation with real durations shows the same trend as the study of Section 6.6 with
synthetic durations generated according to our predicted model: LRS gives better results than
M-MIP; the solutions SAA and LRS (at both α = 0.1 and α = 0.3) have a very similar quality;
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the average cost of the SAA solution is about 6 min. less than for LRS, but LRS is superior
in terms of upper percentiles; despite its simplicity, the heuristic solution LEPT performs
remarkably well, it even beats SAA on extreme scenarios.

The cost distribution for LV is just a bit worse as for LEPT. In fact, the variances of
the durations are positively correlated with their expected values in our data set, so LV and
LEPT often consider the operations in the same order. Our study shows that SV yields bad
results and should be avoided. Finally, the comparison between LEPT and LSPT shows the
importance of relying on a data-driven statistical model to assign patient blocks to ORs,
rather than relying on surgeons' estimates only.

The ORACLE solution would allow a huge improvement compared to all other solutions
(approx. 30%). Indeed, in almost half of the instances, there exists an allocation without any
overtime. There is little hope to improve the existing solutions by using �xed assignment
strategies (such as LRS or SAA), unless much progress is done for the prediction of surgery
durations. Instead, we think that research should now focus on reactive allocation strategies,
in which the OR allocation may be changed during the day when a case takes longer than
expected.

7 Managerial implications

This extensive study allows us to draw a number of practical recommendations for the man-
agement of operating rooms.

First, our study gives evidence for the importance of using a good data-driven statistical
prediction model for the durations. Compared to the LSPT solution (which uses surgeons'
estimates of durations), the LEPT solution relying on our prediction model yields savings of
around 25%. Of course, in the real-life savings might not be as large, since OR managers have
the possibility to change the allocation during the execution of the schedule in order to react
to unexpected events (even though they try to avoid it); however this study is a strong case
for the use of accurate prediction models. This should motivate hospital managers to invest
in automatic data collection systems that can lead to improved statistical models of surgical
durations.

Second, the LEPT solution performs very well, and OR managers can compute this as-
signment very easily, by hand. This solution appears to be particularly robust to extreme
scenarios, especially when the expected workload is not too small. Compared to LEPT, man-
agers can expect an average improvement in the order of 2 to 4% by using an optimization
algorithm for the assignment of patient blocks to ORs. The SAA solution or the LRS solution
can be used, depending on whether the focus is on average performance or protection against
extreme scenarios.

Third, on a short-term perspective, when the sta�ng is �xed and hence the costs of
opening cfm are small, it is almost always optimal to use all available ORs, especially when
the focus is on robustness and stability.

Fourth, there is a need to achieve a better balance of the expected workload across di�erent
operating days. Here again, a computer-based prediction model could be used when surgeons
book OR-time in the available slots, which would result in a better estimation of the expected
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workload. While this may rise an issue due to con�icting interests between surgeons and
managers [24], it is in the interest of everyone to distribute more evenly through the year
the amount of required OR-time. Another possibility would be to allow for a more �exible
allocation of OR slots to di�erent surgery specialties. The modi�ed block-scheduling system
described in [27] can deal with this situation, by reserving a certain amount of OR-time in
the master surgery schedule (MSS) that is not bound to any particular surgeon or surgery
specialty. On the day before surgery, the decision maker could then use a prediction model of
surgery times to allocate the �exible OR-time slots between the di�erent surgery specialties
of the hospital, in order to get the best possible balance of expected workloads.

Fifth, our study shows the limits of proactive, �xed assignment strategies, which have
an average cost about 45% higher than the best possible, ORACLE ideal solution. From a
managerial point of view, this gives evidence for the necessity to allow for �exible allocation
schemes, in which a patient block may be re-allocated to another OR when the execution of
the schedule does not proceed as expected.

8 Conclusion

This study is motivated by an application to OR management, in which a parallel machines
scheduling problem with lognormally distributed durations must be solved. We present a
cutting plane approach to solve the robust counterpart of this problem. Our main result
allows to e�ciently solve the subproblem that generates cut inequalities, when the uncertainty
set consists of duration scenarios in a con�dence region of the lognormal distribution.

We evaluate our approach on instances based on real data from an application to OR
scheduling. Our results show that it is important to use uncertainty sets that rely on the
lognormal assumption for robust OR allocation. Compared to the previous model of uncer-
tainty of the MRORA approach [19], we obtain solutions that are better both in terms of means
and values-at-risk. In terms of computing times, it is also interesting to see that the cutting
plane approach requires much less iterations to converge when the underlying uncertainty
set is the con�dence region Dr than for the polyhedral uncertainty set D

MRORA
. The overall

computing time depends a lot on the number of required cuts. We think that this could
greatly be improved, by using a branch-and-cut strategy with lazy constraints, as described
in [8]. Another perspective for future research would be to investigate the development of an
FPTAS to solve the restricted master problem, by using a similar approach as in [30] for the
minimization of the sum of completion times.

We also observe that the robust optimization approach only works well for instances with
a low expected workload, that is, instances for which it is likely that the total duration of all
cases does not exceed the total time available in all operating rooms. For such instances,
we observe that robust optimization is slightly better � in terms of upper percentiles � than
a stochastic programming approach based on the sample average approximation (SAA), at a
small cost in terms of expected value. Nevertheless the gain in terms of robustness is rather
small, which shows that the SAA approach already provides quite robust solutions.

We draw a number of managerial implications in Section 7. One of them is that the �xed
assignment policy LEPT performs very well, and can be implemented very easily. In future work
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we would like to study the performance bound of this heuristic in the stochastic extensible
bin packing model, similarly as was done in [5] for the online counterpart of this problem.
At the same time, our study shows that this heuristic is quite sensible to the estimation of
the mean job durations, since the policy LSPT (which relies on biased estimates) yields much
more overtime. An interesting line of research would thus be to study the robustness of the
LEPT policy, subject to misspeci�cation of the mean durations.

Another perspective is to allow operations performed by the same surgeon to take place
in di�erent rooms. This makes the model much more complicated, since we must make sure
that no surgeon operates simultaneously in two ORs. As stated in the introduction, this is a
resource-constrained scheduling problem, which is already very hard in the deterministic case.
However preliminary work shows that our cut generation procedure could be adapted, to �nd
the worst case duration scenario for a given Earliest-Start-policy (ES-policy) of the stochastic
Resource Constrained Project Scheduling Problem (RCPSP), which are policies that can be
represented by a �ow of resources through the activities to be scheduled, cf [34]. Then, the
cutting-plane algorithm could be used to solve a robust version of the RCPSP over the space
of ES-policies; this problem was �rst studied in [4], but so far only very small instances can
be solved.

Finally, we recall that the allocation of ORs to patient blocks is just one of many steps
involved in the the management of the operation theater. For future research, it would
be necessary to evaluate the performance of the proposed method in a more complex and
realistic environment that simulates, e.g., the availability of recovery beds and allocation of
anesthesiologists.
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Appendix A Proof of Theorem 3.2

We start to give a general result about the Lipschitz constant of a function over
K(2) := {x ∈ Rn : x > 0,

∑n
i=1 x

2
i = 1} with respect to dH . The proof of this result relies

on the following property of Hilbert's projective metric, see [40]:

∀x,y ∈ K, dH(x,y) = inf
ϕ

∫ 1

t=0
ωϕ(t)(ϕ

′(t)) dt, (19)

where the in�mum is taken over all piecewise C1-paths ϕ such that for all t ∈ [0, 1], ϕ(t) ∈
K, ϕ(0) = x, ϕ(1) = y, and ωu(h) is the oscillation of h and u, de�ned by ωu(h) :=
maxi(hi/ui) − minj(hj/uj). The proof of the theorem mimics that of [40, Theorem 2.4],
where a similar result is proved for K(1) := {x ∈ Rn : x > 0,

∑n
i=1 xi = 1}, but we integrate

over a di�erent geodesic curve from x to y. A related result is also proved in [25], but for
functions f preserving the rays of K.

Theorem A.1. Let f be a function of class C1, mapping a geodesically convex set G ⊆ K(2)

to the cone K := {x ∈ Rn : x > 0}. For all x ∈ G, de�ne

λ(x) := sup
{v:vTx=0,v 6=0}

ωf(x)

(
f ′(x)(v)

)
ωx(v)

∈ R ∪ {+∞}.

De�ne further λ0 := sup{λ(x); x ∈ G}. Then, we have

∀x,y ∈ G, dH(f(x), f(y)) ≤ λ0 dH(x,y).

Proof. Observe that λ(x) is well de�ned for all x ∈ G. Indeed, vTx = 0,v 6= 0 implies that
v has at least one positive element, and at least one negative element, so ωx(v) > 0.

Let x,y ∈ G. It is well known that the path ϕ(t) = (1 − t)x + ty is a geodesic curve
from x to y for Hilbert's projective metric (i.e., ϕ is a minimizer of expression (19)), see [40,
Theorem 2.1]. It follows that for all functions α : [0, 1] → (0,∞) of class C1 satisfying
α(0) = α(1) = 1, the path ψ(t) := α(t)ϕ(t) is also a geodesic. Indeed, for all t ∈ [0, 1],

ωψ(t)(ψ
′(t)) = max

i

α′(t)

α(t)
+
ϕ′(t)i
ϕ(t)i

−min
i

α′(t)

α(t)
+
ϕ′(t)i
ϕ(t)i

= ωϕ(t)(ϕ
′(t)).

In particular, the path from x to y following the great circle, ϕC(t) := ϕ(t)/‖ϕ(t)‖ is a
geodesic curve from x to y in the Hilbert's projective metric.

We can now use expression (19) with the path t 7→ f(ϕC(t)) to obtain a bound of
dH(f(x), f(y)):

dH(f(x), f(y)) ≤
∫ 1

t=0
ωf(ϕC(t))

(
f ′(ϕC(t))(ϕ′C(t))

)
dt.

The vectors ϕC(t) and ϕ′C(t) are orthogonal for all t ∈ [0, 1], so by de�nition of λ0,

dH(f(x), f(y)) ≤
∫ 1

t=0
λ0 ωϕC(t)(ϕ

′
C(t)) dt = λ0 dH(x,y),

where the last expression follows from the fact that ϕC is a geodesic from x to y.
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We are now ready to prove Theorem 3.2. By Theorem (A.1), the Lipschitz constant of
the restriction of x 7→ expx to K(2) (with respect to dH) is bounded from above by

λ0 = sup
x∈K(2)

sup
{v 6=0:vTx=0}

ωexp(x)

(
Diag(ex)v

)
ωx(v)

= sup
x∈K(2)

sup
{v 6=0:vTx=0}

maxi vi −mini vi
maxi

vi
xi
−mini

vi
xi

.

For a �xed vector v, we start by minimizing the denominator of the above expression over
the set {x ∈ K(2) : xTv = 0}. Let I+, I−, I0 be the set of indices i ∈ [n] such that vi > 0,
vi < 0, and vi = 0, respectively. Note that v 6= 0 and xTv = 0 for some x > 0 implies that
I+ and I− are nonempty. The optimization problem with respect to x can be reformulated
as

inf
{x∈K(2):xT v=0}

max
i∈I+

vi
xi

+ max
i∈I−

(−vi)
xi

.

Now, assume for simplicity that I0 = ∅ (the result for the case I0 6= ∅ can be obtained
by continuity). It is not hard to see that at the optimum, there must exist some constants
α > 0 and β > 0 such that vi/xi = α for all i ∈ I+ and −vi/xi = β for all i ∈ I−. Let
a = (

∑
i∈I+ v

2
i )

1/2 and b = (
∑

i∈I− v
2
i )

1/2. The values of α and β are obtained by solving the
system of equations {

a2

α2
+
b2

β2
= 1,

a2

α
− b2

β
= 0

}
,

where the �rst equation follows from ‖x‖ = 1 and the second one from vTx = 0. We �nd
α = b/a‖v‖2 and β = a/b‖v‖2, and so the value of the in�mum is α+ β = (ab)−1‖v‖32.

Finally, we consider the maximization problem with respect to v to �nd the value of λ0.
Observe that we can assume without loss of generality that ‖v‖2 = 1, because multiplying
v by a constant does not change the value of the ratio to maximize. The numerator is
maxi vi−mini vi = maxi∈I+ vi+maxi∈I−(−vi) ≤ a+ b, where the inequality follows from the
inequality between the `2-norm and the `∞−norm, and a and b satisfy a2 + b2 = ‖v‖22 = 1.
We have shown above that the denominator is equal to (ab)−1‖v‖32 = (ab)−1. Hence,

λ0 ≤ sup{(a+ b)ab; a > 0, b > 0, a2 + b2 = 1} =
1√
2
.
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