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Abstract

A framework is proposed for extracting features in 2D transient flows,
based on the acceleration field to ensure Galilean invariance. The minima
of the acceleration magnitude, i.e. a superset of the acceleration zeros, are
extracted and discriminated into vortices and saddle points — based on
the spectral properties of the velocity Jacobian. The extraction of topo-
logical features is performed with purely combinatorial algorithms from
discrete computational topology. The feature points are prioritized with
persistence, as a physically meaningful importance measure. These fea-
tures are tracked in time with a robust algorithm for tracking features.
Thus a space-time hierarchy of the minima is built and vortex merging
events are detected. The acceleration feature extraction strategy is ap-
plied to three two-dimensional shear flows: (1) an incompressible periodic
cylinder wake, (2) an incompressible planar mixing layer and (3) a weakly
compressible planar jet. The vortex-like acceleration feature points are
shown to be well aligned with acceleration zeros, maxima of the vorticity
magnitude, minima of pressure field and minima of λ2.

1 Introduction

Computational fluid dynamics and particle image velocimetry can provide highly
resolved flow data in space and time. A challenge is to quickly extract the im-
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portant kinematic features from these data. Topological methods applied to
snapshots are one of the first choices. Flow topology may provide information
about the size of separation bubbles and vortices, about the length of a dead-
water region, and about flow regions, which do not mix — just to name a few
applications. Velocity snapshot topology provides invaluable insights into lami-
nar or time-averaged flows [16, 32, 22, 26, 27], or, in general, into velocity fields
with a distinguished frame of reference and a low feature density.

Such a topology is always based on the zeros of the velocity field and thus
is intrinsically Galilean-variant, i.e., depends on the chosen frame of reference.
Furthermore, in an unsteady flow, a zero or critical point at one instant is
generally not a zero at another instant. The question arises what critical points,
‘connectors’ and other topological elements physically mean for an unsteady
situation, and the answer is far from being clear.

In some cases, e.g., a flow over an obstacle, a naturally preferred frame of
reference is given. Here, Galilean invariance of the topology appears to be a
purely academic requirement. In many cases, however, the proper frame of
reference is far less obvious. In a wake or mixing layer, for instance, topology
may resolve the initial vortex formation in a body-fixed frame of reference,
but the convecting vortices do not give rise to velocity zeros as they convect
downstream. Now, the choice of the ‘right’ frame of reference is subject to
personal preferences.

A second challenge is that critical points are associated to the smallest struc-
tures on the flow. However, in a fully turbulent flow, the average distance of
fixed points is of the order of the Taylor scale [33, 34]. Under these conditions,
critical points loose their meaning as ‘markers’ of large-scale coherent structures.

Third, every measured or simulated data naturally contains a small amount
of noise. This noise complicates the extraction of feature points such as zeros.
Therefore, important physical structures may be missed.

To address the first challenge, Goto & Vassilicos [9] used the acceleration
to define a set of feature points. They propose to use zeros of the acceleration
vector field (zero acceleration points) for the analysis of two-dimensional flows.
The motivation for the definition of these zeros was to find a frame moving with
vortices, such that the persistence of streamlines is maximized. However, also
the extraction of physically meaningful zeros of the acceleration is a complex
task – especially in the presence of noise.

In this paper, we propose acceleration feature points that comprise Goto’s
ideas but also solve the challenges two and three. Acceleration feature points
are a time-dependent counterpart of the fixed points of the velocity field topol-
ogy. Their definition is based on three requirements, namely (1) choosing a
Lagrangian viewpoint, (2) requiring Galilean invariance and (3) having stan-
dard velocity topology as limiting case for steady flows. It is shown that the
minima of the acceleration magnitude, called acceleration feature points, fulfill
these criteria. These points are Galilean-invariant and their physical meaning is
inferred from the velocity Jacobian. They form a superset of the aforementioned
zero acceleration points by Goto & Vassilicos. In contrast to their interesting
work, our concept can be generalized to three dimensional flows, in particular
to one-dimensional features.

The usage of minima enables us to utilize the powerful concept of scalar field
topology and associated combinatorial extraction methods, which are robust
against large noise levels in the data. The application of these methods enables
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the usage of persistent homology [6]. It serves (a) as a filter for the robust
extraction in the first step and (b) as a spatial importance measure for the
acceleration feature points.

A subset of the acceleration feature points can be interpreted as vortex
cores. Within our combinatorial framework, we track these points over time.
The combination of persistence with the lifetime of the vortices, we are able to
discriminate short-living unimportant features from long-living and dominant
vortices. We therefore contribute to the distillation of vortex cores in three
major points: (1) a robust extraction of the feature points in the presence of
noise; (2) an efficient tracking of them over time; (3) a filtering strategy that
is based on a hierarchy of the vortex cores and trajectories. The extraction
and tracking is based on a combinatorial framework [23, 24]. The resulting
explicit representation of the vortex core lines enables a detailed analysis of
the interacting structures in a flow field. In principle, an analogous feature
extraction can be effected for saddles.

This paper is structured as follows: In Sec. 2, key elements of the analysis
are motivated for simple analytically defined flows. In Sec. 3, Galilean-invariant
features are proposed. The algorithmic implementation of the feature extraction
strategy is described in in Sec. 4. The results are discussed in Sec. 5. Sec.
6) concludes the paper with a summary and the relation to other topological
analyses.

2 Illustrating Shear Flow Example

In this section, a 2D incompressible flows is considered: the Stuart solution
of the inviscid mixing layer [30]. This analytical example shows that local
minima of the total acceleration magnitude are good indicators of vortices and
saddles. These results motivate the definition of acceleration feature points as
key elements of the feature extraction strategy elaborated in the next section.

An incompressible mixing layer is described in a Cartesian coordinate system
x = (x, y), where x and y represent the streamwise and transverse coordinate,
respectively. The origin 0 is placed in one saddle. The velocity is denoted by
u = (u, v), where u and v represent its x and y components, respectively. All
quantities are normalized with half of the relative velocity difference and half
of the vorticity thickness. Targeting a simple analytical example, we consider
a streamwise periodic mixing layer with constant width, as described by the
inviscid Stuart solution [30]:

u = uc +
sinh(y)

cosh(y)−0.25 cos(x−uct)
, (1a)

v = −0.25 · sin(x− t)
cosh(y)−0.25 cos(x−uct)

, (1b)

where uc represents the convection velocity.
The Stuart vortices are depicted in Fig. 1 as streamlines using planar line

integral convolution (LIC) [3, 29]. The top picture represents Eqs. (1) and shows
the famous cat eyes in a periodic sequence of centers (vortices) and saddles for
a vortex-fixed frame of reference (uc = 0). The middle picture depicts the same
structures but in a frame of reference moving to the left with the lower stream at
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Figure 1: Stuart vortices in various convecting frames. The mean velocity
profile is shown at the left. The Stuart vortices are depicted by visualizing
the instantaneous velocity field using line integral convolution. The coloring is
determined by vorticity; more intense red corresponds to higher vorticity. The
critical points of standard velocity field topology are displayed as red (centers)
and green (saddles) spheres. The maxima of the vorticity are added as orange
spheres.
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velocity (−0.7, 0), or, equivalently, the vortices moving to the right at uc = 0.7.
The centers and saddles are displaced towards the slower stream. The bottom
picture illustrates the same flow with a frame of reference moving at velocity
(−1.2, 0), i.e. uc = 1.2 in Eq. (1). Now, no zeros are observed. These pictures
recall the well-known fact, emphasized in many textbooks in fluid mechanics,
that velocity field topology strongly depends on the frame of reference, i.e. is
not Galilean-invariant. In case of the Stuart solution, one might argue that
the frame of reference convecting with the structures is the most natural one.
However, the convection velocity of a jet and many other flows depend on the
streamwise position, i.e., generally no single natural frame of reference exists for
topological considerations.

The saddles and centers of a Stuart solution for a vortex-fixed frame of
reference (uc = 0) are not only zeros of the velocity field but also zeros of the
material acceleration field

a = Dtu = ∂tu + u · ∇u . (2)

Here, ∂t represents the partial derivative with respect to time, ∇ the nabla op-
erator and the dot · the tensor contraction. The acceleration zeros are derived
from a Galilean-invariant field and do not depend on the chosen inertial frame of
reference. Figure 2 illustrates the magnitude of the acceleration field as height.
The zeros of the acceleration field and the local minima of the acceleration mag-
nitude (yellow spheres) coincide in this example. In general, the latter quantity
is a superset of the first. The acceleration magnitude minima, however, enable
to identify vortices and saddles in case of a non-uniform convection velocity.

x

y

||a||

Figure 2: The acceleration magnitude field of convecting Stuart vortices. The
coloring at the bottom is determined by the vorticity. The height field shows
the acceleration magnitude and the curves depict integral lines of the accelera-
tion vector field. The yellow spheres highlight the acceleration minima, orange
spheres vorticity maxima. Note that center-like acceleration minima and vor-
ticity maxima coincide (orange spheres hide yellow spheres).

3 Acceleration Feature Points

In this section, the definition of the considered feature is introduced. Starting
point is a critical review of the velocity snapshot topology. Topological analysis

6



of velocity fields has been successfully applied for examination of flow fields
with a distinguished frame of reference. However, its applicability is limited,
as location and number of critical points depend on the frame of reference.
The goal of the current study is a definition of an alternative feature concept,
which generalizes the snapshot topology in a local sense and overcomes the
above-mentioned limitations. The feature point definition is motivated by the
observations in the previous example and the following three requirements:

(R1) Correspondence to velocity topology: A flow field is called steady, if
there exists a distinguished frame of reference for which the vector field is
stationary, i.e., it does not change in time. Such flow fields consist of frozen
convective structures. They satisfy Taylor’s hypothesis [31]. With respect
to this distinguished frame of reference, critical points of the velocity field
correspond to the position of vortex cores and saddles. This concept is
not applicable to unsteady flow fields, since there is no such distinguished
frame of reference. Aiming for a generalization of velocity topology, the
newly defined feature points should coincide for steady flow fields with the
zeros of the velocity field. This also means that the classification of the
points as saddles or centers is preserved. Note that this requirement is
not fulfilled by Haller’s definition of an objective vortex [12]. Rotationally
invariant features cannot distinguish saddles and centers.

(R2) Galilean invariance: A Galilean-invariant feature identifier reveals the
same structures when changing the frame of reference.

(R3) Lagrangian viewpoint : To guarantee a physically sensible feature iden-
tifier, we focus on particle motion. This Lagrangian viewpoint implies
the focus on Galilean-invariant properties of fluid particles, but it does
not include tracking finite-time fluid particle motion. This restricted La-
grangian viewpoint is consistent with the general notion of ‘Lagrangian
coherent structures.’

These requirements and the observations from Sec. 2 suggest to relate feature
points to the material acceleration field. The particle acceleration a is the total
derivative of the flow field u. In other words, the acceleration in a space-time
point (x, t) is given by Eq. (2).

Definition: A minimum of the magnitude of the material acceleration ‖a‖
is called acceleration feature point. Such points can be classified on the basis of
the Jacobian of the velocity field, ∇u. A feature point is called saddle-like if
its eigenvalues are real and center-like if its eigenvalues are complex. A feature
trajectory is defined by the temporal evolution of a minimum in the acceleration
field.

In the following, this definition is shown to satisfy requirements R1 to R3.
Let x0 be a zero of the steady velocity field u(x0, t) ≡ 0. Under reasonable
regularity conditions on ∇u this implies that the material acceleration a|x0

=
(∂tu + u · ∇u) |x0

= 0 vanishes at x0. Thus, the minima of the acceleration
magnitude are a superset of acceleration zeros and these zeros are a superset of
the critical points of the velocity field. Hence, acceleration feature points can be
considered as a generalization of critical points of velocity fields. Acceleration
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is a Galilean-invariant quantity. It is computed from the velocity using the
material or Lagrangian derivative that links the Eulerian to the Lagrangian
viewpoint [21]. Moreover, acceleration feature points satisfy all requirements
R1 to R3.

The acceleration feature points can exhibit vortex- as well as saddle-like be-
havior, depending on the eigenvalues of the velocity Jacobian. Real eigenvalues
correspond to saddles while a complex-conjugate eigenvalue pair indicates a vor-
tex. Alternative synonymous discriminants have been proposed for 2D flows:
Goto & Vassilicos [9] show that saddles are associated with sources of the ma-
terial acceleration field while vortices correspond to sinks. One advantage of
their definition is that it relies purely on the acceleration without reference to
the velocity Jacobian. Basdevant & Philipovitch [1] critically assess the use of
the Weiss criterion as discriminant.

Another perspective onto the acceleration minima is given by their relation
to the pressure gradient via the incompressible Navier-Stokes equation:

a(x, t) = −1

ρ
∇p(x, t) + ν∆u(x, t),

0 = ∇ · u(x, t),

(3)

where p is the pressure of the flow field, ρ and ν are the kinematic viscosity and
density of the fluid, respectively, and ∆ is the spatial Laplacian operator. For
ideal flows, the equations reduce to the Euler equation:

a(x, t) = −1

ρ
∇p(x, t),

0 = ∇ · u(x, t).

(4)

Then, local extrema of the pressure field, which are zero points of the pressure
gradient coincide with zeros of the acceleration field. In this case, the above de-
fined acceleration feature points form a superset of local extrema of the pressure
field – the minima of which are often associated with vortices.

4 Feature Point Extraction Strategy

Besides the definition of physically meaningful feature points, the choice of
suitable a mathematical framework as well as a robust and efficient extraction
algorithm are essential for practical applications. To be broadly applicable, the
mathematical framework should fulfill the following criteria:

(C1) It should facilitate a robust and efficient extraction without subjective
parameters to enable an unsupervised extraction of the structures.

(C2) It should allow to generate a feature hierarchy based on an intrinsic filter-
ing mechanism. This eases the interpretation of the results and becomes
necessary as soon as one moves on from simple showcases or when the
data exhibit high feature densities.

(C3) It should allow for tracking of features over time, based on neighborhood
relations.
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Tracked and Filtered 
AFPs

Material Acceleration 
MagnitudeVelocity field

Minima = Acceleration 
Feature Points (AFP)

Figure 3: Pipeline of the proposed approach: After computing the acceleration
magnitude field from the velocity, its minima are extracted, which are referred to
as Acceleration Feature Points (AFPs). These AFPs are tracked over time and
prioritized by a spatio-temporal importance measure. The importance measure
combines a spatial strength and the lifetime of the feature.

As extremal points of the acceleration magnitude, the above defined accelera-
tion feature points can be considered as part of the scalar field topology of the
acceleration field. This interpretation gives access to powerful algorithmic tools
developed for extracting and tracking topological structures in scalar fields.

Our feature extraction pipeline consists of three stages (cf. Fig. 3): (1) spatial
feature extraction resulting in isolated feature points; (2) temporal tracking of
these points; and (3) spatio-temporal filtering of the resulting structures.

In the following, we will briefly describe the methods used to accomplish
the three stages of the extraction pipeline. We restrict the description to the
two-dimensional case since this corresponds to our setting. All the presented
concepts can be generalized to higher dimensions. However the cases to consider
will become more complex.

(1) Combinatorial extraction of two-dimensional scalar field topology – The
algorithm chosen for this paper is based on Discrete Morse theory [7]. A short
introduction is given in Appendix A of this paper. It is purely combinatorial
and guarantees topological consistency of the extracted structures [23]. The
robustness of the algorithm and lack of any algorithmic parameter allow an
unsupervised extraction of structures. This guarantees the applicability of the
methods to large data sets without tedious adaptations.

(2) Temporal feature development – To get an understanding of the temporal
evolution of acceleration feature points, the minima are tracked over time. We
use here a topological tracking also referred to as combinatorial feature flow
fields (CFFF), as proposed in Ref. [24]. The basic idea of this tracking algorithm
is to construct a discrete gradient field in space-time, describing the development
of the acceleration minima, such that tracking of those minima results in an
integration of the discrete gradient field [15]. The result of this tracking is a set
of temporal feature lines with explicit mergers and splits. Thus we are able to
extract the mergers that occur for vortex core lines in a two-dimensional setting.

(3) Generating a feature hierarchy for the tracked acceleration feature points
– One way to approach the problem of high feature density is to use statistical
methods. Another way, pursued in this work, is to introduce an importance
measure and utilize it to build a feature hierarchy. A commonly used impor-
tance measure for critical points in context of scalar field topology is persistent
homology [6]. Persistence measures the stability of critical points with respect
to small changes in the data, e.g. introduced by noise.

More specifically it is based on the notion of the persistence of components
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f(x4)

f(x1)

f(x2)

f(x3)

f(x)
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Figure 4: The employed spatial feature importance is given by the persistent
homology of the critical points. It measures how strong a minimum is, com-
pared to its neighbors. This is achieved by correctly pairing critical points and
quantifying their height difference. The image shows such a pairing, e.g., the
critical points at x2 and x3. As example, the persistence associated with x1 is
f(x2) − f(x1). This is, loosely speaking, the lowest height one needs to climb
to get the next criticial point.

in the sublevel sets of a scalar function. Sublevel sets of a scalar function are
defined as the set of all points having a scalar value below a certain thresh-
old. Increasing this threshold new components are generated in minima or
saddle points of the function, or they disappear in saddles or maxima. In this
way critical points are paired in an hierarchical manner (minimum-saddle or
saddle-maximum) and are assigned a persistence value. These pairs can then
be cancelled to simplify the data in an well-defined and controlled way with
strict error measures. In our setting this means that every acceleration minima
is assigned an importance value. Note that critical points that are paired by
persistence are not necessarily adjacent. For a simple example illustrating the
concept of persistent homology in 1D, we refer the reader to Figure 4.

From this importance measure for critical points we derive a spatio-temporal
measure for the features by integrating persistence along the feature line, e.g.,
by accumulating all persistence values along the line. This measure takes the
feature strength as well as its lifetime in account.

5 Results

Three canonical free shear flows are investigated: the flow around circular cylin-
der, a planar mixing layer, and a planar jet. These well-studied configurations
represent different levels of spatio-temporal complexity from the periodic wake
to the broadband dynamics and vortex pairing of the mixing layer and jet. The
first two flows share a pronounced uniform far-wake convection velocity, while
the jet structures move slower with streamwise distance.

The 2D cylinder wake has been subject of numerous topological analyses.
The steady flow is symmetric and has a single separation point up to a Reynolds
number of Re = 4 (based on diameter) [35]. At larger Reynolds numbers, a sym-
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metric vortex pair emerges. It should be noted that this topological bifurcation
results from a continuous change of a stable steady solution and is not asso-
ciated with any dynamical bifurcation. This vortex pair becomes unstable in
a supercritical Hopf bifurcation at Re = 47 [28, 18]. The near-wake topology
of the resulting periodic wake has been studied in detail by Brøns et al. [2].
This study reveals the rich set of topological configurations and their temporal
transitions — all in a body-fixed frame of reference. The far wake contains
no velocity zeros according to this study. Yet, the topology assumes a nearly
periodic pattern in streamwise direction if the frame of reference moves with
the vortices. Thus, the topology of the near and far-wake is best elucidated in
frame of reference which move with the vortices from vanishing speed in the
near wake to about 85% of the oncoming velocity further downstream. The
need for different frames of references indicates a challenge of Galilean variant
features.

A pronounced topological feature of the Kelvin-Helmholtz instability of shear
flows is the so-called ‘cat’s eye’ where the saddle points connect via heteroclinic
orbits and thus strap the circulating particles inside the vortex [13, 30]. Cat’s
eyes can only be observed in a suitable frame of reference, as demonstrated in
Sec. 2. Vortex pairing gives rise to far more complicated topology. For planar
jets, convection velocities from zero in the far-field to about 65% of the exit
velocity are reported.

In contrast to the velocity field, the acceleration field is Galilean invariant
and the equilibrium points of the latter form a superset of the velocity zeros
(in any inertial frame of reference). Focus of this study is placed on the vor-
tex skeleton as identified by the Galilean-invariant acceleration feature points
(AFPs). All flows are described in a Cartesian coordinate system x = (x, y),
of which the abscissa x points in streamwise direction and y in transversal di-
rection. The origin is located in the source of the shear flow, i.e. center of the
cylinder for the wake, center of the inflow for the mixing layer and center of the
orifice for the jet.

The velocity u = (u, v) is expressed in the same system, u and v being the x-
and y-components of the velocity. The time is denoted by t, the pressure by p
and the material acceleration by a. All quantities are non-dimensionalized with
a characteristic length-scale L, a characteristic velocity U and the density of the
fluid ρ. L denotes the cylinder diameter for the wake, the vorticity thickness for
the mixing layer, and the width of the origin for the planar jet. U corresponds
to the oncoming flow for the wake, to the velocity of the upper (faster) stream
for the mixing layer, and to the maximum velocity at the orifice for the jet.

This section is organized as follows. Feature extraction results of the cylinder
wake, the mixing layer, and the planar jet are present in Secs. 5.1, 5.2 and
5.3, respectively. Pars pro toto, we perform a statistical analysis for the wake
features, investigate the vortex merging of the mixing layer, and employ the
persistence-filter of AFPs for the jet.

5.1 Cylinder Wake

Starting point is a benchmark problem of the data visualization community:
periodic vortex shedding behind a circular cylinder. The Reynolds number is
set to 100, which is well above the critical value for vortex shedding at 47 [36, 14]
and well below the critical value for transition-related instabilities around 180
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Figure 5: Visualization of a cylinder wake snapshot. Five vorticity-related quan-
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depict the extremal points typically used as features for the respective quantity.
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displacement yv (bottom) along tracked vortices. Note that each figure contains
the history of many vortex evolutions from roll-up to convection out of the
domain. Hence, several lines can be seen in each curve.
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[37, 35]. The flow is simulated with a finite-element method solver with third-
order accuracy in space and time, like in [18]. The rectangular computational
domain (x, y) ∈ [−10, 30]× [−15, 15] without the disk K1/2(0) for the cylinder is
discretized by 277,576 triangular elements. The numerical time step for implicit
time integration is 0.1, which also corresponds to the sampling frequency for
the snapshots.

Figure 5 shows five vorticity related quantities of a cylinder wake snapshot.
The vorticity field depicts the separating shear-layers rolling up in a staggered
array of alternating vortices. The yellow balls mark the extrema, revealing the
known fact that the ratio between the transverse of vortex displacement and
the wavelength slightly increases downstream with vortex diffusion. The sec-
ond subfigure shows the Okubo-Weiss parameter Q = ‖S−‖2 − ‖S+‖2 marking
the maxima with balls. This parameter employs the velocity Jacobian ∇u and

compares the norm of the symmetric shear tensor S+ = 1
2

[
∇u + (∇u)

t
]

and

with the norm of the antisymmetric one S− = 1
2

[
∇u− (∇u)

t
]
. In the center

of a radially symmetric vortex, Q = ‖ω‖2 > 0, since ‖S+‖ vanishes and ‖S−‖
becomes the norm of the vorticity ‖ω‖. At a saddle point Q = −‖S+‖2 < 0.
Hence, maxima of Q can be associated with vortex centers and minima with
saddles. The third subfigure shows λ2. Its extrema are marked by balls and in-
dicate vortex centers. Q and λ2 are generally considered to provide synonymous
information. The absolute value of the imaginary part of the eigenvalues of the
Jacobian ∇u is shown in the fourth subfigure. This quantity characterizes the
angular frequency of revolution of a neighboring particles. Hence, its maxima
marked by yellow balls indicate vortex centers. Finally, the magnitude of the
material acceleration field is depicted. The minima (zeros) mark both vortex
centers and saddles, i.e. twice as many points in the vortex street. These two
features are distinguished based on the velocity Jacobian: two positive eigenval-
ues of the velocity Jacobian are associated with a saddle, a complex conjugate
pair with a vortex.

In the vortex street, all five vortex criteria provide nearly identical locations.
In the boundary-layer and in the near-wake of the cylinder there are pronounced
differences. Mathematically, the vortex criteria rely on quite different formu-
lae. They cannot be expected to exactly coincide, except for pronounced flow
features, e.g. axis-symmetric vortices. In addition, the cylinder boundary intro-
duces a singular line u = 0, thus amplifying the differences between the vortex
criteria.

Figure 6 shows the spatial-temporal vortex evolution, based on the tracked
acceleration feature points. In the far-wake, a uniformly convecting von Kármán
vortex street is observed. In the near-wake, the convection speed is significantly
slower. This aspect is highlighted in Fig. 7 (first subfigure). The streamwise
velocity of each vortex uv is monotonically increasing from 0.03 to about 0.85.
The asymptote corresponds to the literature value [35]. The transverse spread-
ing of the vortex street, noted in Fig. 5, is quantified in the following subfigure
with the transverse location yv.

It should be noted that tracked acceleration feature points can be seen as
markers of coherent structures. The acceleration-based framework provides a
convenient means for determining convection velocities and evolution of spatial
extensions. The following investigations of the mixing layer and the jet flow
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emphasize this aspect.

5.2 Mixing Layer

The second investigated shear flow is a mixing-layer with a velocity ratio between
upper and lower stream of 3:1, following earlier investigations of the authors [5,
20, 19]. The inflow is described by a tanh profile with a stochastic perturbation.
And the Reynolds number based on maximum velocity and vorticity thickness
is 500. The flow is computed with a compact finite-difference scheme of 6th
order accuracy in space and 3rd oder accuracy in time. The computational
domain (x, y) ∈ [0, 140] × [−28, 28] is discretized on a 960 × 384 grid. The
sampling time for the employed snapshots is ∆t = 0.05 corresponding 1/10 of
the computational time step. Whenever required, linear interpolation has been
used for the visualization.

In contrast to the space- and time-periodic Stuart solution, the mixing layer
generally shows several vortex pairing events. In Fig. 8, the distance between
vortex acceleration feature points (marked by balls) are seen to increase in
streamwise direction as result of vortex merging. Furthermore, the locations
of the acceleration feature points nicely correlate with the local maxima of the
vorticity (top), the local minima of the pressure (middle) and the local minima
of the magnitude of the material acceleration (bottom). The correlation between
vorticity maxima and pressure minima in free shear flows is well documented
in the literature. The correlation between pressure and acceleration magnitude
minima may be inferred from the non-dimensionalized Euler equation a = −∇p,
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governing the predominantly inviscid dynamics of the mixing layer. A pressure
minimum (or maximum) implies ∇p = 0 and thus a = 0.

The vortex merging events are shown in Fig. 9. Upstream, many Kelvin-
Helmholtz vortices are formed. In streamwise direction numerous vortex merg-
ing can be identified. The downstream vortices result from up to 4 successive
vortex mergers in the shown domain. Not all crossings of x, t-curves mark merg-
ers, since vortex pairs may rotate around their center before eventual merging.
The figure strongly suggests a nearly constant streamwise convection velocity,
as expected from literature results and contrary to the cylinder wake dynamics.

5.3 Planar Jet

Finally, the spatiotemporal evolution of the planar jet is investigated. Like the
mixing layer, the jet shows a number of vortex mergers leading to a reduction of
the characteristic frequency. As additional complexity, the convection velocity
is not constant but decreases in streamwise direction.

All quantities are normalized with the jet width Dj and maximum jet ve-
locity Uj . The flow is a weakly compressible isothermal 2D jet with a Mach
number of Maj = 0.1 and a Reynolds number of Rej = DjUj/ν∞ = 500. The
inflow velocity profile is given by a hyperbolic tangent profile like in [8]:

u(r) = U∞ +
(Uj − U∞)

2

[
1− tanh

[
b

(
r

r0
− r0

r

)]]
.

Here, a uniform 1% co-flow U∞ = 0.01Uj is added to avoid vortices with ar-
bitrarily long residence time in the computational domain. The slope of the
tanh profile is characterized by b = ro/4δθ and the momentum thickness of the
shear layer is δθ = 0.05ro. The initial mean temperature was calculated with
the Crocco-Busemann relation, and the mean initial pressure was constant.

The natural transition to unsteadiness is promoted by adding disturbances
in a region in the early jet development near the inflow boundary xo = −0.5 :

v(x, y) = v(x, y) + αUce
− (x−xo)2

λ2x (f1(y) + f2(y)) (5)

Here,

f1(y) = ε1e
− (y−y1)2

λ2y , f2(y) = ε2e
− (y−y2)2

λ2y , (6)

where Uc = 0.5, α = 0.008, y1 = 0.5, y2 = −0.5, λx = 0.1, λy = 0.1 and
−1 ≤ ε1, ε2 ≤ 1 are random numbers.

The flow is defined in a rectangular domain (x, y) ∈ [0, 20] × [−7, 7]. The
adjacent sponge zone extends to [−1.5, 25] × [−10, 10]. The whole domain is
discretized on a non-uniform Cartesian with 2 449 points in x-direction and 598
points in y-direction. The compressible Navier-Stokes equation is solved by
means of a (2,4) conservative finite-difference scheme based on MacCormack’s
predictor-corrector method [10] with block-decomposition and MPI paralleliza-
tion. The system may be closed by the thermodynamic relations for an ideal
gas. Details of the equations, boundary conditions and solver can be inferred
from [4].

A stochastic inflow perturbation gives rise to small acoustic waves. These
small acoustic perturbations provide an excellent test-case demonstrating the

16



y

20 x30 40 50 60 70 80 90 100 110 120 130 140

300

200

100

0 10

5
0
-5

400
xt

Figure 9: Spatiotemporal evolution of vortices in the mixing-layer. The top part
of the figure shows the acceleration magnitude field and LEPs at the final time
considered. The bottom figure marks the tracked acceleration feature points
over approximately 5 downwash times. Numerous vortex merging events can be
identified. The size and coloring of the vortex skeleton is determined by vorticity
– more intense blue corresponds to lower vorticity. Note that the vorticity is
negative everywhere.
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Figure 10: Persistence-based visualization of a jet snapshot. Top left to bottom
left : Visualization of the snapshot for persistence threshold levels of 0% (top
left), 0.5% (top right) and 2% (bottom left) of the maximum. The color field
depicts the acceleration magnitude – with a color map that ranges from white
(zero) to red (positive). The yellow balls represent acceleration feature points
filtered by their persistent homology with respect to the specified threshold
levels.
Bottom right : Persistence distribution. The number of critical points after
persistence-based filtering is plotted against the persistence threshold level.
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Figure 11: Spatiotemporal evolution of the vortex skeleton of the jet. The size
and coloring of the vortex lines are determined by our spatiotemporal impor-
tance measure. The links between the individual vortices are shown as white
gray lines.
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Figure 12: Close-up view of the vortex skeleton of the jet flow. The gray lines
depict the extracted and filtered vortex cores. A few lines are visually high-
lighted by red coloring; they show a pronounced vortex merging event and the
origin of the merged vortices. The acceleration is visualized by the blue volume
rendering and the color coding in the front and back plane. For comparison,
iso-lines of the vorticity are added to the front plane.

need and performance of persistence-based filtering. Figure 10 depicts a jet
snapshot. Most of the acceleration feature points are associated low-amplitude
sound waves from the random inlet perturbation (top figure). These acceler-
ation feature points may be filtered out, ignoring those with low persistence
(middle and bottom). The bottom figure shows only features associated with
incompressible dynamics.

The spatiotemporal evolution of the vortex skeleton of the jet is visualized
in Fig. 11 in a similar manner as the wake (Fig. 6) and the mixing-layer (Fig. 9).
Clearly, vortex merging events and a streamwise decreasing convection velocity
can be identified. In particular, some strong vortices remain for a long time
near the exit. A three-dimensional close-up view is shown in Fig. 12.

6 Conclusions

We have proposed a novel feature extraction strategy for unsteady 2D flows.
This strategy departs in important aspects from topology extraction of the
instantaneous velocity field, starting from the velocity zeros. Instead of the

20



velocity, the material acceleration field is analyzed, following [9]. Secondly,
instead of acceleration zeros, the minima of the acceleration magnitude are
identified. Thirdly, the acceleration feature points are tracked in time. Finally,
a mathematically rigorous spatiotemporal hierarchy of the tracked minima is
defined.

The acceleration feature points define topological elements of an unsteady
flow with a number of discriminating features:

1. For steady flows, the acceleration feature points are a natural generaliza-
tion of the critical points of vector field topology. Each critical point is
an acceleration feature point. This implication may not hold generally in
the other direction.

2. A critical point of a steady flow field remains an acceleration feature point
in any inertial frame of reference. In other words, the acceleration feature
points cannot vanish or be distorted by a uniform convection of a ‘frozen’
flow field (Taylor hypothesis).

3. The acceleration feature points are independent of the inertial frame of
reference, i.e. they are Galilean-invariant. This property is a trivial con-
sequence of the material acceleration field as observable.

4. The concept of acceleration feature points is parameter-free. No inte-
gration windows, nor threshold criteria, etc. are needed. Note that the
persistence level is not a free parameter, as it defines a feature hierarchy.

5. Acceleration is correlated with pressure by neglecting the viscous term.
Suppose the pressure field has a minimum (in a vortex) or maximum
(near a saddle point). Then, the pressure gradient vanishes and the Euler
equation yields a vanishing material acceleration (implying trivially also
a magnitude minimum).

6. The persistence measure introduces a rigorous hierarchy of acceleration
feature points based on spatial characteristics, without the need of tem-
poral filtering.

7. With the tracking of the acceleration feature points, the temporally inte-
grated persistence emphasizes long-lived structures.

In short, identification of acceleration feature points naturally generalizes identi-
fication of critical points and exhibits new desirable or even necessary properties
for a meaningful flow analysis.

Our framework follows Vassilicos’ group [9] in employing the Galilean-invari-
ant material acceleration field as opposed to the velocity field. However, they
determine the zeros of this field, while our acceleration feature points are based
on the more general notion of magnitude minima. This enables a robust, com-
putationally inexpensive, derivative-free feature extraction — capable of coping
with large noise levels in the data. Furthermore, using minima instead of zeros
allows for a natural extension to three-dimensional flows. The concept of ac-
celeration feature points follows Haller in the search of a Lagrangian Galilean
invariant definition of saddles [11] and vortices [12], but provides a simple aggre-
gate definition for both features. The hierarchy of the acceleration feature points
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can be determined from a single snapshot, i.e., no back-and-forward integration
of fluid particles is required.

The framework has been applied to three free shear flows: periodic vortex
shedding of a cylinder wake, a mixing layer with a small range of dominant
frequencies, and a planar jet with broadband dynamics. In all cases, the ac-
celeration feature points are cleanly distilled from the numerical data and they
enable additional insights. For the wake flow, vortex-based statistics are pos-
sible, e.g., for determining the streamwise convection velocity. For the mixing
layer, vortex merging events are specified in time and space. And for the jet,
persistence is used to separate between aeroacoustic and hydrodynamic equilib-
rium points.

In the numerical analyses, only vortices have been considered. Here, vor-
tices are acceleration feature points with imaginary eigenvalues of the velocity
Jacobian. Analogously, saddles can be defined as acceleration feature points
with real eigenvalues of this Jacobian matrix. Thus, the concept of acceleration
feature points represents a unifying framework for the main generic features of
2D flows. Furthermore, it offers a computationally inexpensive alternative to
the concept of the finite-time Lyapunov exponent [11]. We actively pursue a 3D
generalization of the proposed feature extraction.
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A Short Introduction to Discrete Morse Theory

This section gives a short introduction to Discrete Morse theory, which is the
basis of our feature extraction method. Due to the complexity of this topic we
will only give a strongly simplified informal summary of some basic ideas for
the two-dimensional case.
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Morse functions Morse theory [17] investigates the relationship of the crit-
ical points of a smooth function f given on a domain Ω and the topology of the
domain. Critical points of f are points where the gradient of f is zero. They can
be classified with respect to the sign of the eigenvalues of the Hessian of f . In
two dimensions these are minima, saddles, and of maxima. If the determinant
of the Hessian at a critical point is nonzero, then it is called a non-degenerate.
If all critical points of f are non-degenerate, then f is called a Morse function.
The Morse theorem gives now a relation between the critical points of f and
the topology of the domain Ω and allows to define critical points in a purely
topological fashion. Morse theory also characterizes the admissible set of crit-
ical points of a function defined on Ω which is very useful for computational
purposes.

Morse Smale Complex The Morse Smale Complex is a decomposition of
the domain into regions of similar gradient flow behavior. The gradient of the
function f is given by ∇f = (∂xf, ∂yf). An gradient line is a line whose tangent
vectors are parallel to the gradient of the function f . For each critical point c
we can now define a stable and unstable manifold. The stable manifold is the
union of all gradient lines converging to c and the unstable manifold is the union
of all integral lines originating from c. If the stable and unstable manifolds only
intersect transversally the function f is called Morse-Smale. The intersection
defines the Morse-Smale complex which segments the domain in the desired way.
The complex can be summarized by its skelton consisting of the critical points
and connecting gradient lines also called separatrices.

Discrete Morse theory Morse theory is a topic from differential topology
and was originally developed for smooth manifolds and functions. However,
the results from numerical simulations are not a continuous field but discretely
sampled data points on a polygonal grid for each time slice. Thus, a direct
application of this definition requires the interpolation of the data and the
computation of derivatives. This involves many data-specific parameters and
is especially challenging when dealing with noisy data. More recently, a dis-
crete version of Morse theory has been introduced by Forman [7]. His theory is
purely combinatorial and does not rely on a specific interpolation method and
any derivatives. Based on his theory a number of robust topology extraction
algorithms for discrete data have been developed.

Forman’s theory is based on the notion of discrete vector fields. For the
definition of discrete vector fields the discrete domain is considered as a simplical
graph. The nodes of the graph consist of the vertices, edges and cells of the
mesh of the domain. Each node is labeled with the dimension p of the geometric
simplex it represents. The links of the graph encode the neighborhood relation
of the triangulation.

A combinatorial vector field V can be defined as a matching of the simplicial
graph (see Figure 13). A matching of a graph is a subset of links such that no
two links are adjacent. The nodes of the graph that are not covered by V are
called critical points (see Figure 13, right). The type of a critical point of V is
determined by the dimension of the node p. It is called sink if (p = 0), saddle if
(p = 1), or source if (p = 2). A combinatorial p-streamline is a path in the graph
whose links alternate between V and the complement of V and the dimension of
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Figure 13: Basic definitions for a combinatoric vector field

the nodes of the path alternates between p and p+1. A p-streamline connecting
two critical points is called a separatrix. The most important theorems from
Morse Theory can be transferred to the discrete setting.

Due to the discrete nature of these definitions, the topological features (crit-
ical points, separatrices) in a combinatorial vector field can be computed combi-
natorially; the algorithm is free of parameters and yields reliable results. For em-
ploying such discrete methods, we used the framework developed by Reinighaus
et al. [23] and ideas from Robins et al. [25].
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