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HIERARCHICAL SPARSITY IN MULTISTAGE CONVEX
STOCHASTIC PROGRAMS

MARC C. STEINBACH

ABSTRACT. Interior point methods for multistage stochastic programs involve
KKT systems with a characteristic global block structure induced by dynamic
equations on the scenario tree. We generalize the recursive solution algorithm
proposed in an earlier paper so that its linear complexity extends to a refined
tree-sparse KKT structure. Then we analyze how the block operations can be
specialized to take advantage of problem-specific sparse substructures. Savings
of memory and operations for a financial engineering application are discussed
in detail.

1. INTRODUCTION

Uncertainty of future events plays an essential role in many practical decision
processes. The mathematical modeling of such planning problems leads to various
kinds of multistage stochastic programs among which smooth convezr ones represent
a widely useful class, with linear or convex quadratic stochastic programs as special
cases. This paper is concerned with the efficient numerical treatment of such in-
herently large-scale problems when stochastic influences are modeled by a scenario
tree.

Well-known numerical approaches include primal decomposition methods [4, 10,
15], dual decomposition methods [16, 20], and interior point methods [2, 8, 23];
for a more exhaustive overview see [5, 22]. In any case the key to success lies
in taking advantage of the characteristic problem structure. This is achieved by
decomposition into node or scenario subproblems (primal and dual decomposition)
or via special factorizations of the KKT systems in interior point methods. In
addition, each approach offers a substantial degree of inherent parallelism [3, 7, 9,
13, 17, 21].

In [26, 28] we have proposed an interior point approach where the KKT system
is reinterpreted as a linear-quadratic control problem. This view is focused on the
inherent dynamic structure and its control-theoretic interpretation. It entails a
natural classification of constraints and leads directly to a recursive factorization
of the block-sparse KKT matrix. Thus we take full advantage of the generic global
structure.

The key role of the dynamic equations is also pointed out in [18, 19] where
non-smooth convex programs are considered from a more abstract viewpoint em-
phasizing duality. These problem classes share many similarities with ours, but the
required numerical techniques are quite different.

Our approach generalizes similar methods that have proved successful in deter-
ministic nonlinear trajectory optimization by direct SQP methods [24, 25, 29]. The
available SQP code is directly applicable to non-convex stochastic programs as well,
but for simplicity we restrict ourselves to linearly constrained convex problems in
this paper. Also for simplicity, we choose an implicit form of dynamics. Such
formulations are especially common in financial problems; in the control literature
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(including [18, 19]) one usually finds explicit dynamics where control and state
variables are distinguished. A brief comparison of both variants is given in [28].

This paper extends earlier work in the following ways. We refine the class of
multistage stochastic programs considered in [26, 28] by adding local (equality and
range) constraints as separate categories. Correspondingly, range constraints are
included in the description of the interior point framework, and the recursive so-
lution algorithm is generalized to cope with the refined structure. In these parts
we treat the theoretical background more rigorously by stating precise regularity
assumptions and proving the existence of the KKT matrix factorization. Finally
we discuss how problem-specific local sparsity can be exploited within this generic
framework.

The paper is organized as follows. In Sect. 2 we introduce some notation and
present the general problem class. The interior point framework is outlined in
Sect. 3, followed by the generic solution algorithm in Sect. 4 where the existence
of the KKT matrix factorization is proved. Sect. 5 is devoted to the issue of local
sparsity, which is discussed in detail for an asset management example. Sect. 6
gives some conclusions and future directions of research.

2. PROBLEM CLASS

2.1. General convex programs. Let us first take a global viewpoint and disre-
gard any specific problem substructure. We consider a linearly constrained smooth
convex program (CP) with lower and upper bound and range inequalities,

1) min p(x) s.t. Az +a=0, Bzé€][r,ry], z€I[b,bd,

where ¢ € C2(R"™, R) with V2¢(z) > 0Vz € R", and A € R**", B e R**" [ < n.
Notational convention. The values 00 are formally allowed to indicate the ab-
sence of upper and/or lower limit components b}, b%,, rf*,r%. Rigorously this means
there are index sets By, B, C {1,...,n}, R;, Ry C{L,...,k} such that

PBlbl S PBl.’L', PBu.’L' S PBubua PRzrl S PRIB.'E, P’RUB.T S P'Ruru-

Here Pg € RIBIX" denotes the gather matrix that selects the components Pz = 23
specified by B = {v1,...,vp}. The associated scatter matrix is Py € R"* /Bl g0
that PgPj = I on RIBI. Similarly we have Pr € RI®I** for the range constraints.
Regularity conditions. Denote by F := {z € [b;,b,]: Az +a =0, Bx € [r;,ry]}
the feasible set, a closed convex polyhedron, and let Feq := {z € R": Az +a = 0}.
Throughout the paper we make the following assumptions.

(A0) F has nonempty relative interior with respect to the affine subspace Feq.

(A1) A has full rank. (Equivalently N(A*) = {0} since I < n.)

(A2) V2p(z)|N > el >0 for x € F, where \ is the null space

N = N(4) N N(Pg,us,) N N(Pr,ur.B).

These conditions are tailored toward the barrier problems considered below; they
do not imply existence or uniqueness of solutions for (1) since strong convexity (A2)
is only required on the largest space of feasible directions inside the recession cone
of . The CP may have multiple solutions (min,>¢ 0) or a finite infimum that is not
attained (min,>oe %), or it may be unbounded (min,>¢ —z). If a solution exists,
however, then they guarantee that solutions will also exist for slightly perturbed
problems, and that the solution is stable if it is unique. (By standard results in
convex optimization, each solution of the CP is a global minimum, and the set S
of all such solutions is convex.) We are primarily interested in the case where S is
nonempty and bounded (hence compact) which is guaranteed under an additional
growth condition,
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FIGURE 1. A small tree.

(A3) (M) — oo for every sequence z(*) € F with [|z(* || = oco.
This holds, for instance, if F is bounded or if A in (A2) is replaced by the larger
space N := N(A) N N(Pg,np,) N N(Pr,nr, B) which contains the recession cone
of F.

2.2. Multistage convex stochastic programs. The problem class of interest
models multistage decision processes under uncertainty. Considering a finite plan-
ning horizon in discrete time, t = 0,1,...,T, we assume that the underlying random
data process has only finitely many outcomes so that the information structure can
be represented by a scenario tree. Let j € L; denote the outcomes at time ¢,
with node probabilities p; > 0. The root is 0 € Lo, the parent of j € L; is
i = w(j) € Ly_1, and the set of successors is S(j) C Lyy1- Finally we denote by
L := Lt the set of leaves, each representing a scenario, and by V := Utho L, the
set of all nodes. Subsequently we will often use V' = {0,..., N}, where the node
labeling is assumed to be increasing, i.e., 7(j) < j for all j € V' \ {0}, see Fig. 1.
The problem class treated in this paper is a specifically structured subclass of (1):
it consists of multistage convex stochastic programs (MCSP) in the general form

(2) min > pivi(x;)

Jjev
(3) S.t. Gjzi+h; =Pjx; Vjev,
(4) Fiz; +ej =0 VjevV,
(5) Fjr:cj S [le,T'uj] VJ S V,
(6) T € [blabu]a
(7 ijFJ'JEj +ey =0.

JEV

Here the local dimensions are z; € R™, G;,P; € Rl*m4, Fy € R *m FJ €
Rl;xn]-7 Fj € Rmxnj, where lj S nj, l‘ﬂ; S n; — l]‘, and m S Zjev(nj — lj — l;:)
Apart from the node-wise separable convex objective (2) and implicit dynamic
equations (3), there are local (equality) constraints (4), range (inequality) con-
straints (5), bound (inequality) constraints (6), and global (equality) constraints (7).

With z = (zo,...,zn), the equality and inequality constraint matrices of (1)
can be written

G Fy
(8) A= |F*|,  B=Diag(Fl,...,F}) = ,
F r
N

where F? = Diag(Fg,...,F%), F = (poFo ... pnFn), and G represents the
dynamics for the given tree topology. In case of the example tree in Fig. 1, for



4 MARC C. STEINBACH

instance, we have

P,
G, —P
e —P,
9) G= Gs _p,
Gy —-P,
Gs —-F

Regularity conditions. Assumption (A0) is kept for MCSP but (A1,A2) are re-
fined in a hierarchical fashion matching the recursive dynamic structure.

(A1.1) Vj € V: F} has full rank (= 13).

(A1.2) Vj € V: Pj|N(FY) has full rank (= 1;).

(A1.3) F|(N(F*) N N(GQ)) has full rank (= m).

(A2¥) Vz € F: Vj € V: V2p;(z;)|N; > €;1 > 0 where

Nj := N(Pp,;uB.;) " N(Pry;ur.; Fj) NN(EF) N [ N(Gy).
kES(J)
For later reference we state some elementary consequences of these conditions with-
out proof; less apparent implications will be discussed below.

Lemma 1. The following properties hold.
(i) Condition (A1.1) is equivalent to full rank of F*.
(ii) Condition (A1.2) implies full rank of G|N(F'®); the converse is not true.
(i1i) Conditions (A1.1,A1.2) together imply full rank of (}g)
(iv) Conditions (A1.1-A1.8) together imply full rank of A, i.e., (A1).

Discussion. The key property of our approach is the classification of equality and
inequality constraints along with the formulation of appropriate regularity condi-
tions. That way dynamic equations on the scenario tree induce the characteristic
global block structure seen above, which we call tree-sparse for obvious reasons. It
refines the subclass of tree-sparse problems without local constraints (4,5) as consid-
ered in [26, 28]. The intention in choosing this specific structure is to cover a large
problem class whose KKT systems in an interior point method permit the direct
solution by a natural recursive algorithm having linear complexity in the tree size.
Below, the basic version of the algorithm described in [26, 28] will be generalized
accordingly.

Multistage stochastic programs are one of the most important classes of tree-

sparse problems but actually not the only one. Another important (if much nar-
rower) subclass, for instance, are multi-body systems in descriptor form, where the
spatial system topology is represented by a spanning tree plus kinematic loops mod-
eled as global constraints. (However, multi-body dynamics are usually formulated
in explicit form, see, e.g., [12] or [24, 29].)
Generality of MCSP.. Node-wise separability of the objective (which holds typi-
cally in practice) is essentially the only structural restriction in MCSP. For instance,
every multistage linear stochastic program in standard form [6] can be cast into our
framework as indicated in [26]. The classification of constraints increases both in-
sight and the potential for structure exploitation in numerical algorithms.

Generally, any (node-wise separable) convex program defined on a tree can be
reformulated as an MCSP, roughly in the following way: Each inequality constraint
is either a simple bound or a local range constraint, or else converted to an equality
constraint by introducing a bounded surplus variable. Each of the resulting equal-
ity constraints is then either a local constraint, a dynamic equation (if it couples a
node j with its parent 7(j), and P; has full rank on the already identified N (F})),
or else classified as a global constraint. The regularity condition on P; is essential
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here and always satisfied by the rule above. Other violations of (A1.1-A2%*) indi-
cate either modeling errors or specific problem characteristics that require special
attention, as in [27], e.g. (Rank deficiencies can sometimes be tolerated in the lat-
ter case.) Violations of (A1.1-A2*) are detected by our algorithm and moreover
precisely located, except for the global condition (A1.3) which has no “location”.
(Of course, (A2%*) is only checked in the current point z.)

3. INTERIOR POINT APPROACH

In this section we describe the generic approach for the CP (1). For simplicity
assume first that all limits are actually present, B; = B, = {1,...,n}, Ri = Ry =
{1,...,k}. We introduce strictly positive slacks for the limits, s = (s;,84) > 0,
t = (t1,ty) > 0, and approximate the CP by a family of standard logarithmic
barrier problems CP(/) with positive barrier parameter £,

(10) ;I};,r% plz) -8 Z(ln s +lnsy)—p Z(ln tf +1nty)
(11) s.t. Az +a =0,

(12) Bx —t;—r =0,

(13) —Bx —t, +7r, =0,

(14) w—sl—bl=0,

(15) —& — 8y + b, =0.

The barrier Lagrangian (with equality multiplier z and dual slacks u = (u,u,,) > 0,
v = (v1,vy) > 0) reads

L(z,s,t,z,u,v;8) = ¢(z) —,BZ (Insf +Inst) —ﬂz (Intf +1ntl) —
2" (Az +a) —uj(x —s; — b)) —up(—x — sy + by) —
vf (Bx —t; — 1) — 05 (—Bx — ty + 14).

As KKT conditions of CP() this yields primal feasibility (11-15), dual feasibility
Vo(z) — A*z — B*(v; — vy) — (ug — uy) = 0, and nonlinear 8-complementarity con-
ditions S;U;e = S, Uye = Pe, T}Vie = T, V,e = fe. Here S etc. denote the diagonal
matrices composed of s; etc., and e := (1,...,1) in the appropriate dimension.

Interior point methods (of infeasible-start primal-dual type) solve these condi-
tions iteratively while simultaneously reducing 3. Each Newton step involves a very
large and sparse KKT system (of dimension n + [ + 4(n + k)). However, primal
and dual slacks can be pre-eliminated by simple operations, cf. [24, 26], leading to
a reduced KKT system of the form

H| A Az fl_
@ =] e e
Here H := H + ® + B*¥B is formed from the current Hessian H := V2p(z) and
the positive definite diagonal matrices

=0+, =5 Ui+5,' Vs, C:=U+%¥,=T7"'Vi+T,'V,,

and f is the corresponding modification of the objective gradient, f := V(z).
(Thus Az*HAz + f* Az is the second-order Taylor approximation to ¢(z+ Az) —
e(z).)

General case. For absent bounds or ranges one may formally set primal and
dual slacks to +00 and zero, respectively, which means that all resulting terms
are omitted or replaced by zero. Rigorously one selects relevant components by Pg,

etc., which gives the following modifications due to B; (and similar ones due to
Bu;RlaRu)-
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The slacks satisfy only Pg,s; > 0, Pg,u; > 0, the barrier terms are Zue B, Insy,
and equation (14) becomes Pp,(x — s; — b;) = 0. In the Lagrangian, this gives
the scalar product uj Pg, Pp, (z — s; — b), where Pg Pg, € R™™™ is the orthogonal
projection into the Bj-subspace. Thus dual feasibility requires

Vy(z) — A*2 — B*(Pg, Pr,vi — P, Pr,vu) — (Pg,Ps,u — Pg, P, uy) =0,
and B-complementarity reads Pg,S;Uje = Pp,fe. Finally we define
P; := Pi;l (i)lPBl >0 where (i’l = (PBISZPEI)_I(PBI UlPE,) > 0.

(Conversely, this gives & = Pg,® Py .) If no limits at all are present, then the
interior point method essentially specializes to a direct Newton iteration on the
optimality conditions of the original CP.

Lemma 2. The reduced KKT matriz (16) is non-singular.

Proof. Since A has full rank by (A1), we just have to show positive definiteness of
the restriction H|N(A). By definition,
H = H + P, %P3, + P ®,Pp, + B*(Pg, ¥ Pr, + Py ¥,Pr,)B.
Each term in this sum is positive semidefinite, and ®;, ®,,, ¥;, ¥,, are positive defi-
nite. Hence,
N(H) = NH)NN(Pg)NN(Pg,)NN(Pgr,B)NN(Pr,6B)
(H) N N(PBzUBu) N N(PRzURuB)'
Now N(H|N(A)) = N(H)NN(A) = N(H)NN = {0} by (A2), as required. O

All the barrier problems CP(3) are obviously convex and have the same feasible
set (with respect to z), the relative interior int(F) C Feq which is nonempty by
(A0).

Lemma 3. If the barrier problem CP(8) has a solution (¢, o, to, 20, U0, Vo), then
it is unique (up to irrelevant slack components).

Proof. Let (x1,51,t1, 21, u1,v1) also be a solution. Since CP () is convex, the entire
line segment between the two solutions is optimal, and their difference vector lies

in the null space of the Hessian of the barrier objective (10) at (zo,.-.,vo),
Diag(V?¢(20), BP%, (Ps,S10Fs,) > Ps,s- - - BPR, (Pr, TuoPR,) > Pr,)-
Thus 2y — 29 € N(VQQO(.’L'())), S11 — Si0 € N(PBI), ey tul —two € N(P’Ru) The

last four relations imply z; — zo € N by virtue of primal feasibility (11-15). But
N(V2p(x9))NN = {0} by (A2), which proves uniqueness of the primal components
(z0, S0,t0). Now uniqueness of ug, vy follows directly from S-complementarity, and
uniqueness of zg follows from dual feasibility since N(A*) = {0} by (A1). O

Loosely speaking, if CP(8) has no solution, there must be some (one-sided)
barrier term that drives the iterates z(¥) away to infinity in a direction d where the
curvature d*V2p(2(*))d eventually tends to zero. The underlying CP must have
an unbounded set of solutions or an infimum that is not attained (as in ming>o 0
or ming>ge~*), and CP(3) becomes unbounded. This cannot happen when S is
bounded: then ¢ becomes eventually strictly increasing in every feasible direction,
and the unique solutions of CP(8) converge to a unique point in S for 3 ] 0.

For more detailed information on the broad field of interior point methods see,
e.g., [32] and references therein.
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Observe finally that the reduced KKT system (16) is equivalent to a strongly
convex quadratic program (QP) without inequalities,

1 _ -
rginiAm*HA:v+f*A:c st. AAz+a=0
Z

where @ := Az + a. The interior point method thus reduces the solution of MCSP
to solving a sequence of simplified problems from the same class. This view restores
a direct optimization context for the KKT system and provides—in the tree-sparse
case—the control-theoretic interpretation on which our solution algorithm is based,
cf. [24, 26]. In the following we are concerned with the treatment of that QP only.

4. TREE-SPARSE SOLUTION ALGORITHM

In the case of interest, problem MCSP, the convex QP associated with the re-
duced KKT system (16) has precisely the same structure as the original problem.
This is due to the separability of range constraints: contributions from all inequal-
ities are absorbed into the local H; (and f;) separately for each node,

(17) Hj = Vpj(x;) + &; + FI*U,;F > 0.

Thus we arrive at the tree-sparse QP

(18) m1n Z Aa: pJH Az; —l—pjf Ax;
JjeV

(19) s.t. GjA.Z'z' + ;Lj = PjA."L'j

(20) FiAz;+& =0

(21) > piFjAz;+eéy =0.
JEV

The origin of this QP as a step direction is of no interest for the purpose of devel-
oping the KKT solution algorithm; therefore we simplify notation by dropping all
A’s and overbars from now on.

The Lagrangian inherits the separability properties of the (simplified) MCSP.
With dual states A; and local and global equality multipliers uf, u, respectively, it
reads

L(z, A\, pu" 1) = ng (%3, 7, J:N]:N)
JEV

where nodes are coupled only by the dynamics and the global equality constraints,

1 * * *
Lj(@i, 2 Mg, 15, 1) = 52iHjzj + fog — Nj(Gizi + by — Pizj) —
ui*(Fizj +€) — p* (Fizj +ev).

As pointed out in [26], the objective, global constraints, Lagrangian (and hence dual
dynamic equations) involve (conditional) expectations. Here we are only interested
in the algebraic structure, not in the stochastic interpretation. Henceforth, node
probabilities p; will therefore be absorbed into Hj, f;, Fj and Aj, uf; similarly they
disappear into redefined dual slacks u, v.

When variables and right hand side are arranged as (z, A, 4%, 1) and (f, h, €%, ey),
respectively, the equality constraint matrix A of the reduced KKT system (16) is
obtained as in (8), and the Hessian is H = Diag(Hy,...,Hy).

In the previous sections we have written all linear systems in the form Ax+a =0
which arises in linearizations of nonlinear equations. From now on we simply switch
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the sign of the right hand sides, and treat all linear equations in the form Az = a.
The tree-sparse reduced KKT system in node-wise representation then reads

() Hjzj + PPN = o) Ol — 5 —Fjp=1; Vi€V,
(23) Gj.??z' - PjZUj = h]' VjevV,
(24) Fizj=ef VjeV,
(25) S Fa—er.

In the following sections we develop the complete solution algorithm, the tree-sparse
Schur complement method (or SC method), taking both a global and a local view.

4.1. Projection. From a global viewpoint, the first step in our algorithm is a
projection into the null space N(F®) of local constraints. It is accomplished by
eliminating the state components z; that are determined by those constraints,
then partitioning the remaining KKT system accordingly, and finally eliminating
the local multipliers u*. The result is a projected KKT system in terms of the null
space components s,

H22 | G; FQ* X2 é
(26) G, Al ="
F —H 2%

Locally this gives a separate projection in each node since F* = Diag(sz). The
rank condition (A1.1) ensures that one can factor F¥ = L¥(I 0)U; where L?,U;
are non-singular and L is lower triangular. (In dense standard factorizations U; is
typically upper triangular or orthogonal; cf., e.g., [11].) In the local partitioning
of the KKT system one defines (Pjy Pj2) := P;U; "', similarly for F; and G,
k € S(j), and

Tit\ o Tit\ s Hjiw Hiy \ _ prspr -1
(%‘2)'_ Uja;, (fj2)._ U, (Hm g ) = U HU

State components z;; = (L]z-)_lef- are now obtained immediately, and local multi-
pliers are formally eliminated after substituting z;; into the remaining equations,

(27)
—pj = (L7)™" [—H;2137j2 — P+ ZkeS(j) G + Fjip+ (fin — Hjule)]-

U; is required in the partitioning of the blocks G, k € S(j), which are all in the
same column, see (9). Otherwise the block operations are independent for each
node and do not create any fill-in outside the original QP blocks: The resulting
projected system has precisely the tree-sparse structure of the original KKT system
but without local constraints. In node-wise representation it has the form

(28) Hjzxjo + PiAj — ZkeS(J’) GroAk — Fiop = fiz Vi€V,
(29) ngxz'z - sz.’L‘]’Q = Bj V] (S V,
(30) ZjEV sz.’L‘jz = éy.

The elementary node operations of the projection are listed in Table 1 (steps 1-7)
and will be discussed in Sect. 4.3.
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4.2. Recursion. The main part of our algorithm eliminates primal and dual states
Z2, A from (26) by Schur complement calculations. The obvious straightforward
approach would calculate zo = Hy,' (G5A+ F5f u+ f2) first, replacing the zero lower
right corner of the KKT matrix by the Schur complement

S -y =z G L s -Y Zz*
D e el 7 5]

Fy 7z —Xy
Next, A = V=1(Z* 4 h) with h := hy — GoH,,' fo would be obtained.
The key difference in our approach is a sparse elimination of z2, A in a recursion
based on alternating node-wise analogs of the primal and dual Schur complement
steps sketched above,

wjo = Hph(=PhAj + Fiop+ fi2), =X =Y (Gjamis — Z3p— hy).

Here the simple trick consists in choosing a leaf j € L for the elimination, so that
the sum over S(j) in (28) is empty. The two steps effectively “cut off” the leaf, and
the procedure is repeated for the resulting KKT system on the smaller tree.

More details and explanations of the recursion have been presented in [26, 28];
the elementary node operations are found in Table 1 (steps 8-13 and 14-19).

Fill-in occurs precisely in the blocks Xy ,Y, Z, where Y = Diag(Yy,...,Yn) and
Z =(Zy ... Zn). The blocks Y;, Z; are processed in step j, immediately after
being filled, whereas Xy accumulates contributions from the entire tree. Finally,
after cutting off the root, the KKT system Xpu = eg on the empty tree gives the
global multiplier p = X Leg.

Now we prove that the eliminations just described are all possible under regu-
larity conditions (A1.1-A2%*).

Lemma 4. The matrices H jgz,f’j,X@ above are all positive definite.

Proof. (a) By definition, Hjy» is the restriction H;|N(F7) with H; from (17). As
in Lemma 2 one has

N(‘HJ) = N(H]) N N(PBljUBuj) N N(PleU'R FT’)

uj ™ ]

Condition (A2%*) therefore implies positive definiteness of

(31) Hj22‘ ﬂ N(Gka).

keS(s)
If j is a leaf, we get Hj92 > 0 directly. This in turn implies positive definiteness
of }A’J = PjH j_.zéPj*Q since Pjp is the restriction Pj|N(FY), which has full rank by
(Al.2). If j is not a leaf, then H s, has already been modified by previous operations

in the child nodes k € S(j) and must actually be replaced by
ﬁj = ngg =+ Z GZQ}}IJIG]{,Q,
k€ S(j)

cf. step (18) in Table 1. This is positive definite by (31) and the positive-definiteness
of Yy, for k € S(j) (which has just been proved). The argument proceeds inductively.
(b) By construction, z2, A solve the KKT subsystem

Hyy Gy | 2| _ f_2+Fz*N

G2 —A h

which is non-singular by (a). The third equation Fyxs = €y in (26) therefore gives
UVl [Hy Gi]7°

VW| | G '

v v
vV w

Xp=[F 0] [ ] [F(;Q] = FUF; where [ :
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We have GoU = 0 and UH2zz + V*Go = I. The range of U satisfies R(U) C N(G2)
by the first relation. Thanks to the second relation we actually have R(U) = N(G2).
Otherwise 2 € (N(U)NN(G2))\{0} exists, and ||z2||3 = 25(UH2+V*G2)z2 = 0:
a contradiction. Observe now that F3|N(G32) has full rank by (A1.3). Thus Xy is
non-singular, and it remains to show that Xy > 0. From Table 1 we get the node-
wise representation Xo = ev(ﬁjﬁj* —Z; ZJ*) The node term expands to

FjFA‘; — Fjp;}}j_lpjﬁ‘; =: FJ(I — Q)FA‘;
where Q = Q* = Q2 is an orthogonal projection. Thus @ < I, implying Xy > 0. O

The lemma shows that the recursive elimination works under weaker conditions
than the global Schur complement approach: obviously the latter requires Has > 0,
i.e., Hjoo > 0 in all nodes. Another drawback of the global version is the greater
amount of fill-in: ¥ = G H,,' G% is clearly not block-diagonal (as its counterpart in
the recursion); it contains many off-diagonal blocks due to the tree structure in Gao.

It is easily seen that the recursion extends to the case where the lower right
block (75 _ )Z(;) is initially negative semidefinite rather than zero. If that block is
actually negative definite and Hj»» is positive definite, then the projected system
becomes quasi-definite [30], and the recursive part of our algorithm can be seen as
a special case of the general approach in [31] which has been adapted to multistage
stochastic programs in [2] by a special pre-ordering technique called tree dissection.
Thus the two algorithms become very similar. Differences are due to the finer
adaptation of our tree-sparse algorithm to the rich structure of MCSP: we require
less restrictive regularity conditions, we perform block level operations, the order
of pivot blocks is fixed a priori, and we use off-diagonal pivots if appropriate (i.e.,
in the projection).

4.3. Summary and overview. Table 1 gives a complete overview of individual
node operations of the tree-sparse SC method. Three phases of the algorithm are
distinguished: a symmetric factorization of the KKT matrix, = AIIA*, the as-
sociated transformation of the right hand side, @ = A~'a, and the calculation of
solution variables in the substitution phase, ( = A~* where ( = II"'a. Elemen-
tary steps in each phase are grouped to give the projection (1-7) and recursion
parts (8—20). The latter has subgroups corresponding to the elimination of primal
states z;2 (8-13), dual states A; (14-19), and global multipliers p (20). Operations
in the factorization and transformation phases proceed in the given order (and can
be combined in a single traversal of the tree); the substitution phase proceeds in
reverse order (from bottom to top). Correspondingly, the recursion (8-20) proceeds
inward in the factorization and transformation phases and outward in the substi-
tution, whereas the projection proceeds recursively outward in the factorization
and transformation but inward in the substitution phase. The projection step thus
establishes independent pre- and post-processing operations of the basic recursion.

The vertical coupling on the tree is seen in steps (5,7,18) which operate on the
data of parent ¢ and child j; all other steps are strictly local to node j (but may
access global data Xy, ey, u, of course). The coupling steps (5,7,18) are omitted in
the root (which has no parent) whereas the final step (20) is performed only in the
root.

The symmetry of the factorization is apparent in corresponding operations of
the three phases. (Dual variables always appear with their minus sign to enhance
this.) Slight asymmetries result from merging the multiplication by II~! into the
transformation and substitution phases.

Indices V,V',0 on X, e indicate the vertex set of the current tree, where it is
assumed that j is the first leaf to be cut off, and V' := V' \ {j}. (Of course, V,V’
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TABLE 1. Node operations of the tree-sparse SC method. For
explanations see Sect. 4.3.

Step Factorization Transformation Substitution
) B2 = L2 (1 0)Uj o= (L5)ler = (L)
Hjin Hiy ) _ -« -1 fit\ _ y—x -1 T
@) (Hj21 Hj‘zz =U; H;U; fiz) Ui i zj = U; Tj2
(3) fir = fin — Hjnzj
(4) fiz = fj2 — Hinizj1 By = —HZy wjo + it
(5)* (Gj1 Gj2) = GU;! hj =hj — Gjiziy fir = =G5 (=) + far
1 ~
(6) (P Pj3) = P;U; + Pjizj1 A = +P(=X;) ~
(7 (Fj Fj2) :F]'Uj_1 ey =eéyr — Fjizj _Ffl(_ﬂ)‘f'fjl
©) Hjaz = L; L}
) Py = PpL}”
R & R 1 _
(10) Fy = FpLi™ fi =15 i @2 =L;"[
(11) Zj = Zj + F; P}
(12) Y=Y+ BE hj =hj + Pifj HRI=A)
(13) Xy :Xv-f-FjF; éyr = éy 7ijj 7F;((7/.L)+fj]
(14) Yy = L;Lx
(15) Zj = Z;L;*
5 21 5 217 -
(16) G:j :Lj Gj;z hJ:LJ- hj —)\j:Lj*[
(17)* F; = Fio + ZjG]
(18)* i = Hiz + G} G; fi = fiz + G%h; Gjzio +
(19) Xy = XV’ — ZJZ]* eyr = €y + Z~jf~lj Zj(—p,) — ﬁ]]
(20) Xo = LyL ég=Ly'e —p=Ly*(—ép)

change when further nodes are processed.) Similarly, the notation in steps (8) and
(10) assumes that j is a leaf. Otherwise Hja2, F}o, fjg have already been modified
by child nodes k € S(j) in steps (17,18), and must be replaced by Hj, Fj, f;,
respectively. Conversely, in step (7) we define ép := ey, and fjl := fj1 to make the
notation consistent with step (5). (Here j € L is the last node to be projected.)
Let us finally give some remarks on the complexity of the algorithm, i.e., of the
factorization. Since l;,1F < nj, one finds that the number of operations in node j
is O(n; max(ny,1%,m)?). If we set [ = max; max(n;, 7, m), this gives the total
number O(I3|V|). That is, the KKT system solution has linear complexity in the
tree size and cubic complexity in the largest local dimension—provided that [is
independent of |V'|. This shows that an appropriate treatment of each category of
constraints is essential for efficiency: although the recursion in its basic form (i.e.,
without local projections, [26, 28]) can principally handle the local constraints by

subsuming them under the global ones, this may lead to overall cubic complexity
O(|V).

5. LOCAL SPARSITY

Apart from some nonlinear operations and lots of vector-vector operations, the
interior point method performs matrix-vector multiplication with the KKT ma-
trix  (or its principal components A, B, H) and KKT system solutions, the latter
being implemented by the tree-sparse factorization. We discuss how to take advan-
tage of sparse blocks in the factorization phase, including reduction of the large
barrier KKT matrix. Exploiting sparsity in the transformation and substitution
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phases is straightforward (once the factors are available); the same is of course true
for matrix-vector multiplication.

5.1. General discussion.

Reduction. The only operation involving a non-diagonal block is the augmen-
tation of Hj; by the symmetric product F/*W¥;F7. Exploitation of sparsity is
straightforward, with one exception: In some cases it may be preferable to de-
fer this operation until after the projection step. That is, F] is first partitioned
as (Fj; Ff) = FjU; ", and then Fj3¥;F7, is added to Hjy,. In that case the
sparsity of F}, should of course be taken into account in the projection step.
Projection. The local projections are the most complicated steps in the entire
tree-sparse algorithm. They affect the fill-in in all local blocks and (during the
recursion) possibly in other nodes toward the root. They also influence numerical
stability. Choosing the factorization of F}’ is therefore the most critical step in
local structure exploitation. (It is also the step that offers the greatest freedom of
choice.)

We do not claim to have a recipe that yields the “best” factorization in each

situation. Note, however, that the clear structure of the tree-sparse algorithm—
particularly the lack of choices in other operations and the confinement of fill-in to
the given blocks—provides strong guidelines for the sparsity analysis. (The princi-
pal goal is basically a simple structure of the inverse transformation U j_l.) Below
we give an example where a very good choice is easily made by close inspection;
the general case will be a subject of future research.
Recursion. Structure exploitation in that (central) part of the algorithm is again
mostly straightforward. Basically one just has to monitor where fill-in occurs.
Although sparse Cholesky factorizations of H;s2 and }A’] may sometimes be possible,
these blocks tend to be dense in general: before being factored, they accumulate
information of the entire subtree rooted in j. Similar statements apply of course to
the final factorization of Xj.

5.2. An application example. In [1], Ainassaari, Kallio, and Ranne develop
an asset management model for long-term planning in Finnish pension insurance
companies. The primary goal of the model is to maintain the working capital above
a certain minimum level. Otherwise the company will be set under the special
supervision of the Ministry of Social Affairs and Health, and eventually it will lose
its licence unless solvency is recovered. The model includes further constraints
representing other legal restrictions etc., and a convex objective that maximizes
solvency. Results are reported for a scenario tree with 1024 scenarios and T' = 5
periods covering 2+ 3 + 5+ 10+ 10 = 30 years. In [14], Kallio and Salo employ an
iterative parallel algorithm to solve the same problem with up to 192k scenarios.

This portfolio management problem fits precisely in the framework of our general
class: the objective is (nonlinear) convex and all categories of constraints are present
except for global equalities. The variables in each node are z; € R!?, with 2
(implicit) dynamic equations, 3 local constraints, and 4 range constraints. This
gives block dimensions H; € R'*'0, G, P; € R**'0, FF € R¥*'0, FT € R*19,
yielding 55 + 20 + 20 + 30 + 40 = 165 entries per node (where only the lower
triangle of Hj is stored). Since Xy and Z are void due to the absence of global
constraints, the entire fill-in during KKT solution consists of three Y} entries per
node. Operation counts for the KKT matrix factorization with completely dense
blocks are displayed in Table 2. The augmentation of H; by F/*¥;F} is included
as step (0).

Let us now consider the actual sparse substructure in this particular problem.
The respective symbols ‘-, ‘+’, ‘=", and ‘x’ refer to zero, +1, —1, and generic matrix
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entries:

entry | zero | +1 | —1 | generic
symbol - + | - *

The Hessian blocks H; are all dense. The internal structure of the remaining blocks
(after simple a priori permutations of rows and columns) looks as follows:

k - ok ok ok Kk Kk Xk X X J
| +++++++0 - -
i ST )
Fr = St

S NORS) .
’ J B T

S IR 0

* ¥ ¥ *x

The six encircled entries indicate positions where fill-in will occur.
Reduction. From the structure of F} it is apparent that the symmetric product

F7*W;FT vanishes outside rows and columns R = {4,...,8}; the nonzero block is
* X
PR(FJT*\I’J'FJT)PII*Z = L R
k sk ok %k Xk

Obviously it modifies only nine entries in the lower triangle of Hj.

Projection. The factorization of F}’ is almost trivial. After partitioning F} =
(Fj“”1 F]?”Z) € R3*G+7 we observe that F{ is lower triangular and self-inverse.
Hence we let L := Fyj = (Ff) ! and W; := F}; Fj to obtain Fy = L% (I W;).
This gives

e[ ) ] e[
t+++®— -

W; differs from F, only in the encircled entry (the fill-in) and in the two entries
above (whose sign has switched). A detailed analysis reveals that the subsequent
operations preserve sparseness very well: the local projection into N (Ff) does not
affect P; at all, it does not create any further fill-in, and it modifies 46 elements
of H; and only six elements of each Gi, k € S(j). Moreover, the values of all
pivots are +1 and the projection is stable. Table 2 shows that only the symmetric
transformation of H; in step (2) requires a significant amount of work. Otherwise
the projection, like the previous reduction, comes almost for free.

Recursion. The blocks Hj»» € R7*7 and }A’] € R?*2 are completely dense; other-
wise sparsity is mostly preserved and leads to simplifications in the block operations.
Fill-in occurs only in five elements of P; when forming Pj in step (9).

Table 2 shows that the savings here are less dramatic than in previous steps.

However, the recursion is comparatively cheap anyway, taking about 25% of the
total work in the dense case but more than 50% now. Total savings of algebraic
operations are quite significant with roughly 75% over the dense case.
Memory. It suffices to store in each node the 55 relevant entries of Hj, the 17
generic entries marked by ‘¢’ in the remaining original blocks, and the 9 elements
occurring as fill-in: three in ?j, one in FY, and five in P;. Thus a sparse imple-
mentation proves highly memory-efficient: it requires only 81 matrix elements per
node versus 168 in the dense case—a reduction of more than 50%.
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TABLE 2. Operation counts of factorization phase in example problem.

Dense blocks Sparse blocks Savings due to sparse blocks
Step Add Mult Add Mult Add Mult Add% Mult%

(0) 220 260 12 8 208 252 945  96.9
1) 47 95 2 0 45 95 957 100.0
(2) 272 309 115 30 157 279 577 90.3
(5) 48 54 7 2 41 52 85  96.3
6) 48 54 0 0 48 54 100.0 100.0
(8) 56 84 56 84 0 0 00 0.0
(9) 42 56 3 9 39 47 929 839
(12) 21 21 7 7 14 14 667  66.7
(14) 4 10 4 10 0 0 00 0.0
(15) 21 711 2 10 5 476 714
(18) 56 56 31 31 25 25 446 446
Sum 835 1006 248 183 587 823 703 818

5.3. Summary. We have seen in the example problem that the generic tree-sparse
approach can be specialized to take full advantage of the particular local sparsity
pattern. This requires an analysis of the node operations and results in special-
ized versions with an appropriate memory layout for the local matrix blocks. In
accordance with the general philosophy of our approach it is important that the spe-
cialization is carried out a priori so that there is no significant overhead (especially
memory management) once the iteration is started.

The simple structure of the example problem made the analysis quite easy. But
is this typical, or were we just lucky? Of course, the example is not typical in
general. We argue, however, that the experienced potential for sparsity exploitation
is typical in financial applications like portfolio optimization or asset and liability
management, for the following reasons:

Decoupling. Gains and losses in one position (stock, bond, liability, ... ) do
not depend on the amount of capital in other positions.

Unit entries. Constraints often describe capital transfers or summations of
individual positions; hence the coefficient values are +1.

Stability. The dynamic equations involve return coefficients (one plus interest
rate), which are in the order of unity.

Thus computational finance is among the primary application fields for further
developments of local sparse-matrix techniques within our framework. Ideally, one
would like to have a tool that performs the sparsity analysis, designs the memory
layout, and generates code for the node operations. In the financial context this
seems not too far-fetched as an ultimate goal. Research in that direction will
probably stimulate similar developments in other application fields, and will also
provide valuable experience and hints for investigations of the general case.

6. CONCLUSIONS

We have investigated a general class of multistage convex stochastic programs
and the associated tree-sparse solution algorithm for the KKT systems that arise in
a standard interior point framework. We have also explored the potential of exploit-
ing problem-specific local sparse structures within this algorithmic framework. The
experience gained so for leads us to believe that our approach is indeed very well
suited to take advantage of the rich structure in multistage stochastic programs.
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Some promising areas of future research have been pointed out in the section
on local sparsity. Related investigations might be directed toward important spe-
cializations of the general problem class. A typical substructure in the dynamics
arises, e.g., when future states depend not only on the presence but also on the
past (cf. [26]).

All these issues are of similar interest for the problem variants with explicit
dynamics mentioned in the introduction. The distinction of state and control vari-
ables lends them a finer structure, often with a higher potential for exploitation of
sparsity. On the other hand, it makes the analysis more difficult. In a forthcoming
paper we will analyze a real-life problem in this form and present computational
results.
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