Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

TakustraRe 7
D-14195 Berlin-Dahlem
Germany

T. GALLIATT AND P. DEUFLHARD' *

Adaptive hierarchical cluster analysis
by Self-Organizing Box M aps

tKonrad-Zuse-Zentrum fiir Informationstechnik Berlin (Z1IB), Germany.
Internet: http://www.zib.de/DataMining
{Freie Universitit Berlin, Fachbereich Mathematik und Informatik, Germany

Z1B-Report 00-13 (April 2000)

Adaptive hierarchical cluster analysis by
Self-Organizing Box Maps

T. Galliat! P. Deuflhard'?

1 Konrad-Zuse-Zentrum Berlin, Takustr. 7, 14195 Berlin, Germany

2 Freie Universitit Berlin, Fachbereich Mathematik und Informatik,
Arnimallee 2-6, 14195 Berlin, Germany

Abstract

The present paper aims at an extension of KOHONEN’S Self-Organizing
Map (SOM) algorithm to be called Self-Organizing Box Map (SOBM)
algorithm; it generates box codebooks in lieu of point codebooks. Box
codebooks just like point codebooks indirectly define a Voronoi tessellation
of the input space, so that each codebook vector represents a unique set of
points. Each box codebook vector comprises a multi-dimensional interval
that approximates the related partition of the Voronoi tessellation. Upon
using the automated cluster identification method that has recently been
developed by the authors, the codebook vectors can be grouped in such a
way that each group represents a point cluster in the input space. Since
the clustering usually depends on the size of the SOM, one cannot be sure,
whether the clustering comes out to be optimal. Refinement of part of the
identified clusters would often improve the results. This paper presents
the concept of an adaptive multilevel cluster algorithm that performs such
refinements automatically. Moreover the paper introduces a concept of
essential dimensions and suggests a method for their identification based
on our herein suggested box codebooks. Applications of the algorithm to
molecular dynamics will be described in a forthcoming paper.

Keywords. Self-Organizing Maps, cluster analysis, Voronoi tessellation,
feature extraction, essential dimensions, multilevel methods.

1 Introduction

Traditional methods for cluster analysis of high-dimensional data (see [2] for a
survey) imply the problem of assessment of clustering quality. In particular,
if one wants to automate the cluster analysis process, one needs a measure to
compare different clusterings. Although there are several suggestions for such
measures, they all share the disadvantage that they depend on the a priori un-
known number of clusters, i.e., they cannot be employed to compare clusterings
with different numbers of clusters. An alternative methodical approach that
tries to avoid this—obviously—systematic problem, is cluster analysis by Self-
Organizing Maps (SOMs). We have recently shown in [6], how SOMs can be
combined with eigenmode analysis for an automated cluster identification. Al-
though this approach is very powerful and generally applicable, there are still

two mutually connected problems. First, the clustering still depends slightly on
the chosen map size. Second, we cannot be sure that the cluster level is optimal,
i.e., it may happen that a sub-clustering of one or more clusters would lead to
a better total clustering. Obviously, it is not promising to solve these problems
by searching for a suitable quality measure for clusterings, because then one
would be just in the same situation as within the traditional methods for clus-
ter analysis. Rather the present paper aims at the derivation of a hierarchical
multilevel method together with a stopping criterion, which monitors whether
a cluster refinement is necessary.

In Section 2 we develop an extended SOM algorithm that computes box
codebook vectors. Box codebooks represent more information about the data
distribution than point codebook vectors, as they are generated by the original
SOM algorithm. Therefore they possibly open the door for further applications
of SOMs within Data Mining. In Section 3 we introduce the concept of essential
dimensions and suggest an identification method that uses box codebook vec-
tors. Finally in Section 4 we describes our multilevel cluster algorithm together
with the stopping criterion that depends on the concept of essential dimensions.

2 Self-Organizing Box Map Algorithm

In this section we describe the extensions of KOHONEN’S Self-Organizing Map
algorithm, so that it generates box codebooks instead of point codebooks. We
compare the original SOM and the so called Self-Organizing Box Map (SOBM)
algorithm and suggest a promising combination of both. The reader is assumed
to be familiar with the basics of the SOM algorithm, otherwise see [7, 4] for an
introduction.

In the following, we consider a g—dimensional input space @ C R? and a prob-
ability distribution P, on Q with a probability density function p: Q@ — R{, so
that P,(Q) = J, p(w)dw = 1. Note that in the usual case, where we have only a
finite number of sample vectors, such a function p can always be constructed if
we use a discrete input space. In this case all integral signs have to be replaced
by sums.

Based on P, we want to compute during T time-steps a two-dimensional
SOM formed by an n x m grid with rectangular or hexagonal topology and k =
nm codebook vectors Wi, ..., Wy. For each codebook vector, z5; € G denotes the
(z,y) position of the related neuron s on the grid G := {1,...,n} x{1,...,m}.
For the computation of the map, we use a problem specific distance function
dist : 2 x Q — R, a time-dependent learning rate « : {0,...,7} — [0,1] and a
time-dependent neighborhood function neigh : G x G x {0,...,T} — [0, 1] with
neigh(2(s), 2(s),t) =1 forall s € {1,...,k} and t € {0,...,T}.

Using the original SOM algorithm we generate point codebook vectors, i.e.,
Wy = (Wsy,...,Ws,) € Q. If we want to compute box codebook vectors, i.e.,

Wy = ([ls,, 7], -- - (ls,,7s,]) C Q, we have to extend the algorithm suitably.

To compute box codebook vectors, we have to make alterations to the ini-
tialization step, the winner function and the adaption rule of the original SOM
algorithm. To avoid confusion, we use W, for point codebook vectors and W,
for box codebook vectors. Note that W, is a box in Q, if we use the following
definition:

Definition 2.1 Let [l;,r;] C R denote a non-void interval for alli =1,...,q
and let A C Q C RY, such that A == @7_,[li,7:] .= ({li,m1],---,[lg,74)). Then
A is called a boz in Q. Set BOX(Q?) := {A| A arbitrary box in Q}.

Initialization Let W;(0),..., W) (0) be the different initial values for the
codebook vectors, e.g., selected as arbitrary, but different random vectors in
Q. For our extended algorithm, we choose W(0) := @7, [ls;(0), 75, (0)] with
l5;(0) = W, (0) and rs,(0) = W, (0) + € in terms of a small positive value €, the
initial width of the interval, such that Wy N W, =0 for all s,p € {1,...,k}.

If one selects the left hand boundaries I, (0) randomly, one could think
about selecting the right hand boundaries 74, (0) randomly, too. However, as
we will see, the interval width influences the chance of the related neuron to be
the winner neuron, which makes this procedure doubtful. Therefore we define
the interval width to be equal for all codebook vectors after the initialization
step. Furthermore, we will show that for the suggested way of initialization, the
resulting maps can be compared with maps that are computed with the original
algorithm. If we selected both interval boundaries randomly, a comparison
would turn out to be rather difficult.

Winner function Suppose that the problem specific ¢-dimensional dis-
tance function dist(X,Y) with X = (Xq,...,X,), Y = (¥1,...,Y;) € Q can be
written as a function of ¢ one-dimensional distance measures d;(X;,Y;), which
means

dist(X,Y) := f(di(X1,Y1),...,de(Xq, Yy)).
In fact, many popular distance measures just exhibit this feature. As an
example, for the Euclidean distance we have:

q
fenctia(dy, - -,dg) == O_di)'/* with di(X;,Y;) = (X; — V7).
i=1
Let X = (X1,...,X,) € Q be an arbitrary input and W1, ..., Wy, respec-
tively Wl, ey Wi the actual codebook vectors of the SOM.

In the original algorithm, the winner neuron p € {1,...,k} matches the
following necessary condition:

dist(X,W,) = se{r{nn 0 dist(X, W) . (1)

In the case that there is more than one neuron, which matches Eq. (1), var-
ious strategies are used. Sometimes the winner is chosen randomly, but usually

the one with the lowest index is taken as the actual winner.

In our extended algorithm, we have to check both interval boundaries. There-
fore we compute for each W, = (W, ,...,W,,) the distance from the input X
with the distance function DIST :) x BOX(Q2) — R:

DIST(X, W,) := f(di (X1, Ws,), ..., dg(Xq, Ws,))
with
di(Xi, ls;) + kdi(X4,75;) if X; <l
di(X;,W,,) = kdi(Xi,ls,) + di(Xi,rs,;) if X; >,
kdi(Xi,1ls,) + kdi(Xi,7s;) else
for some & € [0,1] and Wy, = [I,,,7,]-

Then the winner neuron has to match a condition analogous to Eq. (1):

DIST(X,W,) = min dist(X,W,). (2)
se{l,....k}

Suppose first, we choose k = 0. Then the distance is zero, if the input
X; is inside the interval Ws,- respectively depends only on the nearest interval
boundary, if X; is outside the interval. Obviously, in this case the algorithm
tends to favor big intervals. If the dimension ¢ of the input space is “low”
this may cause problems, because it could prevent a sufficient expansion of
the map. Also the generated box codebook vectors could be unsuitable for
the identification of essential dimensions (see Section 3). Therefore in such
situations it is better to use a larger «, so that not only both interval boundaries
are considered for the computation of the distance, when the input is outside the
interval, but also if X is inside the interval. If one uses the Euclidean distance,
k = 0.25 is a good choice for low-dimensional 2. In this case we have

=1\
Ximr,, = kdi(X;,ls,) = (TSTS>
and

=1\
X;mly, = wdi(Xi,rs,) = (TSTS>)

y If the dimension of the input space is high enough, x = 0 seems to cause no
problems. In this case usually each codebook vector has some big intervals and
some small intervals. This balances the preferring of the big intervals.

If there is more than one neuron, that matches Eq. 2, one can use the same
strategies as for point codebook vectors. But in the extended algorithm, one

may also think about additional strategies. One possibility is to choose the
winner neuron p whose related box has minimal volume:

boxvol(W,) = min boxvol(Wy)

W,eS(X)
with
S(X):= {Wp | &ist(X, Wp) = glin 0 &ist(X, Ws)}
seql,...,
and

q

boxvol(W,) := H(rsi —1s).

i=1

This strategy favors smaller boxes, what makes sense, if one prefers boxes
that differ not too much in volume.

Adaption rule Let neuron p be the winner neuron for input X(t) =
(X1(t),...,Xq() € Q at time t € {0,...,T — 1} and Wi(t),..., Wi(t) re-
spectively Wi (t), ..., Wg(t) the actual codebook vectors.

In the classical SOM method, the new point codebook is computed in the
following way (remember that z, denotes the neuron position on the grid):

Wyt + 1) := W, (t) + a(t) neigh(zs, 2, £) (X(8) = Wi(8)), s=1,...,k.

In the extended SOBM method, the algorithm has to adapt the interval
boundaries:

ls; (t + 1) = (t)
+9(ls; (8), 75, (1), Xi(t)) o(t) neigh(zs, 2p, 1) (Xi(t) — s, (1))
- Oé(t) c(lSi (t)a Ts; (t))

re(t+1) = (1)
+9(=rs; (1), =L, (1), —=Xi(t)) a(t) neigh(zs, zp, t) (Xi(t) — 7, (1))
+a(t) els(t),7s: (1))
1 ifr<a
with same linear function g : R® — [0,1], g(a,b,z) := 0 ifx>b
bz elge.

b—a
and a function ¢ : R? — R{ that is independent of the input X (¢) and will
be defined later.

Note that instead of the above function g, also a smoother ”sigmoid” func-

. . _ —1 _ 1 . .
tion like g(a,b,z) :=1 Trem(—ara) can be chosen in principle.

Suppose for the time being that ¢ = 0, then one easily verifies that the
left interval boundary is only adapted, if the input is left of the right interval
boundary and vice versa. Further one observes that inputs outside the interval
have a greater influence on the adaption of the nearest interval boundary, as
when they are inside the interval. In the following we will motivate the suggested
adaption rule.

Definition 2.2 We call © :={04,...,0} a Voronoi tessellation of Q if

k
U@szn and ©,N0,=0 forallp,se€{l,...,k}

s=1
The Oy are called partitions of the Voronoi tessellation.

It is obvious, that the box codebook vectors Wl, - Wi implicitly define a
Voronoi tessellation © := {01, ...,0;}, if we set

O, := {X € Q| s is winner neuron for input X }.

Our goal is, to compute W, that are good box approximations of the corre-
sponding © with respect to p.

Definition 2.3 Let A be a boz in Q and Y an arbitrary non-void subset of RY.
Then A is called a bozx approzimation of X with respect to p, if P,(A\T) =
fweA\T p(w) dw = 0.

The value P,(ANT) = P,(A) = P,(A\Y) = P,(A) = [_a p(w) dw indicates
the quality of the approximation.

One easily verifies, that after the initialization we have W, c 0, for all
s =1,...,k. Suppose now an input X that belongs to ©,. If X; ¢ W,,, we
have to widen the interval. Therefore the nearest interval boundary is “pulled”
towards X;. This is just the same method as in the original SOM algorithm.
If X; € Ws,- the first strategy is to “do nothing”, because in this case the
interval seems to be all right. This however, turns out to be not a good idea,
because the (:)5 change over time, so that we can observe Ws \ (:)s # () after
several adaption steps. If this difference becomes larger, it is not only possible
that P,(W, \ ©5) > 0, so that W, is no longer a box approximation of ©,.
Also the probability grows, that one observes overlaps between the boxes after
the algorithm stops, so that after few steps the boxes will represent a poor
partitioning of Q, too (see Figure 1).

Figure 1: Poor partitioning in the absence of interval shrinkage.

If, however the boxes represent a poor partitioning of €2, then the identifica-
tion of the essential dimensions (see Section 3) becomes impossible or at least
much more complicated. Therefore it is necessary to shrink the intervals. This
could be done by adapting the interval boundaries when even the input X; is
inside the interval (so called interior adaption). It is obvious that the adaption
of the nearest boundary should be greater than that of the opposite side. By
doing this a new problem arises: Usually after some time there are more inputs
X; inside the interval than outside (remember that X € ©;). As a consequence,
the interval shrinks faster than it grows, which implies that the value P,(W,)
shrinks, too. But then the approximation of the tessellation 0, is not as good as
it could be. Therefore one has to introduce something like a damping coefficient
or a correction term, which reduces the inter-interval adaption. Such a param-
eter will depend on the ratio of the inputs inside and outside the interval. A
direct computation would be impracticable, because it is very time consuming.
So one has to think about certain heuristics, which only consider the interval
width. Our approaches with a damping coefficient, appeared to supply unsat-
isfactory results. Excellent results were obtained by another approach, which
uses an analytically derived correction term. This approach will be presented
subsequently.

Correction term Without loss of generality, suppose that there are a;, b; €
R, such that 2, := {X € Q| p(X) > 0} C @7, [ai, bi]- Let O5(t) be the Voronoi
partition that is defined via W, (t) and let A,(t) := Q2L [I% (1),%,(t)] be an
optimal box approximation of 0 4(t) with minimal volume, i.e., boxvol(A(t)) =
min{boxvol(A) | A optimal box approximation of ©(t)}.

Definition 2.4 We call a box approzimation A of T with respect to p optimal,
if P,(A) = max{P,(A)| A arbitrary box approzimation of Y with respect to p}.

For our further expositions we need the following definition:

Definition 2.5 For Y C Q with P,(Y) > 0, the conditional probability density
function py on Y is defined as

fweX
else

p(w)
i = { 55

~

Using pg (4), we can compute the conditional expectation value E(W(t+1))

for each actual codebook vector Ws(t), that gives the expectation value of

Ws(t + 1) under the condition that s is the winner neuron (note that this im-

plicitly ensures P,(©,(t)) > 0).

~

We have E(W,(t + 1)) = Q7 [E(ls; (t + 1)), E(rs, (t + 1))] with

b;
E(lsz' (t + 1)) = L ls,' (t + l)p(l)s(t) (X) dX = ls,' (t + l)p(i)s(t),i (Xz) dX;

a;

b;
E(rs, (¢ +1)) /Q ros(t 4 D)o,) (X) dX = / Foslt + D)o, 0y (Xi) X,

P

and
b1 i1 i1 br
p® (t),i / / / / p@ (t) Xl, .,Xk) Xm...dXz',l dX,+1ka

Upon considering our above adaption rule we obtain:

E(l,: (t+1))

I
o~
)

(¢

Lo,
+ a(t)(Xi — 1 (t))p(l)s(t),i(Xi) dX;

and
E(rg,(t+1)) = rs(t)
b;
+ — 15, (6)Pe, (1),:(Xi) dX;
7s; (1)
O (X Kita)
+/l © rﬁ (t)) (t)(Xi—T’Si(t))pés(t)’i(Xi)dXi

+a(t) els; (8), 75 (1) -

Since A, (t) is an optimal box approximation of (:)s(t), we may assume that

P, (At =/ Pe (n(w)dw = 1.
p@s(t)(()) weAS(t) @S(t)(

Therefore, for simplicity, we suppose that the i-th components X; of the
inputs X € ©,(t) are uniformly distributed over [[F(¢), r}(¢)], such that

po.0iX:) 1= { OO :

else.
Hence, we arrive at
E(r,(t+1)) = ry(t)
o X dX
+/T " —l*())(i—’l“gi(t)) i
i —l B a® N |
+/l L(®) — 15, (1)) (r¥(t) —l;(t))(Xz rs; (1)) dX;

+a(t) c(ls; (1), 7s: (1))

= rs(t)

a(t) (ri () — rs: (1))
(ry(8) — (1)) 2

a(t) /TSi “ (X; —15,(t))
(ri () = (@) Ju,,) (rs; (t)

+a(t) els; (8), 7s; (1))

+

Xi —Ts; (t))
s (1))

—~

dX;

at) (rj(#) —rs ()
(ri (1) = 13(1)) 2

o(t) (rs: (t) — 1, (1))?
- (’f’;k (t) — l: (t)) 6 + a(t) C(lsi (t)a T's; (t)) .

= rg(t) +

For the left hand boundary, we analogously obtain:
a(t) (s (t) — 13 (1))
(ry(®) =15 () 2

a(t) (s, (t) — 1s:(8))°
(T;-k (t) — l: (t)) 6 - Oé(t) c(lsi (t)a Ts; (t)) .

By means of the intuitive choice

El,(t+1) = I, —

+

dew@%=gw@—&@) 3)

we end up with

Bt +1) = 1 — 2o OEO0 o6y (19, 0) et (0.1, 1)

E(ra(t+1) = ra + ~a(t)

in terms of some model quantity

(re(t) = 1, ()
V)= G =)

This quantity measures the deviation of the actual interval width from the
optimal one.

In the following, we have to assure that the intervals are always well defined,
i.e., we always have I, (t) < 7y, (¢) for all t € {0,...,T}.

Lemma 2.6

I;(t) <75, (t) = l;;(t+1) <rs,(t+1) (Vte{0,...,T}

Proof: Let p be the winner neuron for input X(t). Then one easily verifies:

(1) Xi(t) <1s,(t) =
) =L+ = (14 %0) 0 - 1)
~ a(t) neigh(zy, 29, 1) (Xi(t) = L ()
~— -~ N -~ /
20 >0 <0 J
%
> 1y (t) — 15 (1)

2) Xi(t) >rs(t) =

(Hﬁgy%w—Mm

Il

Ts; (t + 1) - lSi (t + 1)

+ a(t) neigh(zs, 2p,t) (Xi(t) — rs, (t))}

~

v~

>0

v

Ts; (t) - lsi (t)

() Xi(t) € [ls:(1),rs: ()] =

r)=t = (14 %) 0 - 1)
| (Xilt) — 1, ()
+ Oé(t) nelgh(zsa Zp, t) (Tsi (t) — lsi (t)) (XZ (t) —Ts (t))
. (rs; () = Xi()) /(1 _
- a(t) nelgh(z57 Zp, t) (Tsi (t) _ ls,- (t)) (Xz (t) Iy (t))

_ (Hﬁgymw—um

(Tsi (t) — Xz(t))(Xz(t) — lSi (t))

— 2 a(t) neigh(zs, zp,t) (rs, (t) — 15, (1))

<i(rs; (D)1, () (%)

~

> (1420 - 2) 60 - 1.0)
= (1= et - o)
(%) max (r—z)(z-1) = i(r —1)? foralll,r € R

Because a(t) < 1for all t € {0,...,T}, we have in all three cases:

(re;(t) = 15,(1) >0 = (rs,(t+1) = s, (t+ 1)) > 0.

10

Note that Lemma (2.6) is not true, if «(t) > 6.

Hence if I,,(0) < rs,(0), Lemma (2.6) guarantees that c(l,,(t),7s,(t)) > 0
and Y, (t) > 0 for all t € {0,...,T}.

Therefore we obtain
Wa, (t) C [l (1), 77 ()] = 04, (t) €]0,1]
= E(l;,({t+1)) <ls,(t) and E(rs, (t + 1)) > rs, (1)
and

Ws () = [(0),rF ()] = B(ls;(t+1)) = 1s,(t) and E(r, (t + 1)) = 75, (0).

i

Now if we choose W,(0) € A,(0) we can be confident, that ¥,,(T) ~ 1
and therefore W, (T') = [I7(T), r}(T')], whenever we use our extended algorithm
with T time steps and T large enough. This means that W,(T) ~ A,(T) and
therefore W, (T') is nearly an optimal box approximation of ©,(T') with respect
to p. Obviously the chosen function ¢ is a suitable correction term for the
interval shrinkage.

Comparison SOM - SOBM Upon comparing maps M and M , computed
by the original SOM and the extended SOBM algorithm with the same param-
eters and initialization, one will observe clear similarities. In most cases the
orientation of the maps and the identifiable clusters are equal (for details about
cluster analysis by SOMs see Section 4 or [6], respectively). Also for each point
codebook vector W, of M one can usually find an box codebook vector Wy of
M with W, € W,. Therefore the extended algorithm will be at least as powerful
as the classical algorithm, which is of utmost significance for applications. In
the following, however, we will show that the new SOBM method has important
advantages:

To see this, we suppose, for simplicity, that we have only an one-dimensional
input space ! = R. We want to compute a 2 x 1 map with neurons s and 3,

the Euclidean distance function and neigh(zs, z5,t) = 0 for ¢t € {0,...,T}.

For the purpose of illustration, we define two probability density functions
p1 and py (see Figure 2):

25 if X €[0.8, 1]

p(X) = { 05 if Xe[-1,0]
0 else
25 if X €[0.8,1]
) o625 if X e[-1,-0.6]
p(X) =N 0625 if X €[04, (]

0 else.

We have used the original SOM algorithm and our extended algorithm with
¢ =0 and c as defined in Eq. (3) to compute the codebooks for p; and ps. Ta-
ble 1 shows the results (random codebook initialization, «(0) = 0.9, T' = 10000).

11

Figure 2: Probability density functions p; and p2

P1
orig. SOM Wy = —0.5, Wz =0.9
ext. SOM(c = 0) | W, = [-0.75,—0.25], W5 = [0.85,0.95]
ext. SOM W, = [-1.00,0.00], W5 = [0.80, 1.00]
P2
orig. SOM Ws = —-0.5,W5=0.9
ext. SOM(c = 0) | W, = [-0.78,—0.22], W5 = [0.85,0.95]
ext. SOM W, =[-1.05,0.07], Wz = [0.80, 1.01]

Table 1: Codebook vectors for p; and ps

Obviously, the following three observations are of interest:

e The probability density function p; is positive on [—1,0] and [0.8,1]. Al-
though this intervals are of different width, we get no hint about this fact,
if we look at the point codebook vectors W and W.

e The box codebook vectors are box approximations of the Voronoi parti-
tions, which they implicitly define. The quality of this approximations is
optimal if we use the correction term ¢ as defined in Eq. 3.

e The point codebooks are equal for both probability density functions, i.e.,
although p; and p2 are different, we can not distinguish them by looking
at the point codebook vectors. The situation is quite different if we use
the correction term ¢ and look at the box codebook vectors. Here we see
that the interval width of W, in the case of p2 is larger then in the case
of p1. If we look deeper, we see that the difference is approximately the
width of the hole between —0.4 and —0.6 of ps. This is not surprising,
because the correction terms for W, are equal in both cases, but the power
of the interval shrinkage for W is lower in the case of py. Therefore the
interval W can grow stronger in this case. Although we can not derive
the differences between p; and p» from looking at the different Wy, we at
least get a hint that there are differences.

12

We have made similar observations for higher-dimensional input spaces and
larger maps.

Additionally we want to show an intriguing feature of our extended algo-
rithm. Look at he following probability density functions ps:

px) = (exp(—é ((X;—“)) + exp(— 1 (@)) |

One observes that W ~ [u1 — o, 1 + 0] and Wy & [us — 0, o + 0]. The
approximation is the better, the larger the difference is between p; and ps.
Figure 3 shows p3 with u; = —0.5, u2 = 0.5 and o = 0.27 and Table 2 gives the
corresponding computational results.

0.8

0.7

0.6

0.5

04r

Figure 3: Probability density functions p3

P3
orig. SOM W, =—-0.5, W =0.5

ext. SOM(c = 0) | W, = [-0.67, —0.33], W5 = [0.31,0.67]
ext. SOM W, = [—0.85, —0.15], W5 = [0.13, 0.86]

Table 2: Codebook vectors for p3

Although the concept of box codebooks develops its full power still within
the identification of essential dimensions and the multilevel cluster analysis, to
be described in the subsequent sections the advantages in comparison with point
codebooks are already obvious.

A disadvantage of our extended SOM algorithm is that it requires more
computing time than the original algorithm. The difference depends strongly
on the chosen implementation, but because the number of variables that have
to be adapted and to be evaluated are doubled, in the worst case our extended
algorithm doubles the computing time of the original algorithm.

13

Combination of SOM and SOBM To speed up the computing time, one
may think about a combination of the original SOM and the extended SOBM
algorithm. In the following we suggest such a combination, which has turned
out to be quiet powerful in our first applications.

As usual in the original SOM algorithm, we first compute in 7T} steps the
point codebook vectors Wy, ..., W}, with a large learning rate a(0) ~ 0.9 at the
beginning and with neighborhood adaption, i.e., neigh(z, zp,t) > 0 for t < T3.
Since we are mainly interested in the ordering of our map and not in the con-
vergence of the W, we choose T} rather low. This is often called the ordering
phase of the SOM algorithm.

After this phase one usually passes on to another adaption cycle with a larger
T», alow learning rate a and no neighborhood adaption, i.e., neigh(zs, 2p,t) = 0
for s # p and t € [T1,T>]. After this so called convergence phase of the SOM
algorithm, the codebook vectors are rather stable and good representatives of
the input space and the used probability distribution.

In our combined approach, we use the extended SOM algorithm within the
convergence phase: We first initialize the box codebook vectors W;(0) by using
the earlier computed point codebook vectors Wi (T}) within the described ini-
tialization routine. Then we adapt the box codebook vectors in T» time steps
with a low learning rate and no neighborhood adaption.

Summarizing, as a result of this combination — original SOM algorithm
within the ordering phase, SOBM algorithm within the convergence phase —
we obtain not only a shorter computing time, but also avoid possible effects of
the neighborhood adaption on the generation of the box codebook vectors.

3 Identification of essential dimensions

Suppose we have an input space 2 with probability density function p. Let Py.;
denote the uniform probability distribution over Q and define |Y| := Pyu,:(T)
for T C Q. If Q is high-dimensional, one often observes that

12|
ki,
Y

i.e, the input space is sparse with respect to the probability distribution P,.

Definition 3.1 Let Q C RY be an input space with probability density function
p, ©* := {07,...,0;} a Voronoi tessellation of Q and dist : x Q@ - R a
distance function on). Then we call ©* an optimal k-s-partitioning of Q, with
respect to dist, if

Y pX)p(V)dist(X,Y) + > p(X)p(Y)dist(X,Y) =
X,Yeo; X,YEQ\O:

min(3" p(X)p(V)dist(X,Y) + 3 p(X)p(V)dist(X, V),
X,Yeo, X, YeQ\O,

(©:={0y,...,0;} Voronoi tessellation of)

14

If ©* is an optimal k-s-partitioning of Q, for all s € {1,...,k}, we call it an
optimal k-partitioning of Q, with respect to dist.

By construction of the SOM algorithm, we can assume that the Voronoi
tessellation, that is indirectly defined by the generated k codebook vectors, is a
nearly optimal k-partitioning of 2,.

Suppose now that we have an optimal or nearly optimal k-partitioning of (,,.
Then one observes, that often only a small number of dimensions — the so called
essential dimensions — of), are necessary to discriminate the k partitions, if
we only consider the points X € (.

Definition 3.2 Let Q) C R? be an input space with probability density function
p, dist : @xQ — R a distance function on Q and ©* := {07, ..., 0} an optimal
k-partitioning of Q, with respect to dist. Dimension i € {1,...,q} is called a
non essential dimension for ©F in Q, , if ©* is an optimal k-s-partitioning of
Q, with respect to dist.; : @ x Q@ = R. The function dist.; is defined as

dist*i = f(dl, e ,di,l,O,diH, .. .,dq).

Otherwise dimension i is called an essential dimension for ©F in Q,. If the
dimension i is an essential dimension for ©% in Q, for all s € {1,...,k}, it is
called an essential dimension for ©* in Q.

Definition 3.3 Let Q C R? be an input space with probability density function
p, dist : @ xQ — R a distance function on Q and k € N,k > 2. Then dimension
i €{1,...,q} is called an essential dimension in Q, of degree k, if there exists an
optimal k-partitioning ©* of Q, with respect to dist, such that i is an essential
dimension for ©* in Q,.

In the following we describe a method for the identification of the non essen-
tial dimensions—and therefore also the essential dimensions—in , of degree k&
by using box codebooks.

Suppose, we computed a 1 x 1 SOBM for a probability density function p
on €, by our extended algorithm. Let W = @7 _,[l;,r;] be the generated box
codebook vector. By construction of the SOBM algorithm, we have P,(W) > 0,
so that the conditional probability density function py;, on W is well-defined.
Based on py;, we use the extended or the combined algorithm, to generate an
m x n SOBM. Let W1, ..., W}, be the resulting k¥ = mn box codebook vectors.
Now we compute for each codebook vector W, = 7 1lls;,rs;] and for each
dimension ¢ an overlap measure 7; between the intervals [I5;,7s;] and [I;,7;]:

nz(W:Ws) = / X[lsi,rsi](wi)dwi

('I“i - ll) l;
with characteristic function

1 fxeM
0 else

15

If we choose a small v > 0 we have

(W, W) >1—v = [ly,rs] = [li,7i]
= (VX € W) DIST(X, W,) ~ DIST,;(X, W,)

with

~

DIST*, = f(gl, .. .,sz',l,o,(i“_l, e ,dq).

This means that, if we have n;(W,W,) > 1—v for a small v > 0, the dimen-
sion ¢ is not relevant for the discrimination between W, and W \ W,. In this
case the dimension 7 is said to be not essential for box Ws. If a dimension i is
not essential for all boxes Ws, we say it is not essential for w.

Suppose now that dimension i is not essential for W.AIf W is considered to
be a nearly optimal box approximation of 2, and the W, are nearly optimal
box approximations of the indirectly defined ©4 with respect to p, then we may
write:

(VX,Y € 0,) p(X)p(Y)dist(X,V) ~ p(X)p(Y)distyi(X,Y) (Vs € {1,...,k}).

Since now © := {(:)1, ey (:)k} is a nearly optimal k-partitioning with respect
to dist, it is also a nearly optimal k-partitioning with respect to dist.;. Therefore
the dimension ¢ is not an essential dimension for © in (2,.

4 Adaptive hierarchical cluster analysis

In this section we suggest a new adaptive multilevel approach for cluster anal-
ysis, that uses Self-Organizing Maps with box codebooks and the concept of
essential dimensions.

Usually one distinguishes between partitioning and hierarchical cluster meth-
ods [2]. The partitioning methods, as the well known k-means-algorithm, aim
at finding a good clustering by optimizing special partition functions. To do so,
they need the — a priori unknown — number of clusters as an input. Trying
different numbers is no real way out of this dilemma, because there exists no
automatic criterion to decide, which is the correct number of clusters. Therefore
the resulting clusterings have to be assessed by expert examination. In contrast
to that, the known hierarchical methods do not need the number of clusters as
input. Rather, they produce a hierarchical tree of possible clusterings, called
dendrogram, and leave the problem of deciding on which tree level the clustering
is best to a human expert. Although it is possible to think about combinations
of both approaches, last but not least, one still remains with a non automatic
system.

Self-Organizing Maps can also be used for cluster analysis: After computing
the map one tries to find a clustering of the codebook vectors. Thereby one gets
indirectly a clustering of the whole input space, too. Although it is possible
to use a partitioning or hierarchical cluster algorithm for this task, this is not

16

the usual way, because in this case it is better to use them directly. Instead
one traditionally uses methods, like the u-matrix method [1], that visualize the
differences of the codebook vectors on the map. Together with additional visu-
alization tools [5] they allow the human expert to identify clusters on the map
and therefore in the whole input space. Although these cluster methods do
neither need the number of clusters as an input, nor require direct comparisons
between different clusterings, there is a big disadvantage: These methods do not
allow an automated cluster identification and have an undesirable flavor of per-
sonal bias. To avoid this disadvantage, we recently suggested an approach [6],
that automatically identifies clusters on the map by using Perron eigenmode
analysis [3]. Although this method works already quite well, one problem still
remains unsolved: the clustering depends on the chosen size of the map. This
connection is not as strong as between the clustering and the chosen number
of clusters in the case of partitioning methods, but also affects the cluster quality.

One possible remedy for this problem is to refine clusters, i.e. to select the
objects of a cluster and then to cluster them again. By doing this we arrive
at a multilevel clustering procedure. As already mentioned above, we are then
still left with the question at which cluster level to stop. Of course, stopping
at the optimal cluster level is aimed at, i.e., when no further “improvement” of
the clustering is expected.

For an automatic stopping criterion, we suggest to exploit the concept of
essential dimensions together with the following definition:

Definition 4.1 Let ©* := {0Of,...,0}} be an optimal k-partitioning of Q, and
I C {1,...,k} a neuron set that defines a cluster A := |J;c; ©F in Q with
P,(Ar) > 0. The cluster level of A is called 1-optimal, if there exist less than o
essential dimensions in Q,, of degree k.

At this stage, we are now ready to formulate our multilevel cluster algorithm:

Suppose an input space 2 with a probability density function p is given.

1. Set A := Q.
2. Compute a 1 x 1 SOM with box codebook vector W based on PA-

3. Compute an n x m SOM with k£ box codebook vectors Wl, e ,Wk based
on paqw -

4. Identify the essential dimensions in €2,, of degree k as described in Sec-
tion 3. If the cluster level of A is t-optimal then stop, else go to the next
step.

5. Identify the cluster Ay, As,...1in Q,, that are based on Wi,..., W, e.g.,
by using our automatic cluster identification algorithm (for details see [6]).

6. Choose a cluster Aj. If P,, (A;) = 0, then stop, else set A := A; and go
to step 2. Repeat this for all identified clusters.

17

In our experiments done so far, the choice of the map size k is turned out
to be not very critical. For small k£ the algorithm needs more refinement steps,
but the computation of the maps was faster and vice versa. Therefore we rec-
ommend to choose k& between 50 and 100.

For the dimension threshold level ¢, one usually should choose + = 1. But to
speed up the algorithm, one also can choose a higher ¢. If Q is high-dimensional,
then this should not cause any deterioration of the clustering quality.

5 Conclusion

The paper presents an extension of the original SOM algorithm, the SOBM al-
gorithm. It can be used to identify essential dimensions of a high-dimensional
input space. Based on this concept a first multilevel cluster algorithm is de-
scribed, that can be used for high quality and fully automated cluster analysis.
Applications of this algorithm to molecular dynamics will be described in detail
in a forthcoming paper.

Acknowledgments. The first author (T.G.) was partially supported by RISK—
CONSULTING, PROF. DR. WEYER, KOLN.

References

[1] A.Ultsch and D.Korus. Integration of neural networks with knowledge-based systems. In
Proc. IEEE Int.Conf.Neural Networks, Perth, 1995.

S

B.D.Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

=

P. Deuflhard, W. Huisinga, A. Fischer, and Ch. Schiitte. Identification of almost invariant
aggregates in nearly uncoupled Markov chains. Accepted in Lin. Alg. Appl., Available via
http://www.zib.de/bib/pub/pw, 1998.

[4] G.Deboeck and T.Kohonen (Eds.). Visual Ezplorations in Finance using Self-Organizing-
Maps. Springer, London, 1998.

[5] J.Vesanto. Som-based data visualization methods. Intelligent Data Analysis, (3):111-126,
1999.

[6] T.Galliat, W.Huisinga, and P.Deuflhard. Self-organizing maps combined with eigen-
mode analysis for automated cluster identification. To appear in: Proceedings of the
2nd International ICSC Symposium on Neural Computation, 2000, Berlin. Available via
http://www.zib.de/bib/pub/pw, 1999.

[7] T.Kohonen. Self-Organizing Maps. Springer, Berlin, 2nd edition, 1997.

18

