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Abstract

In this paper for the M (n)/M(n)/s + GI system, i.e. for a s-server queueing
system where the calls in the queue may leave the system due to impatience, we
present new asymptotic results for the intensities of calls leaving the system due to
impatience and a Markovian system approximation where these results are applied.
Furthermore, we present a new proof for the formulae of the conditional density
of the virtual waiting time distributions, recently given by Movaghar for the less
general M(n)/M/s+GI system. Also we obtain new explicit expressions for refined
virtual waiting time characteristics as a byproduct.
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1 Introduction

The M(n)/M(n)/s+ GI system is a s-server queueing system with a (potential)
unlimited waiting room with FCFS queueing discipline where the calls waiting in
the queue for service are impatient, cf. Figure 1. The arrival and service processes
are allowed to be state dependent with respect to the number n of calls in the
system, but the cumulative service rate is assumed to be constant for n > s. We
assume that the sequence of the arrival rates A, is bounded and that A\, > 0 for
n > 0 or that there exists a positive integer k such that A\, >0 for0 <n < s+k
and A, =0 for n > s+ k. Concerning the cumulative rate p, of finishing service
we assume po = 0 and pn, = s > 0 for n > s. Each call arriving at the system has
a maximal waiting time I. If the offered waiting time W? (i.e. the time which
a call would have to wait for accessing a server if it were sufficiently patient)
exceeds I, then the call departs from the system after having waited time I.



The maximal waiting times are assumed to be i.i.d. with a general distribution
C(u) := P(I < u), u € Ry, which may be defective, i.e., P(I = oc) > 0 is not
excluded. In the notation M(n)/M(n)/s+ GI the first M (n) denotes the arrival
process, the second M (n) the service process depending on min(n, s+1) only, i.e.,
on the number of busy servers and additionally whether there are calls waiting
for service. The symbol GI stands for the i.i.d. maximal waiting times. Note,
that if A, > 0 for 0 <n < s+k and A\, =0 for n > s+ k, then we have the case
of a limited waiting room with & waiting places (M (n)/M(n)/s/k + GI system).
If piy, = min(n, s)u for n > 0 (s := su), then we have a M(n)/M/s+ GI system
and if additionally A, = A > 0 then a M/M/s + GI system.
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Figure 1: The M(n)/M(n)/s+GI system with impatient calls and state dependent
arriwval and service rates, where n denotes the number of calls in the system, W°
the offered waiting time and I the mazimal waiting time.

The general M(n)/M(n)/s+ GI system is treated in [BB1], where in partic-
ular the density of the detailed state process and the occupancy distribution are
derived and an application for the use of general state dependent departure rates
is given, cf. also [BB2]. Independently, Movaghar [Mov] derived the occupancy
distribution and the conditional offered virtual waiting time distribution besides
other quantities for the M(n)/M/s + GI system. For further results on special
cases and results for queues with impatience we refer to [BH], [Jul], [Mov], [BB1]
and the references therein.

The main results and organization of the paper are as follows: In Section 2
various performance measures for the M(n)/M(n)/s + GI system are recalled
from [BB1] since they are used later in the paper. Section 3 deals with the offered
virtual waiting time distribution for the M (n)/M(n)/s + GI system. Recently,
for the M(n)/M/s + GI system Movaghar [Mov]| derived an explicit formula for
the density of the offered virtual waiting time if £ calls are in the queue by using
tricky probabilistic arguments. We give a new rigorous proof of this result for the
more general M(n)/M(n)/s + GI system by using explicit results from [BB1].
The proof given here is completely different to those in [Mov] for the special case



of a M(n)/M/s + GI system. The advantage of our alternative proof lies in the
fact that it is not quite clear whether the arguments in [Mov] can be extended to
state dependent service rates and that some of the arguments are a little bit vague
or not outlined rigorously. Although our proof is more analytical we obtain as
a byproduct also new refined virtual waiting time characteristics, cf. Eq. (3.10).
In Section 4 monotonicity and asymptotic results are derived for the departure
intensities of calls due to impatience. Using these results in Section 5 we construct
a simple Markovian approximation for the M(n)/M(n)/s+ GI system. The idea
is to replace the individual maximal waiting times of the calls by waiting place
dependent impatience rates, i.e., with each waiting place, which are numbered
by i = 1,2,..., there is associated an impatience rate 8; (> 0). This system —
which is a simple Markov model — is denoted by M (n)/M (n)/s+M(8;)32,, where
M(B;)$2, stands for the waiting place dependent impatient rates and M (n)/M (n)
has the same meaning as above. The relevant performance measures for this
system can easily be obtained since the process of the number of calls in the
system is a simple birth-death process. The impatience rates §8; can be chosen
such that the occupancy distribution of the M(n)/M(n)/s + M(5;)2, system
is fitted to those of the M(n)/M(n)/s + GI system. If A;jys_1 > 0 then 5; is
uniquely determined. In general, the impatience rates §; can be chosen such
that they only depend on i, u, and on the distribution C(u) of the maximal
waiting times. The fitting of the occupancy distribution implies the fitting of
other performance measures. From the asymptotic results given in Section 4
it follows that the §; converge to the intensity corresponding to an exponential
fitting if the m-th moment of the distribution C(u) is finite for any m > 2.
However, numerical examples given in Section 5 show that the §; may significantly
differ from their limit for smaller . Also the relation to the fitting technique used
in [BB2] is discussed. The proposed approximation is useful if in a given queueing
network one wants to approximate a -/M (n)/s+ GI node by a simple birth-death
node. The use of the approximation lies in reducing the numerical complexity
for computing performance measures in queueing networks.

2 State process and performance measures for the
M(n)/M(n)/s + GI system

In this section we recall some notation and results for the M(n)/M(n)/s + GI
system from [BB1]. Throughout this section we assume that the queueing system
is stable, where the stability condition will be given later. If n calls are in the
system then £ := (n—s), calls are waiting in the queue for service. (The notation
¢ := (n — s);+ will also be used in the following.) We number the waiting calls
according to their positions in the queue. By the FCFS discipline the first call in



the queue will be potentially the next for service. Let
N(t) — number of calls in the system at time ¢;
L(t) := (N(t) —s)+ — number of waiting calls at time ¢;

(X1(t),..., Xp)(t)) — vector of the residual maximal waiting times of
waiting calls ordered according to their positions

in the queue at time t;

(I1(t), - I () — vector of the original maximal waiting times of the
waiting calls ordered according to their positions
in the queue at time t;

p(n):= P(N(t) =n) — stationary distribution of the number of calls in
the system;
P(n; 1,...,%e; U1, -, ug) := P(N(t) =n; X1(t) < z1,...,Xe(t) < g3
Ii(t) <wnyeen s, Io(t) < uy)
— stationary distribution on {N(t) = n}.

For fixed n > s the support of P(n;x1,...,%eu1,...,ur) is contained in

Q= {(ml,...,mg;ul,...,w)ERﬁ_[ ful—x1> ... >up—xp >0}

Density of the state process. Assume that the following assumptions are

satisfied:
(A1) C(u) is non-defective, i.e. lim C(u) =1,
U—00

(A2) C(u) has a continuous density c(u).
Then the density

P(N; 1y ey Do UL, Ug)
a%

= P(n;x1,...,x5U1,-..,Up
0x1...0xp0u7 ...0uy (321, 25U, )

of the state process (N(t), X1(t),..., Xr)(t), 1(t),. .., Iw(t)) with right-con-
tinuous sample paths is continuous on 2. In [BB1] these densities are obtained by
solving a system of integral equations explicitly, cf. [BB1] Egs. (2.10) and (2.17):

wor=o TT) (L) oo

i=n+1
p(n;wla"'awe;ula"'auf) = ]I{(',I"la"'71‘[;”1,""“@)652@}
n—1 V4
Q(HM> <H0(ui)>6_“*(”1_$1), n=s+1,s+2,... (2.1)
1=0 =1



The normalization factor g is given by

S ST e

§=0 i=j+1 §j=0 \ i=
where -
1 - .
Fj:= ﬁ/F(f)Je fd¢, j=0,1,2,..., (2.3)
0
or alternatively
1 - .
R=l F=gg [P P@et i=12.5 (24
0
&/ s
F(©) = [(1-Clan, €€ (25)

0

From (2.1) for the (marginal) densities of the vector (N(t), X1(t), ..., Xp)(t))
we obtain immediately

Pe(N; L1, .., @) == #@P(N(t) =n; X1(t) < z1,...,X(t) < xyp)
l
= 9n / e ( Hc(fz‘+wi)) d¢; ... d&,
£1>..26>0 =1
n=s+1,s4+2,..., (2.6)
where
n—1
gn =g H i (2.7)
i=0

and g is given by (2.2). The support of this density is contained in Rﬂ.
Stability condition and occupancy distribution. For a general maximal

waiting time distribution C'(u) in [BB1] Theorem 3.1 it is shown that the system

is stable iff the right-hand side of (2.2) is finite, i.e., the stability condition reads

s+j—1

J:zi%( 1;[ )\i)Fj<oo, (2.8)



and in case of a stable system the occupancy distribution is given by

s
g H M, TLZO,].,...,S,
p(n) = Vil (2.9)

gnFn_s, n=s+1,s+2,...

Remark 2.1 1. For the M(n)/M/s + GI system the corresponding stability
condition (2.8) and occupancy distribution (2.9) (as well as other quantities) are
given in [Mov], where a completely different approach is used than in [BB1].
However, it seems that the density (2.1) can not be obtained by the approach
given in [Mov].

2. In case of a limited waiting room of capacity k, i.e. A, =0 for n > s + k, the
stability condition (2.8) is always fulfilled.

3. For the M/M(n)/s + GI system, i.e. if A\, =X > 0 for n = 0,1,2,..., from
(2.8), (2.3), (2.5) we obtain

J=7°6XP (AF(§)—¢) d§=7oe><p (u* 7*(%(1—0(77))—1)@)(15,
0 0

0

and thus the system is stable, i.e. J < oo, iff

A Jim (1 Cw) < 1. (2.10)
'L[,* UuU—» 00
For the M/M/s + GI system the stability condition (2.10) was given in [BH].
In the general case we obtain the above expression for J as an upper bound if
A < Afor n = 5,8+ 1,... Thus in the general case (2.10) may be used as a
sufficient stability condition. In particular, the M(n)/M(n)/s + GI system is
stable if C(u) is non-defective.

Departure rates due to impatience. Assuming (A1), (A2) the intensity
ay of calls leaving the system due to impatience conditioned upon £:=n—s > 0
calls are in the queue is given by

1

L
= ——- bixyyee s Xi1,0, L5401, Toj UL, - - -y
7 p(SM)Z /p(s+ T1s- s Tio1,0, Tig1, o, Tg3 L, - - -5 ug)

=1 por1
+
dzy...dz;—1dxiyq ... dzedus ... duy

provided p(s + £) > 0. Using (2.9), (2.7), (2.3)-(2.5) and the last equation on
p.10 in [BB1] for z | 0 we obtain

_Fy

g = 7 — s, £=1,2,...k, (2.11)



where k :=sup{j € Z; : \j1s—1 > 0}. In case of a limited waiting room (k < o0)
let oy be defined by (2.11) for £ > k. Since the ay depend only on ¢, C(u) and
i, in case of a M(n)/M/s + GI system one has the same «p with p, = sp if
1/p is the mean call service time. For this latter case (2.11) is given in [Mov],
too. For particular C(u) the previous formulae can be specialized appropriately,
cf. the preprint version of [BB1] and [Mov].

Performance measures. The cumulative mean call arrival intensity A is
given by

A= "Aup(n). (2.12)
n=0

Since the A, are bounded, A is finite. The probability pr that a call will leave
the system due to impatience later (abandon probability) and the probability py,
that a typical arriving call has to wait for service are given by

1 [e’s} 1 s—1
pr = A Z an—sp(n), pw=1- A Z)\np(n). (2.13)
n=s+1 n=0

The mean waiting time EW in the queue of a typical arriving call is given by
Little’s formula

EW :% S (n—s)p(n). (2.14)
n=s+1

In case of a M/M(n)/s/k + GI system, the probability pp that an arriving call
will be blocked (blocking probability) is given by

pB = p(s+k). (2.15)

3 Virtual waiting time for the M (n)/M(n)/s+ GI sys-
tem

For a given stable M(n)/M(n)/s + GI system in steady state let V' be the of-
fered virtual waiting time of a call, i.e. the time which an arriving virtual call
at ¢ = 0 would have to wait for accessing a server if it were sufficiently patient,
and V,, be the offered virtual waiting time given that n calls are in the system,
ie. P(V, <u)=P(V <u|N(0) =n). We make the convention that the virtual
call arriving at ¢ = 0 acts like a real call, i.e., it is incorporated into the dy-
namics of the system after ¢ = 0 but it is not counted in N(¢). In particular, if
N(0 —0) > s then immediately after ¢ = 0 the service rate is pu,. The dynamics
of the model and the assumptions imply V,, = 0forn =0,...,s—1 and V,, > 0 for
n=s,s+1,... as well as that the conditional densities v(u|n) = LP(V, < u),
ueERy, n=s,5+1,..., exist.



Recently, for the M(n)/M/s + GI system Movaghar [Mov] formula (3.17)
proved — in our notations — the following result

F(psu)"™*
(n - 3)! Fns ’

v(uln) = pe

u>0, n=s,s+1,..., (3.1)
where p, := sy, 1/pu denotes the mean service time, and F(¢), F} are given by
(2.3)-(2.5). The proof bases on intricate probabilistic arguments. The densities
v(n;u) = %P(N(O) =n;V < u) = pn)v(uln), n = s,s+1,..., of the offered
virtual waiting time V on {N(0) = n}, which are more convenient in the following
considerations, are obtained from (2.9), (2.4) and (3.1) as

v(n;u) = gnpae " %, u>0, n=s,s+1,..., (3.2)
and the distribution of V' is given by
s—1 d 00
P(V =0) = REZ:Op(n); PV <u) = ;U(n;u), u > 0. (3.3)

In this section by using complete different arguments than in [Mov] we prove that
(3.2) remains valid for the more general M (n)/M(n)/s + GI system:

Theorem 3.1 For a general stable M(n)/M(n)/s + GI system the densities
v(n;u), n =s,s+1,..., are given by (3.2).

Proof. The proof is divided into several steps. We consider the stable
M(n)/M(n)/s + GI system in steady state with its stationary state process
(N(), X1(t),- s X (), 11 (1), - -, I () (2)), tER, where at t = 0 there arrives a
virtual call of unlimited maximal waiting time, i.e., at ¢t = 0+0 there are N(0)+1
calls in the system relevant for the dynamics.

1. If N(0) = s then the time until a server becomes free and the virtual
call goes into service is exponentially distributed with parameter u, in view of
tn = px for n > s. This implies

v(s;u) = p(s)u-e™",  ueRy, (3.4)

which is just (3.2) for n = s because of (2.9). (Note, the calls arriving after ¢ = 0
do not have any impact on the service process until the begin of the service for
the virtual call.) In the succeeding steps we will prove (3.2) for n > s, ie. if
£ =mn— s> 0 calls are in the queue.

2. In this step we look into the details of the service and impatience process.
For a given vector k = (ky,...,kp) €{0,1}" let |k| := k1 +... + Ky, and, if |k| > 0,



let 1 <41 <1z <...<iy < h the indices of those components of k where k; = 1,
ie, k; =1 for i€ {il,. .. ,Z‘k|} and k; = 0 for ¢ € {1,. .. ,h}\{il,. .. ,’L‘k|} By
convention let g := 0, i|x+1 := h + 1 in the following.

2.1. According to the definition of the state process we index the arriving vir-
tual call at £ = 0 by £+ 1 and assign to it the residual maximal waiting time
X¢+1(0) := 0o according to its unlimited maximal waiting time. Then, as long as
there are calls in the queue, the process of served calls and hence of calls going
into service is a Poisson process with intensity u.. Also, since the service process
during the interval (0, V] will not be affected by newly arriving calls, we can stop
the arrival process after t = 0 for determining v(s+4;u).

2.2. On {N(0) = s+ 4} let X; := X;(0), 7 =1,...,£+ 1, and K; = 1(0),
i = 1,...,4, if the i-th call in the queue at ¢ = 0 later goes into service (gets
lost due to impatience). Notice, the virtual call at position £+ 1 in the queue at
t = 0 always goes later into service, since its maximal waiting time is unlimited.
The state space of the vector K = (Ki,...,K,) is {0,1}¢. Consider for a given
k€{0,1}¢ the event {K = k}. Then the |k| calls at the positions i1,... ,i|k| in the
queue at t = 0 will be served later and the remaining £ — |k| calls will get lost due
to impatience. Denote by Wy < ... < W), the consecutive time instants after
t = 0 where calls go into service, i.e., since we are on {K =k}, at W;, 0 < j < |k,
the call with index ;41 goes into service and at W, finally the virtual call, i.e.,
V = W);|- As mentioned above, the W} are part of a Poisson process of intensity
p«. Denote further by Y1,...,Y, | the vector of the residual maximal waiting
times at ¢ = 0 of all calls leaving the queue due to impatience later. By the
system dynamics it holds

(Yia S ,ng,“c‘) = (X17 s 1Xi1—17Xi1+17 s aX’i|k|—laX’i|k|+1’ S aXZ) (35)

and
Ikl Gj+1—1
{K=k}=) (( M X< Wj}> N{Xi,.0 > Wj}), (3.6)
§=0 N Nr=ij41
where on the r.h.s. the inequality X;; , > W; is always fulfilled for j = |k| in
view of Xi|k|+1 = Xpp1 =00 > Wy

3. In this step, which is the main part of the proof, we assume that (A1) and
(A2) hold, thus the densities p,(n;z1,...,zs) of the residual maximal waiting
times are given by (2.6), (2.7).

3.1. For a given k€ {0,1}¢ the densities

o+t
wp ... 3w|k‘3y1 e ay@—“ﬂ

Puy(k5Wo, -, W3 Y1, - Yo k) = 5

P(K=k;Wo <wo, -, Wi Swp; Y1 < Y1y, Yoo < Yo—ji))



have the support, cf. (3.6),

k| 411
Qo= {(wo, - w3 Y155 Yempp)) s wo < - Swpgy [ ]] Hae Swi} =13,
j=0r=i;j+1
(3.7)
where the transformation of variables
W15 Yo k) = (B15 -3 iy =1, Tig 15 - -+ By =1 T 415 - - - Te)
is used, cf. (3.5). From (3.6) and since Wy, ..., W are the first [k| + 1 points of
a Poisson process of intensity pu., for (wy, ... Wik YLy - - - ,yg_w) € by the law
of total probability we obtain
||
pw,y(kf'é wo, ... aw\k|a Y1, - 7y€—|k\) = (H 'u*e_li*(wj_'wj—l)>
=0
|k|—1
( H Wz, > wﬁ)pm(s + 421, ze)dey . dryy,, (3.8)
R =0
where the convention w_; := 0 and the same transformation of variables is

used. Applying the explicit expression (2.6) for py(s + 4 x1,...,2¢) and tak-
ing into account (3.7), from (3.8) by using Fubini’s theorem and integrating with
respect to dyi ...dy,_ (= d$1...d$i1_1d$i1+1...d$i|k‘_1d$i|k|+1...d.’L'g) and
dz;, ... dwil o it follows

glkl+1

puw(k;wo, ..., wy) == P(K=k;Wo < wo,--., Wi <wy)
p) k|

wQ - . - wa

B+l _ _
:gs—l—lﬂ‘* I+l g—pawppy / e &

§12...2£,>0
Kkl 41—l
(IT( I (0@ - Ctertu)) ey rus) s ot (39)
J=0 “Nr=ij+1
where C(u) := 1—C(u) is the complementary distribution function and where
we use the notation &1 := —oco and C(—o0) := 1 as also in the following. The

support of py (k;wo, .. ., k) 18 Qi = {(wo, - -, W) : 0 S wo <. < wpg )
3.2. On {K = k} the offered virtual waiting time V" at ¢ = 0 is given by W;|. By
integrating the density (3.9) with respect to dwy . .. dw;—; We obtain the density
of Von {K=k}

d

p(k;u) == @P(K: kV <wu) = gsrgue M I(k;u), (3.10)

10



where

O J

0<wo<...<wyp) &12>..2£>0

|k

(H (H (Cl6)-0ter+)) Ot +s)

7j=0 *r= 15 +1
§1...d§gdw0...dw‘k|_1 (311)

and in (3.11) the convention w | := u is used.
3.3. Now, define for me€Z, heZ \ {0}, k€{0,1}" and u € Ry

. &1+wo m
b=l [ [ ews ([ can)
0<wo<...<wig| §12>...2€p>0 &
|k| tj+1—1
(H ( IT (G- fr+wj>))c<fz~j+l+wj>)
§=0 Nr=ij+1
d¢; ... d&pdwyp - . . dwy 1, (3.12)
where the convention wy; := u is used again, and for m€Z, and u € Ry
u
1 B m
= ﬁ(/(}’(n)dn> . (3.13)
0

In case of |k| = 0 the integral with respect to dwp...dw;—, does not occur in
(3.12), and the r.h.s. of (3.12) reduces to

1+u m
I,(0,...,0;u) = / _M*&,ﬂlﬂ( / C(n)dn)
§12...26p,>0 &1
h
(I (ce-ce+n))aa...den (0

r=1

Note, for m = 0 and h = £ the r.h.s. of (3.12) corresponds to those of (3.11), i.e
I(k;u) = Io(k;u), ke{0,1}, ueR,. (3.15)

3.4. The I,(k;u) and I, (u) satisfy a recursion which is crucial and will be
proved next.

11



Lemma 3.2 For meZ,, heZ, \ {0}, k€{0,1}*, u € R, it holds
Imt1(k;u) = I (0, Ky w) + Iy (1, K5 ), (3.16)

and for meZ,, heZy \ {0}, u € Ry it holds

Im+h(u’) = E Im(k;u)' (317)

ke{0,1}»

Proof. Let m€Z, and k€ {0,1}". Let k™) := (v, k) € {0,1}**1, v € {0,1}.
Remember, 41,. .., % denote the indices of k in ascending order where the com-

(V) i

ponents take the value 1. Analogously denote by 7/, o
indices for k). From k) = (v, k) it follows that |k(0 | = |k| and zg- ) = ij + 1,
§=1,.., K141, aswellas k0| = [kl+1and () = i; 141, 5 = 1,..., kO |41,

) the corresponding

Using the convention w0 := u from (3.12) for In(k(9;4) we obtain
. &1+wo m
© B _
Iy (5O ) = puF / / . u*glﬁ( / C(n)dn>
0<wo<...<w; (0), &12--2&p+120 &
KO i1 ) )
( H ( H (C fr C §r+’wj))> C(EZ.(_O) +wj)>
§=0 o) i+
r= +1
dfl...d§h+1dw0...dw|k(o)|71. (318)

Taking into account |k(®)| = |k| and i;o) =ij+1,j=1,....,[k0 + 1, and
substituting &; by &;_1 yields

) &o+wo m
Iy (kO u) = plf / / e"“‘*g"m( / C(n)dn>
0o Cwpy) €03 >,>0 b

k|

(C‘(&o)—C’(ﬁo+wo )(H (Zjﬁ 1 (C’ &) — §r+wg))> C’(fz‘j+1+wj)>

3=0 “r=¢;+1

(1)

By using Fubini’s theorem, i;7" = 1, the convention W) = U and by integrating

12



with respect to wg from (3.12) for I, (k");u) we find

&1+ws

I (K5 u) = s / / et lm / C(n)dn
0<wi<e.<w) ) €12 2€p4120 &
KO
(I ( T (ce)-Clerup))cieg, +u)
=t =i a
dfl “ee d£h+1dwl ces d’w‘k(n‘_l. (320)

Taking into account |k(| = |k| + 1 and z'g-l) =ij 1+ 1,5=1,..,]kV]+1, as

well as substituting w; by w;_; (in particular W) = U by wyy| = u) and &; by
51'—1 yields

Eo+wo

o

0<woL..Swg) €0>...2€,>0

k|

(11 (H (G606 ) ) Ol

§=0 Nr=ij+1
déo ... dépduwy . .. dwy . (3.21)
From (3.19) and (3.21) it follows

L (KOs 0) + Ly (kW5 u) = plf

0<wo<...<wg) £0>...2>€p>0

a6 (o ( fzwoc(")d”) M)
(ﬁ (:H+ (C6)-C6r+1) ) Cltsr +0)
déo .. d€pduw - . . dupy_y. (3.22)

In view of (3.12), integration with respect to &, provides (3.16). Note, in case

of |k| = 0 the integral with respect to dwyp...dw _; does not occur in (3.19),
(3.21) and (3.22).
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Further, from (3.14) we obtain

{1t+u

A / Clan)” (Cle)-Cla+w)an ()

£12>0
and from (3.12) using Fubini’s theorem

&1+wo

Tn(15) = et L ([ Clan) " Clerundesdu,
0<u{<u §1Z0 m! 1/
&1+tu
B ) 1 _ m+1
= / TR (m—l—l)!( / C(n)dn) dé;. (3.24)

£12>0 &

In view of (3.13), the representation of I,,(0;u) + I, (1;u) given by (3.23) and
(3.24) yields (3.17) for the case of h = 1 by integration.
Form € Zy, h€Z, \ {0} and u € Ry by means of (3.16) we conclude

Y Luku) = Y (I (0, k; ) +In 1ku) 3" Luii(ku). (3.25)
ke{0,1}h+1 ke{0,1}7 ke{0,1}"
Applying (3.25) and (3.17) for h = 1 provides (3.17) for arbitrary heZ \ {0}.
O

3.5. Now we are in the position to prove the explicit formula (3.2) for the density
v(s+4;u). From (3.10), (3.15) we obtain

v(stlu) = Y plkiu) = gerepee ™ Y Io(k;u). (3.26)

ke{0,1}¢ ke{0,1}¢

Thus from Lemma 3.2 Eq. (3.17), (3.13) and (2.5) we conclude

F(H*U)(f

S (321)

U 4
e L = _
IU(S+£; u) = s+t Hx€ u*uE (/C(n)dn) = Gs+1 Hx€ pet
0

which is just (3.2).

4. The case of a general distribution C(u) of the maximal waiting times
is obtained by considering C(u) as the limit in distribution of a sequence of
non-defective distributions C, (u) with continuous density. From (3.2) applied to
C,(u) by arguments of continuity we obtain (3.2) for general distributions C'(u).

O
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4 Asymptotic results for the departure rates due to
impatience

For justifying the Markovian system approximation and its interpretations given

in the next section we prove a couple of new results for the impatience rates ay,
cf. (2.11).

Lemma 4.1 It holds

(i) ag>0,0=1,2,...,

(i) (ap+ps)/>1/EI £=1,2,...,

(iii) ay increases strictly monotonically in £,

(iv) (ag + p«) /2 decreases strictly monotonically in /.

Proof. (i) From (2.5) we conclude F'(¢) = (1 — C(&/u+))/ps < 1/ps and
£lim F'(€) < 1/p«. Thus the assertion follows from (2.11) and (2.3), (2.4).
—0Q
(ii) Since F'(¢) is an increasing function, from (2.11), (2.3), (2.5) we obtain
)
~EI

/
oy + phy > = =
lim F e0
A FO Ta - cman
0

(iii) Using Fubini’s theorem from (2.11), (2.3), (2.4) for £ =2,3,... we find

J F@2F(n) 2(F(n)—F(¢ ))(F'(f)—F'(n))e_(H")dfdn
o+ s 1= 1R2

et H 2 fF 1R (£)e—€dE [ F(£)4-2eEd¢
0

Since F(¢) is non-negative and monotonically increasing and F'(£) decreases
monotonically, it follows that the integrand in the numerator is non-negative
over ]R%L. Since the integrand does not vanish everywhere, we have
et 150, g=23,...,
oy_1 + Uy
and (iii) is proved.
(iv) Using Fubini’s theorem from (2.11), (2.3) for £ =2, 3,... we obtain
[ P Fn) = (1(€) ~ F () e € dedy
gt ps g1 tpe o 1KY
4 (-1 2

- - . (4.1)
OfF(g)fe—idgg"F(g)f—le—ﬁdg

Thus the sequence (ay + p+) /4, £ = 1,2, ..., decreases strictly monotonically.
]
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Theorem 4.2 (i) It holds e O 1 (42)

too0 £ EI '
(ii) If there exists m € (1,00) such that the m—th moment of the distribution
C(u) of the maximal waiting times is finite, then moreover it holds

o _ 1 (1—m)/m 4
7 = Fl + O(¢ ) (4.3)
(iii) It holds ) 1
limsup (g — ay—1) = BT (4.4)
£—00

(iv) If there exists m € (2,00) such that the m—th moment of the distribution
C(u) is finite, then moreover it holds

1
=1 = pr t O@E=m™Im), (4.5)
and especially we have
1
li — 1) = —. 4.6
egﬁlo(ae ag1) Fol (4.6)

Proof. (i) From Lemma 4.1 (ii) and (iv) for £ =1,2,... it follows

l 1/¢
Lo et (Tt "
EI 12 o

Thus from (2.11), (2.3), (2.4) we obtain

o0 —1/¢
1 et < ( / F(g)fe—fdg) : (4.7)
0

EI L

As F'(¢) is non-negative and increases monotonically, for z€R; and £ =1,2,...
it holds

/ F(&)fetde > / F(z)le€de = F(z)te, (4.8)
0 T
yielding
1 < oy + [y v/t
BTN 1 STF@

Since (ay + p«) /£ decreases monotonically in £ thus we conclude

D cpm 2 !
EI ~ i ¢ _F(.’II)’
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and because of mli>n(;1o F(z) = EI we obtain (4.2).
(ii) From (4.8), (4.7) for z€Ry and £ =1,2,... it follows

F(z) <EI min(ew, 1), zg:=In (OO(L)E) > 0.
J F(£)fe4dg

Therefore by twofold integration by parts in view of (2.5) we obtain

me1 o0 o0
My m — m—2 _
e [wmacw = [ enHmr-Fie)a
0 0
2x¢/3
[ m—2 ) 1 zp\m1 _ry
>EI [ e 2(1—e )dngEI(g) (1—e se)
z¢/3
1 m—1 e\m
> Bl (1 e se) :

consequently it holds l—e 3 < O(#(1=m)/m)  Thus there exists C,, € (0, 00) such
that £, < Cpp0'/™, i.e., it holds

/F(g)feﬁdg > (EIf exp(—Crp™), 1=1,2,... (4.9)

From (4.7) and (4.9) we find

1 Oy + Mox 1 (l—m)/m
— < — = e
El < / = EBI eXP(Cm‘e )a 14 1727 )

yielding (4.3).
(iii) Let o := 0. In view of (4.2) we obtain

l
1 7, 1
limsup (o0 —ae-1) 2 fim 3 3 (oy=ej-1) = Jim 7 = g7
Since the sequence (g + ) /¢ decreases monotonically, for £ = 2,3,... we have

(4.10)

ae_az_lzae+u*+(£_1)<ae+u* az1+u*) < oethn

] ¢ i1 /

Thus from (4.2) moreover it follows

lims - < li = .
lﬁ;jp( ¢~ ) < lim o



(iv) Let My := {€ € R, : F(€) < EI exp(—Cppl'=™/™)} for £ = 1,2,... As
f(z) := z*(ET — z)? increases monotonically for z € [0, (£/(£+2))EI], because of
(4.9) for £ > (2/Cy,)™ it follows

fF@V@H—F@»%r%s

F(£)fe¢de

f (E'I)‘H'2 exp(—C’mél/m)(l — exp(—C’mZ(l_m)/m))Qe_gdé
M,

~

< S
J F(§)fe4dg
0

[ FOYEIDN?(1 — exp(—Cpptt=m)/m))2e=8d¢

R\ M,

[ F(e)te-tae
0

< 2(EI)2(1 . exp( Cy, e (I—m /m)) < 2C2 (EI)Ze(Z 2m)/m
and we conclude that

F(&) 2(BI-F(£))%etd¢

= O(2=m)/m), (4.11)

(é— 1) 00
J F(e)t-2e~¢dg
0

From (4.10), (4.1), (2.3) and (2.11) for £ = 2,3, ... we obtain

2

[ FO2F ) 2(F(€)~F(n)*e Ededy

£—1R%
2 T P(ey—2p-¢
([ F©2e-cac)
Because of (F(&)—F(n))? < (EI-F(€))?+(EI-F(n))? we find
[F
0

18



Thus (4.3) and (4.11) yield (4.5).
]

5 Approximation of the M(n)/M(n)/s+ GI system by
a M(n)/M(n)/s + M(8)%, system

5.1 The M(n)/M(n)/s+ M(5;)$2, system

Consider the M (n)/M(n)/s + GI system under the same assumptions as in Sec-
tion 1 but with the following modified impatience mechanism, cf. Figure 2: With
each waiting place, which are numbered by ¢ = 1,2,..., there is associated
an impatience rate 5; (> 0), ¢ = 1,2,... A call waiting on place 7 leaves the
queue and the system due to impatience with rate 8;. The calls behind it move
up in the queue according to the FCFS discipline. We denote this system by
M(n)/M(n)/s + M(B;)2,, where M(f3;)2, stands for the waiting place depen-
dent impatience mechanism. The cumulative impatience rate if there are £ calls
in the queue is

¢
=Y B, £=12,... (5.1)
i=1

If 3; = B, 1+ = 1,2,..., then clearly the system corresponds to those of a
M(n)/M(n)/s + M system. If A, > 0 for 0 < n < s+ k and A\, = 0 for
n > s+ k, then we have the case of a limited waiting room with k waiting places
(M(n)/M(n)/s/k+M(B;)52, system), and the system dynamics are independent
of the definition of the §; for i > k.

>
{65 {54 {ﬂa {m lﬂl ()

Figure 2: The M(n)/M(n)/s + M(B;)2, system with waiting place dependent
impatience rates B;.

fin

Remark 5.1 Since a call finds at its arrival a random number of calls in the
queue the impatience time of a call depends on the queueing process, i.e., in
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contrast to the M(n)/M(n)/s + GI model there is a dynamic impatience of the
calls.

The number N(t) of calls in the M (n)/M(n)/s + M(5;)52, system is a birth-
death process with birth rates A\, and death rates

, n=0,1,...,s,
o, = /" (5.2)
bs +ap_g, n=s5+1,54+2,...

The stationary distribution p(n) := P(N(t) =n), n € Z, is given by

S
gn I mis n=0,1,...,s,
pm) =1 "\ (5.3)
gn< 11 <I>Z'> , m=s+1,8+2,...,
1=s+1
where g, is given by (2.7) and g by
s—1 ,j—1 s () s+j—1 s+j -1
PSS (i) e
j=0 Ni=0 i=j+1 J=0 N i=0 i=s+1

Note, that (5.3) and (5.4) have the same structure as (2.9) and (2.2), respectively.
Since the A\, are bounded, the system is stable iff

i (sﬁlki) ( Sﬁ (I%)_l < o0. (5.5)

7=0 1=s 1=s5+1

In the following we assume that the system is stable and in steady state. Then
the cumulative mean call arrival intensity A, the abandon probability p;, the
probability pyw that a typical arriving call has to wait for service and the mean
waiting time EW in the queue of a typical arriving call are given by (2.12)-(2.14)
again. In case of a M/M(n)/s/k + M(f;);2, system the blocking probability pg
is given by (2.15) again. One can derive explicit formulae for the distribution of
the workload in the system, the virtual waiting time and the waiting times of
calls being served and/or getting lost due to impatience. They are mixtures of
convolutions of exponential distributions.

Remark 5.2 For a M(n)/M(n)/s FCFS queueing system with arbitrary cumu-
lative Markovian impatience rates ay (> 0) if there are £ (> 1) calls waiting in the
queue, the quantities p(n), A, pr, pw, EW and pp are given by the same formu-
lae as for the M(n)/M(n)/s+ M(B;)i2, system. In such a model the impatience
cannot be connected with waiting place dependent impatience rates, in general.
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However, if the sequence (ay)7°, increases monotonically than the process N (t)
of the number of calls corresponds to those of a M (n)/M(n)/s + M(5;)$°, sys-
tem with waiting place dependent impatience rates §; := o; — I{i>1}a; 1 (> 0),
i > 1, i.e., a transformation into a M (n)/M(n)/s + M(5;)52, system is possible.

5.2 Approximation by fitting the occupancy distribution

Since we deal in the following with the M(n)/M(n)/s + GI system and the
M(n)/M(n)/s + M(5;)$°, system simultaneously, we endow the performance
quantities of the M(n)/M(n)/s + GI system with the index C, i.e. pc(n), pr.c,
ay,c, and those of the M(n)/M(n)/s + M(B;)52, system with 3, i.e. psg(n), prg,
Qy 3-

Let us consider a stable M (n)/M (n)/s+GI system in steady state. A reason-
able Markovian approximation for the given M(n)/M(n)/s + GI system would
be a M(n)/M(n)/s+ M(B;)2, system with the same arrival- and service process
and such impatience rates 3;, ¢ = 1,2,..., that the occupancy distribution is
fitted:

ps(n) =poln), n€Zy. (5.6)

Because of (2.2), (2.7), (2.9) and (5.3), (5.4) the fitting (5.6) is equivalent to

s+j -1
(II@O =F;, j=12,...,k

i=s+1

where again k := sup{j € Z4 : A\j4s—1 > 0} as in Section 2. In view of (5.2),
(2.4) these identities are equivalent to

Fy_
wﬁ:_%f_uw £=1,2,...,k (5.7)

In case of a limited waiting room (k < 00) let ay g be defined by (5.7) for £ > k,
too. Comparing (5.7) and (2.11) we see that the cumulative impatience rates are
fitted, too, i.e. ayg = ay,c, £ = 1,2,... From Lemma 4.1 we know that the oy ¢
are strictly increasing and positive. Now, taking into account (5.1) it follows that
the rates

Bi == a; g — I{i> 1}C¥i,1”3 = ;0 — I{i> 1}011',1,0, 1=1,2,..., (5.8)

are positive and that the corresponding M (n)/M(n)/s + M (B;):2; system meets
the occupancy distribution and the cumulative impatience rates of the given
M(n)/M(n)/s + GI system. Altogether, for a given M (n)/M(n)/s + GI system
(5.7) and (5.8) provide an algorithm for constructing a M (n)/M(n)/s+M(5;)32,
system with the same occupancy distribution and cumulative impatience rates
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as well as the same arrival- and service process. The system dynamics of any
M(n)/M(n)/s + M(B;)2, system satisfying the fitting (5.6) is uniquely deter-
mined as the ; are uniquely determined for ¢ = 1,2,...,k.

From (2.11)-(2.15) and (5.6), (5.7) it follows that the fitting of the occupancy
distribution implies a fitting of the cumulative mean call arrival intensity, of the
abandon probability, of the probability that a typical arriving call has to wait
for service, of the mean waiting time and of the blocking probability in case of a
M/M(n)/s/k + GI system, i.e.

Ag = Ac, prp=prc, pwp=pw,c, EWg=EWc, pppg=psB,C-

Although several quantities will be fitted, this clearly is not true for the different
waiting time distributions. The considerations given above show that a fitting
of the cumulative impatience rates ayg = ayc, £ = 1,2,..., yields the same
fitting. The latter approach has been used in [BB2] in the framework of a two-
queue priority system and its application to a performance analysis of an inbound
call center with an integrated voice-mail-server. However, the monotonicity and
asymptotic results for the impatience rates of the M(n)/M(n)/s + GI system
given in Section 4 provide more insight into the Markovian approximation. In
particular, from Theorem 4.2 it follows that the g; defined by (5.7), (5.8) con-
verge to the intensity 1/EI corresponding to an exponential fitting if there exists
m € (2,00) such that the m-th moment of the distribution C(u) of the maximal
waiting times I is finite, and moreover, that

Bi = 1/EI + O@iZ™/m). (5.9)

In a straight forward manner the results of Section 4 can also be applied in the
framework of [BB2].

5.3 The fitted waiting place dependent impatience rates in case
of constant impatience times

As an example we determine the fitted waiting place dependent impatience rates
in case of approximating the M(n)/M(n)/s + D system, i.e. in case of constant
impatience times I = 7. From (2.5) it follows F'({) = min(&/ps,7), and thus
(2.3) provides

o
1 .
Fy=e W7t E ———— (u7)?, £=0,1,...
= £+ 5)!

Hence the fitting (5.7) yields

o

/ /) A
= — (1) =1,2,...
Qg T(Z(Hj)!(uﬂ) , £=1,2,...,

J=0
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and from (5.8) thus it follows 1 = a1 3 = p«/(e**” — 1) and in general the
numerically stable representation

> S ()

. i=12,... (5.10)

Table 1: Fitted waiting place dependent impatience rates B; in case of constant
impatience times I =7 and p, = 1.

7 7=0.5 T=1 T=2 T=4 T=28 =16

1.541494 | 0.581977 | 0.156518 | 0.018657 | 0.000336 | 0.000000
1.820500 | 0.810234 | 0.299161 | 0.061991 | 0.002356 | 0.000002
1.907538 | 0.898406 | 0.381472 | 0.111668 | 0.008193 | 0.000013
1.944382 | 0.938409 | 0.425807 | 0.152532 | 0.019009 | 0.000062
1.963096 | 0.959213 | 0.450591 | 0.181516 | 0.033695 | 0.000231
1.973811 | 0.971204 | 0.465288 | 0.201024 | 0.049676 | 0.000677
1.980489 | 0.978672 | 0.474519 | 0.214077 | 0.064618 | 0.001648
1.984918 | 0.983610 | 0.480615 | 0.222943 | 0.077286 | 0.003421
1.988002 | 0.987032 | 0.484816 | 0.229104 | 0.087416 | 0.006203
1.990233 | 0.989496 | 0.487817 | 0.233493 | 0.095270 | 0.010019
1.997516 | 0.997407 | 0.497168 | 0.246595 | 0.119919 | 0.050135
1.998892 | 0.998858 | 0.498786 | 0.248620 | 0.123182 | 0.059059
1.999376 | 0.999361 | 0.499330 | 0.249262 | 0.124092 | 0.061045
50 || 1.999600 | 0.999593 | 0.499577 | 0.249542 | 0.124460 | 0.061719
60 || 1.999722 | 0.999718 | 0.499709 | 0.249689 | 0.124643 | 0.062017
70 || 1.999796 | 0.999793 | 0.499787 | 0.249775 | 0.124747 | 0.062173
80 || 1.999844 | 0.999842 | 0.499838 | 0.249830 | 0.124811 | 0.062265
90 || 1.999877 | 0.999875 | 0.499873 | 0.249867 | 0.124854 | 0.062323
100 || 1.999900 | 0.999899 | 0.499897 | 0.249893 | 0.124884 | 0.062362

0 ~J O O W N

=W N =
OO O O ©

The representation (5.10) provides that in case of constant impatience times it
holds

Bi<1/EI, i=1,2,..., (5.11)
and we obtain the asymptotic estimate
Bi =1/EI — pi ™2+ 0@ 7?), (5.12)

23



cf. (5.9).

In Table 1 there are given the first waiting place dependent impatience rates
Bi of the M (n)/M(n)/s+M(f;)52, system approximating the M (n)/M(n)/s+D
system. By choosing 1/, as unit of time without loss of generality we may as-
sume . = 1 in Table 1. The results of Table 1 show that the approximation of a
M(n)/M(n)/s + GI system by a M(n)/M(n)/s+ M(f;):2, system, as proposed
in Section 5.2, may lead to impatience rates (; which for smaller 4, in partic-
ular in case of 1/ET < p., significantly differ from 1/FEI. Note, that in case
of exponentially distributed impatience times (GI = M) the approximation is
trivially §; = 1/EI, i =1,2,..., i.e., the approximation provides just the original
M(n)/M(n)/s + M system.
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