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Abstract 

The deformation of a hexagonal lattice dome under an external 
load is an example of a parameter dependent system which is 
equivariant under the symmetry group of a regular hexagon. In 
this paper the mixed symbolic-numerical algorithm SYMC0N is 
applied to analyze its steady state solutions automatically show­
ing their different symmetry and stability properties. 
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1. Introduction 
We consider the hexagonal lattice dome which was introduced by HEALEY 

[9]. This is an example of a parameter dependent, equivariant system 

F(x,\) = 0, F : IR n + 1 -> IRn, 
F(0tx,\) = #tF(x,\) VteH, 

where •d is a linear representation of a group H. Symmetry considerations 
applied to analysis give theoretical results such as the equivariant branching 
lemma (GOLUBITSKY, STEWART, SCHAEFFER [7], [8], VANDERBAUWHEDE 

[21]), which shows the existence of emanating branches at symmetry break­
ing bifurcation points. For a numerical treatment of this problem class see 
DELLNITZ, W E R N E R [1], HEALEY [9], IKEDA, M U R O T A , FUJI I [13]. Several 
authors ([4], [10], [11], [12], [15], [20]) have used the block diagonal form 
of the transformed Jacobian which is a consequence of the theory of linear 
representations (SERRE [18], STIEFEL, FÄSSLER [19]). The blocks are im­
portant for the detection of bifurcation points and appear in the augmented 
system ( W E R N E R [22]) which is used in SYMCON for the computation of 
bifurcation points. Based on this knowledge the algorithm SYMCON (see 
[4]) automates the symmetry analysis by means of Computer Algebra. The 
symmetry exploitation organized and implemented in REDUCE ([14]) is 
combined with an effective algorithm for the numerical pathfollowing with 
implicit reparametrization (DEUFLHARD, FIEDLER, KUNKEL [2]). 

The aim of this paper is to show the results of SYMCON applied to the 
example of the hexagonal lattice dome. In contrast to [20], where only some 
bifurcation diagrams are given, we also show an overview of stable solutions. 

In the second section the problem is clearly formulated while in the third 
section the solutions with different isotropy groups are viewed. In the last 
section the stability of solutions is discussed. 

2. The Lattice Dome 

In HEALEY [9] an example of a deformation of a hexagonal lattice dome 
is given. There are seven free nodes J 6 {A, B, C, D, E, F, G} with displace­
ment vectors x / G IR3 which form the unknowns x = (x^,.. .,XG) G IR21 of 
the system. The coordinates are chosen depending on the nodes in a way 
that the radial and tangential displacement and the height displacement of 
the node are measured (Fig. 1). Note that the coordinate system is different 
from the one chosen in [20]. Rods are connecting these nodes and connect 
also with immovable nodes. The height of the center A is 3 and the other 
points B-G have height 1.5. The rods B-C,C-D,. ..,F-Ghave length 
9, the others ^/(92 + 1.52). 
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Figure 1: Hexagonal Lattice Dome 
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Obviously the truss structure is Z)6-invariant where DQ denotes the di­
hedral group 

{id, r, r2, r3, r4, r 5 , s , sr, sr2, sr3, sr4, sr5} . 

In this paper the possible deformations of the dome are discussed if an 
external load (e.g. a weight) affects at each node A — G. 

In engineering sciences usually this is modelled in the following way. The 
internal energy is given by U(x) = J2(l,j) Uitj, where the sum is taken over 
all rods. The energy of one rod is 

1 r A f2-eU- (XJ ~ xl) , \\XJ ~ xi\\' UU := -EA — ^ ^ + ; 2 

where IJJ is the undeformed length of the rod connecting the nodes J, J. 
The unit vector e/j is parallel to this rod pointing from / to J. The vectors 
XI,XJ, and e/j are assumed to be taken in a global coordinate system. 
We have chosen the system in A and transformed the other vectors to this 
coordinate system. The constants E and A are Young's modulus and the 
cross sectional area, respectively. 

The external load A affecting at each node A — G causes the potential 
energy XxTe with e = (e3,-. . ,63) € IR21 and e3 = (0,0,1) . Finally by the 
principle of stationary potential energy the system of equations is given by 

F(x,\) = DxU(x) + Xe = 0. (1) 

So the function F : IR22 —• IR21 depends on the displacements x and the 
load parameter A. Different choices of the parameter E and A lead to the 
same solution set up to rescaling of A. We have chosen EA — 10000. 

Because the dome and the energy function are obviously Do-invariant, 
F is Dß-equivariant, i.e. 

#tF(x,\) = F{titx,\), V i € D 6 , 

where •d : De —> GL(IR21) is a real linear representation. For the theory 
of linear representations see [18], [19]. Two matrices of this representation 
are given in Fig. 2. Thus we end up with a parameter dependent equivari-
ant system (1) which may be tackled by the symbolic-numerical algorithm 
SYMCON as described in [4]. In this particular case it is convenient to 
formulate the equations in REDUCE because the implemented equivariance 
check makes the correct implementation of the equations safer. 

3. Isotropy Groups and Conjugate Solutions 

Although the system (1) is Z>6-equivariant, the solutions are not necessary 
D6-mvariant. The group H = (De)x giving the symmetry of a solution x 
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Figure 3: D^-mvariant stable solution 

is called isotropy group of a; (i.e. titx — x \/t € H). Examples of solutions 
with different isotropy groups are given in Fig. 3 - Fig. 9. The pathfollowing 
of iT-invariant solutions is done with a new implementation of ALCON 
(using implicit reparametrization and Broyden updates of the Jacobian) 
applied to the symmetry reduced system of (1) with respect to H. Note 
that some solutions are physically the same and are only distinguished by 
the viewpoint of an observer. By a rotation of the lattice dome they are 
identical. Then one speaks of conjugate solutions. 

The dome has an additional symmetry, if the existence of a ground is 
omitted. Then it may be reflected with respect to a plane through the 
immovable nodes (see Fig. 10 and Fig. 11). 

5 



Figure 4: Da-invariant stable solution 

Figure 5: Stable solution with the isotropy of the Kleinian group 
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Figure 6: ^- invar iant stable solution 

Figure 7: Z^-invariant stable solution 
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Figure 8: Unstable solution, invariant wrt a rotation of 180 degrees 

Figure 9: Unstable solution without symmetry 
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Figure 10: Stable Z?6-invariant solution, symmetric to Fig. 11 

Figure 11: Stable £)6-invariant solution, symmetric to Fig. 10 
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4. Singu l a r Points 

Let H denote the isotropy group of a solution (x,X). Then the Jacobian 
D Fix X) has the symmetry of the isotropy group, i.e. 

titDxF = DxFtit VteH. 

Thus the transformed J a c°bian MTDXFM has block diagonal form for some 
transformation matrix M. These transformation matrices were computed in 
REDUCE using some projections from the theory of linear representations 
(MI [131 [19]). The matrices are produced with GENTRAN ([6]) as C-code 
avoiding zero multiplication. So the additional work in [15] for this purpose 

is superfluous-
In this example the blocks have dimensions 3 ,1 ,2 ,1 ,4 ,3 for solutions 

with isotropV ^ 6 w n e r e the last two blocks of dimension 4 and 3 appear 
twice. For solutions with isotropy D3 the blocks have dimension 5,2,7. 

In turning P°i n t s a n ( l symmetry breaking bifurcation points the Jaco­
bian D F is singula r- These singular points are detected during numerical 
pathfollowing ^y change of sign of the determinants of the blocks of the 
Jacobian TJsinS this criterion also multiple bifurcation points are found 
which is not possible without exploitation of symmetry although they ap­
pear generically m problems with symmetry. In [23] an alternative method 
for their detection *s g i v e n which uses a bordering of the blocks. 

The blocks are needed for three other tasks. Firstly they appear in the 
augmented s y s t e m s ^or t n e bifurcation points (see [4] and [22]). Secondly 
their subconditi°n influences the automatic steplength control during path-
following (see [4])- Thirdly they are needed for the determination of stability 
(see Section »>)• 

At symmetry breaking bifurcation points branches with the isotropy of 
bifurcation subgroups (see [1]) bifurcate. See Fig. 13 and Table 1 for an 
example of a bifurcation scenario including a range of symmetry breaking 
bifurcation points of different types. The bifurcation subgroups may be 
arranged in a bifurcation graph. The graph for D$ may be found in [1], [4], 
[13]. How the bifurcation graph is computed automatically for an arbitrary 
finite group will appear in [5]. It is only based on the data of irreducible 
representations of finite groups. 

In SYMCO^ *Qe organization of pathfollowing of emanating branches is 

done in REDU C E -
The turiiiuS points are computed with an iterative method based on 

Hermite i n t e r p o l a t i o n ( s e e [3])-
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nr supergroup isot. comp. subgroups type 
1 D6 3 Dz symmetric 
2 De 6 Kl^lKi asymmetrical 
3 De 5 yO y l y 2 y 3 y 4 y 5 

-^2 ' ^ 2 ' ^ 2 > ^ 2 > -"2 > -^2 symmetric 
4 D3 3 7O y 2 7 4 

^ 2 ' ^ 2 » ^ 2 asymmetrical 
5 Kl 3 2* symmetric 
6 IQ 4 zi symmetric 
7 Z\ 2 Id symmetric 
8 Z\ 2 Id symmetric 

Table 1: Bifurcation points in Fig. 13 

5. Stable Solutions 
The variety of solutions with different isotropy groups is enormous as Fig. 12 
shows. But there are only few stable solutions. A solution was accepted to be 
stable if the eigenvalues of the Jacobian at this point are all negative. Again 
the block diagonal structure is exploited. The transformation to this block 
diagonal form does not influence the signs and values of the eigenvalues. 

Because F(x,X) — DxU{x) + Xe has the potential U, the Jacobian is 
symmetric and all eigenvalues are real. The algorithm for the computation 
of eigenvalues and its implementation was taken from [16], [17]. 

The interpretation of the bifurcation diagrams Fig. 14, Fig. 15, and Fig. 
16 is the following. Increasing the load parameter A from 0 first Z?6~invariant 
solutions are stable. At the symmetry breaking bifurcation point of a type 
which leads to Z)3-invariant solutions the Z?6-branch looses its stability. 
Further increase causes a jump to states which probably are invariant with 
respect to the Kleinian group. 

In [13] Proposition 5 some statements on the stability of emanating 
branches depending on the supergroup and bifurcation subgroups are given. 
For De this means the following. The solution invariant with respect to 
the Kleinian group emanating from a D&-K symmetry breaking bifurcation 
point are unstable. The Z\~ invariant solutions (i = 0 , . . . , 5 ) emanating 
from a Dß-invariant bifurcation point turn all to the same direction and at 
most one orbit of conjugate solutions is stable. We didn't find any contra­
diction. 
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