
A Generic Approach to Solving the Steiner Tree

Problem and Variants

Masterarbeit
bei Prof. Dr. Thorsten Koch

vorgelegt von Daniel Markus Rehfeldt1

Fachbereich Mathematik der
Technischen Universität Berlin

Berlin, den 9. November 2015

1Konrad-Zuse-Zentrum für Informationstechnik Berlin, rehfeldt@zib.de

1

Eidesstattliche Erklärung (German Affidavit)

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig
sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der
aufgeführten Quellen und Hilfsmittel angefertigt habe.

Die selbständige und eigenhändige Anfertigung versichert an Eides statt

Berlin, den 9. November 2015

(Daniel Rehfeldt)

Contents 2

Contents

Eidesstattliche Erklärung (German Affidavit) 1

Acknowledgments 5

1 Introduction 7
1.1 Preliminaries and Definitions 9
1.2 Background and Complexity 11

1.2.1 A Brief History . 11
1.2.2 Complexity . 11

2 The Steiner Tree Problem in Graphs 13
2.1 Formulating the Problem: Integer Programming 14

2.1.1 Cut Formulations . 14
2.1.2 Flow Formulations . 15
2.1.3 Flow Balance Inequalities 17

2.2 Simplifying the Problem: Reduction Techniques 18
2.2.1 Definitions . 18
2.2.2 Basic Reductions . 19
2.2.3 Alternative Based Reductions 20
2.2.4 Bound Based Reductions 26
2.2.5 Implementation . 29

2.3 Finding a Solution: Primal Heuristics 32
2.3.1 Constructive Heuristics 32
2.3.2 Local Search Heuristics 34
2.3.3 Recombination Heuristics 35

2.4 Solving to Optimality: Branch and Cut 37
2.4.1 Separation Methods 37
2.4.2 Branching . 38

2.5 Implementation . 39
2.5.1 SCIP-Jack: A General Purpose Solver for Steiner

Tree Problems . 39
2.5.2 Parallel Computing . 41

2.6 Computational Results and Discussion 43
2.6.1 Impact of Reduction Techniques 45
2.6.2 Impact of Primal Heuristics 48
2.6.3 Branching . 50

3 Variants of the Steiner Tree Problem 53
3.1 The Steiner Arborescence Problem 54

3.1.1 Reductions . 55
3.1.2 Heuristics . 65
3.1.3 Implementation and Computational Results 65

Contents 3

3.2 The Node Weighted Steiner Problem 67
3.2.1 Transformation . 67
3.2.2 Implementation and Computational Results 68

3.3 The Rectilinear Steiner Minimum Tree Problem 70
3.3.1 Transformation . 70
3.3.2 Implementation and Computational Results 71

3.4 The Prize Collecting Steiner Tree Problem 73
3.4.1 Transformation . 73
3.4.2 Reductions . 78
3.4.3 Heuristics . 99
3.4.4 Implementation and Computational Results 101

3.5 The Maximum Weight Connected Subgraph Problem 108
3.5.1 Transformation . 108
3.5.2 Reductions . 110
3.5.3 Implementation and Computational Results 122

3.6 The Degree Constrained Steiner Tree Problem 127
3.6.1 Primal Heuristics . 127
3.6.2 Implementation and Computational Results 127

3.7 The Group Steiner Tree Problem 129
3.7.1 Transformation . 129
3.7.2 Implementation and Computational Results 129

3.8 The Hop Constrained Directed Steiner Tree Problem 131
3.8.1 Reductions . 131
3.8.2 Primal Heuristics . 135
3.8.3 Implementation and Computational Results 135

4 Final Computational Results and Comparisons 137
4.1 The Steiner Tree Problem in Graphs 138

4.1.1 Parallel Computing . 139
4.2 Variants of the Steiner Tree Problem 141

4.2.1 The Prize Collecting Steiner Tree Problem 141
4.2.2 The Maximum Weight Connected Subgraph Problem 143
4.2.3 The Degree Constrained Steiner Tree Problem 144
4.2.4 The Hop Constrained Directed Steiner Tree Problem . 144

4.3 Using SoPlex . 146

5 Conclusions and Outlook 149

A Zusammenfassung (German Summary) 160

B Notation and Abbreviations 162
B.1 General Mathematical Notation 162
B.2 Steiner Problem Variants . 162

Contents 4

C Detailed Experimental Results 163
C.1 The Steiner Tree Problem in Graphs 163
C.2 The Steiner Arborescence Problem 172
C.3 The Rectilinear Steiner Minimum Tree Problem 173
C.4 The Prize Collecting Tree Problem 175
C.5 The Maximum Weight Connected Subgraph Problem 179
C.6 The Degree Constrained Steiner Tree Problem 181
C.7 The Group Steiner Tree Problem 182
C.8 The Hop Constrained Directed Steiner Tree Problem 183

Contents 5

Acknowledgments

I would like to thank my parents for their support and encouragement, not
only during my academic studies, but furthermore during my entire life. Had
it not been for the – for want of a better word – relentless efforts of my mother
throughout my childhood and adolescence to focus my attention on studying,
this thesis would not have found its way into existence. I would like to
thank Gerald Gamrath for his support and patience in the face of numerous
questions and requests, throughout my time at Zuse Institute Berlin. Not
even safe from me on parental leave, he would support and encourage me
with this thesis until the last minute before submission. I would like to
thank Thorsten Koch for coming up with the idea of developing a general-
purpose Steiner tree solver and his support throughout the realization. I
would like to thank Stephen Maher for his support and suggestions for this
thesis. I would like to thank Yuji Shinano for his feedback and help. I would
like to thank Gerald, Stephen and Yuji for the great time in Boston, where
we enjoyed the endless opportunities of American shopping and watched
none other than Kobe Bryant himself play in the TD Garden; and where a
previous version of the solver described in this thesis competed in the 11th
DIMACS Challenge. Last but certainly not least, I would like to thank Cees
Duin who relieved me from my struggles to get hold of an electronic version
of his dissertation, which had indeed been written in the old pre-PDF days,
by sending my a hard copy from the Netherlands.

Contents 6

7

1 Introduction

The Steiner tree problem in graphs (SPG) is one of the classical NP-
hard problems [Kar72] and has been extensively studied both theoretically
and practically. Given an undirected connected graph G = (V,E), weights
c : E → Q+ and a set T ⊂ V of terminals, the problem is to find a minimum-
weight tree S ⊂ G that spans T . While the SPG is commonly cited to entail
a variety of practical applications [Dui93, HRW92, Pol04, PS02, VD04],
problems representable by the classic SPG are rarely encountered in practice.
This assertion is evidenced by the fact that from the more than 1, 000 SPG
instances collected in the standard benchmark library SteinLib [KMV01]
less than a fifth can claim practical origins and even of those most are more
suitably formulated as a rectilinear Steiner minimum tree problem. Still,
real-world applications can be found in problems such as for instance the
design of fiber-optic networks [LLL+14].

However, when the focus is widened to also consider variations of the
SPG, a different picture emerges: Numerous applications can be found that
include the SPG as a subproblem or that are formulated as a modified version
of it (as will be evinced in the course of this thesis). Despite the strong
relationship between the different Steiner tree problem variants, solution
approaches employed so far have been prevalently problem specific.

In contrast, the aim of this thesis is to devise and implement a general
purpose approach, resulting in a solver that is able to solve both the clas-
sical Steiner tree problem and many of its variants without modification.
Pursuing this approach, a further objective of this thesis is to solve a wide
range of benchmark instances, by means of both known and newly developed
methods.

The origins of our thesis can be traced to the announcement of the 11th
DIMACS Challenge, dedicated to practical solving methods for the Steiner
tree problem and variants. A base was provided by the model and code of
the SPG solver Jack-III described in [KM98]. However, being more than
15 years old, Jack-III lacked many modern developments regarding SPG
solution methods and did not provide a general MIP framework for easily
incorporating additional variants of the Steiner problem. Our resolution to
overcome these limitations of Jack-III was to combine the model of [KM98]
with the state-of-the-art MIP-framework SCIP [Ach09].

Furthermore, we have developed several Steiner variant specific methods
concerning preprocessing and heuristics. These developments have been mo-
tivated by the endeavour to render our approach competitive with problem
specific state-of-the art solvers. By virtue of the plugin-based structure of
SCIP, these adaptations can be easily implemented without modifying the
underlying generic solving methods.

The major contributions of this thesis to the existing literature are as
follows:

8

(a) A Steiner tree problem (b) A possible solution

Figure 1: Illustration of a Steiner tree problem graphs (left) and a possible
solution (right). Terminals are drawn as squares, non-terminal nodes as
circles.

• The transformation of 11 Steiner problem variants into a general form,
using the versatility of MIP models.

• The development of problem specific solving methods, most saliently
preprocessing techniques, but also primal heuristics.

• The integration of the new methods and established approaches de-
scribed in the literature, culminating in a powerful exact Steiner tree
solver that exceeds existing problem specific solvers on several bench-
mark classes.

As an additional central feature, the Steiner problem solving package asso-
ciated with this thesis is freely available for academic research, setting it
apart from all state-of-the-art Steiner tree solvers we are aware of, with the
exception of the geometric Steiner problem package GeoSteiner [WWZ00].

Finally, it should not go unnoticed that part of the results presented
in this thesis have already been published in [GKM+15] in the course of
the 11th DIMACS Challenge. Likewise, a previous version of the solver
introduced in this thesis was submitted to the Challenge and achieved a
first place in the category rooted prize-collecting Steiner tree problem.

1.1 Preliminaries and Definitions 9

1.1 Preliminaries and Definitions

As a preliminary to this thesis, we deem it of interest to point out that
concerning the various theorems, lemmata and corollaries introduced here-
inafter, we generally follow the precept to formally establish only those that
have been devised by the author of this work. References to proofs for the
remainder will be provided.

Concerning definitions, in this passage some important basic concepts
for this thesis are introduced. Unfortunately, notations in the literature on
graph theory vary widely and even for Steiner problems a common, coherent
parlance is non-existing. In this work, we attempt to keep the notations
mostly in accordance with [Pol04].

For a given undirected graph G = (V,E) define n := |V | and m := |E|
and for a directed graph D = (V,A) likewise n := |V | and m := |A|. In
this thesis, graphs are unexceptionally simple, i.e. without parallel edges or
arcs, and finite, i.e. n,m < ∞ holds. We refer to the vertices and edges of
a subgraph G′ ⊂ G as V [G′] and E[G′] respectively and analogously to the
vertices and arcs of a directed subgraph D′ ⊂ D as V [D′] and A[D′].
For two adjacent vertices vi, vj ∈ V an edge is denoted by e or {vi, vj} and
an (directed) arc by a or (vi, vj). For a graph endowed with edge or arc
costs c : E → Q or c : A→ Q, respectively, the cost of an edge e = {vi, vj}
is denoted by ce or cij , the cost of an arc a = (vi, vj) by ca or cij . The triple
(V,E, c) is called network.

Let W ⊂ V ; the cut induced by W is defined as δ(W) :=
{
{w,w} ∈

E | w ∈ W,w ∈ V \ W
}

. For a directed graph we distinguish between
δ+(W) :=

{
(w,w) ∈ A | w ∈ W,w ∈ V \W

}
and δ−(W) := δ+(V \W).

If W = {vi}, we write δ(vi) instead of δ({vi}). In the undirected case the
degree of vi is defined as |δ(vi)|, i.e. the number of incident edges. In the
directed case we discern between the indegree |δ−(vi)| and the outdegree
|δ+(vi)|.

In an undirected graph a path is a subgraph that can be written as
an alternating sequence of vertices and edges vi0 , ej0 , ..., vik−1

, ejk−1
, vik , all

distinct from one another, such that ejq := {viq , viq+1}, q = 0, ...k − 1. In
a directed graph a directed path or dipath is an alternating sequence of
distinct arcs and vertices vi0 , aj0 , ..., vik−1

, ajk−1
, vik with ajq := (viq , viq+1).

Occasionally it is convenient to regard P as a subgraph; this allows the
representation of all vertices and edges in P as V [P] and E[P], respectively.
We denote the subpath of P between two vertices vr, vs ∈ V [P] by P (vr, vs).
Assuming that P starts in vr and ends in vs, its ”interior” is defined by
P ◦ := (V [P] \ {vr, vs}, E[P]). The length or cost of a (directed) path P in
a graph endowed with a cost function c is defined as C(P) :=

∑
e∈E[P] ce.

The distance between two vertices vi, vj is the length of a shortest (directed)
path starting in vi and ending in vj and is denoted by d(vi, vj) or occasionally
~d(vi, vj) in the directed case. Based on this notion, in the undirected case

1.1 Preliminaries and Definitions 10

for W ⊂ V the distance network to (G, c) can be defined as: DG(W) =
(W,W ×W,d).

Now consider a Steiner tree problem (V,E, T, c). Thereupon, we de-
fine s := |T | and for the sake of simplicity V := {v1, ..., vn} as well as
T := {t1, ..., ts}. Note that in the literature the vertices in T are commonly
referred to as terminals, while vertices in V \ T are called Steiner ver-
tices. Furthermore, we define the distance function d(vi, vj) as the length
of a shortest path between vi and vj without intermediary terminals. On
a related note, in [Dui93] an O(m + n log n) algorithm was introduced to
compute for each non-terminal vi a constant number of d-nearest terminals
vi,1, vi,2, ..., vi,k (if existent) along with the corresponding paths. We will
refer to this procedure as Duin’s nearest terminals algorithm.

A somewhat less basic concept, which will frequently recur in the course
of this thesis, is the following: A Voronoi diagram to G is a partition
{N(t) | t ∈ T} of V (i.e. V =

⋃
t∈T N(t) and N(t) ∩N(t′) = ∅ for t, t′ ∈ T ,

t 6= t′) such that:

v ∈ N(t)⇒ d(v, t) ≤ d(v, t′) for all t′ ∈ T.

If vj ∈ N(ti), ti is called the base of vj , denoted by base(vj). The set N(ti)
is called Voronoi region of ti and an edge {vj , vk} such that base(vj) 6=
base(vk) is called Voronoi-boundary edge. Given G, T and c, the Voronoi
diagram can be computed in O(m+ n log n) by slightly adapting Dijkstra’s
algorithm [FT84] in such a way that all terminals are considered as start
vertices of distance zero [Meh88]. The concept of Voronoi diagrams can be
used to compute a minimum spanning tree SD(T) to the Distance Network
DG(T) in O(m+ n log n) [Meh88].

Finally, the directed equivalent of the SPG the Steiner arborescence
problem (SAP) [HRW92] is defined as follows: Given a directed graph
D = (V,A), costs c : A→ Q≥0, a set T ⊂ V of terminals and a root r ∈ T ,
a directed tree (or arborescence) S = (VS , AS) ⊂ D is required such that:
first, for all t ∈ T the tree S contains exactly one directed path from r
to t and second,

∑
a∈AS

ca is minimized. We define T r := T \ {r}. An
SPG can be transformed to an SAP by replacing each edge by two anti-
parallel arcs of the same cost and distinguishing an arbitrary terminal as
the root. This procedure results in a one-to-one correspondence between
the respective solution sets; more details will be provided in Section 3.1.

1.2 Background and Complexity 11

1.2 Background and Complexity

The focus of this thesis is set on practical solving methods for the SPG and
variants. Therefore, results of more theoretical nature such as tight approx-
imation algorithms (which have been shown to be of little practical value
[CGSW14, GHNP01]) are only touched upon. Surveys on such theoretical
aspects can be found in [CGSW14, PS02].

1.2.1 A Brief History

Historically, the Steiner problem in graphs is derived from a problem that
has become known as the Euclidean Steiner tree problem: Given k ∈
N points in the plane, connect them by lines of minimum total length in
a manner such that any two points are interconnected by line segments
either directly or using intermediary points. Its history can be traced back
to the 17th century when P. Fermat formulated the special case of k =
3. With Fermat’s name already linked to a more renowned problem, J.
Steiner, who would pose the same problem more than one hundred years
later, eventually became its namebearer [Dui93, Pol04]. However, since past
a certain point the clarity of history inevitably falls victim to the fog of
legend, no absolute certitude can be claimed. Notwithstanding, the Steiner
problem in graphs as it is known today can be found in a publication by
S. Hakimi in 1971 [Hak71]. Since then, hundreds of articles concerning
the Steiner tree problem in graphs and variants have been published; see
[HRW92] for a comprehensive, albeit somewhat outdated survey, or [Hau]
for an up-to-date one.

A more detailed account of the history of the Steiner tree problem can
be found in [BGTZ14].

1.2.2 Complexity

The decision variant of the SPG, with edge weights in the natural numbers, is
strongly NP-complete and the optimization variant NP-hard [Kar72]. How-
ever, there are several polynomially solvable special cases, the arguably two
most important ones being |T | = 2, which corresponds to finding a short-
est path between two vertices, and |T | = n, which corresponds to finding
a minimal spanning tree in G. Further polynomially solvable special cases
can be found in [HRW92].

Concerning approximability, it has been demonstrated that the SPG is
APX-complete, even with its edge weight being in {1, 2} [BP89]. This means
that there exists an ε > 0 (which in the case of the SPG can be chosen as
96
95 [CC08]) such that finding a (1 + ε)-approximation to the problem is NP-
hard. Although approximation algorithms have been designed that come as
close as 1.39 to an optimal solution value [BGRS13], their empirical results
are distinctly inferior to heuristic methods, see [CGSW14].

1.2 Background and Complexity 12

For the Steiner problem variants many complexity results can be derived
from the SPG (more detail is provided in the respective subsections). A com-
prehensive compilation concerning both the complexity and approximability
of Steiner problem variants can be found in [Hau].

13

2 The Steiner Tree Problem in Graphs

Being the archetype of all variants discussed in this thesis, the Steiner tree
problem in graphs will be presented in the comparatively most detail. This
proceeding is further justified by the fact that the approach described in the
following establishes a blueprint for solving the different Steiner variants
introduced in Section 3.

Based upon an integer programming formulation of the SPG, our solving
approach encompasses three major components:

• First, preprocessing in the shape of reduction techniques; key to the
performance of our solver.

• Second, primal heuristics; indispensable to find good or even optimal
solutions to hard problems.

• Third, a branch-and-cut procedure used to compute a lower bound
and prove optimality; the core of our solver.

2.1 Formulating the Problem: Integer Programming 14

2.1 Formulating the Problem: Integer Programming

For practical problems, often a mathematical description is not enough,
but one seeks to obtain a reformulation that allows a solution by means of
computers. To this end, we discuss several formulations of the SPG as in-
teger programs (IPs). Thereupon, linear relaxations of these reformulations
can be solved or approximated. This is not only crucial for computing lower
bounds, but forms moreover the foundation for a powerful propagator which
will be introduced in Section 2.5. The reader not familiar with the concept
of integer programming may find some guidance in [BW05].

On the look-out for (mixed) integer programming formulations of the
SPG, the seeker soon finds himself faced with a plenitude of different sug-
gestions. This thesis does not attempt to provide a coherent overview on all
these formulations, and indeed falls far short of doing so, but merely offers
a hopefully insightful glimpse by introducing four basic formulations and
moreover the, more extensive, formulation used in the solver. Nevertheless,
it should be noted that the strength of the linear relaxation of a formula-
tion is of pivotal importance to the practical performance of superimposed
algorithms, so it is well worthwhile to study the quality of the different
approaches. A both empirical and theoretical discussion of most common
formulations and the hierarchy among them can be found in [Pol04]. In
their conclusion, the authors suggested the use of the formulation employed
in our solver.

In order to discuss the strength of different formulations some techni-
calities are inevitable. For this purpose, let P0 be an integer program and
assume that it is to be minimized. We denote the corresponding linear re-
laxation by LP0. Furthermore, the values of the optimal solutions to P0 and
LP0 are denoted by v(P0) and v(LP0) respectively. Given two relaxations
R1 and R2 of the same optimization problem, R1 is stronger than R2 if
its optimal solution value is not higher than that of R2 for all instances of
the underlying problem. If R2 is also stronger than R1, the relaxations are
equivalent, otherwise R1 is strictly stronger than R2.

2.1.1 Cut Formulations

A natural way to formulate the SPG as an integer program is by associating
with each edge e ∈ E a binary variable xe, indicating whether e is contained
in the Steiner tree (xe = 1) or not (xe = 0). This conception paves the way
for the first, arguably straightforward formulation [Ane80]:

Formulation 1. Undirected Cut Formulation (PUC)

min cTx (1)

x(δ(W)) ≥ 1 for all W ⊂ V, 0 < |W ∩ T | < |T |, (2)

xe ∈ {0, 1} for all e ∈ E. (3)

2.1 Formulating the Problem: Integer Programming 15

Note that we define x(F) :=
∑

e∈F xe for any F ⊂ E. Thereupon,
one verifies that the constraints (2) ensure the existence of paths from each
terminal to all others in a feasible solution. In this way, it can be readily
demonstrated that the SPG can be solved by means of the undirected cut
formulation [Ane80].

A different approach is spawned by considering the transformed SAP to
an SPG, see Section 1.1. In line with the previous formulation, associate
with each arc a ∈ A a binary variable ya indicating whether a is contained
in the Steiner arborescence (ya = 1) or not (ya = 0). A directed formula-
tion [Won84] can thereupon be stated as:

Formulation 2. Directed Cut Formulation (PDC)

min cT y (4)

y(δ−(W)) ≥ 1 for all W ⊂ V, r /∈W,W ∩ T 6= ∅, (5)

ya ∈ {0, 1} for all a ∈ A. (6)

The constraints (5) make sure that all feasible solutions contain directed
paths from the root to each additional terminal.

The relation between the directed and undirected formulation, includ-
ing polyhedral aspects, has been widely discussed in the literature [CR94,
GM93, MW95]. We briefly state the most important results here:

• v(LPUC) ≥ v(LPDC) and sup
{ v(LPUC)
v(LPDC)

}
= 2 [Dui93].

• For a transformed SAP the value v(LPDC) is independent of the choice
of the root [GM93].

The undirected formulation can be tightened by the Steiner partition
inequalities introduced in [GM90] and the odd hole inequalities [CR94], but
still LPDC remains strictly stronger than LPUC . The heretofore results
suggest to favor the directed over the undirected formulation and indeed we
will subsequently do so.

2.1.2 Flow Formulations

Another way to formulate the SPG is to again consider the equivalent SAP
and construct a subgraph in which a |T r| units efflux is originated in r, with
one unit reaching every terminal other than the root. Introducing additional
flow variables zij to indicate the flow on an arc (i, j) ∈ A, one obtains the
two following formulations [Won84].

2.1 Formulating the Problem: Integer Programming 16

Formulation 3. Flow Formulation (PF)

min cT y (7)∑
(r,j)∈δ+(r)

zrj = |T r|, (8)

∑
(j,i)∈δ−(i)

zji −
∑

(i,j)∈δ+(i)

zij = 1 for all i ∈ T r, (9)

∑
(j,i)∈δ−(i)

zji −
∑

(i,j)∈δ+(i)

zij = 0 for all i ∈ V \ T, (10)

zij ≤ |T r|yij for all (i, j) ∈ A, (11)

z ∈ R|A|≥0, y ∈{0, 1}
|A|. (12)

Constraint (8) guarantees a |T r| unit efflux from r, the constraints (9)
a net flow of one unit into each terminal other than the root and the con-
straints (10) the flow conservation at the non-terminal vertices. Finally, (11)
ensures that each arc with positive flow is selected as a part of the Steiner
arborescence.

However, a major drawback of this formulation is the weakness of the
constraints yij ≤ |T r|xij , leading to an effete LP-relaxation: Since the cost
of all selected arcs is to be minimized, in an optimal solution to LPF each
arc variable yij is set to

zij
|T r| which can be much smaller than one. Seeking

to amend this disadvantage, [Won84] suggested an extended formulation
that affiliates with each terminal t ∈ T r a separate flow wt, also known as
multicommodity flow [VW10].

Formulation 4. Multicommodity Flow Formulation (PMF)

min cT y (13)

(14)∑
(r,j)∈δ+(r)

wtrj = 1 for all t ∈ T r, (15)

∑
(j,i)∈δ−(i)

wtji −
∑

(i,j)∈δ+(i)

wtij = 0 for all i ∈ V \ T, (16)

∑
(j,t)∈δ−(t)

wtjk −
∑

(k,j)∈δ+(t)

wttj = 1 for all t ∈ T r, (17)

wtij ≤ yij for all (i, j) ∈ A, t ∈ T r, (18)

w ∈ R|T |×|A|≥0 , y ∈{0, 1}|A|. (19)

The constraints of PMF are similar to those of PF , but the LP-relaxation
of the former is strictly stronger and empirically considerably tighter than
that of the original formulation, since the relation between the flow variables

2.1 Formulating the Problem: Integer Programming 17

(z and w, respectively) and the arc variables (y) is more accurately modelled
by the constraint (18).

An interesting result is that not only v(LPMF) = v(LPDC) holds, but
even a bijection can be established between the feasible solutions (y, w) to
LPMF and y to LPDC , see [Won84].

2.1.3 Flow Balance Inequalities

In [KM98] a new group of flow based constraints was suggested to strengthen
the directed cut formulation. Although not all of them improve the LP-
relaxation, these constraints lead to a considerable advantage in practical
solving by column generation and have been frequently employed in ad-
vanced Steiner problem solvers [KM98, LLL+14, Lju04, Pol04].

Formulation 5. Flow-Balance Directed Cut Formulation (PCF)

min cT y (20)

y(δ−(W)) ≥ 1 for all W ⊂ V, r /∈W,W ∩ T 6= ∅, (21)

y(δ−(v))


=
=
≤

0, if v = r;
1, if v ∈ T r;
1, if v ∈ N ;

for all v ∈ V, (22)

y(δ−(v)) ≤ y(δ+(v)) for all v ∈ V \ T, (23)

y(δ−(v)) ≥ ya for all a ∈ δ+(v), v ∈ V \ T, (24)

ya ∈ {0, 1} for all a ∈ A. (25)

By adding the constraints (23) to PDC the corresponding LP-relaxation
is rendered stronger than that of PDC , see [Dui93]. The remainder of the ad-
ditional constraints do not improve the value of the LP-relaxation as shown
in [Pol04].

Formulation PCF is the one used in our solver. However, due to the
exponential number of constraints (21), the problem is solved by a branch-
and-cut approach that is elaborated in Section 2.4.

2.2 Simplifying the Problem: Reduction Techniques 18

2.2 Simplifying the Problem: Reduction Techniques

When it comes to solving NP-hard problems, reductions can play a cru-
cial role as a preprocessing tool, as for example with the travelling sales-
man problem [ABCC11]. The SPG is no exception: With various publica-
tions [BP87, Bea84, DV89, HRW92], most saliently Duin’s magnum opus
[Dui93], having set the stage, reduction techniques were often a pivotal in-
gredient in practical solving techniques in the 1990’s decade. In the wake
of those developments, several techniques were again improved in terms of
both efficiency and capability by Polzin and Daneshmand [Pol04, VD04],
additionally closing some gaps that had been left open. The methods de-
ployed by them could reduce the number of edges for the tested instances (all
from the SteinLib) by 78 percent. Furthermore, their solver, which heavily
relies on reduction techniques, has remained until today the fastest SPG
solver described in the literature (except for certain artificially constructed
instances as in the PUC test set, designed to defy preprocessing).

Being one of its three main components (besides heuristics and branch-
and-cut), reduction techniques likewise occupy a prominent position in the
solving approach described in this thesis, not only for the SPG, but also for
its variants. Subsequently, several important reduction techniques from the
literature are introduced (and several extensions are suggested). Naturally,
they fall far short of being exhaustive; for further representations we refer to
[Dui93, Pol04, VD04]. However, many of the techniques introduced in the
literature are special cases of other ones [Dui93, HRW92]. In this context,
we attempt to avoid any redundancy in the presented methods.

Finally, it should be marked that the subsequently introduced reduction
techniques are not only important for solving the Steiner tree problem in
graphs, but furthermore pave the way for several of the Steiner variant
specific, novel reduction methods described in the sections 3.1.1, 3.4.2, 3.5.2
and 3.8.1.

2.2.1 Definitions

Reduction techniques, in general, strive to reduce the size of a given instance
while allowing a re-transformation of all solutions to the reduced problem
back to the original one and preserving at least one optimal solution (if there
exists one). In the case of the SPG this means reducing the number of both
edges and nodes. Several additional definitions are necessary to conceive the
techniques described in this section. They are largely stated in accordance
with [Pol04]. In the following, let (V,E, T, c) be an SPG and select two
arbitrary but distinct vertices vi ∈ V and vj ∈ V .
Let {vi, vj} ∈ E, thereupon vj can be contracted into vi by performing the
following steps:

• For each edge {vj , vk} ∈ E, k 6= i: if {vi, vk} /∈ E, add this edge

2.2 Simplifying the Problem: Reduction Techniques 19

endowed with costs cjk to E; if {vi, vk} ∈ E and additionally cik > cjk,
set cik = cjk. Denote the set of all newly inserted or modified (with
respect to their costs) edges by EL ⊂ δ(vi).

• If vj ∈ T , add vi to T .

• Delete vj and all incident edges.

Let (V,E, T, c) be an SPG, {vi, vj} ∈ E and (V ′, E′, T ′, c′) the problem
resulting from contracting vj into vi. A solution S′ to the problem resulting
from such a contraction can be easily transformed to a solution S to the
original problem: If EL ∩ E[S′] = ∅, then S′ can be adopted unaltered;
otherwise, first add {vi, vj} and vj to S′ and second extract each el ∈ EL ∩
E[S′], concurrently inserting the corresponding original edge. Further, if vj
is a terminal in the original graph, then {vi, vj} is included in S.

Anther important concept that is pivotal to several reduction techniques
is a generalization of the ”regular” distance (i.e. the length of a shortest
path between two vertices): First, define an elementary path as a path
containing terminals only (but not necessarily) at its endpoints. A path
P in G can be broken into one or more elementary paths. The length
of a longest elementary path in P is called the Steiner distance of P .
Accordingly, the bottleneck Steiner distance (also referred to as special
distance [KM98]) s(vi, vj) between two (distinct) vertices vi, vj ∈ V is the
minimum Steiner distance taken over all paths between vi and vj . Similarly,
the restricted bottleneck Steiner distance s(vi, vj) is the bottleneck
Steiner distance between vi and vj excluding the edge {vi, vj}. A picturesque
description of the bottleneck Steiner distance was given in [KM98]: Consider
(V,E, T, c) as a road system, with the terminals T as petrol stations and c
the length of the roads E. Imagine a driver who acquires to reach vi starting
from vj (or vice versa). In this case, s(vi, vj) is the minimum distance he
or she needs to be able to drive without replenishing their tank in order to
reach their destination,

2.2.2 Basic Reductions

The subsequent five tests originate from [Bea84] and [Dui93]:
Non-terminal of Degree one (NTD1): A non-terminal of degree one

and its incident edge can be deleted.
Non-terminal of Degree two (NTD2): A non-terminal vi of degree

two and its incident edges {vi, vj}, {vi, vk} can be substituted by a single
edge {vj , vk} of cost cjk := cij + cik. If this results in two parallel edges,
only the one of smaller cost, or in the case of equal costs an arbitrary one,
is retained.

Terminal of Degree one (TD1): If there is a terminal ti ∈ T of degree
one with adjacent vertex vj , the latter can be contracted into ti.

2.2 Simplifying the Problem: Reduction Techniques 20

Terminal of Degree two (TD2): Let ti, tj ∈ T , such that δ(ti) =
{ek, el} with cek ≤ cel and ek = {ti, tj}. Then tj can be contracted into ti.

Minimum Terminal Edge (MTE): If there is a {ti, tj} ∈ E that
is of minimum weight among all edges incident to ti and further satisfies
ti, tj ∈ T , then tj can be contracted into ti.

The successive execution of those five tests will be referred to as Degree
Test (DT). Since in each of the first four tests only vertices of maximum
degree two are checked and in MTE each edge needs to be scrutinized at most
once, the worst-case complexity of DT is of O(m); under the assumption that
deleting, inserting and contracting an edge can be realized in O(1).

2.2.3 Alternative Based Reductions

In this subsection several tests are introduced that utilize the existence of
alternative solutions. They can be dichotomized into exclusion and inclusion
tests: The former use the argument that for any solution containing a spec-
ified part of the graph (e.g. an edge) there is a solution not containing this
part of smaller or equal cost. The latter use the converse argumentation:
For any solution not containing a specified part of the graph an additional
solution can be found that contains this part and is of less or equal cost.
First, the exclusion tests are introduced. Remarkably enough, all following
alternative-based tests can be realized in O(m+ n log n) [Pol04].

The first and arguably most effective alternative-based test is spawned
by the following lemma. Due to its significance and to offer some insight
into the concept of the bottleneck Steiner distance, which will resurface in
varying shapes throughout the remainder of this thesis, we for once aberrate
from our precept not to provide proofs already available in the literature.

Lemma 1. Every edge {vi, vj} ∈ E with cij > s(vi, vj) can be discarded.

Proof. Suppose that a minimum Steiner tree contains an edge {vi, vj} with
cij > s(vi, vj) and let S be such a tree. Removing {vi, vj} leaves S divided
into two components S1 and S2. By definition of s, there is at least one
path P between vi and vj with Steiner distance s(vi, vj). Furthermore, on
this path there is at least one elementary path P ′ that joins S1 and S2.
Since cij > s(vi, vj), incorporating S1, S2 and P ′ yields a Steiner tree of
smaller cost than S. But this contradicts the initial assumption that S is of
minimum weight.

The lemma was first introduced in [DV89]. Since computing all exact
bottleneck Steiner distances can be very time consuming, we use a test
working with upper bounds that was suggested in [Pol04] and is delineated
in the following:

For two terminals ti and tj , the bottleneck Steiner distance s(ti, tj) can be
calculated by determining a longest edge on the fundamental path between

2.2 Simplifying the Problem: Reduction Techniques 21

ti and tj in the spanning tree SD(T), which can be constructed in O(m +
n log n), see Section 1.1. By transforming the problem of finding such an
edge for each pair of adjacent terminals to an instance of the off-line nearest
common ancestor problem [Tar79], an overall bound of O(m + n log n) can
be preserved.

For two non-terminals vi and vj an upper bound on s(vi, vj) is used: To
each non-terminal vr the (constant) k d-nearest terminals vr,1, ..., vr,k are
initially computed and the upper bound

ŝ(vi, vj) := min
a,b∈{1,...,k}

{
max{d(vi, vi,a), s(vi,a, vi,b), d(vj , vi,b)}

}
is used instead of s(vi, vj). The ŝ values are not pre-computed since this
could destroy the O(m+n log n) bound and usually not all of the k2 possible
combinations have to be examined: For instance, this is the case if the test
condition is already satisfied before the end of the computation. Moreover,
one can for example utilize the lower bound:

s̃(vi, vj) := max{d(vi, base(vi)), d(vj , base(vj))}.

If vi and vj are part of the same Voronoi region, s̃(vi, vj) = ŝ(vi, vj) holds. If
vi and vj belong to different Voronoi region and additionally cij < s̃(vi, vj)
holds, the test condition cannot be satisfied. The associated test is called
Bottleneck Steiner Distance (SD).

An affiliated lemma gives rise to an often fast test [Pol04]:

Lemma 2. Let cmax be the maximum cost of an edge in SD(T). Every edge
{vi, vj} ∈ E such that cij > cmax can be discarded.

The associated test is occasionally very effective and can moreover elim-
inate edges that cannot be removed by the (original) SD test [Pol04].

Scrutinizing the tests described so far, one observes that for examining
whether an edge can be deleted, only paths containing at least one ter-
minal are considered. Therefore, a simple test, just computing a shortest
path between the endpoints of an edge [HRW92] might lead to additional
eliminations. Since this test is rather time consuming, we suggest a more
efficient version, which moreover can find paths that contain exactly one
intermediary terminal and are at the same time of smaller Steiner distance
than any path found by the SD test. Given an edge el := {vi, vj}, we run a
modified version of Dijkstra’s algorithm, terminating as soon as a predefined
(constant) number of edges has been processed or the distance of a scanned
vertex exceeds cij . The further modifications are as follows: Starting from
vi, the edge el is continually ignored and the algorithm does not proceed
from terminals (other than vi). If vj has been labelled and the length of the
corresponding path between vj and vi is not higher than cij , the edge el can
already be eliminated. Otherwise, we run the analogous limited version of

2.2 Simplifying the Problem: Reduction Techniques 22

Dijkstra’s algorithm from vj , additionally stopping at all vertices that were
scanned in the course of the first run. Finally, we iterate over all vertices

v
(k)
i labelled or scanned during the first execution of Dijkstra’s algorithm. If

a v
(k)
i was labelled or scanned during the second run and further the Steiner

distance of the corresponding path (from vj to v
(k)
i to vi) is not higher than

cel , the edge el can be deleted. We will henceforth refer to this, novel,
procedure as Bottleneck Steiner Distance Circuit (SDC) test.

Another observation is that both Lemma 1 and 2 can be extended to
the case of equality [Pol04, VD04]. For Lemma 1 this is achieved by using
the restricted bottleneck distance: An edge {vi, vj} ∈ E can be discarded
if cij ≥ s(vi, vj). But deleting this edge may result in altered restricted
bottleneck distances, which would require a recalculation of all distances
after each elimination. However, all cases that allow the elimination of an
edge without changing the (restricted) Steiner bottleneck distances can be
identified; to avoid tedious argumentation we refer to [Pol04] for this. For
Lemma 2 the situation is similar, but has, to the best of our knowledge,
not been discussed in the literature yet. Therefore, we establish a corollary
in order to eliminate edges ei ∈ E such that cei = cmax. For this purpose,
let SG(T) be the subgraph of G corresponding to a minimum spanning tree
SD(T) of the distance network (T, T × T, d).

Corollary 3. Let cmax be the maximal cost of an edge in SD(T). Every edge
ei ∈ E not contained in SG(T) and satisfying cei ≥ cmax can be discarded.

Proof. Suppose that there is a minimum Steiner tree S containing ei. By
removing ei the tree S is divided into two components S1 and S2. As S has
been assumed to be of minimum weight, there is at least one terminal tj
contained in S1 and one terminal tk contained in S2. Let P be a path in G
corresponding to the path in SD(T) between tj and tk. Since P connects S1

and S2, there are vertices v′1 ∈ V [S1]∩V [P] and v′2 ∈ V [S2]∩V [P] such that
P (v′1, v

′
2) includes no additional vertices of S1 or S2. In particular, P (v′1, v

′
2)

does not contain any terminals. Therefore, the length of P (v′1, v
′
2) is at most

cmax. Further, due to the premises of the corollary, P (v′1, v
′
2), which is a

subset of SG(T), does not contain ei. Hence, S1 and S2 can be reconnected
by P (v′1, v

′
2) to an optimal Steiner tree not containing ei.

The associated test is denoted by bottleneck Steiner Distance Span-
ning Tree (SDST) test. Since after its execution the graph might be un-
connected, we subsequently delete all vertices that are not reachable from a
terminal.

The bottleneck Steiner distance can further be utilized for another clas-
sical reduction test: Non-Terminals of Degree k (NTDk) which was
introduced in [DV89] and is based on the following lemma:

2.2 Simplifying the Problem: Reduction Techniques 23

Lemma 4. Let vi ∈ V \ T . The vertex vi is of degree at most two in at
least one minimum Steiner tree if for each set ∆, with |∆| ≥ 3, of vertices
adjacent to vi it holds that: the (summed) cost of all edges in δ(vi) ∩ δ(∆)
is not less than the weight of a minimum spanning tree for the network
(∆,∆×∆, s).

A prove is provided in [DV89]. If the condition is satisfied, vi and all in-
cident edges can be discarded, while for each two vertices vk and vj adjacent
to vi an edge {vk, vj} with cost cik+cij is inserted. In the case of two parallel
edges, only one of minimum cost is retained. Albeit allowing the elimination
of a vertex, the NTDk test might concurrently require additional edges to be
added. However, these edges can often be removed by the SD test [Pol04].
To avoid the, possibly computationally non-trivial, insertion and subsequent
elimination of an edge, it is sensible to enquire beforehand whether a new
edge could be eliminated by the SD test.

Having introduced several exclusion test, we go on to discuss inclusion
tests, the first one [HRW92] being:

Lemma 5. Let ti be a terminal of degree at least two and let {ti, v′i} and
{ti, v′′i } be a shortest and a second shortest edge incident to ti. The edge
{ti, v′i} is contained in at least one minimum Steiner tree if there is a ter-
minal tj such that tj 6= ti and:

c{ti,v′′i } ≥ c{ti,v′i} + d(v′i, tj). (26)

In [Pol04] an efficient computation of the distances d(v′i, tj) is given,
based once again on Voronoi regions: Let distance(ti) be the length of a
shortest path from ti to a terminal tk with tk 6= ti, containing the edge
{ti, v′i}. By initially setting distance(ti) := ∞ for i = 1, ..., s, these values
can be easily computed while building the Voronoi diagram: Each time a
Voronoi-boundary edge {vq, vr} with vq ∈ N(ti) and vr ∈ N(tj), tj 6= ti is
visited, it is checked whether vq is a successor of v′i in the shortest paths
tree rooted in ti (which can be realized by marking the successors of v′i while
computing the Voronoi diagram). If this is the case, distance(ti) is updated
to min{distance(ti), d(ti, vq)+cqr+d(vr, tj)}. Also, although not mentioned
in [Pol04], in case of ties during the computation of the Voronoi region N(ti),
the vertices having vq as a successor should be favoured, since otherwise the
distance(ti) value might get larger than necessary. These deliberations give
rise to the following [Pol04]:

Lemma 6. Assume that the premises of Lemma 5 hold. Condition (26) is
satisfied for a terminal tj distinct from ti if and only if

c{ti,v′′i } ≥ c{ti,v′i} + d(v′i, base(v
′
i))

2.2 Simplifying the Problem: Reduction Techniques 24

if v′i /∈ N(ti) and

c{ti,v′′i } ≥ distance(ti)

otherwise.

The affiliated test, which contracts v′i into ti if successful, is denoted by
Nearest Vertex (NV). By virtue of Lemma 6, its worst-case complexity
is of O(m+ n log n), see [Pol04]. Additionally, we suggest a novel extension
of the NV test that can be implemented with minimal extra work and does
not alter the complexity (nor the empirical run time).

Lemma 7. Let ti be a terminal of degree at least two, e′i = {ti, v′i} a shortest
edge and e′′i = {ti, v′′i } a distinct second edge incident to ti. The edge e′i is
contained in at least one minimum Steiner tree if there is a terminal tj with
tj 6= ti and tj 6= v′′i such that

ce ≥ ce′i + d(v′i, tj) ∀e ∈ δ({ti, v′′i }) \ {e′i} (27)

is satisfied.

Proof. Suppose that there is a Steiner tree S = (VS , ES) such that e′i /∈ ES .
Let ẽ be the first edge on the unique path from ti to tj in S such that ẽ 6= e′′i .
Removing ẽ one obtains a tree S1 containing ti and a tree S2 containing tj .
These two trees can be reconnected by a path consisting of e′i and a shortest
path between v′i and S2. Denote the thereby obtained tree (after possibly
deleting cycle edges) by S′. By virtue of (27) one can acknowledge that
cẽ ≥ ce′i + d(v′i, tj) holds and go on to infer:

C(S′) ≤ C(S) + ce′i + d(v′i, tj)− cẽ ≤ C(S).

Consequently, there is at least one minimum Steiner tree containing e′i.

In order to verify condition (27), we introduce an approach that is similar
to the one described in Lemma 6:

Lemma 8. Assume that the premises of Lemma 7 hold. Condition (27) is
satisfied for a tj ∈ T \ {ti, v′′i } if and only if

ce ≥ c{ti,v′i} + d(v′i, base(v
′
i)) (28)

if v′i /∈ N(ti) and

ce ≥ distance(ti) (29)

otherwise for all e ∈ δ({ti, v′′i }) \ {e′i}.

2.2 Simplifying the Problem: Reduction Techniques 25

Proof. Let e ∈ δ({ti, v′i}) \ {e′i}.
Sufficiency. Suppose that condition (28) or (29) of Lemma 8 is satisfied

for a terminal ti: If v′i /∈ N(ti), let tj := base(v′i). Because of v′i /∈ N(ti), it
holds that tj = base(v′i) 6= ti. Furthermore, a shortest path between v′i and
tj , being of length d(v′i, base(v

′
i)), cannot contain any edge incident to v′′i ,

since first (28) holds and second no intermediary terminal can be contained
in the path. Hence, v′′i 6= tj and condition (27) is satisfied.

On the other hand, if v′i ∈ N(ti), a terminal tj exists with c{ti,v′i} +
d(v′i, tj) = distance(ti) ≤ ce. Moreover, a path corresponding to distance(ti)
cannot contain any edge incident to v′′i , as (29) has been posited. Conse-
quently, condition (27) holds for tj .

Necessity. Suppose that condition (27) of Lemma 7 holds for vertices
ti, tj ∈ T and v′i, v

′′
i ∈ V , satisfying the premises of the lemma. If v′i /∈ N(ti),

it can be inferred that:

ce ≥ ce′i + d(v′i, tj) ≥ ce′i + d(v′i, base(v
′
i)).

Hence, condition (28) is satisfied. Finally, consider the case v′i ∈ N(ti). The
path P corresponding to distance(ti) includes the edge e′i by definition and
its length is therefore at most ce′i + d(v′i, tj). Consequently:

ce ≥ ce′i + d(v′i, tj) ≥ distance(ti),

and condition (29) is satisfied.

We incorporate this condition into the NV test as follows: For each
terminal ti ∈ T , the third shortest edge e′′′i = {ti, v′′′i } is computed as well.
If the NV test is successful, we proceed as before. Otherwise, if ti is of degree
two or it holds that the edge e′′′i satisfies condition (28) or (29), respectively,
we check for each edge e ∈ δ(v′′i) ∩ δ({ti, v′′i }) whether (28) or (29) holds.
If this is the case, we contract e′i into ti. By restricting the extended test
to terminals ti such that |δ(ti)| ≥ K ∗ |δ(v′′i)| with K ∈ N constant, the
additional costs are of O(m), preserving the total worst-case complexity of
O(m+ n log n).

A similar idea can be used for an additional inclusion test denoted by
Short Links (SL) [Pol04]:

Lemma 9. Let ti ∈ T and {v1, v
′
1} and {v2, v

′
2} be a shortest and a sec-

ond shortest Voronoi-boundary edge of N(ti). The edge {v1, v
′
1} belongs

to at least one minimum Steiner tree if c{v2,v′2} ≥ d(ti, v1) + c(v1, v
′
1) +

d(v′1, base(v
′
1)).

SL can likewise be performed in O(m + n log n). Furthermore, the test
can be extended similarly to NV, but since the accompanying experimental
results were predominantly poor, no elaboration is provided here.

2.2 Simplifying the Problem: Reduction Techniques 26

2.2.4 Bound Based Reductions

Voronoi regions can be a potent tool in the context of Steiner problems,
as has already become evident with the SL test. Subsequently, they are
employed to determine a lower bound for an optimal solution that is assumed
to satisfy certain additional constraints (e.g. containing a specific edge).

Prelusively, given a Voronoi decomposition N and a terminal ti ∈ T , we
define radius(ti) to be the cost of a shortest path containing ti and leav-
ing N(ti) [Pol04]. These values can be obtained while building the Voronoi
diagram, by updating them whenever an edge with endpoints in different
Vornonoi regions is being processed. For the sake of notation, it will hence-
forth be assumed that the terminals are ordered according to non-decreasing
radius values. Further, recall that for each vi ∈ V \T the variables vi,1, vi,2
and vi,3 represent the nearest, second nearest and third nearest terminal to
vi without using intermediary terminals.

All subsequent lemmata except for the novel Lemma 12 can be found
in [Pol04]. It should be mentioned that these lemmata were originally stated
by using the customary distance function d. However, the proofs provided
in [Pol04] can be reused to verify the hereinafter stated, stronger versions
using the d-distance.

Lemma 10. Let vi ∈ V \T . If there is a minimum Steiner tree S = (VS , ES)
such that vi ∈ VS, then d(vi, vi,1) + d(vi, vi,2) +

∑s−2
q=1 radius(tq) is a lower

bound on the weight of S.

Each Steiner node vi such that the affiliated lower bound stated in
Lemma 10 exceeds a known upper bound can be eliminated. Moreover,
if a solution S corresponding to the upper bound is given and vi is not con-
tained in it, the latter can already be eliminated if the lower bound stated
in Lemma 10 is equal to the cost of S. A similar proposition holds for edges
in a minimum Steiner tree:

Lemma 11. Let {vi, vj} ∈ ES. If there is a minimum Steiner tree S =
(VS , ES) such that {vi, vj} ∈ ES, then c{vi,vj} + d(vi, vi,1) + d(vj , vj,1) +∑s−2

q=1 radius(tq) is a lower bound on the weight of S.

Furthermore, a stronger version of the antecedent lemma holds, which
has not been stated in the literature yet:

Lemma 12. Let {vi, vj} ∈ E. If there is minimum Steiner tree S = (VS , ES)
such that {vi, vj} ∈ ES, then L defined by

L := c{vi,vj} + d(vi, vi,1) + d(vj , vj,1) +

s−2∑
q=1

radius(tq) (30)

2.2 Simplifying the Problem: Reduction Techniques 27

if base(vi) 6= base(vj) and

L := c{vi,vj} + min{d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1}

+
s−2∑
q=1

radius(tq) (31)

otherwise, is a lower bound on the weight of S.

Proof. Let S = (VS , ES) be a minimum Steiner tree with {vi, vj} ∈ ES .
Denote the set of all paths in S between vi and terminals reachable without
using the edge {vi, vj} by Pvi , and analogously the set of all paths in S
between vj and the remaining terminals by Pvj . Additionally, set P :=
Pvi ∪ Pvj and denote by Pr ∈ P, r ∈ {1, ..., s}, the path to terminal tr
(starting in either vi or vj).

First, note that a path in Pvi cannot have edges in common with any
path in Pvj , and vice versa, since S is cycle-free. Second, two distinct paths
in Pvi can only have a subpath containing vi in common, but no additional
edges, since this would likewise require a circle in S. The analogous property
holds for two paths that are both in Pvj .

Having stated those preliminaries, one can go on to validate the actual
statement of the lemma: Choose two paths Pk ∈ Pvi and Pl ∈ Pvj such that
they jointly include a minimum number of Voronoi-boundary edges. For all
r ∈ {1, ..., s}\{k, l}, denote by P ′r the subpath of Pr between tr and the first
vertex not in N(tr). Suppose that Pk has an edge ep ∈ ES in common with a
P ′r: According to the prelusive observations, this would imply the existence
of a joint subpath including vi and ep. But in this case Pk would contain
at least one more edge with endpoints in different Voronoi regions (in order
to be able to reach tk which is by definition not in N(tr)). Furthermore, Pr
cannot have any edge in common with Pl, as S is cycle-free. Consequently,
Pr would have initially been chosen instead of Pk. Following the same line of
argumentation, one validates that likewise Pl has no edge in common with
any P ′r.

Conclusively, the paths Pk, Pl and all P ′r are edge-disjoint and their
combined cost is therefore a lower bound on the weight of S. To see that L
is a lower bound on the combined cost of Pk, Pl and all P ′r, and therefore
on S, note that the summed cost of all P ′r is at least

∑s−2
q=1 radius(tq) and

differentiate between two cases:
First, in the case of base(vi) 6= base(vj), the cost of Pk plus the cost of

Pl is at least d(vi, vi,1) + d(vj , vj,1), so:

2.2 Simplifying the Problem: Reduction Techniques 28

C(S) =
∑
e∈ES

ce

≥ c{vi,vj} + C(Pk) + C(Pl) +

(∑
r∈{1,...,s}\{k,l}

C(P ′r)

)

≥ c{vi,vj} + C(Pk) + C(Pl) +

s−2∑
q=1

radius(tq)

≥ c{vi,vj} + d(vi, vi,1) + d(vj , vj,1) +

s−2∑
q=1

radius(tq).

Therefore, (30) is a lower bound on the weight of T .
Second, in the complementary case of base(vi) = base(vj), let tb :=

base(vi) = base(vj) and note that d(vi, vi,1) = d(vi, tb) and d(vj , vj,1) =
d(vj , tb). Since not both Pk and Pl can contain tb (since this would require a
cycle in S), their combined cost is at least min{d(vi, vi,1)+d(vj , vj,2), d(vi, vi,2)+
d(vj , vj,1}. Therefore:

C(S) ≥ c{vi,vj} + C(Pk) + C(Pl) +

s−2∑
q=1

radius(tq)

≥ c{vi,vj} + min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
+

s−2∑
q=1

radius(tq).

Consequently, L as defined in (31) is a lower bound on the weight of S.

Besides attempting to directly eliminate a vertex or an edge, one can
test whether it is possible to substitute vertices by new edges, analogously
to the NTDk test. As before, this procedure can be extended to the case of
equality if a solution corresponding to the upper bound is known. The basis
is provided by the following lemma:

Lemma 13. Let vi ∈ V \T . If there is a minimum Steiner tree S such that
vi is of degree at least three in S, then d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3) +∑s−3

q=1 radius(tq) is a lower bound on the weight of S.

Although the antecedent four lemmata already allow for considerable
reductions of a number of instances, sometimes an even stronger bound can
be achieved:

Lemma 14. Let G′ = (T,E′) be graph in which two vertices ti and tj (which
correspond to terminals in G) are adjacent if and only if there is an edge

2.2 Simplifying the Problem: Reduction Techniques 29

{vk, vl} ∈ E such that vk ∈ N(ti) and vl ∈ N(tj). Additionally, define a
cost function d′ on E′ by

d′(ti, tj) := min{min{d(ti, vk), d(tj , vl)}+ ckl

| {vk, vl} ∈ E ∩ (N(ti)×N(tj))}.

The weight, with respect to d′, of a minimum spanning tree for G′ is a lower
bound on the weight of any Steiner tree for (V,E, T, c)

The lemma can be extended to test conditions: Let vi be a Steiner
vertex. The weight of a minimum spanning tree for G′ minus the length of
its longest edge plus d(vi, vi,1) + d(vi, vi,2) is a lower bound on the weight
of any minimum Steiner tree containing vi. Analogously, a lower bound on
the weight of any minimum Steiner tree containing an edge {vi, vj} can be
obtained. The graph G′ can be determined while computing the Voronoi
regions, and a corresponding minimum spanning tree can be computed in
O(m+ s log s) time.

For computing an upper bound we use the RSP heuristic that will be
introduced in Section 2.3. The use of the heuristic on the one hand de-
molishes the O(m + n log n) time bound so far retained for all tests in this
section, but is on the other hand empirically fast for almost all instances
that we tested, see Section 2.6. We denote the test associated with the in-
troduced bound-based reduction approaches by Bound (BND1) test. Since
a heuristic solution is available, the test also covers the case of lower and
upper bound being equal.

2.2.5 Implementation

For the implementation an adjacency representation of the graph is used,
with all arcs stored in a single array, see [Koc95]. This representation al-
lows to quickly insert, in O(1), and delete, in O(max(δ(vi), δ(vj)), any arc
(vi, vj). The technical details of the realization of the various reduction tests
are omitted here, but it should be noted that for each test all actions are
performed in a single pass (and not restarted after each operation, e.g. the
elimination of an edge).

Reiteration and Ordering

Studying different combinations and orderings of reduction techniques, Polzin
concluded in [Pol04] that the tests are not very sensitive to the order of their
execution. However, this assumption is not true for the total reduction time.

The underlying precept for the ordering of the reduction methods is to
perform the faster ones first so that the more expensive tests are applied to,
hopefully, substantially reduced graphs. Furthermore, it seems reasonable

1Any resemblance of the abbreviation to existing organizations is purely coincidental.

2.2 Simplifying the Problem: Reduction Techniques 30

to perform the two SD test variants prior to the NTDk tests, since the former
reduces, if successful, the degrees of vertices. Additionally, first performing
the SD test allows to reuse the computed d-distances for the NTDk tests, see
[Dui93]. Similarly, due to the NTDk and SD variant tests deleting edges (and
possibly replacing pairs of edges by a single one), they are performed prior
to the NV and SL tests. Also, the latter two can be empirically relatively
expensive, since they result in the contraction of edges.

All reduction tests are arrayed in a loop that is reiterated as long as
a constant proportion (for our solver 0.5 percent) of edges was eliminated
during the last run. Thereby, one obtains the same asymptotic time bound
as the most expensive performed reduction test; with the exception of the
BND test this bound is of O(m+n log n). Furthermore, during a succeeding
loop each test is performed only if it could eliminate a constant proportion
(0.1 percent) of edges during the previous run. For the BND test, the (time-
consuming) computation of an upper bound is only performed during the
first run. Additionally, the BND test is executed if and only if at most
three percent of all vertices are terminals; we have observed that the test is
otherwise of very little effect.

The ordering that is by default used in our solver is reported in Figure 2.

2.2 Simplifying the Problem: Reduction Techniques 31

DTstart

SDST

SDC, DT

SD

NTD3,4,
DT

NV, SL

BND

sufficient
number of
reductions?

stop

yes

no

Figure 2: Illustration of the reduction package; once no more than 0.1 per-
cent of all edges could be eliminated within a method-block the latter is
disabled for the remainder of the reduction process.

2.3 Finding a Solution: Primal Heuristics 32

2.3 Finding a Solution: Primal Heuristics

With the Steiner tree problem in graphs being NP-hard it hardly comes
as a surprise that a wide range of research has focused on developing effi-
cient primal heuristics. While attempting to obtain Steiner trees of small
weight is arguably worthwhile in its own right, an additional virtue arises
from the concomitantly yielded upper bound on the optimal solution value:
The disposability of sharp upper bounds is indispensable for bound-based
reductions, see Section 2.2.4, and more importantly for an efficient branch-
and-bound based exact solving approach. Indeed, without using SPG spe-
cific heuristics we are unable to find any feasible solution to a number of
instances that can otherwise be solved to optimality, as will be demonstrated
at the end of this section.

Naturally, only a very small share among the plethora of primal heuristics
trialled in the literature is covered in this thesis. The reader wishing to
acquire a more comprehensive insight is referred to [dAW02, PUW14, Pol04,
RUW01].

2.3.1 Constructive Heuristics

As the name suggests, constructive heuristics build up a new solution
from the scratch, repeatedly extending the current sub-solution. In this
context, the repetitive shortest path heuristic (RSPH) can arguably
be named as the classical and empirically successful primal SPG heuristic.
Already introduced in 1980 [TA80], it has found its way into various pub-
lications, e.g. [HRW92, PD01, dAW02, Pol04, PUW14] and has moreover
been notably improved by [dAW02] and [Pol04] in terms of empirical run
time.

The basic concept of the heuristic is very coherent: Starting with a single
vertex, in each step the current subtree is connected to a nearest terminal by
a shortest path. This procedure is reiterated until all terminals are spanned.
Finally, the generated subgraph S is pruned, i.e. it is substituted by a
minimum spanning tree constructed on the vertices of S and non-terminals
of degree one are, repeatedly, removed. To render the overall procedure
more potent, the heuristic is started from several distinct vertices.

In its original form the heuristic is implemented by initially comput-
ing shortest paths from each terminal to all other vertices and afterwards
successively building up a Steiner tree by utilizing the previously obtained
shortest paths. The worst-case run time for such a construction is ofO(s(m+
n log n)), which can be readily verified [Pol04]. In [dAW02] the empirically
quite effective observation was made that a modified version of Dijkstra’s
algorithm [FT84] can be used alternatively. This algorithm is not intro-
duced in full detail here; however, a comprehensible delineation is provided:
To grow a Steiner tree starting from a single vertex, one can use Dijkstra’s

2.3 Finding a Solution: Primal Heuristics 33

algorithm, pausing whenever a terminal has been scanned and joining the
shortest path to this terminal with the incumbent tree. Throughout the
execution of Dijkstra’s algorithm, with each vertex vi ∈ V an upper bound
πi on the distance between the current subtree and vi is associated.

The decisive consideration made in [dAW02] was that it is not necessary
to reset the π values whenever a terminal has been connected to the current
subtree, since the tentative distances are still valid upper bounds on the
distances from the new subtree. Instead, one merely needs to reinsert every
vertex vi on the path between the previous tree and the newly incorporated
terminal into the priority queue of Dijkstra’s algorithm (setting πi = 0).
Although the worst-case complexity remains at O(s(m + n log n)), empiri-
cally the run time is drastically improved [dAW02, Pol04]. We denote this
variant, also using different starting points, by one-phase RSPH.

A different approach was suggested in [PD01], based on the following
considerations: Let ti ∈ T , vj ∈ V \ {ti} and consider a shortest path P
between ti and vj computed in the first phase of the original RSPH imple-
mentation. Aspiring to find an a priori criterion for P to not be required
during the second phase of RSPH, the following observations can be made:
If P contains an intermediary terminal tk, inserting either the subpath be-
tween vj and tk or ti and tk is always preferable to inserting the whole path
P . Similarly, if vj is contained in a Voronoi region of a terminal tk 6= ti and
d(ti, tk) ≤ d(ti, vj) is satisfied, instead of inserting P , one could insert the
subpath between vj and tk or the subpath between ti and tk respectively,
both of them being of not higher cost than P . Consequently, it is not neces-
sary to obtain shortest paths from each terminal ti to all other vertices, but
one may terminate Dijkstra’s algorithm, starting from ti, as soon as N(ti)
and all neighbouring terminals have been scanned. Furthermore, no paths
containing intermediary terminals need to be considered. This variant is
denoted by two-phase RSPH. We omit the implemental details and refer
to [PD01] for this purpose.

Another important observation [KM98] is that the heuristic may not
only be used initially, but moreover, with altered edge weights, during the
branch-and-cut: Given an optimal LP solution x ∈ QE , the heuristic is
called with the edge weights (1 − xe) · ce for all e ∈ E. In this way, a
stimulus for the heuristic to choose edges contained in the LP solution is
provided.

In our implementation one-phase RSPH is customarily used, the two-
phase variant is only preferred if at least one third of the vertices are termi-
nals (which rarely is the case for most published test instances). Further-
more, terminals are preferred as starting points as for example suggested in
[KM98]. We perform the initial run of the heuristic, with no LP solution
available, with 100 start vertices, preferring terminals.

Additionally, the heuristic is called, with altered edge weights, before
and after the processing of a branch-and-bound node, after each cut loop

2.3 Finding a Solution: Primal Heuristics 34

and after each LP solving during a cut loop; each with 16 start vertices.
For this purpose we use a novel preference criterion: Given an optimal LP
solution x ∈ QE , we affiliate with each vertex vi the value αi :=

∑
e∈δ(vi) xe.

Let αTmax := maxvi∈T αi. Thereupon, we associate with each terminal vi ∈
T the value α′i, which is obtained by adding a pseudo-random uniformly
distributed number in [0, αTmax] to αi. Thereby, it is attempted to give
a preference to terminals of high αi value, but still allowing the selection
of each terminal. Having set these values, we restrict the first ten runs to
terminals, selecting the ones of highest α′i amount. For the next five runs the
not yet selected vertices of highest αi values are used. Finally, the last run is
conducted with the start vertex that has led to the best incumbent solution
found by RSPH in the course of the whole heretofore solving process.

Furthermore, ties occurring during the computation and the selection of
the shortest paths are broken pseudo-randomly and when no new LP solution
is available, each edge cost is additionally multiplied by a pseudo-random
uniformly distributed number between 1.0 and 2.5 (the sole exception being
the initial run).

2.3.2 Local Search Heuristics

Instead of constructing a solution de novo, as done by RSPH, a different
heuristic approach is to improve already existent solutions. Such local
search heuristics [KV07] have successfully been applied to numerous hard
computational problems. A prominent example is the Helsgaun implemen-
tation of the Lin-Kernigham heuristic for the travelling salesman problem.
This heuristic was not only able to produce optimal solutions to all solved
problems it was tested on (as of October 2015, [Hel]), but furthermore al-
lowed to improve the best known solutions for a series of large-scale instances
with unknown optima, among them a 1, 904, 711-cities instance [Hel09].

Given a solution S to a problem, a local search algorithm examines a
neighborhood of S, i.e. a set of solutions obtainable from S by performing
a predefined set of operations. This examination encompasses finding an
improving solution, i.e. one of smaller cost in the case of a minimization
problem, or proving that no such solution exists. Subsequently, three local
search heuristics from [UW10] that have been incorporated into our solver
are sketched. Their, intricate, implementation will not be discussed here,
but it should be noted that all of them can be performed with a worst-case
complexity of O(m + n log n). The easiest one is vertex insertion (V),
which examines whether an additional vertex vi can be merged with an ex-
isting Steiner tree S = (VS , ES) in such a way that the minimum spanning
tree on VS ∪{vi} (which likewise constitutes a Steiner tree) is of smaller cost
than S. The last two heuristics use the concept of key-vertices, which are
terminals or vertices of degree at least three in S. Correspondingly, a key-
path is a path in S connecting two key-vertices and otherwise containing

2.3 Finding a Solution: Primal Heuristics 35

only non-key-vertices. In key-path exchange it is attempted to replace ex-
isting key-paths by less costly ones. Similarly, for key-vertex elimination
in each step a non-terminal key-vertex and all adjoining key-paths (except
for the key-vertices at their respective ends) are extracted and an attempt is
made to reconnect the disconnected subtrees at a lower cost. As in [UW10],
the execution of vertex insertion followed by the joint execution of key-path
exchange and key-vertex elimination is denoted by VQ. In our solver, VQ is
called for a newly found solution whenever the latter is among the five best
known solutions. This number is dynamically reduced if VQ is displaying
little effectiveness on the instance being solved.

2.3.3 Recombination Heuristics

Recombination heuristics, better known as genetic algorithms (since
they are said to mimic the process of evolutionary natural selection), have
been widely applied to a vast number of optimization and search problems
[ES03, Hin08]. Broadly speaking, solutions out of given pool are, repeatedly,
altered and combined, with the ultimate goal of obtaining a new solution
that excels all of its predecessors.

Accordingly, we developed a heuristic, denoted simply by recombina-
tion heuristic (RCH), for the SPG that comprises in essence a recombi-
nation of several known solutions. In the following, RCH is described in the
context of an SPG, but it can be naturally extended to cover the different
Steiner problem variants discussed in this thesis. Preliminarily, we define
the set of solutions to be considered for recombination by L; in the case of
our solver L comprises the, at most 50, best found solutions of the current
solving process.

The heart of RCH is the n-merging (n ≥ 2) operation, subsequently de-
fined for a given solution S: This solution is merged with pseudo-randomly
selected n − 1 solutions out of L \ {S} to form a new graph GS consisting
of all edges and vertices that are part of at least one of the n solutions. Ap-
plying the reduction techniques introduced in Section 2.2 to GS , we obtain
a reduced graph G′S . Next, a solution to G′S is computed in two steps.

First, the cost of each edge is pseudo-randomly reduced for each solution
it appears in, as suggested by [RUW01] and RSPH is employed. To this end,
we compute the αi values to each vertex vi of G′S (considering the new edge
weights as an LP solution) and perform 50 runs of RSPH using the vertices
of highest αi values as starting points. Thereupon, denote the best found
solution by S′.

Second, after retrieving the original edge costs, VQ is employed on S′.
Finally, S′ is re-transformed to the original solution space.

The RC heuristic is clustered around the n-merging operation: Given a
new solution S, in one run consecutively three 2-, two 3- and 4-, and one 5-
merges are performed. When a solution S′ is generated during an i-merging

2.3 Finding a Solution: Primal Heuristics 36

with a smaller cost than S, we set S := S′ and attempt to add S′ to L.
Moreover, in this case a new run is started after the conclusion of the current
one. The total number of runs is limited to ten. RCH is called whenever r
new solutions have been found compared to its last execution. Initially, r is
set to 5 (the minimum number of solutions to be available before executing
RCH) and modified throughout the solution process, setting r := 0 if a
solution has been improved during the execution of RCH and r := r + 1
otherwise.

Finally, it should not go unmentioned that recombination heuristics for
the SPG were already suggested in [RUW01] and [PUW14]. Nevertheless,
they differ widely from the heretofore introduced RC heuristic: First, in
neither of these publications reduction techniques were used. Additionally,
the authors merge merely two solutions and furthermore deviate in several
details, e.g. they do not apply a criterion for selecting start vertices for
RSPH.

2.4 Solving to Optimality: Branch and Cut 37

2.4 Solving to Optimality: Branch and Cut

Since the employed model PCF potentially contains an exponential num-
ber of constraints, see Section 2.1, starting with the associated LP relax-
ation becomes prohibitive already for medium-seized instances. Therefore,
a branch-and-cut algorithm is employed. In general, branch-and-cut can
be seen as a modification of branch-and-bound, starting with only a subset
of the model constraints and employing cutting planes at each (or certain
designated) branch-and-bound nodes to tighten the LP relaxations [Mit02].

The algorithm employed in this thesis is largely in accordance with the
approach described in [KM98].

2.4.1 Separation Methods

The initialization of the branch-and-cut solving process at the root node is
done be setting up an LP that contains the constraints (23) and the trivial
inequalities 0 ≤ ya ≤ 1 for all a ∈ A. Thereafter, separation routines for the
cut inequalities (21) are deployed. For this purpose, four types of methods
are implemented in both Jack-III and SCIP-Jack; a more detailed report
can be found in [KM98].

Generic Cuts

Considering the edge values of an LP solution as capacities, we only need
to check for each ti ∈ T r whether a minimal (r, ti)-cut is less than one, in
order to find violated inequalities. If such a cut exists, it corresponds to a
violated inequality, otherwise there is none. When using the highest label
preflow-push algorithm described in [GT88], the overall running time for
determining minimal (r, ti)-cuts for each ti ∈ T r is of O(

√
m+ n2).

Back Cuts

The number of separated inequalities can be increased by reversing the flow
of each arc and additionally examining the (ti, r)-cuts for each ti ∈ T r.
On the downside, however, the above mentioned highest label preflow-push
algorithm cannot be used, because for each (ti, r)-cut the source vertex is
changed.

Nested Cuts

The number of separated inequalities can also be increased by nesting the
cuts: Having found a minimal cut between the root and a ti ∈ T r, all
corresponding variables in the current LP solution are temporarily locked
to one and another attempt to find a (r, ti)-cut is initiated. The procedure
is reiterated until the flow between r and ti is at least one. This nesting
approach can be combined with the back-cuts.

2.4 Solving to Optimality: Branch and Cut 38

Creep Flow

A different strategy is to attempt to determine a cut of minimal cardinal-
ity. This can be done by adding a very small capacity ε > 0 (which is
defined by SCIP) to all arcs. While this deteriorates the empirical running
time for computing a minimal cut, as more arcs have to be considered, the
time required for re-optimizing the linear program is substantially decreased
[KM98, Pol04].

2.4.2 Branching

Despite the tightness of the employed model, for certain hard instances
branching is still necessary. For this purpose we have developed a simple
SPG specific branching-rule, which is nevertheless empirically stronger than
its refined generic counterparts natively implemented in SCIP. For a more
general discussion on branching we refer to [AKM04].

As opposed to customary approaches, instead of branching on vari-
ables, i.e. in the case of the SPG on arcs, we employ vertex branch-
ing [HRW92]. This means that during the branch-and-bound procedure a
predefined Steiner vertex is rendered a terminal in one child node and ex-
cluded in the complementary node. To determine such a Steiner vertex we
suggest the following criterion:

Let y ∈ [0, 1]A be an LP solution at the current node during the branch-
and-cut. Select a vertex vi ∈ V \ T to branch upon, such that:∣∣ ∑

e∈δ−(vi)

ye − 0.5
∣∣ (32)

is minimal among all Steiner vertices. The idea underlying (32) is to keep the
branch-and-bound tree balanced. Also, branching on vertices as compared
to arcs exerts more influence on the model, since excluding a vertex forces
the solver to ignore all of its incident arcs, while just discarding a single arc
bears a lower impact. Furthermore, including a vertex as opposed to an edge
leads to an enhanced flexibility, since the vertex can usually be contained in
different ways in a feasible solution, possibly setting the stage for a better
(local) upper bound.

2.5 Implementation 39

2.5 Implementation

Since this thesis is considered to be of prevalently mathematical nature, we
confine ourselves to presenting a synopsis of the implementation and refer
to the online documentation [Reh] of SCIP-Jack for more details.

2.5.1 SCIP-Jack: A General Purpose Solver for Steiner Tree
Problems

SCIP

The foundation of our Steiner problem package is the academic MIP solver
SCIP. Besides being one of the fastest non-commercial MIP solvers [Mit15],
SCIP is a general branch-and-cut framework. Its plugin-based design pro-
vides a simple method of extension to handle a variety of specific problem
classes. Furthermore, SCIP renders ubiquitous mastery of the solving pro-
cedure possible and allows the access to detailed processual information.

SCIP is implemented as a C callable library (although C++ wrapper
classes are provided for user defined plugins). It should be noted that SCIP
does not come with a native LP solver. However, an interface is provided
instead, allowing the usage of common commercial solvers such as CPLEX2

or Gurobi3. Furthermore, the LP solver SoPlex [Wun96] is distributed
along with SCIP in the SCIP optimization suite [BGG+12], which is likewise
freely available for academic purposes.

For more information on SCIP see [Ach09].

Jack

Jack, or more precisely Jack-III, is a solver for Steiner tree problems in
graphs described by Thorsten Koch and Alexander Martin [KM98] in 1998.
It uses a branch-and-cut approach based on Formulation 5. Furthermore,
it comprises several preprocessing techniques, e.g. DT and computationally
expensive but more effective versions of the SD and BD3 tests. Also, the
original version of RSPH, see Section 2.3, is used. At the time of publishing
Jack-III was able to solve all problem instances that had hitherto been
discussed in the literature to optimality. Since then it has frequently been
referred to and the separation approach using Formulation 5 has successfully
been reutilized for several different solvers, e.g. [Lju04, Pol04].

Jack-III was prevalently hand-tailored and implemented in C. However,
for solving linear programs CPLEX 4.0 was used.

2http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
3http://www.gurobi.com/products/gurobi-optimizer/

2.5 Implementation 40

SCIP-Jack

SCIP-Jack was spawned by the endeavour to embed the hand-tailored
Jack-III into a state-of-the-art MIP-framework. The use of a general MIP
solver renders the model to be solved highly pliant, which is of pivotal impor-
tance to the generic solving approach employed in this thesis. Furthermore,
a general framework was presumed to facilitate the incorporation of both,
algorithms published in the literature since the creation of Jack-III and
ad hoc developed methods (as for example the numerous novel techniques
described in this thesis). SCIP, being freely available for academic research
and providing the above described features, was a natural choice. Another
advantage of this decision comes with the general solution methods natively
implemented in SCIP, e.g. cutting planes, being perpetually kept up-to-
date by the continuous improvements of the framework.

Concerning the implementation of SCIP-Jack, it indubitably bears
mentioning that the original embedding of Jack-III into SCIP was car-
ried out by Gerald Gamrath, Thorsten Koch and Michael Winkler. How-
ever, the resulting initial version of SCIP-Jack did not include any of the
modifications and extensions described in this thesis. Furthermore, Gerald
Gamrath, Stephan Maher and Yuji Shinano were involved in the further
development of SCIP-Jack; in this context, each solving method that was
not implemented or developed by the author of this thesis is marked as such.

The first plugins to be implemented were a reader to read problem in-
stances and problem data to store the graph and build the model within
SCIP. Within these plugins the reading methods and data structures of
Jack-III could be adopted largely unaltered. However, for handling the
different Steiner variants introduced in Section 3, extensions were necessary.
The heart of the new implementation is a constraint handler that checks
solutions for feasibility and separates any violated model constraints. The
separation methods already existent in Jack-III are deployed for this pur-
pose, while SCIP provides a filtering of cuts to improve numerical stability
and dynamic ageing of the generated cuts. By default, only the creep flow
strategy (together with the flow inequalities) is used, since it proved to be
empirically superior to other combinations, evidenced by both experiments
conducted with SCIP-Jack and results reported in [KM98] for Jack-III.
However, by means of parameters, each separation method introduced in
Section 2.4.1 can be deployed at will by the user.

Additionally, native general-purpose separation methods of SCIP such
as Gomory and mixed-integer rounding cuts are employed.

Jack-III already included a large number of reduction methods for the
SPG, as described in [KM98]. However, with the developments described in
Section 2.2, only the, basic, DT reductions were reused for SCIP-Jack.

For the branch-and-bound search a new plugin was implemented that
includes the Steiner specific vertex branching introduced in Section 2.4.2.

2.5 Implementation 41

Node selection is performed with respect to a best estimate criterion – in-
terleaved with best bound and depth-first search phases [Ach07].

The three SPG specific primal heuristics described in Section 2.2.5 have
been implemented in SCIP-Jack as separate plugins, the heuristics inte-
grated in Jack-III are not used.

Figure 3: Depiction of a skipjack tuna, see [Wik].

Finally, also a Steiner problem specific propagator [Ach07] was imple-
mented, based on an idea first published in [Dui93]:

Let vi be a vertex in an SAP instance and assume that reduced costs are
given. Considering the reduced costs as arc weights, vi can be eliminated if
the length of a shortest path from the root to vi plus the length of a shortest
path from vi to a terminal other than the root exceeds the difference between
the best known primal bound and the current dual bound. If the criterion is
fulfilled for a vertex vi, all variables corresponding to incident arcs are fixed
to zero. An analogous test can be performed for eliminating single arcs.
These two tests allow to eliminate a large number of vertices and edges, as
illustrated in [Pol04]. By virtue of this test, the primal and dual solving
methods form a distinctly symbiotic relation: An improved dual bound,
empirically, allows the RSPH heuristic to calculate better primal solutions,
while the thereby provided upper bounds enable the propagator to fix more
variables, which facilitates the underlying LP.

2.5.2 Parallel Computing

Yet another advantage of employing SCIP as an underlying framework is
the availability of the two parallel extensions ParaSCIP [SAB+12] and
FiberSCIP [SHVW13], which are built by using the Ubiquity Generator
Framework (UG) [SHVW13].

For parallelizing a SCIP based problem specific solver, adding a small
glue code and creating a link to one of the UG libraries is already sufficient.
This glue code consists of an additional class with a function that issues calls
to include all SCIP plugins required for the sequential version of the code.
Thereby, no modification to the sequential version of the problem specific
solver is required. In this way, users are enabled to obtain their own problem
specific parallel optimization solver, which can conduct parallel tree searches
both on a shared memory computing environment and on a distributed one.

2.5 Implementation 42

Using these means, we have created a parallel version of SCIP-Jack.
Since this extension has been obtained in corporation with Yuji Shinano,
the creator of UG, we do not provide more detailed information, but refer
to [GKM+15] instead. However, we note that by using this approach, it is
possible to employ large supercomputing resources to solve computationally
difficult Steiner tree problems with SCIP-Jack. Some results, including
improved bounds for several unsolved problem instances from the literature,
will be provided in Section 4.1.1.

2.6 Computational Results and Discussion 43

2.6 Computational Results and Discussion

When attempting to evaluate the quality of algorithms for NP-hard problems
(like primal heuristics) one is commonly faced with a predicament: On the
one hand, just assessing the algorithms on a (confined) set of test instances
might be incomplete, since with other types of problem structure ostensibly
prolific methods might fail dismally. On the other hand, establishing guar-
anteed performance ratios cannot be regarded a valid substitute, since such
results are prevalently too pessimistic from an empirical point of view, due
to their worst-case character or a lack of suitable proving techniques.

Since this thesis is focused on practical solving methods, we have de-
cided for empirical evaluation using benchmark instances, but try to keep
the range of problem types reasonably wide, as to cover many disparate
structures within the instances. The probably most extensive and frequently
used [KM98, Pol04, VD04, PUW14] SPG benchmark library is the Stein-
Lib [KMV01]. However, in the course of the 11th DIMACS Challenge addi-
tional, often real-world derived, test sets were made publicly available. Since
using all available instances in each section would result in an unreasonably
lengthy and likely tedious work, a confined set of test instances has been
selected for intermediary results. However, a testing on a more compre-
hensive set of instances, using the complete SCIP-Jack package with its
final default configurations as well as comparisons with other state-of-the-art
solvers, is provided in Section 4.

For testing the computational results of SCIP-Jack, the focus in this
section lies on the impact of the reduction techniques and the primal heuris-
tics. To this end, three sets from the library SteinLib and one published in
the 11th DIMACS Challenge are used. Table 1 provides a brief description
of the used instance classes. In each line the name of the corresponding test
set is given in the first column. The next column lists the number of in-
stances within the test set, thereafter the range of the number of vertices for
the individual instances within the class is given. Furthermore, the Status
indicates whether all instances of a class have been solved in the literature.
Conclusively, some elementary characteristics including the origins of the
test set are provided. It should be noted that the vienna-I instances come
already preprocessed by methods described as being ”simple” in [LLL+14].

All computational experiments were performed on a cluster of Intel Xeon
X5672 CPUs with 3.20 GHz and 48 GB RAM, running Kubuntu 14.04 and
using SCIP 3.2. Underlying, CPLEX 12.6.2 is employed as LP solver since
it is empirically faster than the academic LP solver SoPlex, see [Mit15].
For all computations a time limit of two hours is set.

If an instance is not solved to optimality within the time limit, the
gap is reported, which is defined as 100 · pb−db

pb % for the final primal and
dual bound pb and db, respectively. If no lower or upper bound has been
computed, the gap is set to 100 percent. The average gap is obtained as an

2.6 Computational Results and Discussion 44

Name Instances |V | Status Description

E 20 2500 solved Sparse, randomly generated instances with
integer edge-weights between 1 and 10 [Bea89].

I320 100 320 solved Sparse, randomly generated graphs
constructed to defy preprocessing [Dui93].

vienna-I 85 7886 - 17881 solved Sparse, real-world instances, generated from
telecommunication networks [LLL+14].

PUC 50 64-4096 unsolved Hard instances, hypercubes from
code covering and bipartite graphs [RdAR+01].

Table 1: Classes of SPG test instances.

arithmetic mean while averages of both the number of branch-and-bound
nodes and the solving time are computed by taking the shifted geometric
mean [Ach07]: Given values t1, ..., tk ∈ R≥0, and a shift s ∈ R≥0, the
shifted geometric mean is defined as

k

√√√√ k∏
i=1

(ti + s)− s. (33)

Compared to the arithmetic average, the use of a geometric mean brings
the benefit of reducing the influence of very hard instances. On the other
hand, the use of a shift is motivated by the endeavour to reduce the effect
of very easy instances on the mean value. In the subsequent computations,
for both the number of nodes and the solving time a shift of s = 10 is used
if not specified otherwise.

A synopsis of the performance of SCIP-Jack on the four SPG test
classes is provided in Table 2. Each line within the table provides aggre-
gated results for the class specified in the first column. The second column
lists the number of instances in the set, the third column states the number
of instances solved to optimality within the time limit. Next, the average
number of branch-and-bound nodes and the average run time for the solved
instances are reported. In contrast, the final two columns give the average
number of branch-and-bound nodes and the optimality gap of all instances
that could not be solved to optimality within the time limit. For the Steiner
problem variants discussed in Section 3 similar tables are provided. The
Timeout columns are omitted if all instances have been solved to optimal-
ity. More intricate, instance-wise, computational results can be found in
Appendix C.

The E test set can be solved quickly by SCIP-Jack, only the e18 in-
stance requires comparably more time, being solved in 388 seconds. Of the
I320 class 95 instances can be solved to optimality in an average time of
35.5 seconds. The gap of all unsolved instances is smaller than 0.5 percent.
The results for the vienna-I test set are less satisfactory, with only about 60
percent of the instances being solved. However, the average optimality gap
is smaller than 0.1 percent. Interestingly, only one of the unsolved instances

2.6 Computational Results and Discussion 45

goes beyond the root node and all other 14 problems that require branching
are solved to optimality, none requiring more than 65 branch-and-bound
nodes.

Finally, the PUC class appears to be notably more difficult for SCIP-
Jack than all preceding test sets. This phenomenon is unsurprising given
that more than half of the instances in this set still remain unsolved in the
literature. SCIP-Jack only solves nine of the 50 instances and none at the
root node. Notably, the number of branch-and-bound nodes for the solved
instances is more than four times higher than for the unsolved ones. The
results suggest that while the employed model PCF proved to be tight for
the other three test sets, often allowing optimal solving at the root node,
this is not true for the PUC instances.

The results demonstrate the ability of SCIP-Jack to solve 174 out of
225 SPG benchmark instances, but at the same time its limitations come
into the open.

Optimal Timeout

Class Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

E 20 20 2.0 5.0 – –
I320 100 95 23.7 35.5 1342.2 0.3
vienna-I 85 50 2.8 431.8 2.2 0.1
PUC 50 9 581.3 88.5 137.0 3.9

Table 2: Computational results for SPG instances.

2.6.1 Impact of Reduction Techniques

In order to measure the strength of each reduction method we do not eval-
uate it as an individual component, but as part of the entire reduction
package. In this way, for each method we report the strength of the re-
duction set without it. This approach might be considered tendentious as
it merely regards the strength of a technique against the backdrop of the
particular reduction package employed in this thesis (and its eventual id-
iosyncrasies), but at the same time it allows to dissect the overall reduction
approach more precisely; this exclusion based procedure has already been
applied by other authors, for instance in [Ach07]. It should be noted that
for measuring the average number of reduction the arithmetic mean is used
(also to allow comparisons with results from the literature), while for the
run time we resort to the shifted geometric mean with shift s = 1.

The results of employing the entire reduction package are reported in
Table 3. As a comparison, the results of the basic O(m+ n log n) reduction
package employed in [Pol04] are provided. The reported execution times are
similar to ours, however they were computed on a SPARC-III CPU with
900 MHz, so on a common machine we expect their reduction package to

2.6 Computational Results and Discussion 46

(a) e01 original (b) e01 reduced

Figure 4: Illustration of an instance of test set E before and after presolving
(terminals are drawn as squares).a

aCreated using yEd (http://www.yworks.com/en/products/yfiles/yed/)

be faster. We put this down to the fact that our reduction methods are
reiterated more extensively (until less than 0.1 % of all edges are removed)
and, to a lesser degree, that in [Pol04] more efficient implementations of
certain reduction methods are used; e.g. our package does not include the
nearest-common-ancestor sub-method for the SD test.

Also in terms of average numbers of reductions the results in [Pol04] are
superior, which is non-surprising as the authors employed a larger number
of methods. Nevertheless, our reduction methods prove to be notably strong
on all instance classes except for the synthetic, hard PUC set. Even though
also the I320 test set was designed to defy preprocessing, its number of edges
and vertices can still be notably reduced. Most salient are the reductions
for the E test set with less than 14 percent of the edges remaining, but
also the real-world, large vienna-I instances can be heavily reduced, to less
than a third of their original size. Figure 4 visualizes the strength of the
reduction techniques on the instance e01 of class E: Of a problem originally
encompassing 2500 vertices and 3125 edges, an instance consisting of only
seven Steiner vertices and four terminals remains, being solvable by hand.

Remaining Remaining Remaining
Class Vertices[%] Edges[%] ∅Time [s] Edges[%] in [Pol04]

E 24.4 13.6 1.1 3.0
I320 83.4 82.5 0.2 71.8
vienna-I 31.2 30.0 14.8 (no results)
PUC 98.4 99.2 0.2 99.3

Table 3: Computational results of the SPG reduction package.

2.6 Computational Results and Discussion 47

Having established the overall picture, the results illustrated in Table 4
allow us to cut through the surface and analyze the impact of the individual
components within the reduction package: The first four rows list the per-
centual change in the number of remaining edges resulting from successively
excluding each reduction method; the last four lines provide the correspond-
ing percentual change with respect to the run time of the entire reduction
package. In this way, the first column of each line states the test set to be
considered. Ensuing, each of the next seven columns provides the result of
excluding the affiliated reduction method specified in the head of the table.
It should be noted that positive values signify a favourable impact of the
respective reduction method on the overall package: With respect to the
reduced edges a positive value denotes a higher amount of remaining edges
when disabling the specified method; likewise, a positive percentage for the
overall preprocessing time indicates that the reduction package requires more
time as a consequence of excluding the respective method.

First, it can be remarked that each exclusion of a method diminishes
the strength of the reduction package. However, the leverage varies widely.
The strongest impact is exerted by the DT test: Concerning the reduction of
edges it outnumbers all other methods on each of the four test sets. However,
for the E set it is also notably time-consuming. Next is the SD test: While
it is not effective on the I320 and PUC sets (designed to defy preprocessing),
it demonstrates its strength on the other two. Not only is it the second most
effective test in terms of reduced edges, but it also decreases the execution
time of the reduction package for both E and vienna-I.

Shifting the point of view towards the other end, the SDC test inevitable
catches the attention. Although it can claim credit for a certain reduction of
edges, it is also notably time-consuming. A decrease of the constant upper
bound or a later execution of the method within the reduction loop might
seem reasonable, but also decreases its strength. Of even less effect is the
SDST test with only 0.2 percent on the E class and less than 0.1 otherwise.

Addressing efficiency, the BND test sticks out: It manifests a solid ef-
fectiveness at minimal extra cost, defying its poor theoretical worst-case
complexity.

Finally, having performed additional experiments to evaluate our novel
extensions, we note that the modification of the NV test described in Sec-
tion 2.2.3 eliminates eight percent more edges, compared to the original test.
Additionally, the extension of the BND test, see Lemma 12, allows to elimi-
nate around 13 percent more edges on average, as compared to the original
test. For both extensions less than one percent of additional execution time
is required (compared to the original NV and BND tests).

Concluding, the employed reductions are notably efficient (and indeed
indispensable for the overall exact solving results) on all but one of the tested
instance sets. Nevertheless, several additional reduction methods could be
incorporated, see [Pol04] and computational enhancements of existing ones

2.6 Computational Results and Discussion 48

Class DT SDST SD SDC NTD3,4 NV,SL BND

E
d
g
es

E +205.2 +0.2 +148.8 +2.9 +41.8 +18.6 +105.2
I320 +12.1 +0.0 0 +0.1 +1.0 +0.1 +7.8
vienna-I +132.5 +0.0 +86.4 +14.3 +35.9 +12.4 0
PUC +0.8 0 0 +0.0 0 0 0

T
im

e E -41.7 -14.6 +12.2 -34.4 -22.0 -9.9 +0.9
I320 -4.4 -2.1 -4.9 -68.7 -8.4 -2.1 +0.7
vienna-I +1.6 -0.5 +7.2 -10.2 +4.7 +3.8 -0.1
PUC -7.8 -8.0 -17.5 -68.6 -19.0 -7.4 -7.5

Table 4: Computational results of the Steiner problem presolving. Each
column reports the results of the reduction package without the specified
method. The values denote the percentual change with respect to the default
settings (see Table 3).

could be made to improve their efficiency (for example the nearest-common-
ancestor approach for the SD test).

2.6.2 Impact of Primal Heuristics

To avoid the tedious enumeration of all possible combinations, for measuring
the efficiency of the heuristics we will just consider three reasonably natural
arrangements of the three (types of) heuristics: First, merely RSPH, second
RSPH along with VQ and third RSPH, VQ and RCH. The selected order can
be justified by the fact that VQ starts from a feasible solution, and RCH both
integrates VQ and requires the existence of solutions. The computations are
performed on instances already reduced by the standard presolving of SCIP-
Jack, see Section 2.2.5. Only instances are considered that cannot already
be solved by the reduction techniques alone.

The experimental results illustrated in Table 5 are subdivided into four
consecutive blocks consisting of four lines each. The first block lists the
results obtained from disabling all Steiner problem heuristics. Accordingly,
the next ones state the results of using the RSP, the VQ and finally the
RC heuristic in an accumulative manner. In each line, the test set to be
examined is specified in the first column, followed by the number of non-
trivial instances that the set contains after the preprocessing. Next, the
number of solved instances and the arithmetic mean of the gap among the
unsolved problems is reported. Finally, the last column states the average
execution time of all non-trivial instances within the set, given as the shifted
geometric mean.

Scrutinizing the first four lines of Table 5, displaying the results of using
neither of the three Steiner heuristics, one can see that all E and most of
the I320 instances are solved, with the gap for the unsolved instances being
small. However, for the vienna-I set the gap is very high, which is due to
the fact that for 31 instances no primal bound could be computed (and the

2.6 Computational Results and Discussion 49

Name Instances Solved ∅Gap [%] ∅Time [s]

n
o
n
e

E 18 18 – 9.7
I320 100 94 0.28 54.7
vienna-I 85 53 96.88 1232.4
PUC 50 9 76.07 3189.2

R
S
P
H

E 18 18 – 5.4
I320 100 95 0.36 44.2
vienna-I 85 53 0.15 1172.3
PUC 50 9 5.08 3290.8

+
V
Q

E 18 18 – 4.8
I320 100 95 0.34 56.4
vienna-I 85 53 0.15 1248.0
PUC 50 9 4.47 3313.5

+
R
C
H

E 18 18 – 5.6
I320 100 95 0.28 46.7
vienna-I 85 53 0.13 1225.6
PUC 50 9 3.89 3237.5

Table 5: Computational results of employing the Steiner problem heuristics
in accumulative stages.

gap is set to 100 percent). Likewise, to 31 instances of the PUC class no
primal bound could be computed. Accordingly, the average gap is notably
high.

When the RSP heuristic is used the image changes, but mostly with
respect to the average gap: It is vastly reduced for both the vienna-I and
PUC class, owed to the fact that to all instances a feasible primal solution
could be found. For the I320 test the gap is higher, owned to the fact that
one more instance can be solved to optimality; for the remaining, mutually,
unsolved instances the gap is smaller when employing RSPH. Finally, the
average execution time is reduced by around 45 percent on the E class, by
20 percent on I320 and by five percent on vienna-I. In contrast, it increases
for the PUC test set by three percent.

Additionally employing the local heuristics VQ, the change is limited:
For the E test set the time is reduced, but for the rest of the test classes it
has increased slightly. However, the average gap for both the I320 and PUC
instances is lessened.

Finally, the combination of all three heuristics, as illustrated in the last
four lines of Table 5, displays the lowest average gaps compared to all three
prior compounds. However, with respect to the run time the results are
only moderately better compared to not employing Steiner heuristics and
only one more problem could be solved to optimality. The results seem to
suggest that the combination of all three heuristics is more potent when it
comes to solving hard instances. This behaviour becomes most pronounced
with the PUC test set, which contains 29 instances not solved to optimality

2.6 Computational Results and Discussion 50

in the literature yet.
Summarizing, the combination of RSPH, VQ and RC considerably helps

generate good primal solutions for hard instances and enables SCIP-Jack to
keep the optimality gap for all except the PUC instances below 0.6 percent.
Supplementary to the results already presented, in 98 % of all cases the first
solution was found by RSPH. For all other instances SCIP constructed a
feasible trivial solution prior to the first call of RSPH, which was significantly
improved by the execution of this heuristic.

2.6.3 Branching

This subsection is concerned with providing empirical information on an ad-
ditional solving component of SCIP-Jack, namely the novel Steiner vertex
branching rule introduced in Section 2.4.2.

For measuring the effectiveness of the branching rule, it is compared with
the branch-and-bound search organized by SCIP, formerly used in SCIP-
Jack [GKM+15]: This procedure encompasses a default hybrid branching
rule [AB09], that combines strong branching and pseudo costs with history
information. For both the old and new branching strategy, node selection is
performed with respect to a best estimate criterion – interleaved with best
bound and depth-first search phases [Ach07].

For the purpose of comparison, all instances of the classes E, I320,
vienna-I and PUC (see Table 1) that required branching were collected.
Of these 89 instances, one is from set E, 41 are from I320, 18 from vienna-I
and 29 from PUC. The results leave little ambiguity: Table 6 shows that the
novel Steiner vertex branching rule allows to solve seven more problems to
optimality. Moreover, although more unsolved problems remain for the Hy-
brid branching strategy, the average gap is still higher than for the Steiner
vertex branching (where the unsolved problems should be harder on aver-
age); on the mutually unsolved instances the gap resulting from applying
the new Steiner vertex branching is even more than 30 percent smaller than
the gap resulting from the Hybrid strategy.

The notable differences between the two branching strategies come de-
spite the fact that on average almost half of the time is spend at the root
node, i.e. prior to the respective branching rule exerting any effect. Finally,
it can be seen that the number of required nodes is only moderately smaller
for the Steiner vertex branching.

Optimal Timeout

Branching Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

Hybrid (old) 89 57 72.3 425.0 2129.2 2.0

Vertex (new) 89 64 96.4 343.7 2001.2 1.8

Table 6: Computational results for SGP instances requiring branching.

2.6 Computational Results and Discussion 51

Complementary to Table 6, the overall performances of the two branch-
ing rules are illustrated in Figure 5. The shifted geometric execution time
(of all instances) is provided along with the number of solved instances and
the (arithmetic) average gap of the unsolved instances. It can be seen that
the average time for the instances solved by using Hybrid branching is al-
most 50 percent higher, as compared to the results obtained by using Steiner
vertex branching.

Hybrid
Vertex

800

1200

Impact of Branching Rules

T
im

e
(i

n
S

ec
on

d
s)

Solved Instances
(Gap in %)

57
(2.0)

64
(1.8)

Figure 5: Results of Hybrid and Steiner vertex branching on 89 SPG in-
stances within E, I320, I, PUC. The run time is given as the shifted geo-
metric mean on all instances, with a limit of two hours. The gap is stated
as the arithmetic mean of all respectively unsolved instances.

Finally, we expect to achieve a further improvement of the performance
of SCIP-Jack in the future by refining the introduced Steiner vertex branch-
ing approach. Nevertheless, the results suggest that the newly developed
Steiner branching rule is already superior to the sophisticated but generic
default branching of SCIP.

2.6 Computational Results and Discussion 52

53

3 Variants of the Steiner Tree Problem

With SCIP-Jack being able to cope with SPG instances, the next step is
to extend the scope and set about solving Steiner problem variants more
frequently derived from real-world applications. In order to verify the va-
lidity of the hereinafter introduced transformations, it will be continually
proceeded as follows:

First, a one-to-one correspondence between the solution sets of the orig-
inal and the transformed problem is demonstrated. Second, a linear relation
between the respective solutions values is established. This relation implies
that a problem can be solved on its transformed solution space.

The time limit for the computational experiments within this section is
set to two hours.

3.1 The Steiner Arborescence Problem 54

3.1 The Steiner Arborescence Problem

Observing that the SPG can be solved as a Steiner arborescence problem, it
can be verified that the SAP is NP-hard as well. Further theoretical results,
such as on hardness and approximability, can be found in [CCC+98, HK03].
Since it constitutes the backbone for solving both the Steiner problem in
graphs, see Section 2, and most Steiner problem variants discussed in the
remainder of this thesis, the SAP occupies a central position in our generic
solving approach. For this reason, a formalized description of the trans-
formation already introduced in Section 2.1 is provided subsequently. In
contrast to the SPG, arcs can be of zero cost, since such arcs can in general
not be contracted without loosing optimal solutions.

Transformation 1 (SPG to SAP).
Input: An SPG P = (V,E, T, c)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , T ′ := T , A′ := {(v, w) ∈ V ′ × V ′ : {v, w} ∈ E}.

2. Define c′ : A′ → Q≥0 by c′a = c{v,w}, for a = (v, w) ∈ A′.

3. Choose a root r′ ∈ T ′ arbitrarily.

4. Return (V ′, A′, T ′, c′, r′).

Although the transformation is well-known, e.g. [KM98], it has appar-
ently not been formally established yet.

Lemma 15 (SPG to SAP). Let P = (V,E, T, c) be an SPG and P ′ =
(V ′, A′, T ′, c′) an SAP obtained by applying Transformation 1 on P . Denote
by S and S ′ the sets of solutions to P and P ′ respectively. Thereupon, S ′ can
be mapped bijectively onto S by assigning each (V ′S′ , A

′
S′) ∈ S ′ a (VS , ES) ∈ S

such that

VS := {v ∈ V : v ∈ V ′S′}, (34)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′}. (35)

The objective value is preserved.

Proof. First, it can be observed that (34) and (35) form indeed a mapping
S ′ → S: Each arc of a solution to P ′ is substituted by its undirected coun-
terpart and the vertices are maintained. Since for an SAP all terminals
have to be spanned by an directed tree, the corresponding undirected tree
likewise contains all terminals.

To see the one-to-one correspondence, let S = (VS , ES) ∈ S and proceed
as follows:

3.1 The Steiner Arborescence Problem 55

Surjective. In the following, a tree S′ = (V ′S′ , A
′
S′) ∈ S ′ is constructed

that is mapped by (34) and (35) to S, demonstrating that the mapping is
a surjection. Initially, set V ′S′ := VS and A′S′ := ∅. Traverse (VS , ES), e.g.
using breadth-first search, starting from r′ and add for each w ∈ VS visited
from v ∈ VS the arc (v, w) to A′S′ . S

′ := (V ′S′ , A
′
S′) is a solution to P ′ as it

consists of directed paths from r′ to all terminals and by applying (34) and
(35) we obtain S.

Injective. S′ is the only solution to P ′ that is mapped by (34) and (35) to
S: Each S̃′ ∈ S ′ \{S′} contains at least one arc (v, w) such that (v, w) /∈ A′S′
and (w, v) /∈ A′S′ , since only substituting arcs in A′S′ by there anti-parallel
counterparts would not allow directed paths from the root to all vertices
V ′S′ . Consequently, the solution S̃ ∈ S corresponding to S̃′ contains the
edge {v, w}, whereas S does not. Therefore, S̃′ is not mapped onto S.

Finally, since for each {v, w} ∈ ES either (v, w) ∈ A′S′ or (w, v) ∈ A′S′
and vice versa, the costs of S′ and S are equal.

3.1.1 Reductions

Although various publications have addressed the Steiner arborescence prob-
lem, surprisingly we could not find any that discussed reduction techniques.
The reason for this phenomenon might be sought in a lack of publicly avail-
able and computationally challenging test instances. However, it might also
be due to the, at first glance perhaps surprising, fact that developing strong
reduction techniques for the SAP is much more delicate than for its undi-
rected kinsman, the SPG. The orientation of the tree renders the SAP much
less pliant to strategies such as alternative-based reduction, as will become
evident in the course of this section. Nevertheless, we have succeeded in
developing several, novel, reduction methods, which will be presented here-
inafter.

Throughout this subsection it will be presupposed that an SAP instance
PSAP = (V,A, T, c, r) is given and that r = t1. Furthermore, the reader is
reminded of the consistently used notation T r := T \ {r}.

Basic Reductions

By observing that to each non-terminal contained in an optimal solution
there is at least one incoming and one (non anti-parallel) outgoing arc,
the first four reduction techniques ensue forthwith. Although not explicitly
mentioned, these four reductions were already used in [GKM+15].

Non-terminal of in-degree zero (NTI0): A non-terminal vi with δ−(vi) =
∅ can be deleted along with all incident arcs.

Non-terminal of out-degree zero (NTO0): A non-terminal vi with
δ+(vi) = ∅ can be deleted along with all incident arcs.

3.1 The Steiner Arborescence Problem 56

Non-terminal with one neighbour (NTN1): A non-terminal vi with
exactly one adjacent vertex can be deleted along with its incident arcs.

Non-terminal with two neighbours (NTN2): A non-terminal vi with
1 ≤ |δ−(vi)| ≤ 2 as well as 1 ≤ |δ+(vi)| ≤ 2 and exactly two adjacent vertices
vj , vk can be deleted, adding:

1. The arc (vk, vj) of cost cki + cij if (vk, vi) ∈ A and (vi, vj) ∈ A.

2. The arc (vj , vk) of cost cji + cik if (vj , vi) ∈ A and (vi, vk) ∈ A.

In the case of two parallel arcs, one of minimal cost is retained.

Proof. If an arc in |δ−(vi)|, say (vj , vi), is contained in an optimal solution,
so is (vi, vk), since otherwise vi and (vj , vi) could be deleted to obtain a
solution of smaller weight.

Apart from these four methods, all reduction tests presented for the SAP
are newly developed. The first of them can be readily devised by considering
that each Steiner arborescence contains by definition directed paths from the
root to all further terminals:

Terminal of in-degree one (TI1): Let ti ∈ T r. If δ−(ti) = {(vj , ti)},
then (vj , ti) can be contracted into ti.

Similarly, there can be no path in a Steiner arborescence ending in r
since this would imply the existence of a cycle. Therefore, the following
reduction method is valid:

In-root arc (IRA4): All incoming arcs δ−(r) of the root can be deleted.

Finally, one can dispose of those vertices that cannot be part of all
optimal solutions:

Unreachable non-terminal (UNT): Let vi ∈ V \ T . If there is no di-
rected path from r to vi or no directed path from vi to a tj ∈ T r, then vi can
be deleted.

Proof. If vi is not contained in any directed path from r, it cannot be con-
tained in any Steiner arborescence. On the other hand, if there is no direct
path from vi to a terminal other than the root, then to any Steiner arbores-
cence S that contains vi there is one of no higher cost obtained by removing
vi and its ingoing arc and considering the connected component containing
r. Hence, there is at least one minimal Steiner arborescence not containing
vi.

4Any resemblance of the abbreviation to existing organizations is purely coincidental.

3.1 The Steiner Arborescence Problem 57

The UNT test can be implemented by running a breadth-first search
starting from r, only considering outgoing arcs for each vertex being pro-
cessed and finally deleting all unvisited vertices. Thereafter, a breadth-first
search using all terminals except for the root as start vertices and only
considering incoming arcs is performed. Finally, all vertices that were not
visited in the course of the search are deleted.

The successive execution of the above tests in the listed order is denoted
Basic Reduction (BR). All tests other than UNT process each vertex
and each arc at most once, but the latter requires executing a breadth-first
search. Hence, the overall worst-time complexity is of Θ(m), assuming that
the underlying graph is connected.

Alternative Based Reductions

For the remaining reduction methods to the SAP it will be presupposed
that the given instance PSAP is feasible. This assumption is tantamount
to the condition that for each non-root terminal ti ∈ T r there is at least
one directed path from r to ti. The latter can be easily validated while
performing the UNT test.

Lemma 16. Let ti ∈ T r, ~Pi a (directed) path from r to ti and a′i the last

arc of ~Pi. If

C(~Pi) ≤ min
a∈δ−(ti)\{a′i}

ca (36)

holds, then there is at least one minimal Steiner arborescence that contains
a′i.

Proof. Suppose the existence of a Steiner arborescence S = (VS , AS) not
containing a′i. Consequently, there is an arc a′′i ∈ AS ∩ δ(ti), a′′i 6= a′i.
By removing a′′i from S one obtains an arborescence S1 rooted in r and an
arborescence S2 rooted in ti. Denote by S′ = (VS′ , AS′) the subgraph yielded
from reconnecting S1 and S2 by ~Pi and removing all arcs anti-parallel to arcs
of ~Pi. Ensuing, to each vertex vk of S there is a directed path from r to vk
in S′. To render S′ cycle-free, which is not necessarily the case, repeatedly
remove from each vertex of S′ endowed with at least two incoming arcs
one of the latter. Since each arc is of non-negative weight, this procedure
cannot increase the cost of S′. As soon as for each vl ∈ VS′ the condition
|δ−S′(vl)| ≤ 1 is satisfied, S′ has become a tree.

Since S′ additionally contains all terminals, it is a Steiner arborescence.
Finally, (36) implies that

C(~Pi) ≤ ca′′i ,

so C(S′) ≤ C(S) can be inferred.

3.1 The Steiner Arborescence Problem 58

The affiliated test, denoted by Root Proximity Terminal (RPT), first
runs Dijkstra’s algorithm from the root until all terminals are scanned. Next,
for each terminal ti ∈ T r it is checked whether the premises of Lemma 16 are
satisfied and if so, the corresponding arc is contracted into ti. The worst-
case complexity is dominated by Dijkstra’s algorithm and is therefore of
O(m + n log n). Empirically, the run time can be improved by terminating
Dijkstra’s algorithm as soon as the minimal distance between the root and
any scanned vertex is higher than:

max
i∈{2,...,s}

{
min

{a′1,a′2}⊂δ-(ti)
{max{ca′1 , ca′2}}

}
. (37)

This value can be easily computed in Θ(m) by checking the two incoming
arcs of smallest cost to each terminal.

Lemma 17. Let ti, tj ∈ T r such that both (ti, tj) ∈ A and (tj , ti) ∈ A. If

c(ti,tj) ≤ min
a∈δ−(tj)

ca (38)

and

c(tj ,ti) ≤ min
a∈δ−(ti)

ca, (39)

then ti can be contracted into tj.

Proof. Let S be a Steiner arborescence containing neither (ti, tj) nor (tj , ti).

Further, denote by ~Pi the directed path in S from r to ti and by ~Pj the one
between r and tj . Due to S being cycle-free, three cases can be distinguished:

1. V [~Pi] ∩ V [~Pj] = {r},

2. V [~Pi] ⊂ V [~Pj],

3. V [~Pi] ⊃ V [~Pj].

By virtue of symmetry, only the first two cases need to be considered. So
suppose that ~Pi and ~Pj have only the root in common. Removing the,

unique, arc of ~Pi going into ti, one can divide S into an arbrorescence S1

rooted in r, and containing tj , and an arborescence S2 rooted in ti. By
inserting the arc (tj , ti), which is due to the premises of the claim of not
higher cost than the removed arc, a new arborescence S′ is obtained and
C(S) ≥ C(S′) holds.
Now suppose that ~Pi is a subpath of ~Pj . By removing the arc of ~Pj incident
to tj , the Steiner arborescence S is divided into an arborescence S1 rooted
in r and an arborescence S2 rooted in tj . Those can again be incorporated
to a Steiner arborescence of equal or smaller cost than S by inserting the
arc (ti, tj).

3.1 The Steiner Arborescence Problem 59

We refer to the test based upon Lemma 17 as Close Terminals (CT).
It can be performed by first computing the shortest incoming arc to each
terminal and subsequently checking to each terminal all incoming arcs. Since
thereby each arc is processed at most twice, the overall worst-case complexity
is of Θ(m).

Unfortunately, the concept of the bottleneck Steiner distance cannot be
directly transferred to the SAP: Consider an arc (vi, vj) ∈ A. One might
wonder whether, analogously to Lemma 1, this arc can be deleted if there is a
directed path from vi to vj other than (vi, vj) such that the distance between
two subsequent terminals (or between a terminal and one of the endpoints
of the path) is smaller than c(vi,vj). However, this is not true: Assume that
there is a Steiner arborescence S containing (vi, vj). Removing (vi, vj) would
segment S into one arborescence Sr rooted in r and one arborescence Svj
rooted in vj . Reconnecting the trees by a directed path that ends in a vertex
of Svj other than vj would require to reorientate Svj , which could lead to
additional costs or might even be impossible due to a missing bi-direction.
Hence, the bottleneck Steiner distance approach is not valid for the SAP.

However, at least a degenerate, but considerably less potent, version of
the bottleneck Steiner distance test holds for the SAP:

Lemma 18. Let (vi, vj) ∈ A. If there is a directed path ~P from vi to vj of

cost C(~P) ≤ cij, then (vi, vj) can be discarded.

Proof. Suppose that there is a Steiner arborescence S containing the arc
(vi, vj). By removing (vi, vj), S can be divided into an aborescence S1 rooted
in r and containing vi and and aborescence S2 rooted in vj . Reconnect S1

and S2 to a subgraph S′ = (VS′ , AS′) by inserting ~P and removing all arcs
in AS anti-parallel to arcs of ~P . Thereupon, S′ contains to each vertex
vk ∈ VS′ a directed path from r to vk. If S′ is not cycle-free, remove from
each vertex vk ∈ V ′S′ of in-degree greater than one in S′ one of its incoming
arcs. By continuing until each vertex of S′ is of in-degree at most one, S′

is rendered a Steiner aborescence. Since all arcs are of non-negative weight,
removing any of them cannot increase the cost of S′. Therefore, it can be
inferred from C(~P) ≤ cij that C(S′) ≤ C(S) holds.

We realize the corresponding test by adapting SDC, see Section 2.2.3,
in a straightforward way: Consider each arc (vi, vj) ∈ A. First, execute
a limited run of Dijkstra’s algorithm starting from vi, ignoring (vi, vj) and
using outgoing arcs only. Second, initiate the algorithm anew starting from
vj , this time considering exclusively ingoing arcs and ignoring (vj , vi). If
during this second run, a vertex is labelled that was labelled in the first run,
check whether the corresponding path between vi and vj is of no higher cost
than cij . In this case, (vi, vj) is eliminated.

3.1 The Steiner Arborescence Problem 60

Bound Based Reductions

Owed to the orientation of paths in the SAP, we adapt a few definitions: Let
vi, vj ∈ V . Next, let ~d(vi, vj) be the length of a shortest directed path from

vi to vj not containing any intermediary terminal. We set ~d(vi, vj) := ∞
if such a path does not exist. For a digraph D = (V,A) we denote by
GD = (V D, ED) an undirected graph such that V D := V , ED :=

{
{vi, vj} ∈

V × V | (vi, vj) ∈ A ∨ (vj , vi) ∈ A
}

. Further, we define edge costs c such
that c{vi,vj} := min{c(vi,vj), c(vj ,vi)} for {vi, vj} ∈ E (we set c(vi,vj) := ∞ if
(vi, vj) /∈ A but (vj , vi) ∈ A). Furthermore, we stipulate that all leaves of
a Steiner arborescence need to be terminals. Otherwise, due to zero-cost
arcs being admissible, a minimum Steiner arborescence might contain non-
terminal vertices of degree one, which would thwart the following lemmata.
For practical purposes this precondition is of no relevance, since a Steiner
vertex that occurs as a leaf in at least one minimum Steiner arborescence
can be forthwith discarded.

Having performed the UNT test, one can start from the premise that to
each non-terminal vertex there is at least one directed path to a terminal in
T r. These preliminaries allow to define a variation of the Voronoi diagram
introduced in Section 1: A rooted inward Voronoi diagram to D is a
partition

{
N(t) | t ∈ T

}
of V such that:

N(r) := {r}

and

v ∈ N(t)⇒ ~d(v, t) ≤ ~d(v, t′) for all t′ ∈ T r.

Note that if the IRA test has been performed, no path corresponding to
~d(v, t) with v ∈ V \ {r} and t ∈ T r can contain r.

The heretofore considerations already set the stage for implementing a
simple reduction criterion:

Lemma 19. Let vi ∈ V \ T . If there is a minimum Steiner arborescence
S = (VS , AS) such that vi ∈ VS, then ~d(r, vi) + mint∈T r ~d(vi, t) is a lower
bound on the cost of S.

Proof. Assume that the premises of the lemma are satisfied and let S be a
minimum Steiner arborescence containing vi. This assumption implies the
existence of a directed path from r to vi in S of cost at least d(r, vi) and an
additional, arc-disjoint, directed path in S, starting in vi and leading to a
terminal other than r (since otherwise there would be a non-terminal leaf in
S). Consequently, it can be inferred that ~d(r, vi) + mint∈T r ~d(vi, t) is indeed
a lower bound on the cost of S.

Given an upper bound, the associated test can be realized by first us-
ing Dijkstra’s algorithm with source r to obtain ~d(r, vi) to each vi ∈ V \

3.1 The Steiner Arborescence Problem 61

T and second computing the rooted inward Voronoi diagram to obtain
mint∈T r ~d(vi, t) = ~d(vi, base(vi)) (assuming that the IRA test was performed
priorly). If the upper bound is exceeded, vi can be deleted. The test is de-
noted by Prohibitive Non-Terminal (PNT).

Based on this rooted inward Voronoi diagram we denote by inradius(ti)
the length of a shortest directed path ending in a terminal ti ∈ T r and
having its starting point outside of N(ti). With this concept at hand, we
are in a position to develop a reduction method similar to the BND test for
the SPG, see Section 2.2.

Hereinafter, in an attempt to set bounds to a runaway notation, it shall
be assumed that for k ∈ {2, ..., s} the inradius(tk) values are non-decreasing
(recall that t1 = r). Furthermore, in the remainder of this section it will
be assumed that D is endowed with a rooted inward Voronoi diagram, its
regions denoted by N , and that the IRA test has been performed. These
preliminaries finally enables us to establish two lemmata that allow to ex-
amine whether certain specified vertices or arcs can possibly be part of an
optimal solution (and to eliminate them if this is not the case).

Lemma 20. Let vi ∈ V \ T . If there is a minimum Steiner arborescence
S = (VS , AS) such that vi ∈ VS, then

d(vi, vi,1) + d(vi, vi,2) +
s−2∑
q=2

inradius(tq), (40)

with d denoting the distances in GD, is a lower bound on the weight of S.

Proof. Let vi ∈ V \T and assume that this vertex is contained in a minimum
Steiner tree S = (VS , AS). This solution can be easily transferred to a tree S
in GD by replacing each arc (vi, vj) ∈ AS by the edge {vi, vj}. We call each
edge of S such that its corresponding arc in S has its endpoints in different
Voronoi regions induced Voronoi-boundary edge.

Thereupon, denote an undirected path in S between vi and a tj ∈ T r by
Pj and the collection of all such paths by P. Analogously to the proof of
Lemma 10 it can be verified that there are at least two edge-disjoint paths
in P. Let Pj and Pk be two such paths, with a minimal combined number
of induced Voronoi-boundary edges. Moreover, for all u ∈ {2, ..., s} \ {j, k}
denote by ~Pu the directed path in S between r and tu. Further, let ~P ′u =
~P (vq, tu) such that V [~P (vq, tu)] \ N(tu) = {vq}. Since the Voronoi regions

are pairwise arc- (and vertex-) disjoint, the ~P ′u are arc-disjoint as well. Given
a directed path ~P in D, denote its undirected equivalent in GD by P , i.e.
V D[P] = V [~P], ED[P] =

{
{vi, vj} ∈ ED | (vi, vj) ∈ A[~P] ∨ (vj , vi) ∈ A[~P]

}
.

Suppose that Pj has an edge in common with a path P ′u. Since S is
cycle free this would imply that the subpaths of Pj and Pu up to this edge
were identical. For the same reason Pk cannot have an edge in common

3.1 The Steiner Arborescence Problem 62

with Pu. However, in this case Pj would contain more induced Voronoi-
boundary edges than P ′u (to reach tj which is by definition not in N(tu)).
Consequently Pu would have initially been selected instead of Pj .

Following the same line of argumentation, one verifies that likewise Pk
cannot have any edge in common with a P ′u. Hence, Pj , Pk and all P ′u are
edge-disjoint and therefore:

C(S) ≥ C(Pj) + C(Pk) +
∑

u∈{2,...,s}\{j,k}

C(~P ′u)

≥ C(Pj) + C(Pk) +

s−2∑
q=2

inradius(tq)

≥ d(vi, vi,1) + d(vi, vi,2) +

s−2∑
q=2

inradius(tq).

Thereby the claim is established.

Lemma 21. Let (vi, vj) ∈ A. If there is a minimum Steiner arborescence
S = (VS , AS) such that (vi, vj) ∈ AS, then L defined by

L := cij + d(vi, vi,1) + d(vj , vj,1) +

s−2∑
q=2

inradius(tq) (41)

if vi,1 6= vj,1 and

L := cij + min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
+
s−2∑
q=2

inradius(tq) (42)

otherwise, is a lower bound on the weight of S. Again, the d-distances are
stated with respect to GD.

Proof. Let (vi, vj) ∈ A and assume that this arc is contained in a minimum
Steiner arborescence S = (VS , AS). As in the proof to Lemma 20, denote
by S the corresponding tree in GD. Thereupon, denote for each terminal
tk ∈ T r the, unique, undirected path not containing the edge {vi, vj} in S
to either vi or vj by Pk and the collection of all such paths by P.

Analogously to the proof of Lemma 11 it can be verified that there are
at least two edge-disjoint paths in P. Let Pk and Pl be two such paths,
with a minimal combined number of induced Voronoi-boundary edges. For
all u ∈ {2, ..., s} \ {k, l} define ~Pu, ~P ′u and P ′u analogously to the proof of
Lemma 20. In the same manner it can be verified that Pk, Pl and all P ′u are
edge-disjoint.

3.1 The Steiner Arborescence Problem 63

In the case of vi,1 6= vj,1 the combined cost of Pk and Pl is at least
d(vi, vi,1) + d(vj , vj,1), so:

C(S) ≥ cij + C(Pk) + C(Pl) +
∑

u∈{2,...,s}\{k,l}

C(~P ′u)

≥ cij + C(Pk) + C(Pl) +
s−2∑
q=2

inradius(tq)

≥ cij + d(vi, vi,1) + d(vj , vj,1) +
s−2∑
q=2

inradius(tq).

On the other hand, considering that not both Pj and Pk can contain
base(vi) if base(vi) = base(vj), the combined cost of Pj and Pk is at least:

min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
.

Hence:

C(S) ≥ cij + C(Pk) + C(Pl) +
∑

u∈{2,...,s}\{k,l}

C(~P ′u)

≥ cij + C(Pk) + C(Pl) +
s−2∑
q=2

inradius(tq)

≥ cij + min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
+

s−2∑
q=2

inradius(tq).

Consequently, the lemma is established.

The test associated with Lemma 20 and Lemma 21 is denoted by Bound
(BND) test. The required upper bound is computed using the RSP heuris-
tic. As in Section 2.2, the BND test covers the case of an equal lower and
upper bound.

Ordering

In consistency with the procedure for the SPG, tests of low run time are
generally performed prior to expensive ones. Likewise, all reduction tests
are arrayed in a loop that is reiterated as long as a constant proportion (0.5
percent) of arcs or vertices has been eliminated during the last run. Finally,
for the BND test an upper bound is only computed during the first run.
The final ordering is reported in Figure 6.

3.1 The Steiner Arborescence Problem 64

BRstart

RPT

CT

SDC

BR

PNT, BND

sufficient
number of
reductions?

stop

yes

no

Figure 6: Illustration of the SAP reduction package

3.1 The Steiner Arborescence Problem 65

3.1.2 Heuristics

The RSPH and RC heuristics can be used for general SAPs with only minor
modifications. However, due to the missing bi-direction with equal cost, the
VQ heuristic cannot be applied. Also, if the RSPH was used unaltered, the
resulting subgraph might have to be reorientated, which might either be
impossible due to a missing bi-direction or lead to higher costs. Therefore,
we needed to resort to the empirically expensive, original implementation
of RSPH described in Section 2.3.1 and apply the following adaptations:
First, during the execution of Dijkstra’s algorithm starting from the root
only outgoing arcs, and for the ones starting from the other terminals only
ingoing arcs are considered. Second, if the start vertex is not the root, it is
always connected to the root in the first iteration.

3.1.3 Implementation and Computational Results

As each SPG instance to be solved by SCIP-Jack is transformed to an
SAP, the branch-and-cut substruction described in Section 2.4 can be used
unaltered. The same is true for the implemented propagator, see Section 2.5.

Name Instances |V | Status Description

Gene 10 335-602 solved
 Sparse, non-bidirectional, instances with c ≡ 1.

Derived from a genetic application [JKC+00].
Gene2002 9 297-484 solved

Table 7: Classes of SAP instances.

For the computational experiments, unfortunately only Steiner arbores-
cence problems of small size were available, distributed on two test sets.
An overview is provided in Table 7. The largest instance encompasses 602
nodes, 1716 arcs and 86 terminals. SCIP-Jack is able to solve all instances
within fractions of a second, not requiring any branching, see Table 8.

Optimal
Class Instances Solved ∅Nodes ∅Time [s]

Gene 10 10 1.0 0.2
Gene2002 9 9 1.0 0.1

Table 8: Computational results for the SAP instances.

Due to the size of the instances and the corresponding very fast solving,
we do not deem it useful to provide detailed information on the performance
of the primal heuristics. We merely mark that in all but five cases the solu-
tion found by RSPH before the actual solving process started was already
optimal.

Likewise, only summarized results on the performance of the reduction
methods are provided. The reason, besides the low solving time, lies with

3.1 The Steiner Arborescence Problem 66

Remaining Remaining
Class Vertices[%] Arcs[%] ∅Time [s]

Gene 57.13 67.43 0.2
Gene2002 59.06 69.14 0.1

Table 9: Computational results of the SAP reduction package. The percent-
age of remaining arcs and vertices is stated with respect to the arithmetic
mean, the time is given as a shifted geometric mean (with s = 1).

the special structure of the instances, which only contain forward arcs of
weight one and a relatively high number of terminals. Therefore, only the
BR and RPT reductions are effective. The former is accountable for almost
90 percent of the reduced arcs. Notwithstanding the limited applicability of
the reduction methods, Table 9 reveals that less than 60 percent of vertices
remain after presolving for both the Gene and the Gene2002 test set. Addi-
tionally, less than 70 percent of the arcs remain. For none of the instances
more than 0.3 seconds of reduction time is required.

3.2 The Node Weighted Steiner Problem 67

3.2 The Node Weighted Steiner Problem

The node-weighted Steiner tree problem (NWSTP) is a generalization
of the Steiner tree problem in graphs in such a way that, in addition to the
edges, also the vertices are assigned non-negative weights. The objective
is to interconnect all terminals while minimizing the weight summed over
both vertices and edges spanned by the corresponding tree. First introduced
in [Seg87], it has been the subject of several publications [DHK14, GK99,
MR01], although mostly of theoretical nature.

The NWSTP is formally stated by: Given an undirected graph G =
(V,E), vertex costs p : V → Q≥0, edge costs c : E → Q≥0, and a set T ⊂ V
of terminals, the objective is to find a tree S = (VS , ES) that spans T while
minimizing:

C(S) :=
∑
e∈ES

ce +
∑
v∈VS

pv.

3.2.1 Transformation

The key prerequisite for transforming an NWSTP to an SAP is the obser-
vation that in a directed tree there cannot be more than one arc going into
the same vertex. Otherwise, two directed paths starting in the root would
end in the same vertex, hence forming a cycle (in the undirected sense).
Exploiting this consideration, we first substitute each edge of a given SPG
by two anti-parallel arcs and second add the weight of each vertex to all of
its ingoing incident arcs:

Transformation 2 (NWSTP to SAP).
Input: An NWSTP P = (V,E, T, c, p)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , T ′ := T , A′ := {(v, w) ∈ V ′ × V ′ : {v, w} ∈ E}.

2. Define c′ : A′ → Q≥0 by c′a = c{v,w} + pw, for a = (v, w) ∈ A′.

3. Choose a root r′ ∈ T ′ arbitrarily.

4. Return (V ′, A′, T ′, c′, r′).

Lemma 22 (NWSTP to SAP). Let P = (V,E, T, c, p) be an NWSTP and
P ′ = (V ′, A′, T ′, c′) an SAP obtained by applying Transformation 2 on P .
Denote by S and S ′ the set of solutions to P and P ′ respectively. S ′ can be
bijectively mapped onto S by assigning each (V ′S′ , A

′
S′) ∈ S ′ a (VS , ES) ∈ S

such that

VS :=
{
v ∈ V : v ∈ V ′S′

}
(43)

ES :=
{
{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′

}
. (44)

3.2 The Node Weighted Steiner Problem 68

Furthermore, it holds that:

c′(A′S′) + pr′ = c(ES) + p(VS). (45)

Proof. Proving that (43) and (44) form a bijection is equivalent to the pro-
cedure in the proof of Lemma 15, since compared to the latter only the
weights are altered. Now let S′ ∈ S ′ and S be the solution to P obtained by
applying the mapping (43) and (44) on S′. To acknowledge (45) one readily
observes that for each node of S′ except for the root there is exactly one
incoming arc. Since for each arc (v, w) of S′ it holds that c′(v,w) = c{v,w}+pw,
one infers that:∑

(v,w)∈A′
S′

c′(v,w) =
∑

(v,w)∈A′
S′

(
c{v,w} + pw

)
=

∑
{v,w}∈ES

c{v,w} +
∑
w∈VS

pw − pr′ ,

which implies (45).

The resulting problem is an SAP, which can be handled by SCIP-Jack
using the configurations described in the Steiner arborescence section. It
should be noted that a transformation of an NWSTP to an SAP was already
suggested in [Fis91], but only for negative node weights.

3.2.2 Implementation and Computational Results

In our implementation, reductions are only applied to the transformed SAP.
Although we would claim that NWSTP specific reduction techniques, which
could be designed similarly to the ones for the PCSPG, would be more
effective. Yet, due to limited time and the absence of a large number of, real-
world, test instances, we have not developed any problem specific presolving.
However, several generic reduction techniques described in [GKM+15] are
used. Furthermore, the subsequent results have already been published in
the same publication.

Two NWSTP instances derived from a computational biology applica-
tion published as part of the DIMACS Challenge were tested. The two in-
stances differ drastically in their size: While the first one contains more than
200,000 nodes—55,000 of them terminals—and almost 2.5 million edges, the
smaller instance comprises merely 386 nodes, 1477 edges, and 35 terminals.

The size of the first instance proves to be prohibitive for SCIP-Jack.
The large number of edges significantly degrades the performance of the
preprocessing routines. Additionally, the memory requirements of this in-
stance quickly exceeds the limits of SCIP-Jack when applying the default
settings within our heretofore used computational environment. To evaluate
the ability of SCIP-Jack to solve this particular instance, a run time of 72
hours was used on a machine with 386 GB memory. After the application
of the reduction techniques, the resulting graph contains 187,933 nodes and

3.2 The Node Weighted Steiner Problem 69

986,703 edges. This equates to a 8.6 % and 60.4 % decrease in the number
of nodes and edges respectively. SCIP-Jack fails to solve this instance to
optimality, but it manages to come as close as 0.0049% or closer to an op-
timal solution. The much smaller second instance is solved by SCIP-Jack
in the root node within 0.1 seconds.

3.3 The Rectilinear Steiner Minimum Tree Problem 70

3.3 The Rectilinear Steiner Minimum Tree Problem

The rectilinear Steiner minimum tree problem (RSMTP) can be
stated as follows: Given a number of k ∈ N points in the plane, find a short-
est tree consisting just of vertical and horizontal line segments and contain-
ing all k points. The RSMTP is NP-hard, as proven in [GJ77]. Perhaps
the most famous of all Steiner variants, it has been the subject of various
publications, e.g. [Ema10, HRW92, WWZ00, ZR00]. Furthermore, a gener-
alization of the problem to the d-dimensional case, with natural d ≥ 2, has
been introduced, involving real-world applications in up to eight dimensions,
e.g. in cancer research [CSHH+13].

A variant of the RSMTP is the obstacle-avoiding rectilinear Steiner
minimum tree problem (OARSMTP). This problems includes the ad-
ditional condition that the minimum-length rectilinear tree does not pass
through the interior of any specified axis-aligned rectangles, denoted as ob-
stacles.

3.3.1 Transformation

Already in 1966, Hanan [Han66] suggested to reduce the RSMTP to the
Hanan grid obtained by constructing vertical and horizontal lines through
each given point of the RSMTP. Thereby, the RSMTP can be reduced to an
SPG, since there is at least one solution to an RSMTP that is a subgraph of
the grid. In the remainder of this subsection, both this construction and its
multi-dimensional generalisation [Sny92] will be exploited in order to adapt
the RSMTP to our solver.

Given a d-dimensional, d ∈ N\{1}, RSMTP instance represented by a set
of k ∈ N points in Qd, the first step on our way to solving the problem is to
construct a d-dimensional Hanan grid. Thereupon, an SPG P = (V,E, T, c)
can be built up in a straightforward way: The vertex set V is constructed
by assigning each intersection point of the grid a vertex. Analogously, E is
obtained by interconnecting the vertices V according to the grid structure,
i.e. in such a way that two vertices in V are adjacent if and only if their
corresponding intersection points are adjacent in the grid. The set of ter-
minals T consists of all vertices in V corresponding to one of the original k
RSMTP points. Finally, the cost of an edge {vi, vj} ∈ E is defined by the
(Euclidean) distance of the two d-dimensional points in the grid correspond-
ing to vi and vj respectively. In [Sny92] it was demonstrated that at least
one optimal solution is preserved by this procedure and that the RSMTP
can be solved on the resulting SPG. Employing SCIP-Jack to do so, we
obtain a solution S. Finally, S is re-transformed to a solution SRSMT to the
RSMTP by adding for each edge in S the corresponding line segment (in
Qd) to SRSMT .

SCIP-Jack is easily extended to solve the obstacle-avoiding rectilinear

3.3 The Rectilinear Steiner Minimum Tree Problem 71

(a) given points (b) the Hanan grid (c) a possible solution

Figure 7: Illustration of an RSMTP (left), the SPG obtained by the Hanan
grid (center) and a solution to the RSMTP (right).

Name Instances |T | Status Description

Solids 5 8-20 solved Three dimensional instances with the points
being the vertices of the five platonic solids.

Estein50 15 50 solved Instances consisting of 50 points each,
chosen at random in the unit square [Bea92].

Estein60 15 60 solved Instances consisting of 60 points each,
chosen at random in the unit square [Bea92].

Cancer 14 20-110 unsolved Instances in up to eight dimensions, used in cancer
research to model the progress of a tumor [CSHH+13].

Table 10: Classes of RSMTP instances.

Steiner minimum tree problem, by removing all vertices (along with their
incident edges) from the Hanan grid that are located in the interior of an
obstacle.

Finally, it must be noted that the related Euclidean Steiner tree problem,
which differs from the RSMTP insofar as the rectilinear distance is replaced
with the Euclidean distance, cannot be handled by our solver. It seems
difficult to render this problem solvable for SCIP-Jack, as a clear structure,
such as the Hanan grid for the RSMTP, is ostensibly missing.

3.3.2 Implementation and Computational Results

There are a few necessary remarks regarding the implementation in SCIP-
Jack. First, by default preprocessing is fully used only for RSMTPs of
dimension at most six within our solver. This approach is spawned by the
problem specific structure in high dimensions, which proved to be distinc-
tively recalcitrant to the reduction techniques employed by SCIP-Jack,
leading to a poor performance of the presolving. Second, we do not ex-
pect this simple approach to be competitive with highly specialized solvers,
such as GeoSteiner [WWZ00] in the cases d = 2 and d = 3. However,
the motivation for our implementation was to provide solutions to RSMTP
instances in dimensions d ≥ 4, since for those there seem to be a lack of
specialized solvers. Still, it is not practical to apply the grid transforma-
tion for large instances in high dimension, as the number of both vertices
and edges increases exponentially with the number of dimensions. Apart

3.3 The Rectilinear Steiner Minimum Tree Problem 72

from the described modifications, a transformed RSMTP instance is han-
dled equivalently to a usual SPG instance by SCIP-Jack.

An alternative SPG based solving method for the RSMTP is the full
Steiner tree (FST) generation [Zac99]. The concatenation of FSTs, and
thus the solving of the underlying RSMTP, can be reduced to an SPG,
as done in [Pol04]. Thereby, the tested RSMTP instances could be solved
significantly faster than by the well-known, specialized solver GeoSteiner.

Optimal Timeout

Class Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

Solids 5 5 32.0 17.7 – –
Estein50 15 14 2.6 1408.3 107.0 0.3
Estein60 15 9 1.0 3641.8 12.9 0.3
Cancer 14 11 1.0 25.5 1.0 2.3

Table 11: Computational results for RSMTP instances.

The experimental results, summarized in Table 11, show that all of the
Solids instances can be solved, four of them within a few seconds and at
the root node. For the Estein50 class only one instance remains unsolved
after two hours. Further, 13 of the instances can be solved at the root node.
Regarding the related, but in terms of problem size larger, Estein60 test set,
a notable decrease of the performance is evident: Only nine instances can
be solved to optimality. However, the average gap remains the same. Fur-
thermore, the number of branch-and-bound nodes of the unsolved problems
is almost ten times smaller than for the Estein50 class.

Finally, the cancer class manifests the ability of SCIP-Jack to handle
and solve instances in up to eight dimensions. Of the 14 instances 11 are
solved at the root node. To the best of our knowledge, we are the first
to solve those instances to optimality. Of the solved instances seven finish
within 10 seconds and none takes longer than eight minutes. However, the
instance 11 8D demonstrates the limits of the grid approach: The instance
is transformed into a problem containing almost five million nodes and 65
million edges, a scale that is prohibitive for employing SCIP-Jack on a
modest machine. As a result, SCIP-Jack quickly runs out of memory
while solving this instance. Similarly, for the 12 8D problem, encompassing
more than 12 million edges, SCIP-Jack stops short of computing a dual
bound within the time limit, since it spends 98 percent of the time in the
local heuristic (VQ).

3.4 The Prize Collecting Steiner Tree Problem 73

3.4 The Prize Collecting Steiner Tree Problem

In contrast to the classical Steiner tree problem, the required tree for the
prize-collecting Steiner tree problem (PCSTP) needs only to span a
(possibly empty) subset of the terminals. However, a non-negative penalty
is charged for each terminal not contained in the tree. Hence, the objective
is to find a tree of minimum weight, given by both the sum of its edge costs
and the penalties of all terminals not spanned by the tree. For a profound
discussion on the PCSTP that details real-world applications and moreover
introduces a specialized solver see [Lju04].

A formal definition of the problem is stated as: Given an undirected
graph G = (V,E), edge-weights c : E → Q+, and node-weights p : V → Q≥0,
a tree S = (VS , ES) in G is required such that

C(S) :=
∑
e∈ES

ce +
∑

v∈V \VS

pv (46)

is minimized.
Before discussing the prize-collecting Steiner tree problem, we intro-

duce a variation, the rooted prize-collecting Steiner tree problem
(RPCSTP), that incorporates the additional condition that one distin-
guished node r, denoted as the root, must be part of every feasible solution
to the problem. Hereinafter we assume pr = 0.

3.4.1 Transformation

An RPCSTP can be transformed into an SAP as follows:

Transformation 3 (RPCSTP to SAP).
Input: An RPCSTP P = (V,E, p, r)
Output: An SAP P ′ = (V ′, A′, T ′, c′, r′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}, r′ := r and
c′ : A′ → Q≥0 with c′a = c{v,w} for a = (v, w) ∈ A′.

2. Denote the set of all v ∈ V with pv > 0 by T = {t1, ..., ts}. For each
node ti ∈ T a new node t′i and an arc a = (ti, t

′
i) with c′a = 0 is added

to V ′ and A′ respectively.

3. Add arcs (r′, t′i) for each i ∈ {1, ..., s} and set their respective weight
to pti.

4. Define the set of terminals T ′ := {t′1, ..., t′s} ∪ {r}.

5. Return (V ′, A′, T ′, c′, r′).

3.4 The Prize Collecting Steiner Tree Problem 74

A graphic depiction of the transformation is provided in Figure 8: On
the left hand side an RPCSTP instance with a root r and two vertices of
positive weight is illustrated. The associated SAP can be found on the right
hand side. Thereupon, a (single) solution to both the RPCSTP and the
associated SAP is visualised in Figure 9.

r

p=2.5

p=7

1.2
2.3

1.6

1 1.3

1.5

(a) RPCSTP instance

r
1.2

2.3

1.6

1 1.3

1.5
2.5

7

0

0

(b) transformed SAP instance (mod-
ifications in bold)

Figure 8: Illustration of an RPCSTP instance with root r (left) and the
equivalent SAP obtained by Transformation 3 (right). Terminals are drawn
as squares and Steiner vertices as circles (with those of positive weight en-
larged).

r

p=2.5

p=7

1.2
2.3

1.6

1 1.3

1.5

(a) RPCSTP solution

r
1.2

2.3

1.6

1 1.3

1.5
2.5

7

0

0

(b) SAP solution

Figure 9: Illustration of a solution to the RPCSTP instance of Figure 8
(left) and the equivalent solution to the corresponding SAP (right).

Having performed Transformation 3, one ends up with an SAP P ′ that
is endowed with exactly two incoming arcs, (ti, ti

′) and (r′, t′), for each
terminal t′i. To allow a bijection between the respective solution sets of
P and P ′, each solution S′ = (V ′S′ , A

′
S′) ∈ P ′ that contains ti should also

contain (ti, ti
′), more succinctly:

∀i ∈ {1, ..., s} : ti ∈ V ′S′ =⇒ (ti, ti
′) ∈ A′S′ . (47)

Condition (47) is satisfied by all optimal solutions to P ′ and one can easily
modify each feasible solution accordingly, concomitantly improving its ob-
jective value: Let S′ = (V ′S′ , A

′
S′) be a solution to P ′ such that there is a

ti ∈ V ′S′ with (ti, ti
′) /∈ A′S′ . Since ti

′ is a terminal of in-degree two in the
SAP P ′, it can be forthwith inferred that (r, ti

′) ∈ A′S′ . By construction, see

3.4 The Prize Collecting Steiner Tree Problem 75

Transformation 3, it holds that c(ti,ti′) = 0 and c(r,ti′) > 0. Thus, removing

(r, ti
′) and simultaneously inserting (ti, ti

′) one obtains a new tree S̃′ from
S′ that is of smaller cost than its predecessor. The latter also implies that
S′ is not optimal.

As another note on condition (47) we can readily infer that it implies
first:

(ti, t
′
i) ∈ A′S′ ⇔ ti ∈ VS , (48)

since ti is obviously incident to (ti, t
′
i) and second

(r′, t′i) ∈ A′S′ ⇔ ti /∈ VS , (49)

since t′i, being a terminal, needs to be of in-degree exactly one in every
feasible solution.

Lemma 23 (RPCSTP to SAP). Let P ′ = (V ′, A′, T ′, c′) be an SAP obtained
from an RPCSTP P = (V,E, c, p) by applying Transformation 3. Denote by
S and S ′ the set of solutions to P and P ′, satisfying condition (47), respec-
tively. S ′ can be mapped bijectively onto S by assigning each (V ′S′ , A

′
S′) ∈ S ′

a (VS , ES) ∈ S satisfying

VS := {v ∈ V | v ∈ V ′S′} (50)

ES := {{v, w} ∈ E | (v, w) ∈ A′S′ or (w, v) ∈ A′S′}. (51)

The mapping preserves the objective value.

Proof. To acknowledge that (50) and (51) constitute a mapping S ′ → S let
T = {t1, ..., ts} and T ′ := {t′1, ..., t′s} as defined in Transformation 3. By
definition, each solution to P ′ consists of directed paths from the root to all
terminals. Those paths either contain the arc (ti, t

′
i) or consist of the single

arc (r′, t′i). Utilizing these observations, one can dichotomize the mapping
described by (50) and (51) into two parts: First, all arcs (r′, t′i) and (ti, t

′
i)

are removed, resulting in a remaining solution consisting of directed paths
from r′ to a subset of T . Second, all arcs are replaced by their corresponding
edges, yielding a solution to the original RPCSTP P .

To prove the one-to-one correspondence, additionally let S = (VS , ES) ∈
S.
Surjective. To validate that (50) and (51) represent a surjection, a solution
S′ = (V ′S′ , A

′
S′) ∈ S ′ is constructed that is mapped to S. Initially, set

V ′S′ := VS and A′S′ := ∅. Analogously to the proof of Lemma 15, add for
each edge in ES an arc to A′S′ in such a way that finally there is for each
v′ ∈ V ′S′ a directed path from r′ to v′. Thereafter, for each i ∈ {1, ...s}
set ai := (ti, t

′
i) if ti ∈ VS and ai := (r′, t′i) otherwise and add ai to A′S′ .

Consequently, S′ := (V ′S′ , A
′
S′) is a solution to P ′ and by applying (50) and

(51), we obtain S.

3.4 The Prize Collecting Steiner Tree Problem 76

Injective. To demonstrate that S′ is the only solution to P ′ mapped to
S, define the set of all arcs of P ′ corresponding to the edges of P as A :=
{(v, w) ∈ A′ | {v, w} ∈ E} and accordingly AS′ := A′S′∩A. Note that all arcs
incident to terminals are designated by VS as demonstrated subsequently to
(47) (and epitomized in (48) and (49)). This implies that A′S′ is already
determined by AS′ . Now let S̃′ = (V ′

S̃′
, A′

S̃′
) ∈ S ′, S̃′ 6= S′. Consequently,

there is at least one arc (v, w) ∈ AS̃′ such that (v, w) /∈ AS′ and (w, v) /∈ AS′
and therefore is S̃′ not mapped to S.
Finally, using the above notation one observes that:∑

a∈A′
S′

c′a =
∑
a∈AS′

c′a +
∑

a∈A′
S′\AS′

c′a =
∑
e∈ES

ce +
∑

v∈V \VS

pv, (52)

so the costs of S′ and S are equal.

Transformation 3 can be extended to cover the PCSTP in two steps:
First, an artificial root node r′ is added and the transformation is performed.
Second, arcs (r′, ti) with cost zero are added. They connect the artificial root
with all terminals of the original problem and allow to choose a root for the
solution. To this end, only one of these arcs can be part of a feasible solution.
This condition is enforced by the following constraint:∑

a∈δ+(r′),c′a=0

ya = 1. (53)

Furthermore, to allow a bijection between the original and the transformed
problem, for all ti included in a solution the arc (r′, ti) with the smallest
index i is required to be part of the solution. This condition can be expressed
by using the following class of constraints:∑

a∈δ−(tj)

ya + y(r′,ti) ≤ 1 i = 1, ..., s; j = 1, ..., i− 1. (54)

An SAP that incorporates the conditions (47), (53) and (54) is hence-
forth referred to as root constrained Steiner arborescence problem
(rcSAP). The constraints (53) and (54) can be incorporated into the cut-
formulation (Formulation 5) without further alterations and each solution

can be modified in order to meet condition (47). Although additional s(s−1)
2

constraints have to be introduced to satisfy (54), the solving time is consid-
erably reduced, since concomitantly a plethora of symmetric solutions is ex-
cluded. It should not go unnoticed that an approach to eliminate symmetric
solutions in the context of the PCSTP (although for a different formulation)
was already applied in [LWP+06].

Transformation 4 (PCSTP to rcSAP).
Input: A PCSTP P = (V,E, c, p)
Output: An rcSAP P ′ = (V ′, A′, T ′, c′, r′)

3.4 The Prize Collecting Steiner Tree Problem 77

1. Add a vertex v0 to V and set r := v0.

2. Apply Transformation 3 to obtain P ′ = (V ′, A′, T ′, c′, r′).

3. Add arcs a = (r′, ti) with c′a := 0 for each ti ∈ T .

4. Add constraints (53) and (54).

5. Return (V ′, A′, T ′, c′, r′).

Figure 10 illustrates Transformation 4 for a simple example instance.
Also for the PCSTP a bijection between the original and the transformed
solution space can be obtained:

Lemma 24 (PCSTP to rcSAP). Let P = (V,E, c, p) be a PCSTP and P ′ =
(V ′, A′, T ′, c′, r′) the corresponding rcSAP obtained by applying Transforma-
tion 4. Denote by S and S ′ the sets of solutions to P and P ′ respectively.
Each solution (V ′S′ , A

′
S′) ∈ S ′ can be mapped to a solution (VS , ES) ∈ S

defined by:

VS := {v ∈ V : v ∈ V ′S′}, (55)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′}, (56)

establishing a bijection. The objective value is preserved by the mapping.

Proof. Likewise to the proof of Lemma 23, one observes that (55) and (56)
constitute a mapping S ′ → S. Let S = (VS , ES) ∈ S and T = {t1, ..., ts}
defined as in Transformation 4.
Surjective. To demonstrate that the mapping induced by (55) and (56) is
a surjection, a solution S′ = (V ′S′ , A

′
S′) ∈ S ′ mapped to S is constructed:

Initially, define V ′S′ := VS , A′S′ := {(r, ti0)}, with i0 := min {i | ti ∈ V ′S′}.
Thereby it is ensured that the constraints (54) are satisfied. Condition (53) is
likewise met, since no additional arcs from the root to non-terminal vertices
will be added. Next, extend A′S′ analogously to the proof of Lemma 23. The
so constructed S′ := (V ′S′ , A

′
S′) is a solution to P ′ and by applying (55) and

(56) S is obtained.
Injective. Parallel to the proof of Lemma 23 it can be shown that for a
solution S̃′ 6= S′ to P ′ there must be at least one arc (v, w) ∈ AS̃′ such that
(v, w) /∈ AS′ and (w, v) /∈ AS′ with A defined as in the proof of Lemma 23.
Therefore, it follows that S̃′ is not mapped to S.

The equality of the solution values of S and S′ can be validated by
(52).

When the amount of terminals is high even after the presolving, enforc-
ing condition (54) by adding the corresponding constraints (which are of
quadratic number) might become prohibitive. However, dropping them still
allows for a bijection between the solutions to the original and transformed

3.4 The Prize Collecting Steiner Tree Problem 78

p=2.5

p=7

2.3

1.6

1 1.3

1.5

(a) PCSTP instance

r

0

0

2.5

7

0

0

2.3

1.6

1 1.3

1.5

(b) transformed rcSAP instance
(modifications in bold, terminals
drawn as squares)

Figure 10: Illustration of a PCSTP instance and the associated rcSAP ob-
tained by Transformation 4 (right). Of the dashed arcs only one can be
selected.

problem. This bijection is rendered possible by the following equivalence
relation:

Let S ′ be the set of all solutions to an rcSAP P ′ obtained from a PCSTP
P by applying Transformation 4. Thereupon, S′1, S

′
2 ∈ S ′ are defined to be

equivalent if and only if the corresponding solutions S1 and S2 to P are
identical. Consequently, there is a one-to-one correspondence between the
quotient space of S ′ and the set of solutions to P

3.4.2 Reductions

For the PCSTP several reduction techniques have been proposed in the liter-
ature. However, they are neither as sophisticated nor as exhaustive as their
counterparts for the SPG. We strive to lessen this gap with a series of novel
reduction techniques, introduced (along with several known ones) in this sec-
tion. Customarily, it will be presupposed that a PCSTP PPC = (V,E, c, p)
with a set of terminals T := {v ∈ V | pv > 0} 6= ∅ is given. Furthermore,
we postulate that when contracting an edge {vi, vj} ∈ E with exactly one
endpoint being a terminal, the edge is contracted into this terminal, if not
specified otherwise.

Although the reduction techniques presented in this section are formu-
lated for the PCSTP, it should be noted that all of them can be easily
applied to the RPCSTP: Consider an RPCSTP instance (V,E, c, p, r). By
setting pr := c(E) + p(V) it can be transformed to an equivalent PCSTP.
While setting the new prize of the root to p(V) would be sufficient to obtain
an equivalent (unrooted) prize-collecting instance, the chosen prize aids to
satisfy more reduction conditions, as will become evident in the following.

3.4 The Prize Collecting Steiner Tree Problem 79

Basic Reductions

Once again, the straightforward reduction techniques are very reminiscent
of those for the SPG:

Non-terminal of degree one (NTD0): A non-terminal of degree zero
can be deleted.

Non-terminal of degree one (NTD1): A non-terminal of degree one
and its incident edge can be deleted.

Non-terminal of degree two (NTD2): A non-terminal vi of degree two
and its incident edges {vi, vj}, {vi, vk} can be substituted by a single edge
{vj , vk} with cjk := cij + cik. In the case of two parallel edges, one of lowest
cost is retained.

Terminal of degree zero: (TD0) If there are terminals ti, tj ∈ T , such
that δ(ti) = ∅ and pti ≤ ptj , then ti can be deleted from V (and pti has to be
added to the solution value of each feasible solution to PPC).

Proof. Since the only solution that contains ti (i.e. {ti}) is of higher or equal
cost than the feasible solution {tj}, there is at least one optimal solution
that does not contain ti.

Terminal of degree one (TD1): If there are terminals ti, tj ∈ T , such
that δ(ti) = {el}, pti ≤ ptj and additionally

a) pti ≤ cel, then ti and el can be discarded;

b) pti > cel, then ti and el = {ti, vk} can be discarded, concurrently setting
pvk := pvk + pti − cel.

In case a) pti and in case b) cel has to be added to the objective value of each
feasible solution to PPC to obtain the value of the corresponding original
solution.

Proof. Since pti ≤ pt′ , {ti} cannot be the unique optimal solution.
a) Each solution which contains el (and ti) can be reduced to a solution of not
higher cost by removing el as well as ti. Hence, there is at least one optimal
solution containing neither el nor ti. Since in the transformed problem, ti
cannot be part of any solution, pti has to be added to the objective value.
b) Each solution containing vk but not ti can be extended to a solution of
smaller cost by adding el and ti. So each optimal solution is preserved by the
operation. To demonstrate that the stated relation between the respective
costs hold, denote by P ′PC = (V ′, E′, c′, p′) the problem obtained from PPC
by removing ti and el and setting p′vk := pvk +pti−cel . Let S′ = (V ′S′ , E

′
S′) be

3.4 The Prize Collecting Steiner Tree Problem 80

a solution to P ′PC not containing vk and denote the corresponding solution
to PPC by S = (VS , ES). Thereupon:

C ′(S′) =
∑
e∈E′

S′

c′e +
∑

v∈V ′\V ′
S′

p′v

=
∑
e∈E′

S′

c′e +
∑

v∈V ′\(V ′
S′∪{vk})

p′v + pvk + pti − cel

=
∑
e∈ES

ce +
∑

v∈V \VS

pv − cel = C(S)− cel .

If, on the other hand, vk is contained in S′, then S comprises both el and
ti, hence:

C ′(S′) =
∑
e∈E′

S′

c′e +
∑

v∈V ′\V ′
S′

p′v

=
∑
e∈ES

ce − cel +
∑

v∈V \VS

pv = C(S)− cel .

Hence, the relation C ′(S′) = C(S)− cel is established.

Terminal of degree two (TD2): Let ti, tj ∈ T , such that
δ(ti) = {{ti, vk}, {ti, vl}} and pti ≤ min{c{vk,ti}, c{ti,vl}, ptj}. If a new edge
{vk, vl} of cost c{ti,vk} + c{ti,vl} − pti is added, {vk, ti}, {vl, ti} and ti can
be deleted. For a solution S′ to the so transformed problem P ′PC and the
corresponding solution S to the original problem the relation C ′(S′) + pti =
C(S) holds.

Proof. If ti is of degree one in a solution, then both ti and its incident edge
in this solution can be removed to obtain a solution of smaller or equal cost.
On the other hand, if ti is of degree zero in a solution, then it is of equal or
higher cost than the feasible solution {tj}. Conclusively, if ti is contained
in an optimal solution, there is at least one optimal solution in which ti is
of degree two. If a solution S′ to P ′PC contains the new edge {vk, vl}, the
corresponding solution S to PPC contains both original edges of, summed,
cost c{ti,vk} + c{ti,vl}, hence C ′(S′) + pti = C(S). On the other hand, if
{vk, vl} is not contained in S′, then pti is not contained in S and therefore
C ′(S′) + pti = C(S) holds as well.

Both NTD1 and NTD2 were already proposed in [LR04]. However, to
the best of our knowledge, the tests TD0, TD1 and TD2 have not been
described in the literature yet: TD1 b) and TD2 were suggested in [Uch06],
but without the condition ∃tj : ptj ≥ pti . The absence of the latter, or a
comparable condition, renders both tests erroneous, since a unique optimal
solution consisting only of ti could then be discarded. We denote by Degree-
Test (DT) the successive execution of those five tests. Since in each of them

3.4 The Prize Collecting Steiner Tree Problem 81

only vertices of maximal degree two are checked, the worst-case complexity
of DT is of O(n), assuming that deleting or inserting an edge can be realized
in O(1).

Furthermore, noting that a PCSTP graph is not necessarily connected,
we suggest the following simple test:

Unreachable non-terminal (UNT): Each non-terminal vertex that can-
not be connected by a path to any terminal can be removed along with all
incident edges.

We realize this test in linear time (with respect to the number of nodes
and edges) by running a breadth-first search on the transformed graph ob-
tained by Transformation 4 and deleting all vertices (and incident edges)
that are not visited.

Alternative Based Reductions

The pivotal concept of the bottleneck Steiner distance which gives rise to
strong reduction techniques for the SPG fails with the PCSTP in its original
form. The reason is that a terminal need not be part of any optimal solution,
so it cannot a priori be used as the endpoint of an alternative path. However,
a redefinition of the bottleneck Steiner distance has been proposed in the
context of the PCSTP [Uch06]:

Let vi, vj ∈ V be two distinct vertices, P(vi, vj) the set of all simple paths
between vi and vj and P ∈ P(vi, vj). Furthermore, denote by P (vk, vl) the
subpath between two vertices in P . The local prize-collecting Steiner
distance of P (vk, vl) is defined as

sdloc(P (vk, vl)) =
∑

e∈E[P (vk,vl)]

ce −
∑

v∈V [P (vk,vl)]\{vk,vl}

pv. (57)

Built upon this definition, the prize-collecting Steiner distance of (the
whole path) P is:

sd(P) = max
vk,vl∈V [P]

sdloc(P (vk, vl)). (58)

Finally, the bottleneck prize-collecting Steiner distance between
vi and vk can be defined as

spc(vi, vk) = min{sd(P) | P ∈ P(vi, vk)}. (59)

The two most salient tests spawned by the Steiner bottleneck distance
in the context of the SPG find their equivalent for the PCSTP:

Lemma 25. Every edge {vi, vj} ∈ E with cij > spc(vi, vj) can be discarded.

3.4 The Prize Collecting Steiner Tree Problem 82

Lemma 26. A non-terminal vertex vi is of degree at most two in a least one
minimum Steiner tree if for each set ∆, with |∆| ≥ 3, of vertices adjacent to
vi it holds that: the (summed) cost of all edges δ(vi) ∩ δ(∆) is not less than
the weight of a minimum spanning tree for the network (∆,∆×∆, spc).

Both Lemma 25 and Lemma 26 were formulated and proved in [Uch06].
In the same publication it was demonstrated that computing the bottleneck
prize-collecting Steiner distance is NP-hard and the application of heuristics
was suggested. However, no information was provided on how to actually
proceed in order to obtain those distances. Thereupon, we propose two novel
tests to calculate an upper bound on the bottleneck prize-collecting Steiner
distance:

First, an adaptation of the SDC test, see Section 2.2.3 is employed. Only
one addition to the original test is necessary: To eliminate an edge {vi, vj},
for an alternative path P between vi and vj containing exactly one interior
terminal tk, the inequality C(P)− ptk ≤ c{vi,v} needs to be satisfied as well.
In the context of the (R)PCSTP we likewise denote this test by SDC.

For the second test some spadework is necessary. We wish to obtain for
a given α ∈ N to each terminal its α d-nearest terminals. Unfortunately,
Duin’s nearest terminals algorithm utilized in Section 2.2 merely allows to
compute the d-nearest terminals vi,1, vi,2, ... to a non-terminal vi. Remedy
is provided by the following, novel, lemma:

For ease of presentation, we subsequently assume for each {vj , vk} ∈
δ
(
N(ti)

)
that vj ∈ N(ti) holds.

Lemma 27. Let α ∈ N, 1 ≤ α < |T |, ti ∈ T and assume that for each
vj ∈ V \ T the α + 1 d-nearest terminals vj,1, vj,2, ..., vj,α+1 exist and their

d-distances to ti are available. Thereupon, setting t
(0)
i := ti, the remainder

of the α+ 1 d-nearest terminals t
(1)
i , ..., t

(a)
i to ti can be computed as follows:

Set t
(1)
i := vk,1 with k such that:

d(ti, vk,1) = min
{vj ,vk}∈δ(N(ti))

{d(ti, vj) + cjk + d(vk, vk,1)}. (60)

Having computed t
(1)
i , ..., t

(r)
i (r < α), we set t

(r+1)
i := vk,l with k, l such that:

d(ti, vk,l) = min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + cjk

+ min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, ..., r}

}
. (61)

Proof. First, note that both of the minima attained in (60) and (61) corre-

spond to a path. Next, let t
(1)
min ∈ T \ {ti} such that d(ti, t

(1)
min) is minimal.

The corresponding path between ti and t
(1)
min contains an edge {vj , vk} ∈

δ(N(ti)) and since the path is of minimum d-length its cost is d(ti, vj) +

3.4 The Prize Collecting Steiner Tree Problem 83

cjk + d(vk, vk,1). Hence:

min
{vj ,vk}∈δ(N(ti))

{d(ti, vj) + cjk + d(vk, vk,1)} ≤ d(ti, t
(1)
min).

Furthermore, for {vj , vk} ∈ δ(N(ti)) let P be a path consisting of a shortest
path between ti and vj , the edge {vj , vk} and a shortest path between vk
and vk,1. Since vj lies in N(ti) and vk,1 is a d-nearest terminal to vk, the
path P contains no intermediary terminal vertices. Consequently it is of
cost at least d(ti, vk,1), so:

min
{vj ,vk}∈δ(N(ti))

{d(ti, vj) + cjk + d(vk, vk,1)} ≥ d(ti, vk,1) ≥ d(ti, t
(1)
min).

The validity of the claim for r > 1 can be demonstrated similarly: Denote

by t
(r)
min the r’th d-nearest terminal to ti, if such a terminal exists. Let r ∈

N, 1 < r < α and assume that there is a t
(r+1)
min . Additionally, let P be a path

corresponding to d(ti, t
(r+1)
min). This path contains an edge {vj , vk} ∈ δ(N(ti))

and can therefore be dissected into the subpath P (ti, vj), the edge {vj , vk}
and the subpath P (vk, t

(r+1)
min). The first subpath is of length d(ti, vj), since

otherwise it could be substituted by a shorter one. The second subpath is

of length at least min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, ..., r, },

because this is the minimum length between vk and a terminal other than

t
(0)
i , t

(1)
i , ..., t

(r)
i and without intermediary terminals. Note that vk itself can

be a terminal, so just scrutinizing all vk,l with l ∈ {1, ..., r + 1} is not

sufficient, since these r + 1 terminals could be identical to t
(0)
i , t

(1)
i , ..., t

(r)
i .

This discussion implies:

min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + cjk

+ min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, 1, ..., r}

}
≤ d(ti, t

(r+1)
min).

To see the converse, note that each path P associated with the set in (61)
is composed of the components P (ti, vj), {vj , vk} and P (vk, vk,l), for some l

such that vk,l /∈ {t
(0)
i , t

(1)
i , ..., t

(r)
i }. By construction none of these components

contain intermediary terminals, thus the same holds for P . Hence, C(P) ≥
d(ti, vk,l) and therefore:

min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + cjk

+ min{d(vk, vk,l) | l = 1, ..., r + 2 : vk,l 6= t
(q)
i , q = 0, 1, ..., r}

}
≥ d(ti, t

(r+1)
min).

Consequently, the lemma is established.

3.4 The Prize Collecting Steiner Tree Problem 84

Corollary 28. Let α ∈ N, 0 < α < |T |. The α d-nearest terminals to each
terminal can be computed with worst-case complexity of O(m+ n log n) if α
is considered a constant.

Proof. Compute to each non-terminal the α + 1 d-nearest terminals, in a
total of O(m+n log n). Subsequently, traverse each Voronoi-boundary edge
{vi, vj} ∈ E, with tk := base(vi) and tl := base(vj), and update the d-nearest

terminals t
(1)
k and t

(1)
l as well as the corresponding d-distances according to

(60). Thereafter, successively traverse all Voronoi-boundary edges {vi, vj} ∈
E for α − 1 additional times, updating in each iteration z both the values

t
(z)
k and t

(z)
l and the corresponding d-distances according to (61). In the z’th

iteration for each edge at most z d-nearest terminals have to be checked. As
a is assumed to be a constant and z ≤ α holds, the worst-case complexity
for all iterations is of O(m). In total this amounts to the overall bound of
O(m+ n log n).

Having established Lemma 27, we are in a position to propose a modifica-
tion of the SD test introduced in Section 2.2.3: As with the SPG, we compute
the four d-nearest terminals to each non-terminal vi (or as many as exist).

For each terminal ti we compute, three d-nearest terminals t
(1)
i , t

(2)
i , t

(3)
i .

Additionally, we determine a further terminal t
(4)
i that is not necessarily a

fourth d-nearest to ti, but reasonably close empirically. The reason behind
this procedure is that for an exact computation, the fifth d-nearest near-
est terminals vj,5 to all Steiner vertices vj are necessary. We proceed by
choosing to each ti a terminal vk,l such that:

d(ti, vk,l) = min
{vj ,vk}∈δ(N(ti))

{
d(ti, vj) + cjk

+ min{d(vk, vk,l) | l = 1, ..., 4 : vk,l 6= t
(q)
i , q = 0, 1, ..., 3}

}
.

For all (both non-terminal and terminal) vertices vi we denote the set of
the so obtained (up to four) close terminals by Li. Next, we scrutinize each
edge ek = {vi, vj} ∈ E:

Mark each vertex of tq ∈ Li satisfying d(vi, tq) < cij . Thereafter, proceed
for each tl ∈ Lj such that d(vj , tl) < cij as follows: If tl has been marked and

d(vi, tl) + d(vj , tl) − ptl < cij , delete ek. Otherwise, if a t
(r)
l , r = 1, ..., 4 has

been marked, we have found a path between vi and vj , containing exactly

two intermediary terminals, namely tl and t
(r)
l . Next, we examine whether

the prize-collecting Steiner distance of this path is smaller than the cost
of the edge {vi, vj}. For this purpose, we need to check whether the four
inequalities

1. d(tl, t
(r)
l) < cij ,

2. d(tl, t
(r)
l) + d(vj , tl)− ptl < cij ,

3.4 The Prize Collecting Steiner Tree Problem 85

3. d(tl, t
(r)
l)− d(vi, t

(r)
l)− p

t
(r)
l

< cij ,

4. d(tl, t
(r)
l) + d(vj , tl) + d(vi, t

(r)
l)− ptl − pt(r)

l

< cij

are satisfied. If this is the case, cij > spc(vi, vj) holds and we consequently
remove ek. The above procedure is reiterated vice versa, starting from vj
and marking all vertices in Lj , to detect additional vi− vj paths containing
exactly two intermediary vertices. We denote the described test by SD.
Since the up to four close terminals are readily available, the foregoing ex-
amination of an edge can be performed in constant time. Therefore, this can
be accomplished for all edges in Θ(m). Consequently, the SD test can be re-
alized with worst-case complexity of O(m+n log n). With upper bounds on
the bottleneck Steiner distances being available, we can now also extend the
NTD3 test (see Section 2.2.3) to cover the PCSTP, based upon Lemma 26.

Not only exclusion, but also inclusion tests are possible for the PCSTP:
For both Lemma 6 and Lemma 9 introduced in Section 2.2.3 we propose
an extension for the PCSTP, yielding a different but not less powerful re-
sult. A somewhat intricate theorem, which may at first glance appear too
constraining to be of practical importance, sets the stage:

Theorem 29. Let ti, tj ∈ T , W ⊂ V , with ti ∈W , tj /∈W and |δ(W)| ≥ 2.
Further let e1 = {v1, v

′
1}, e2 = {v2, v

′
2}, with v1, v2 ∈ W , be two distinct

edges in δ(W) such that ce1 ≤ ce2 and ce2 ≤ cẽ for all ẽ ∈ δ(W) \ {e1}.
Assume that the following three conditions hold:

ce2 ≥ d(ti, v1) + ce1 + d(v′1, tj), (62)

ptj ≥ d(ti, v1) + ce1 + d(v′1, tj), (63)

pti ≥ d(ti, v1) + ce1 . (64)

Thereupon, for each feasible solution S to P containing ti, v1, or v′1 (or a
combination of them), there is a solution S′ of lesser or equal cost containing
both ti and the edge e1 = {v1, v

′
1}.

Proof. Let S = (VS , ES) be feasible solution to P . Throughout this proof
the subsequent procedure will be referred to as cycle-pruning:
Let G′ = (V ′, E′) be a connected subgraph of G. Until G′ is cycle-free (and
therefore a tree), repeatedly select a cycle CG′ and remove an arbitrary edge
of CG′ other than e1 from G′. It should be noted that the prize-collecting
cost P (G′) =

∑
e∈E′ ce+

∑
v∈V \V ′ pv of G′ is not increased by this procedure,

since only edges are removed, which are by definition of non-negative cost.
In the remainder of this proof three cases will be differentiated, the first

one being ti ∈ VS , the second v1 ∈ VS and the third v′1 ∈ VS .
i) Suppose ti ∈ VS , but {v1, v

′
1} /∈ ES .

If tj ∈ VS , there is a unique path in S between ti and tj that contains an

3.4 The Prize Collecting Steiner Tree Problem 86

edge {w,w}, w ∈ W , w /∈ W of cost at least ce2 . Removing {w,w} one
obtains a tree S1 containing ti and a tree S2 containing tj . By including a
shortest path P1 between ti and v1 as well as a shortest path P2 between
v′1 and tj and including the edge {v1, v

′
1}, a new subgraph S′ is obtained.

However, S′ is not necessarily a tree, since P1
◦ or P2

◦ may contain a vertex of
S, resulting in a cycle. Nevertheless, this possible blemish can be remedied
by cycle-pruning S′. Thereby S′ becomes a tree and, containing VS , it is of
cost:

C(S′) ≤ C(S)− ce2 + d(ti, v1) + ce1 + d(v′1, tj)
(62)

≤ C(S).

In the complementary case tj /∈ VS , construct a tree S′ by once again in-
cluding P1 and P2 and inserting the edge {v1, v

′
1}, followed by cyle-pruning.

The tree S′ is of cost:

C(S′) ≤ C(S) + d(ti, v1) + ce1 + d(v′1, tj)− ptj
(63)

≤ C(S).

ii) Suppose v1 ∈ VS .
If ti /∈ VS , adding a shortest path between ti and S a tree S′ of cost:

C(S′) ≤ C(S)− pti + d(ti, v1)
(64)

≤ C(S)

is obtained. Using this tree, case ii) can be reduced to case i).
iii) Suppose v′1 ∈ VS . If ti ∈ VS but e1 /∈ ES , there is a unique path in

S between v′1 and ti that contains an edge {w,w}, w ∈ W , w /∈ W of cost
at least ce2 . The tree S′ obtained from S by removing {w,w} and inserting
e1 as well as including a shortest path between v1 and ti (and if necessary
performing cycle-pruning) is of cost:

C(S′) ≤ C(S) + ce1 + d(v1, ti)− ce2
(62)

≤ C(S).

If, on the other hand, ti /∈ VS , adding a shortest path between v1 and ti
and, if is not yet contained, the edge e1, ti is connected to S. After habitual
cycle-pruning a tree S′ of cost:

C(S′) ≤ C(S) + ce1 + d(v1, tj)− pti
(64)

≤ C(S)

is obtained.

Contrary to the NV and SL tests for the SPG, for the PCSTP we cannot
assume that {v1, v

′
1} is part of at least one minimum Steiner tree. However

the following corollary allows to contract the edge nevertheless:

3.4 The Prize Collecting Steiner Tree Problem 87

Corollary 30. Assume that the premises of Theorem 29 are fulfilled and
furthermore, that inequality (64) holds strictly or v1 = ti is satisfied. Let
P ′ = (V ′, E′, c′, p′) be the PCSTP obtained by contracting e1 = {v1, v

′
1} and

setting p′v := pv for v ∈ V ′ \ {ti}. If both v1 = ti and v′1 = tj, we set
p′(ti) := pti + ptj − ce1; otherwise we define p′(ti) := pti − ce1. Thereupon,
for each optimal solution S′ to P ′ the corresponding solution S to P is also
optimal.

Proof. Let S′ = (V ′S′ , E
′
S′) be a solution to P ′ and S the corresponding

solution to P . Additionally, assume that e1 = {v1, v
′
1} is contracted into v1

(the opposite case is analogous).
First, suppose v1, ti /∈ V ′S′ . In this case S′ and S consist of exactly the

same edges and nodes, which implies that
∑

e∈E′
S′
c′e′ =

∑
e∈ES

ce. Recall

that if both v1 = ti and v′1 = tj hold, then p′(ti) = pti + ptj − ce1 and
otherwise p′(ti) = pti − ce1 . Thereupon it can be further inferred that∑

v/∈V ′
S′
p′v =

∑
v/∈VS pv − ce1 . These deliberations amount to the equation:

C ′(S′) + ce1 = C(S).

Second, if v1, ti ∈ V ′S′ , then
∑

e∈E′
S′
c′e′ + ce1 =

∑
e∈ES

ce and∑
v/∈V ′

S′
p′v =

∑
v/∈VS pv, so likewise:

C ′(S′) + ce1 = C(S).

Now assume that S′ is an optimal solution to P ′. We claim that only
the two cases discussed above can occur: This assertion is certainly true if
ti = v1, since this excludes additional cases. Otherwise, assume ti ∈ V ′S′ ,
but v1 /∈ V ′S′ . Then

∑
e∈E′

S′
c′e′ =

∑
e∈ES

ce and
∑

v/∈V ′
S′
p′v =

∑
v/∈VS pv

so C ′(S′) = C(S). Furthermore, according to Lemma 29 there would a
solution S̃ of cost C ′(S̃′) ≤ C(S), containing ti, v1 and v′1. Utilizing that
the corresponding solution S̃′ to P ′ would be of cost C(S̃) − ce, it would
follow that:

C ′(S′) = C(S) ≥ C(S̃) = C ′(S̃′) + ce > C ′(S̃′),

contradicting the inital assumption that S′ is optimal.
Conversely, suppose v1 ∈ V ′S′ but ti /∈ V ′S′ . Due to the initial assumption

pti > d(ti, v1) + ce1 , S′ could be connected to ti (in G′) by a path of cost at
most

d(v1, ti) < pti − ce1 = p′(ti), (65)

which would give rise to a solution of smaller cost.
Next, suppose that there was a solution S̃ to P such that C(S̃) < C(S).

According to Lemma 29, it may be assumed that S̃ contains either ti, v1,

3.4 The Prize Collecting Steiner Tree Problem 88

and v′1 or none of them. In both cases, the corresponding solution S̃′ to P ′

would be of cost

C ′(S̃′) = C(S̃)− ce < C(S)− ce = C ′(S′),

contradicting the earlier assumption that S′ is optimal. Concludingly, S has
to be an optimal solution to P .

In the case of |δ(W)| ≤ 1, a corresponding result can be obtained:

Lemma 31. Let W ⊂ V and ti ∈ W , tj /∈ W . If δ(W) = ∅, W ∩ T = {ti}
and ptj ≥ pti, there is an optimal solution S? = (VS? , ES?) with VS?∩W = ∅.
If δ(W) = {e1} = {v1, v

′
1}, v1 ∈ W , and the conditions (63) and (64) of

Lemma 29 hold, then for each feasible solution S to P containing ti, v1, or
v′1 (or a combination of them), there is a solution S′ of lesser or equal cost
containing both ti and the edge e1 = {v1, v

′
1}.

Proof. Let δ(W) = ∅. The only optimal solution that might contain ti is
{ti}, which is of equal or higher cost than the feasible solution {tj}.

Let δ(W) = {e1} = {v1, v
′
1}, v1 ∈ W , and assume that the conditions

(63) and (64) of Lemma 29 hold. Differentiate between three cases:
First, let ti ∈ VS . If tj /∈ VS , adding a shortest path between ti and tj

if e1 /∈ ES or a shortest path between ti and tj otherwise, a subgraph S′ is
obtained. Analogously to the proof of Lemma 32, by applying cycle-pruning
on S′ the latter becomes a tree. It contains ti and e1 and is of cost:

C(S′) ≤ C(S) + d(ti, v1) + ce1 + d(v′1, tj)− ptj
(63)

≤ C(S).

Second, let vi ∈ VS . If ti ∈ VS but e1 /∈ ES , then tj /∈ VS . We can
include a shortest path between ti and tj (containing e1) and proceed as in
the first case to obtain a tree S′ of cost C(S′) ≤ C(S). If ti /∈ VS , we can
include a shortest path between S and ti, yielding a tree of S′ of cost:

C(S′) ≤ C(S) + d(ti, v1)− ptj
(63)
< C(S).

Third, let v′i ∈ VS . If ti /∈ VS we can include a shortest path between ti
and v′i (containing e1) and obtain, after cycle-pruning, a tree S′ of cost:

C(S′) ≤ C(S)− pti + ce1 + d(ti, v1)
(64)

≤ C(S). (66)

On the other hand, if ti is contained in S, so is e1, since this is the only way
to connect v′i and ti.

With those rather general results at hand, we are now able to formulate
extended forms of the NV and SL test for the PCSTP.

3.4 The Prize Collecting Steiner Tree Problem 89

Lemma 32. Let ti be a terminal of degree at least two and let {ti, v′i} and
{ti, v′′i } be a shortest and a second shortest incident edge, respectively. As-
sume that there is a terminal tj 6= ti such that:

c{ti,v′′i } ≥ c{ti,v′i} + d(v′i, tj), (67)

ptj ≥ c{ti,v′i} + d(v′i, tj), (68)

pti ≥ c{ti,v′i}. (69)

Thereupon, for each feasible solution S to P containing ti or v′i, there is a
solution S′ of lesser or equal cost containing {ti, v′i}.

Proof. Defining W := {ti}, one readily recognizes the lemma as a special
case of Theorem 29.

Condition (67) of Lemma 32 can be verified analogously to the NV test
introduced in Section 2.2 by using Lemma 6. Note that it can be realized in
O(m + n log n) since with d(v′i, tj) available, the additional conditions (68)
and (69) can be verified trivially by checking all incident edges of ti. Since
each edge is thereby checked at most twice, this procedure can be realized
for the entire set of terminals in Θ(m). As with the SPG, the test can be
extended based on the subsequent lemma.

Lemma 33. Let ti be a terminal of degree at least two and let e′i = {ti, v′i}
be a shortest edge incident to ti. Assume that there is a second edge e′′i =
{ti, v′′i } incident to ti with v′′i /∈ T . If there is a terminal tj 6= ti such that:

ce ≥ c{ti,v′i} + d(v′i, tj) for all e ∈ δ({ti, v′′i }) \ {e′i}, (70)

ptj ≥ c{ti,v′i} + d(v′i, tj), (71)

pti ≥ c{ti,v′i}, (72)

then for each feasible solution S to P containing ti or v′i, there is a solution
S′ of lesser or equal cost containing {ti, v′i}.

Proof. DefiningW := {ti, v′′i }, one readily verifies that the lemma is a special
case of Theorem 29.

We denote the test associated with Lemma 32 and Lemma 33 that con-
tracts edges as described in Corollary 30 by Nearest Vertex (NV) test.
Since Lemma 33 can be realized with additional costs of O(m), NV is of
O(m+ n log n).

Theorem 29 can be further put to use to verify the following two lem-
mata, which in turn set the stage for a Voronoi based inclusion test:

3.4 The Prize Collecting Steiner Tree Problem 90

Lemma 34. Let ti be a terminal and let {v1, v
′
1} and {v2, v

′
2} be a shortest

and a second shortest Voronoi-boundary edge of N(ti) (satisfying v1, v2 ∈
N(ti) and v′1, v

′
2 /∈ N(ti)). Let tj := base(v′2) and assume:

c{v2,v′′2 } ≥ d(ti, v1) + c{v1,v′1} + d(v′1, tj), (73)

ptj ≥ d(ti, v1) + c{v1,v′1} + d(v′1, tj), (74)

pti ≥ c{v1,v′1} + d(ti, v1). (75)

Thereupon, for each feasible solution S to P containing ti, v1 or v′1 there is
a solution S′ of lesser or equal cost containing both {v1, v

′
1} and ti.

Proof. Defining W := N(ti), one readily verifies that the lemma is a special
case of Theorem 29.

Lemma 35. Let ti be a terminal and let e′1 := {v1, v
′
1} be a shortest shortest

Voronoi-boundary edge of N(ti). Assume that there is a second Voronoi-
boundary edge of N(ti), namely e′2 = {v2, v

′
2}, with v′2 /∈ T ∪ {v′1}. Further,

let tj := base(v′2) and assume:

ce ≥ d(ti, v1) + ce′1 + d(v′1, tj), ∀ e ∈ δ({ti, v′′i }) \ {e′1}, (76)

ptj ≥ d(ti, v1) + ce′1 + d(v′1, tj), (77)

pti ≥ d(ti, v1) + ce′1 . (78)

Then for each feasible solution S to P containing ti, v1 or v′1 there is a
solution S′ of lesser or equal cost containing both {v1, v

′
1} and ti.

Proof. Defining W := N(ti) ∪ {v′2}, one readily verifies that the lemma is a
special case of Theorem 29.

We denote the test associated with the lemmata 34 and 35 that contracts
edges as described in Corollary 30 by Short Links (SL). Additionally, this
test checks whether the conditions of Lemma 31 are satisfied. SL can be
realized in O(m+n log n): The computation of the Voronoi diagram requires
O(m+n log n) [Meh88] and a shortest and second shortest Voronoi-boundary
edge to all terminals can be computed by traversing all Voronoi region,
in a total of Θ(m). The extension of the test affiliated with Lemma 35
is restricted to terminals ti such that |δ(ti)| ≥ 2 ∗ |δ(v′′i)|, bounding the
additional costs to O(m). Note, that the distances d(v1, ti) and d(v′1, tj) are
computed during the build up of the Voronoi regions.

Bound Based Reductions

All reduction techniques described in this subsection have, to the best of
our knowledge, not been introduced in the literature so far. Preliminarily,

3.4 The Prize Collecting Steiner Tree Problem 91

based on the radius introduced in Section 2.2 we define an equivalent for
the (rooted) prize-collecting Steiner tree problem as follows:

pcradius(ti) := min{radius(ti), pti}, ti ∈ T. (79)

This definition sets the stage for a series of lemmata and corollaries pre-
sented hereinafter that allow to eliminate vertices and edges analogously
to the BND test introduced in Section 2.2. For ease of understanding,
it is presupposed that all terminals are ordered such that pcradius(t1) ≤
pcradius(t2) ≤ ... ≤ pcradius(ts).

Lemma 36. Let vi ∈ V \ T . If a minimum Steiner tree S = (VS , ES) with
vi ∈ VS exists, then d(vi, vi,1) + d(vi, vi,2) +

∑s−2
q=1 pcradius(tq) is a lower

bound on the cost of S.

Proof. Denote the (unique) path in S between vi and a terminal tj ∈ VS
by Pj and the set of all such paths by P. First, note that |P| ≥ 2, because
otherwise, with P = {Pl}, the tree {tl} would be of smaller cost than S,
contradicting the initial assumption that the latter is of minimum cost.
Second, two distinct paths in P can only have a subpath containing vi in
common, but no additional edges, since this would require a cycle in S.
Additionally, there are at least two paths in P having only the vertex vi
in common: Otherwise, due to the precedent observation, all paths would
have one edge {vi, v′i} in common which could be discarded, yielding a tree
of smaller cost than S.

Now, choose two distinct paths Pk ∈ P and Pl ∈ P such that their
combined number of Voronoi-boundary edges is minimal and V [Pk]∩V [Pl] =
{vi} holds. Further, define P− := P \ {Pk, Pl}. For all Pr ∈ P−, denote by
P ′r the subpath of Pr between tr and the first vertex not in N(tr). Suppose
that Pk has an edge e ∈ ES in common with a P ′r: Consequently, Pl cannot
have any edge in common with Pr, because S is cycle-free. Furthermore,
according to the prelusive observations, Pk and Pr have to contain a joint
subpath including vi and e. But in this case, Pk would need to contain at
least one additional Voronoi-boundary edge (in order to be able to reach tk,
which is by definition not in N(tr)). Therefore, and due to Pl and Pr being
edge disjoint, Pr would have initially been selected instead of Pk.

Following the same line of argumentation, one validates that likewise Pl
has no edge in common with any P ′r. Conclusively, the paths Pk, Pl and all
P ′r are edge disjoint. Using their combined cost, a lower bound on the cost

3.4 The Prize Collecting Steiner Tree Problem 92

of S can be obtained by:

C(S) =
∑
e∈ES

ce +
∑

v∈V \VS

pv

≥
(∑
Pr∈P−

C(P ′r)

)
+ C(Pk) + C(Pl) +

∑
v∈V \VS

pv

≥
s−2∑
q=1

pcradius(tq) + C(Pk) + C(Pl)

≥
s−2∑
q=1

pcradius(tq) + d(vi, vi,1) + d(vi, vi,2)

where C(P) :=
∑

e∈E[P] ce. Ergo, the lemma is proven.

A Steiner vertex vi can be discarded if its associated lower bound, spec-
ified in Lemma 36, exceeds a known upper bound U of the underlying prob-
lem. If a solution S of cost U is available, vi can eliminated in the case of
equality of both bounds if additionally vi /∈ V [S] is satisfied. Analogous tests
are possible for all subsequent lemmata and corollaries in this subsection.

A similar approach can be applied to probe whether a terminal is part of

any optimal solution. Recall that to each terminal ti we denote by t
(1)
i 6= ti

a terminal of shortest distance to ti.

Corollary 37. Let ti ∈ T and assume that a minimum Steiner tree S =
(VS , ES) other than {ti} exists such that ti ∈ VS. Additionally, let φ :
{1, .., s} → {1, .., s} be a bijection, such that φ(i) = 1 and all tφ(j) are ordered
such that the pcradius(tφ(j)) values are non-decreasing in j = 2, ..., s. In this

case, d(ti, t
(1)
i) +

∑s−1
q=2 pcradius(tφ(q)) is a lower bound on the cost of S.

Proof. For each terminal tj ∈ (VS ∩ T) \ {ti} denote by Pj the (unique)
path in S between ti and tj . Further, denote the collection of all such paths
by P. Let Pk ∈ P be a path with a minimal number of Voronoi-boundary
edges. Let P− := P \ {Pk}. If P− is non-empty, denote for each Pr ∈ P−
the subpath of Pr between tr and the first vertex not in N(tr) by P ′r.

Using the same argumentation as in the proof to Lemma 36, one validates
that Pk and all P ′r are edge disjoint. Therefore, the cost of S can be bounded

3.4 The Prize Collecting Steiner Tree Problem 93

from below as follows:

C(S) =
∑
e∈ES

ce +
∑

v∈V \VS

pv

≥
(∑
Pr∈P−

C(P ′r)

)
+ C(Pk) +

∑
v∈V \VS

pv

≥
s−1∑
q=2

pcradius(tφ(q)) + C(Pk)

≥
s−1∑
q=2

pcradius(tφ(q)) + d(ti, t
(1)
i),

with the last line yielding the desired result.

If a terminal cannot be eliminated by means of the conditions of the
antecedent corollary, another approach based on the following lemma can
be attempted:

Lemma 38. Let ti ∈ T and assume that a minimum Steiner tree S =
(VS , ES) exists such that ti is of degree at least two in S. Additionally, let
φ : {1, .., s} → {1, .., s} be a bijection, such that φ(i) = 1 and all tφ(j) are
ordered such that the pcradius(tφ(j)) values are non-decreasing in j = 2, ..., s.

In this case, d(ti, t
(1)
i) + d(ti, t

(2)
i) +

∑s−2
q=2 pcradius(tφ(q)) is a lower bound

on the cost of S.

Proof. Define P accordingly to the proof of Corollary 37. Additionally,
denote by Pk, Pl ∈ P two edge disjoint paths such that their combined
number of Voronoi-boundary edges is minimal and define P− := P\{Pk, Pl}.
Define for each Pr ∈ P− the subpath of Pr between tr and the first vertex
not in N(tr) by P ′r. Proceeding as in the proof to Lemma 36 it can be
verified that Pk, Pl and all P ′r are edge disjoint. Hence:

C(S) =
∑
e∈ES

ce +
∑

v∈V \VS

pv

≥
(∑
Pr∈P−

C(P ′r)

)
+ C(Pk) + C(Pl) +

∑
v∈V \VS

pv

≥
s−2∑
q=2

pcradius(tφ(q)) + C(Pk) + C(Pl)

≥
s−2∑
q=2

pcradius(tφ(q)) + d(ti, t
(1)
i) + d(ti, t

(2)
i).

Thereby the claim is established.

3.4 The Prize Collecting Steiner Tree Problem 94

The last result can be utilized for a simple reduction test that checks
whether a terminal that has been proven to be of degree at most one in at
least one minimum Steiner tree can be discarded:

Lemma 39. Let ti ∈ T and assume pti ≤ ce for all e ∈ δ(ti). If ti is not
contained or of degree one in at least one minimum Steiner tree, there exists
a minimum Steiner tree not containing ti.

Proof. Suppose that there is a minimum Steiner tree such that ti is of degree
one in S (otherwise the claim is already established). Deleting ti and its
incident edge in S, one obtains a new minimum Steiner tree.

If the premises of Corollary 37 or Lemma 39 are fulfilled, ti and all
incident edges can be deleted. To obtain the original solution value, pti needs
to be added to the objective value of each feasible solution (analogously to
the TD0 test).

Lemma 40. Let {vi, vj} ∈ E. If there is a minimum Steiner tree S =
(VS , ES) such that {vi, vj} ∈ ES, then L defined by

L := c{vi,vj} + d(vi, vi,1) + d(vj , vj,1) +
s−2∑
q=1

pcradius(tq) (80)

if base(vi) 6= base(vj) and

L := c{vi,vj} + min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
+

s−2∑
q=1

pcradius(tq) (81)

otherwise, is a lower bound on the cost of S.

Proof. Initially, define TS := VS ∩ T and denote the set of all paths in S
between vi and vertices in TS reachable without using the edge {vi, vj} by
Pvi , and analogously the set of all paths in S between vj and the remaining
vertices in TS by Pvj . Additionally, set P := Pvi ∪ Pvj . Note, that single
vertices are considered a path in this proof. Therefore, both Pvi and Pvj
are non-empty, since otherwise the edge {vi, vj} could be removed from S
to obtain a Steiner tree of smaller cost.

As in the proof to Lemma 11 one easily verifies that: first, a path in Pvi
cannot have edges in common with any path in Pvj (and vice versa); second,
two distinct paths that are both in either Pvi or Pvj can only have a subpath
containing vi or vj respectively in common, but no additional edges.

Having set the stage, we choose two paths Pk ∈ Pvi and Pl ∈ Pvj such
that their combined number of Voronoi-boundary edges is minimal. Further,
define P− := P \ {Pk, Pl}. For Pr ∈ P, denote its subpath between tr

3.4 The Prize Collecting Steiner Tree Problem 95

and the first vertex not in N(tr) by P ′r. Following precisely the line of
argumentation utilized in the proof to Lemma 11, one validates that the
paths Pk, Pl and all P ′r are edge disjoint. Likewise, it can be demonstrated,
that in the case of base(vi) 6= base(vj) the cost of Pk plus the cost of Pl is at
least d(vi, vi,1) + d(vj , vj,1). With these results at hand one readily verifies
that:

C(S) =
∑
e∈ES

ce +
∑

v∈V \VS

pv

≥
(∑
Pr∈P−

C(P ′r)

)
+ C(Pk) + C(Pl) + c{vi,vj} +

∑
v∈V \VS

pv

≥
s−2∑
q=1

pcradius(tq) + C(Pk) + C(Pl) + c{vi,vj}

≥
s−2∑
q=1

pcradius(tq) + d(vi, vi,1) + d(vj , vj,1) + c{vi,vj}

Likewise in the case of base(vi) = base(vj) the combined cost of Pk and
Pl is at least min{d(vi, vi,1)+d(vj , vj,2), d(vi, vi,2)+d(vj , vj,1}. Consequently:

C(S) ≥
s−2∑
q=1

pcradius(tq) + C(Pk) + C(Pl) + c{vi,vj}

≥
s−2∑
q=1

pcradius(tq) + min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
+ c{vi,vj}.

So overall, L as defined in (81) is a lower bound on the weight of S.

Lemma 41. Let vi ∈ V \ T, δ(vi) ≥ 3. If there exists a minimum Steiner
tree S such that vi is of degree at least three in S, then d(vi, vi,1)+d(vi, vi,2)+
d(vi, vi,3) +

∑s−3
q=1 pcradius(tq) is a lower bound on the weight of S.

Proof. Initially, define P as in the proof to Lemma 36. One readily observes
that there are at least three edge disjoint paths in P: There are at least
three distinct edges ei,1, ei,2, ei,3 ∈ ES incident to vi. For z = 1, 2, 3 there
exists a path Pz ∈ P containing ei,z, since otherwise the edge ei,z could be
discarded to obtain a tree S′ containing the same terminals as S and being
therefore of smaller cost. Since S is by definition cycle-free, the three paths
cannot have a vertex other than vi in common.

Having verified their existence, let Pj , Pk, Pl ∈ P be three edge disjoint
paths in S such that they jointly contain a minimal number of Voronoi-
boundary edges. For all remaining Pr ∈ P, define P ′r as the subpath between

3.4 The Prize Collecting Steiner Tree Problem 96

tr and the first vertex not in N(tr). Analogously to the proof of Lemma 36,
one validates that Pj , Pk, Pl and all P ′r are edge disjoint. Therefore, with
P− := P \ {Pj , Pk, Pl}:

C(S) =
∑
e∈ES

ce +
∑

v∈V \VS

pv

≥
(∑
Pr∈P−

C(P ′r)

)
+ C(Pj) + C(Pk) + C(Pl) +

∑
v∈V \VS

pv

≥
s−3∑
q=1

pcradius(tq) + C(Pj) + C(Pk) + C(Pl)

≥
s−3∑
q=1

pcradius(tq) + d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3),

which proves the lemma.

This lemma can be likewise modified to handle terminals. Recall that
for a terminal ti ∈ T we denote by t

(2)
i and t

(3)
i the terminals being second

and third nearest to ti with respect to d.

Corollary 42. Let ti ∈ T, δ(ti) ≥ 3 and assume the existence a minimum
Steiner tree S such that vi is of degree at least three in S. Furthermore, let
φ : {1, .., s} → {1, .., s} be a bijection, such that φ(i) = 1 and all tφ(j) are
ordered such that the pcradius(tφ(j)) values are non-decreasing in j = 2, ..., s.

Thereupon, d(ti, t
(1)
i)+d(ti, t

(2)
i)+d(ti, t

(3)
i)+

∑s−3
q=2 pcradius(tφ(q)) is a lower

bound on the weight of S.

Proof. For each terminal tj ∈ (VS ∩T)\{ti} denote by Pj the (unique) path
in S between ti and tj , and the collection of all such paths by P. As in
the proof to Lemma 41 it can be verified that there are at least three edge
disjoint paths in P . Once again, choose three such paths Pj , Pk, Pl ∈ P ,
each with a minimal number of Voronoi-boundary edges. Denoting P− :=
P \ {Pj , Pk, Pl} and defining for all Pr ∈ P−, P ′r as the subpath between
tr and the first vertex not in N(tr), one analogously yields that Pj , Pk, Pl
and all P ′r are edge disjoint. Therefore, the cost of S can be bounded from

3.4 The Prize Collecting Steiner Tree Problem 97

below as follows:

C(S) =
∑
e∈E

ce +
∑

v∈V \VS

pv

≥
(∑
Pr∈P−

C(P ′r)

)
+ C(Pj) + C(Pk) + C(Pl) +

∑
v∈V \VS

pv

≥
s−3∑
q=2

pcradius(tφ(q)) + C(Pj) + C(Pk) + C(Pl)

≥
s−3∑
q=2

pcradius(tφ(q)) + d(ti, t
(1)
i) + d(ti, t

(2)
i) + d(ti, t

(3)
i).

Unfortunately, it appears to be difficult to translate Corollary 42 to a
reduction test, only a special case is covered here:

Lemma 43. Let ti ∈ T, δ(ti) = 3 and assume that there is no minimum

Steiner tree S such that ti is of degree three in S. Let e
(1)
i , e

(2)
i , e

(3)
i be the

three incident edges to ti with c
e
(1)
i

≤ c
e
(2)
i

≤ c
e
(3)
i

. Further, assume that

pti ≤ c
e
(1)
i

and pti ≤ ptj for a tj ∈ T . Additionally, let v
(1)
i , v

(2)
i , v

(3)
i ∈ V

such that e
(k)
i = {ti, v(k)

i } for k = 1, 2, 3. Construct a new PCSTP instance
P ′PC = (V ′, E′, c′, p′) from PPC as follows:

1. Initially, set V ′ := V , E′ := E and remove ti and δ(ti) from V ′ and
E′ respectively. For all remaining e ∈ E′ and v ∈ V ′ set c′e := ce and
p′v := pv.

2. For k = 1, 2, 3: Define edges e′k := {v(k)
i , v

((k mod 3)+1)
i } of cost c′e′k

:=

c
e
(k)
i

+c
e
((k mod 3)+1)
i

−pti. If there is no edge {v(k)
i , v

((k mod 3)+1)
i } ∈ E′,

add e′k to E′; if there is such an edge being of higher cost than e′k,
replace it by e′k. Otherwise discard e′k.

Thereupon, each solution S′ to P ′PC can be transformed to a solution S to

PPC by replacing each e′k (k = 1, 2, 3) contained in S′ by the edges e
(k)
i and

e
((k mod 3)+1)
i . If S is optimal, S is optimal as well and C ′(S′) + pti = C(S)

holds.

Proof. Let S′ be an optimal solution to P ′PC . The subgraph S yielded from
S′ by the described transformation is indeed a solution to PPC : Since S
is connected and edges are substituted by paths, the same holds for S′.
Furthermore, for the same reason, if there was a cycle in S′, there would be
one in S as well.

3.4 The Prize Collecting Steiner Tree Problem 98

Note that any solution S̃ to PPC such that ti is either not contained or
of degree two, can be reduced to a solution S̃′ to P ′PC by replacing the two

edges e
(k)
i and (e

((k mod 3)+1)
i , if contained in S̃, by the edge e′k. Subsequently,

distinguish three cases:
First, if S′ does not contain any of the newly inserted edges, its cost can

be calculated by:

C ′(S′) =
∑
e∈E′

c′e +
∑
v/∈V ′

S′

p′v

=
∑
e∈E

ce +
∑
v/∈VS

pv − pti

= C(S)− pti .

Second, if S′ contains exactly one newly inserted edge c′e′k
, of cost c

e
(k)
i

+

c
e
((k mod 3)+1)
i)

− pti , S contains the edges e
(k)
i and e

((k mod 3)+1)
i instead and

likewise the vertex ti. Therefore, the cost of S′ can be stated as:

C ′(S′) =
∑
e∈E′

c′e +
∑
v/∈V ′

S′

p′v

=
∑
e∈E

ce − pti +
∑
v/∈VS

pv

= C(S).

Third, suppose S′ contained two of the newly inserted edges c′e′k
and

c′e′l
. Their combined cost would be c

e
(1)
i

+ c
e
(2)
i

+ c
e
(3)
i

+ c
e
(l)
i

− 2pti for some

l ∈ {1, ..., 3}. Moreover, ti would be of degree three in S and since S
could consequently not be optimal, there would be a solution S̃ to P with
C(S̃) > C(S) and ti either not contained or of degree two. Hence:

C ′(S′) =
∑

e∈E∩E′
S′

c′e + c
e
(1)
i

+ c
e
(2)
i

+ c
e
(3)
i

+ c
e
(l)
i

− 2pti +
∑
v/∈V ′

S′

p′v

=
∑
e∈E

ce + c
e
(l)
i

− 2pti +
∑
v/∈VS

pv

≥
∑
e∈E

ce − pti +
∑
v/∈VS

pv

= C(S)− pti
> C(S̃)− pti
= C ′(S̃′),

contradicting the premise that S′ is of minimum cost. Finally, note that
there is no fourth case, since S′ is by definition cycle-free and can therefore
not contain all three newly inserted edges.

3.4 The Prize Collecting Steiner Tree Problem 99

It remains to be demonstrated that S is of minimum cost: Suppose that
this was not true. Consequently there would be a solution S̃ to PPC of
cost C(S̃) < C(S) such that ti was either not contained or of degree two.
Denoting the corresponding solution to P ′ by S̃′, it could be inferred that:

C ′(S′) = C(S)− pti > C(S̃)− pti = C ′(S̃′).

Hence, S is indeed of minimum cost.

The test associated with the introduced bound-based reduction approaches
is denoted by Bound (BND) test. It works with an upper bound computed
by the constructive heuristic that will be introduced in Section 3.4.3. The
worst-case complexity, which would otherwise be of O(m+n log n), is dom-
inated by the heuristic.

Ordering

The underlying principles for the disposition of the reduction methods within
an overall loop are the same as for the SPG, see Section 2.2.5. Likewise,
each method block other than the easy DT tests is disabled in a successive
iterations as soon as less than 0.1 percent of all edges could be eliminated.
The condition of truncation for the whole loop remains the same. Note that
the ordering reported in Figure 11 is used for both the rooted and unrooted
prize-collecting Steiner tree problem.

3.4.3 Heuristics

For the RPCSTP the one-phase RSP heuristic introduced in Section 2.3.1
can be employed on the corresponding SAP obtained from Transformation 3,
using outgoing arcs instead of edges. Considering the PCSTP, we suggest
an adaptation of one-phase RSPH: Given a PCSTP consider the rcSAP ob-
tained by Transformation 4. Instead of commencing from different vertices,
the starting point is invariably the (artificial) root. In each run all arcs
between the root and non-terminals (denoted by (r′, t) in Transformation
4) are temporarily removed, except for one. A tree is then computed on
this new graph, using the same process as the original RSP heuristic, but
only considering outgoing arcs. Instead of starting from a new terminal,
the arc to remain in the graph is varied. Analogously to the use of RSPH
for the SPG, in the course of the solving process the arc costs are modified
according to the values of the best available LP solution.

The VQ heuristic requires an adaptation for both the RPCSTP and
the PCSTP: All terminals are temporarily removed from the (transformed)
graph and VQ is executed with all ti, as defined in Transformation 3, marked
as key vertices. Finally, the pruning has to be slightly adjusted such that
(47), and for the PCSTP also (54), is satisfied by each solution.

3.4 The Prize Collecting Steiner Tree Problem 100

UNT, DTstart

SDC, SD

NTD3

DT

NV, SL

BND

sufficient
number of
reductions?

stop

yes

no

Figure 11: Illustration of the (R)PCSTP reduction package.

3.4 The Prize Collecting Steiner Tree Problem 101

3.4.4 Implementation and Computational Results

Although the formulations underlying the rooted and unrooted PCSTP dif-
fer, we still consider them as related enough to justify a joint computational
evaluation. The three PCSTP and the two RPCSTP test sets are outlined
in Table 12.

Name Instances |V | Status Description

JMP 34 100-400 solved Sparse instances of varying structure,
introduced in [JMP00].

CRR 80 500-1000 solved Sparse instances with up to 25, 000 edges, based
on the C and D test sets of the SteinLib [Lju04].

PUCNU 18 1200-4096 unsolved Hard instances derived from the PUC set, with
c ≡ 1, p ∈ {1, 2}. From the 11th DIMACS Challenge.

Cologne1 14 741-751 solved
 RPCSTP instances derived from the design of fiber

optic networks for German cities [Lju04].
Cologne2 15 1801-1810 solved

Table 12: Classes of (R)PCSTP instances.

For the JMP class all instances are solved without branching in less than
three seconds, with an average of 0.6 seconds as illustrated in Table 13. Like-
wise, all instances of the CRR test set are solved in between 0.04 and 6.9
seconds. For neither of the two sets a branch-and-bound search is required.
The third test set considered for the evaluation is the PUCNU class, derived
from the PUC test set, see Section 2.6. As SCIP-Jack is already unable to
solve many of the original instances, similar results are observed for the re-
spective PCSTP versions. Of all instances ten are solved to optimality, with
three of them requiring branching. The remaining eight instances evince
optimality gaps in the range of 0.6 to 2.7 percent at termination.

Table 13: Computational results for PCSTP instances

Optimal Timeout

Class Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

JMP 34 34 1.0 0.6 – –
CRR 80 80 1.0 1.0 – –
PUCNU 18 10 3.9 43.0 54.5 1.8

Results on the RPCSTP sets are reported in Table 14. All instances
are solved at the root node, in an average of 2.6 seconds for Cologne1 and
20.3 seconds for Cologne2. Each instance collected in the Cologne1 test set,
is solved in less than eight seconds, the, larger, instances from Cologne2
require 0.6 up to 54.2 seconds.

3.4 The Prize Collecting Steiner Tree Problem 102

Optimal
Class Instances Solved ∅Nodes ∅Time [s]

Cologne1 14 14 1.0 2.6
Cologne2 15 15 1.0 20.3

Table 14: Computational results for RPCSTP instances.

Impact of Reduction Techniques

The results illustrated in Table 15 bespeak the strength of the employed re-
duction techniques. On average the number of edges is reduced by more than
50 percent and even for the hard PUCNU test set, whose SPG predecessor
allowed for less than one percent of reduction in Section 2.6.1, more than 15
percent of the edges could be removed. Furthermore, it should be noted that
the Cologne1 and Cologne2 test sets are already reduced by the techniques
described in [Lju04], which renders the results even more notable. Of the
Cologne1 instances four are already solved during presolving, while for the
Cologne2 set this holds only for one instance. Of the PCSTP instances, 10
can be solved by reduction methods alone. On each test set, the execution
of the reduction techniques requires less than one second (with respect to
the shifted geometric mean).

Remaining Remaining
Class Vertices[%] Edges[%] ∅Time [s]

JMP 57.1 51.7 0.1
CRR 34.8 22.6 0.4
PUCNU 96.5 84.7 0.6
Cologne1 36.8 37.0 0.3
Cologne2 59.0 59.5 0.9

Table 15: Computational results of the (R)PCSTP reduction package.

Furthermore, results on the leverage of the individual reduction compo-
nents within the overall package are provided: Table 16 displays the results of
iteratively excluding each reduction method from the whole package (analo-
gously to the procedure in Section 2.6.1). As opposed to the results formerly
presented in this thesis, the simple reduction techniques (UNT and DT) for
the (R)PCSPG are overall not the most effective ones. Nevertheless, a con-
siderable impact on the CRR instances and also on the JMP class is manifest.
Interestingly enough, on Cologne2 the simple reductions lessen the overall
strength of the reduction package, which means they hinder the elimination
of further edges by the succeeding methods. The SD and SDC tests display a
strong, robust performance, most notably for the PUCNU test set on which
they can credit the majority of reductions. On the downside, however, one
observes a high execution time, occupying more than 50 percent of the over-
all time on all five test classes. The effect of both the NTD3 and the NV, SL

3.4 The Prize Collecting Steiner Tree Problem 103

methods is somewhat less pronounced, but at the same time they reveal a
higher efficiency, even improving the overall execution time on several tests
sets, for example both the RPCSTP classes. Finally, the bound-based re-
duction strategy (BND) is notably strong on classes containing instances of
few terminals, i.e. CRR, Cologne1 and Cologne2. Concomitantly, the total
run time of the reduction package is improved on CRR as well as Cologne1.

Class UNT, DT SDC, SD NTD3 NV,SL BND

E
d
g
es

JMP +30.0 +57.8 +33.8 +9.1 0
CRR +118.5 +89.8 +16.2 +29.6 +72.6
PUCNU +4.2 +16.8 0 0 0
Cologne1 +3.1 +27.5 +3.3 -3.0 +107.9
Cologne2 -0.3 +20.5 +11.8 +0.9 +46.7

T
im

e

JMP -9.2 -51.9 -14.0 +8.9 +1.8
CRR +1.4 -50.9 -16.8 -0.8 +18.2
PUCNU -10.7 -55.5 -0.8 -1.1 -1.6
Cologne1 -4.3 -68.1 +14.9 +6.9 +27.6
Cologne2 -18.8 -80.8 +2.0 +2.6 -13.9

Table 16: Evaluation of the (R)PCSTP preprocessing components. Each
column reports the results of the reduction package without the specified
method. The values denote the percentual change with respect to the default
settings (see Table 15).

Having discussed our reduction approach for the PCSTP in depth, we
furthermore aspire to classify our experimental results with respect to re-
lated publications. The most effective reduction techniques published in the
literature are from [Uch06], clearly surpassing previous results [KLM+04,
Lju04, LR04]. The author performed computational experiments on the
CRR instances, which can be subdivided into a C and D test set. In both
Table 17 and Table 18 a detailed comparison is provided between the results
reported in [Uch06] and those of our PCSTP reduction package. Unfortu-
nately, no run times are provided in [Uch06]. However, the fact that so
called expansions of reduction tests were used, which can be exceedingly
time-consuming [Pol04], suggests that these computations require far more
time than our approach. No methods of this type are deployed in this the-
sis, since the purpose of the reduction approach is a more subordinate one,
namely to serve as a component for fast exact solving.

Nevertheless, our reduction package still achieves notably better results
on both test sets, eliminating almost one third more edges and vertices
compared to [Uch06]. We ascribe this mostly to the BND test that manifests
an impressive efficiency on the instances with few terminals. An example
is the D11-A instance, for which all 5000 edges can be eliminated, over
3000 of them by the BND test. Indeed, on the instances of small |T |, the
differences between our package and the results reported in [Uch06] become
most pronounced, which is again epitomized in the D11-A instance: While

3.4 The Prize Collecting Steiner Tree Problem 104

our reduction package already solves the problem, the approach described
in [Uch06] leaves 977 vertices and 3971 edges untouched.

Original Reduced Reduced [Uch06]

Name Nodes Edges Terminals Nodes Edges Nodes Edges

C01-A 500 625 5 1 0 105 190
C01-B 500 625 5 8 11 49 77
C02-A 500 625 10 1 0 82 148
C02-B 500 625 10 70 128 71 125
C03-A 500 625 83 138 244 113 190
C03-B 500 625 83 80 146 79 121
C04-A 500 625 125 122 218 72 119
C04-B 500 625 125 97 175 71 113
C05-A 500 625 250 56 112 7 9
C05-B 500 625 250 9 14 1 0
C06-A 500 1000 5 1 0 346 792
C06-B 500 1000 5 60 126 344 778
C07-A 500 1000 10 1 0 353 806
C07-B 500 1000 10 276 638 342 769
C08-A 500 1000 83 318 720 251 531
C08-B 500 1000 83 256 555 217 410
C09-A 500 1000 125 330 744 279 577
C09-B 500 1000 125 283 609 232 440
C10-A 500 1000 250 215 508 103 166
C10-B 500 1000 250 37 59 100 156
C11-A 500 2500 5 1 0 485 1801
C11-B 500 2500 5 155 378 480 1667
C12-A 500 2500 10 191 458 453 1495
C12-B 500 2500 10 389 1194 441 1358
C13-A 500 2500 83 400 1152 343 799
C13-B 500 2500 83 370 1010 317 704
C14-A 500 2500 125 316 816 190 365
C14-B 500 2500 125 265 656 179 330
C15-A 500 2500 250 167 412 1 0
C15-B 500 2500 250 1 0 1 0
C16-A 500 12500 5 65 144 499 2714
C16-B 500 12500 5 65 144 499 2714
C17-A 500 12500 10 353 1147 494 2295
C17-B 500 12500 10 176 459 494 2295
C18-A 500 12500 83 434 1553 374 1002
C18-B 500 12500 83 434 1551 374 997
C19-A 500 12500 125 283 733 246 589
C19-B 500 12500 125 285 735 249 592
C20-A 500 12500 250 1 0 1 0
C20-B 500 12500 250 1 0 1 0

Avg. ratio 33.6% 21.5% 46.7% 29.1%

Table 17: Reductions on C instances.

3.4 The Prize Collecting Steiner Tree Problem 105

Original Reduced Reduced [Uch06]

Name Nodes Edges Terminals Nodes Edges Nodes Edges

D01-A 1000 1250 5 1 0 223 422
D01-B 1000 1250 5 133 261 223 416
D02-A 1000 1250 10 1 0 238 450
D02-B 1000 1250 10 217 406 232 423
D03-A 1000 1250 167 230 422 114 194
D03-B 1000 1250 167 131 244 129 202
D04-A 1000 1250 250 242 446 171 297
D04-B 1000 1250 250 63 108 50 70
D05-A 1000 1250 500 179 355 84 125
D05-B 1000 1250 500 31 51 12 17
D06-A 1000 2000 5 1 0 740 1697
D06-B 1000 2000 5 378 969 736 1682
D07-A 1000 2000 10 1 0 721 1664
D07-B 1000 2000 10 473 1119 702 1602
D08-A 1000 2000 167 718 1621 673 1489
D08-B 1000 2000 167 628 1393 561 1142
D09-A 1000 2000 250 664 1521 580 1260
D09-B 1000 2000 250 492 1131 439 841
D10-A 1000 2000 500 463 1173 235 425
D10-B 1000 2000 500 131 309 36 56
D11-A 1000 5000 5 1 0 977 3971
D11-B 1000 5000 5 178 441 972 3740
D12-A 1000 5000 10 361 916 960 3300
D12-B 1000 5000 10 350 871 942 3040
D13-A 1000 5000 167 853 2531 708 1713
D13-B 1000 5000 167 788 2221 694 1631
D14-A 1000 5000 250 683 1898 571 1238
D14-B 1000 5000 250 607 1603 512 1062
D15-A 1000 5000 500 358 961 139 217
D15-B 1000 5000 500 8 12 4 5
D16-A 1000 25000 5 126 330 1000 6735
D16-B 1000 25000 5 126 330 1000 6725
D17-A 1000 25000 10 857 4148 999 6330
D17-B 1000 25000 10 637 2297 999 6330
D18-A 1000 25000 167 907 3706 812 2314
D18-B 1000 25000 167 907 3691 806 2276
D19-A 1000 25000 250 755 2383 686 1895
D19-B 1000 25000 250 747 2338 680 1870
D20-A 1000 25000 500 1 0 1 0
D20-B 1000 25000 500 1 0 1 0

Avg. ratio 36.1% 23.8% 50.9% 33.4%

Table 18: Reductions on D instances.

3.4 The Prize Collecting Steiner Tree Problem 106

Impact of Heuristics

To measure the impact of the primal heuristics, we proceed as in Section 2.6
and deploy them in accumulative stages. As with the SPG, one observes a
steady decline of the average gap when stepping up the employed heuris-
tics. This ranges from 72.81 percent when using no Steiner heuristics to
1.84 percent for their full-fledged employment; the sharpest descent can be
observed when enabling the RSP heuristic, which reduces the average gap
by 69.4 percent. Furthermore, the results presented in Table 19 display that
also the execution time is considerably reduced when the heuristics come
into play.

However, one notes that excluding the average gap the differences be-
tween the accumulative stages of employed heuristics are diverse: On the
JMP, CRR and Cologne2 class the execution times increase with the de-
ployment of VQ as compared to using RSPH alone. On the other hand,
by using both RSPH and VQ an additional PUC instance can be solved.
Comparing the full-fledged heuristic package with RSPH, one sees that the
latter prevails on the JMP as well as on the Cologne2 class, albeit with a
low margin. On a related note, the additional instance solved by RSPH/VQ
is also solved using all heuristics when the time limit is prolonged by five
percent.

Summing up, the deployment of problem specific heuristics has been
demonstrated to notably help improve the execution time and, to a far
greater extent, the average gap for both the rooted and unrooted prize-
collecting Steiner tree problem. While with respect to the overall execution
time the impact of additionally employing the VQ and RC heuristic on top
of RSPH is a minor, and partially even negative, one, the results on the,
hard, PUC instances show a notable reduction of the average gap.

3.4 The Prize Collecting Steiner Tree Problem 107

Name Instances Solved ∅Gap [%] ∅Time [s]

n
o
n
e

JMP 34 34 – 1.6
CRR 80 80 – 1.8
PUCNU 18 11 71.81 726.5
Cologne1 14 14 – 3.5
Cologne2 15 15 – 34.5

R
S
P
H

JMP 34 34 – 0.5
CRR 80 80 – 1.0
PUCNU 18 10 2.41 480.0
Cologne1 14 14 – 3.2
Cologne2 15 15 – 18.1

+
V
Q

JMP 34 34 – 0.9
CRR 80 80 – 1.3
PUCNU 18 11 2.00 459.9
Cologne1 14 14 – 2.5
Cologne2 15 15 – 19.6

+
R
C
H

JMP 34 34 – 0.6
CRR 80 80 – 1.0
PUCNU 18 10 1.84 460.8
Cologne1 14 14 – 2.6
Cologne2 15 15 – 20.3

Table 19: Computational results of employing the Steiner problem heuristics
in accumulative stages. The gap is given as the arithmetic mean among
the unsolved problems, the time as the shifted geometric mean among all
problems.

3.5 The Maximum Weight Connected Subgraph Problem 108

3.5 The Maximum Weight Connected Subgraph Problem

At first glance, the maximum-weight connected subgraph problem
(MWCSP) bears little resemblance to the Steiner problems introduced so
far: Given an undirected graph (V,E) with (possibly negative) node weights
p, the objective is to find a tree that maximizes the sum of its node weights.
However, it is possible to transform this problem into a prize-collecting
Steiner tree problem. One transformation is given in [DKR+08]. In this
thesis an alternative transformation is presented that leads to a significant
reduction in the number of terminals for the resulting problem, as compared
to the approach described in [DKR+08]. For our model the reduced amount
of terminals leads to a substantial decrease of constraints (of the form (54)),
as will become evident in this section.

In the following it is assumed that at least one vertex is assigned a
negative and one a positive weight. In the case of only non-negative vertex-
weights, the problem reduces to finding a spanning tree; in the case of only
non-positive vertex-weights, the empty set constitutes an optimal solution.
For a given solution S to an MWCSP we denote its weight by C(S) :=∑

v∈V [S] pv.

3.5.1 Transformation

Transformation 5 (MWCSP to rcSAP).
Input: An MWCSP P = (V,E, p)
Output: An rcSAP P ′′ = (V ′′, A′′, T ′′, c′′, r′′)

1. Set V ′ := V , A′ := {(v, w) ∈ V ′ × V ′ | {v, w} ∈ E}.

2. Set c′ : A′ → Q≥0 such that for a = (v, w) ∈ A′:

c′a =

{
−pw, if pw < 0

0, otherwise

3. Set p′ : V ′ → Q≥0 such that for v ∈ V ′:

p′v =

{
pv, if pv > 0
0, otherwise

4. Perform Transformation 4 to (V ′, A′, c′, p′), slightly changed in such a
way, that in step 2 instead of constructing a new arc set, A′ is being
used. The resulting rcSAP gives us P ′′ = (V ′′, A′′, T ′′, c′′, r′′).

An illustration of Transformation 5 on an MWCS instance consisting of
two connected components can be found in Figure 12.

A bijection between the solution spaces of the MWCS and the rcSAP
obtained by applying Transformation 5 is established in the following lemma:

3.5 The Maximum Weight Connected Subgraph Problem 109

3.5

7.2

7.6

-0.7

-1.1 -2.4

-0.2

(a) MWCSP instance

r

0

00.7

1.1 2.4

0.2

0

0

0

3.5

7.2

7.6

0

(b) transformed rcSAP instance (mod-
ifications in bold, terminals drawn as
squares)

Figure 12: Illustration of an MWCSP instance (left) and the associated
rcSAP obtained by Transformation 5 (right). Of the dashed arcs only one
can be selected. Note that for the MWCSP only vertex weights are given,
while, in contrast, the rcSAP is endowed solely with arc costs.

Lemma 44 (MWCSP to rcSAP). Let P = (V,E, p) be an MWCSP and
P ′′ = (V ′′, A′′, T ′′, c′′, r′′) an rcSAP obtained from P by Transformation 5.
Thereupon, the set of solutions to P ′′ can be bijectively mapped to the set
of solutions to P : Assign each solution S′′ = (V ′′S′′ , A

′′
S′′) to P ′′ the solution

S = (VS , ES) to P defined by:

VS := {v ∈ V : v ∈ V ′′S′′}, (82)

ES := {{v, w} ∈ E : (v, w) ∈ A′′S′′ or (w, v) ∈ A′′S′′}. (83)

Furthermore, for the objective value C(S) of S and the objective value
C ′′(S′′) of S′′ the following equality holds:

C(S) =
∑

v∈V :pv>0

pv − C ′′(S′′). (84)

Proof. The one-to-one correspondence between the sets of solutions to P
and P ′′ can be seen analogously to the proof of Lemma 24.

To prove (84), let S = (VS , ES) be a solution to P and S′′ = (V ′′S′′ , A
′′
S′′)

the corresponding solution to P ′′, obtained by applying (82) and (83). Fur-
ther, define A := {(v, w) ∈ A′′ : {v, w} ∈ E}. First, one observes that for
each v ∈ S such that pv ≤ 0 there is exactly one incoming arc a ∈ AS′′ , so:∑

v∈VS :pv≤0

pv = −
∑
a∈AS′′

c′′a. (85)

3.5 The Maximum Weight Connected Subgraph Problem 110

Second:∑
v∈VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

v∈V \VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′\AS′′

c′′a.

(86)

Finally, adding (85) and (86) the equation:∑
v∈VS

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′

c′′a (87)

is obtained, which coincides with (84).

Since after presolving the proportion of positive weight vertices is small,
as will become evident in Section 3.5.2, Transformation 5 results in problems
with significantly less terminals compared to the transformation described
in [DKR+08]. However, also for all real-world DIMACS instances most
of the vertex weights are non-positive. The differences between the two
transformations with respect to the number of terminals for these instances
are presented in Table 20.

3.5.2 Reductions

As to reduction techniques, the MWCSP with only a few methods having
been published [AB14, EK14] falls far short of reaching the same scope as
the SPG. This deficiency provided an incentive for us to develop several new
techniques which will be subsequently introduced along with some known
ones. As before, proves will only be provided for reduction techniques not
published in the literature yet. Throughout this section it will be presup-
posed that an MWCS instance PMW = (V,E, p) is given. The reader is
reminded that, antipodally to all other problems discussed in this thesis, in
the case of the MWCSP the objective value is to be maximised. Further-
more, it should be kept in mind that at least one vertex is assumed to be of
positive and one of negative cost.

Instance Transformation 5 Transformation from [DKR+08]

drosophila001 71 5226
drosophila005 194 5226
drosophila0075 250 5226
HCMV 55 3863
lymphoma 67 2034
metabol expr mice 1 150 3523
metabol expr mice 2 85 3514
metabol expr mice 3 114 2853

Table 20: Number of terminals after transforming.

3.5 The Maximum Weight Connected Subgraph Problem 111

Basic Reductions

The first of the following two simple tests was already suggested in a less
general form in [EK14] (namely only for negative vertices of degree zero):

Vertex of degree zero (VD0): A vertex vi of degree zero can be discarded
if there is a vertex vmax such that both pvmax ≥ pvi and vmax 6= vi.

Proof. The only solution vi might be contained in is {vi}, which is of equal
or less cost than the feasible solution {vmax}.

Vertex of degree one (VD1): If there is vertex vi of degree one with
incident edge ek = {vi, vj}, a vertex vmax satisfying both pvmax ≥ pvi and
vmax 6= vi and it moreover holds that

a) pvi ≤ 0, then vi and ek can be discarded;

b) pvi > 0, then vi and ek can be discarded while adding pvi to the weight
of vj.

Proof. Since pvi ≤ pvmax and vmax 6= vi hold, {vi} cannot be the unique
optimal solution.

a) Each solution that contains ek (and vi) can be reduced to solution of
not higher cost by removing ek as well as vi. Hence, there is at least one
optimal solution containing neither ek nor vi.

b) If vj is contained in an optimal solution, vi is as well, since pvi > 0.
Hence, at least one optimal solution is preserved by the reduction described
in part b) of the test.

The next two reduction tests can be found in both [AB14] and [EK14].

Non-negative incident vertices (NNIV): An edge {vi, vj} such that
pvi ≥ 0, pvj ≥ 0 can be contracted if the weight of the remaining vertex is
set to pvi + pvj .

Non-positive chain (NPC): A path P between two vertices vi, vj, con-
taining only non-positive interior vertices of degree two and fulfilling |V [P]| >
3 can be replaced by a node v′ with pv′ :=

∑
v∈V [P ◦] pv and the two edges

{v′, vi}, {v′, vj}.

The joint execution of the four forgoing tests, in the specified order, will
be hereinafter referred to as Basic Test (BT).

Recalling that connectivity is not postulated for the MWCSP, one readily
devises the following test:

Unreachable non-positive vertex (UNPV): Each non-positive vertex
vi that is not connected to any positive vertex can be deleted along with all
incident edges.

3.5 The Maximum Weight Connected Subgraph Problem 112

Proof. Since there is at least one vertex of positive cost, vi cannot be con-
tained in any optimal solution.

We realize this test by running a breadth-first search from the (artificial)
root on the transformed graph yielded by Transformation 5 and discarding
all vertices that have not been visited in the course of the search.

Alternative Based Reductions

For the avoidance of doubt, we point out that apart from the subsequent
test all MWCSP reduction methods introduced hereinafter have been newly
devised for this thesis. The subsequent reduction test was tentatively sug-
gested in [EK14], to be later generalized in [AB14]. Only the latter version
is stated here:

Adjacent Neighbourhood Subset (ANS) 5 Let vi and vj be two distinct
vertices. If pvi ≤ 0, pvi ≤ pvj and{

v ∈ V \ {vj} | {vi, v} ∈ E
}
⊂
{
v ∈ V | {vj , v} ∈ E

}
,

then vi and all incident edges can be removed.

However, even this revised version can be notably generalized:

Lemma 45. Let vi ∈ V and W ⊂ V \ {vi}, W 6= ∅ such that (W,E[W]) is
connected and

∑
w∈W :pw<0 pw ≥ pvi holds. If:{

v ∈ V \W | {vi, v} ∈ E
}
⊂
{
v ∈ V \W | {w, v} ∈ E,w ∈W

}
, (88)

then there is at least one optimal solution that does not contain vi (or any
of its incident edges).

Proof. Suppose that there is an optimal solution S = (VS , ES) containing
vi. From

∑
w∈W :pw<0 pw ≥ pvi it can be inferred that pvi ≤ 0. Therefore, it

can be assumed that vi is of degree at least two in S (if vi is of degree one in
S, it can be simply discarded without deteriorating the objective value). Let
∆S ⊂ VS be the vertices adjacent to vi in S. Removing vi and all incident
edges from S and inserting all vertices in W \S as well as all edges between
W and ∆S∪W , one obtains a connected subgraph S′ = (VS′ , ES′) such that:

C(S′) =
∑
v∈VS′

pv ≥
∑
w∈W
pw<0

pw + C(S)− pvi ≥ C(S). (89)

5The reduction test was originally named ”Neighbourhood Subset”, abbreviated ”NS”,
test in [AB14], but owned to rather obvious historical considerations we have decided to
substitute it.

3.5 The Maximum Weight Connected Subgraph Problem 113

However, S′ is not necessarily a tree, but this issue can be remedied without
changing the weight of S′ by repeatedly removing an edge on a cycle as long
as there exists any. Due to (89) the resulting tree is of cost at least C(S)
and therefore optimal. Furthermore, it does not contain vi, so the statement
of the lemma is established.

By processing for each node vi only a limited amount of neighbours that
are moreover of degree not higher than a given constant, the ANS test can be
performed in Θ(m). Affiliated to Lemma 45 we implemented the following
reduction test: For each vertex vj of negative weight we consider as W the
union of vj and a limited amount of non-negative weight vertices adjacent
to vj . By again considering only neighbours vi to vj of bounded degree,
this test can likewise be implemented in Θ(m). In the following, this test
is referred to as Connected Neighbourhood Subset (CNS). Although
it dominates the ANS test in its unbounded version, this is not true for
the actually implemented test if the bound on the number of vertices to be
processed differs. So we use both the restricted ANS and the restricted CNS
test, but with a higher upper bound on the admissible vertex degrees for
the less expensive ANS test.

The perhaps most intuitive, but nonetheless effective, of the reduction
tests introduced hereinafter is based on the following lemma:

Lemma 46. Let ek = {vi, vj} ∈ E. If there is a path P between vi and vj
such that ek /∈ E[P] and pvp ≥ 0 for all vp ∈ V [P ◦], then there is at least
one optimal solution that does not contain ek.

Proof. Suppose that there is a solution S to PMW containing ek. By remov-
ing ek from S one obtains two trees S1, S2 such that vi ∈ S1, vj ∈ S2. Since
P connects vi and vj , there are vertices vr ∈ V [S1]∩V [P], vs ∈ V [S2]∩V [P]
such that P (vr, vs) does not include any additional vertices of S1 or S2. Re-
connecting S1 and S2 by P (vr, vs) one yields a new tree S̃ of weight at least
C(S).

These considerations prove the lemma, since they imply that to each
optimal solution that contains ek, an optimal solution not containing ek can
be constructed.

We suggest a reduction test based on Lemma 46, designed as follows: By
first executing the NNIV test, each path containing only interior vertices of
non-negative weight is reduced to a path consisting of three vertices (with
an interior vertex of non-negative weight). Thereafter, for each edge ek =
{vi, vj} we mark all non-negative adjacent vertices of vi, except for vj . If
no vertex of non-negative cost has been marked, we can already progress to
the next edge. Otherwise, we traverse all non-negative neighbours of vj . If
in the course of the second search a marked vertex is visited, we eliminate
ek. By bounding the number of adjacent vertices to be visited from vi and

3.5 The Maximum Weight Connected Subgraph Problem 114

vj by a constant, the test can be performed for all edges in a total of Θ(m).
We denote this test Non-Negative Paths (NNP).

The development of the next reduction strategy was spawned by the
observation that after having performed the NPC test, each non-positive
chain is reduced to a single non-positive vertex of degree two. Naturally,
one aspires to dispose of those as well. To set the stage for such a reduction
method we define a function on two vertices, evocative of the bottleneck
Steiner distance: Let vi, vj ∈ V be two distinct vertices and P(vi, vj) the set
of all simple paths between vi and vj . Further, for P ∈ P(vi, vj) let P (x, y)
be the subpath between two vertices x, y in P . In the context of the MWCS
we define the interior cost of such a subpath as

C◦(P (x, y)) :=
∑

v∈V [P (x,y)]\{x,y}

pv. (90)

Furthermore, we define the vertex weight bottleneck length of P as:

lvw(P) := min
x,y∈V [P]

C◦(P (x, y)). (91)

Given two disjoint trees that can be connected by a subpath of a given
path P , by lvw(P) a lower bound on the additional vertex weights is pro-
vided.

The two preceding definitions pave the way for the vertex weight bot-
tleneck distance between vi and vj , which we define as

dvw(vi, vj) = max{lvw(P) | P ∈ P(vi, vj)}. (92)

With this new definition at hand, a lemma bearing some commonalities
with the Steiner distance based exclusion tests can be formulated.

Lemma 47. Let vi ∈ V such that pvi ≤ 0 and |δ(vi)| = 2 with incident
edges {vi, vj} and {vi, vk}. If

dvw(vj , vk) > pvi (93)

holds, then there is at least one optimal solution not containing vi.

Proof. Suppose that there is an optimal solution S that contains vi. In
this case, due to vi being of non-positive weight, we can assume that both
incident edges of vi are likewise part of the solution. Otherwise, vi could
simply be removed, to yield another optimal solution. Removing vi as well
as its incident edges from S, we obtain two subtrees S1 and S2. Let P be
a path between vj and vk such that lvw(P) = dvw(vj , vk). Additionally, let
P (v′1, v

′
2) be a subpath of P between v′1 ∈ V [S1] and v′2 ∈ V [S2] such that no

3.5 The Maximum Weight Connected Subgraph Problem 115

additional vertices of either S1 or S2 are contained. By including P (v′1, v
′
2)

a new tree S′ is obtained which is of cost:

C(S′) = C(S) + C◦(P (v′1, v
′
2))− pvi

≥ C(S) + lvw(P)− pvi
= C(S) + dvw(vj , vk)− pvi
(93)
> C(S).

This proves the lemma.

We suggest the following reduction test to utilize Lemma 47: First per-
form step 1 and step 2 of Transformation 5 to obtain a directed graph
D′ = (V ′, A′) with, non-negative, arc costs c′. Following, a modified version
of the SDC test can be used on D′ to find alternative paths containing at
most one interior vertex of positive weight: Let vi ∈ V be non-positive and
of degree two with adjacent vertices vj and vk. Similar to the original SDC
test, a limited execution of Dijkstra’s algorithm is performed first from vj
and then from vk, ignoring vi and its incident edges. For each vertex be-
ing processed during Dijkstra’s algorithm, only outgoing arcs are considered
and the computation does not proceed from vertices of positive weights. If
directed paths ~P ′k and ~P ′j from vk and vj respectively to a vertex vl ∈ V have
been found, denote by Pjk the corresponding undirected path in G between
vj and vk (over vl) and distinguish two cases (note that we denote by p the
vertex weights in the original graph G):

1. if pvl > 0, then lvw(Pjk) = min{−C ′(~P ′j),−C ′(~P ′k),−C ′(~P ′j)−C ′(~P ′k)+
pvl};

2. if pvl ≤ 0, then lvw(Pjk) = −C ′(~P ′j)− C ′(~P ′k)− pvl .

In the first case, we consider the interior costs of the two subpaths be-
tween each endpoint of Pjk and the intermediary vertex of positive weight
as well as the interior cost of the whole path. The minimum among those
three is equal to the vertex weight bottleneck length of Pjk. In the second
case, Pjk does not contain any intermediary vertex of positive weight, so
lvw(Pjk) = C◦(Pjk) holds.

If lvw(Pjk) ≥ pvi , the vertex vi and its incident edges are deleted. We
denote this procedure by Non-Positive Vertex of Degree two (NPV2)
test.

The concept of the vertex weight distance not only gives rise to Lemma
47 and the affiliated NPV2 test, but furthermore leads the way to a far more
general and powerful result:

Lemma 48. Let vi ∈ V such that pvi ≤ 0 and denote by ∆ the set of
all vertices adjacent to vi. Furthermore, for ∆′ ⊂ ∆ denote by K∆′ :=

3.5 The Maximum Weight Connected Subgraph Problem 116

(∆′,∆′×∆′, dvw) the complete graph on ∆′, with edge weight dvw(vj , vk) for
an edge {vj , vk} ∈ ∆′ × ∆′. If for each ∆′ ⊂ ∆ of cardinality at least two
it holds that the weight of a maximum spanning tree on K∆′ is greater than
pvi, then there is at least one optimal solution that does not contain vi (or
any of its incident edges).

Proof. It can be readily verified that in the cases |∆| = 0, 1, 2 the claim has
already been established by the proofs to VD0, VD1 and Lemma 47 respec-
tively. So suppose |∆| > 2 and let S = (VS , ES) be a tree such that vi is of
degree k > 0 in S. If k < 2, the claim can be established analogously to the
hereinbefore referred to proofs. Otherwise, denote by ∆′ = {v′1, ..., v′k} ⊂ VS
the vertices incident to vi in S. With the premises of the lemma being sat-
isfied, there is maximum spanning tree T∆′ on K∆′ of weight greater than
pvi . The solution S can be segmented into k trees S1, .., Sk such that vj ∈ Sj
for j = 1, ..., k, by removing vi and δ(vi). In the following we will iteratively
rejoin these k trees to obtain a new tree not containing vi and being of no
lesser weight than S.

First, one observes that each edge of T∆′ corresponds to a path in G
between two vertices of ∆′. Let Prs with r, s ∈ {1, ..., k} be such a path
connecting v′r and v′s. Since the edge between v′r and v′s is a spanning tree
for the subset {v′r, v′s} ⊂ ∆, it holds that dvw(v′r, v

′
s) > pvi . Consequently,

vi is not contained in Prs. Analogously to the proof of Lemma 47, Sr and
Ss can be connected to a tree S′1 by a subset of Prs, which is of cost at
least dvw(v′r, v

′
s). Thereupon, S′1 can be linked in the same way to a tree

Sl, k ∈ {1, ..., k} \ {r, s}, bringing forth a tree S′2 that once more does not
contain vi. Reiterating in this manner, one can rejoin S′2 with all not yet
incorporated trees Sq, finally yielding a tree S′k−1. This tree does not contain
vi and is of cost:

C(S′k−1) ≥
∑

l={1,...,k}

C(Sl) +

(∑
{vq ,vl}∈E[T∆′]

dvw(vq, vl)

)
− pvi ≥ C(S)

Consequently, the claim is established.

Corollary 49. Let vi ∈ V such that pvi ≤ 0 and denote by ∆ the set of
all vertices adjacent to vi. Denote the vertex weight bottleneck distances
on the graph G− := (V −, E−) with V − := V \ {vi}, E− := E[V −] by d−vw.
Further, for ∆′ ⊂ ∆ define K∆′ := (∆′,∆′×∆′, d−vw). If for each ∆′ ⊂ ∆ of
cardinality at least two it holds that the weight of a maximum spanning tree
on K∆′ is not less than pvi, there is at least one optimal solution that does
not contain vi (or any of its incident edges).

Proof. The proposition can be verified largely in line with the proof to
Lemma 48. As the sole amendment, to demonstrate that for joining the
subtrees S1, ..., Sk the vertex vi can be disregarded one simply uses the fact
that all paths corresponding to d−vw do not include vi by definition.

3.5 The Maximum Weight Connected Subgraph Problem 117

We use reduction tests based on the antecedent corollary only for non-
positive vertices of degree three, four and five and refer to the correspond-
ing methods as Non-Positive Vertex of Degree k (NPVk) test (k ∈
{3, 4, 5}). In line with the proceeding for the bottleneck based tests to both
the SPG and the PCSTP, the vertex weight distances are not pre-computed
and are furthermore substituted by ad-hoc calculated lower bounds to each
pair of vertices in ∆. To this end, the procedure deployed in the NPV2 test is
utilized. If a vertex has been verified to satisfy the premises of Corollary 49,
it is removed along with all incident edges.

Bound Based Reductions

Throughout this subsection, the connected components of G are denoted by
G1, ..., Gl. Utilizing the UNPV test we can assume that to each component
Gi = (Vi, Ei) there is at least one vertex vj ∈ Vi such that pvj > 0. For
two distinct vertices vi, vj ∈ V denote by Pij the set of all simple paths
between vi and vj only containing non-positive interior vertices. We define
the non-positive vertices distance from vi to vj as:

dnpv(vi, vj) :=

{
maxP∈Pij

{∑
v∈V [P] pv

}
if Pij 6= ∅

−∞ otherwise.
(94)

Note that this definition includes the weights of the endpoints of a path,
in contrast for instance to the interior cost C◦.

Furthermore, denote by T = {t1, ..., ts} the set of all vertices in G of
positive weight and by Tr = {tϕ(1), ..., tϕ(sr)} the corresponding, non-empty,
set of positive vertices of a connected component Gr. Ensuing, we denote a
partition {N(t) | t ∈ T} of V such that

vi ∈ N(t)⇒ dnpv(vi, t) ≥ dnpv(vi, t′), ∀t′ ∈ T (95)

by maximum-weight Voronoi diagram, in the context of the MWCS
simply called Vornonoi diagram.

For computing such a Voronoi diagram we associate with each vertex
vi ∈ V the following three values (which are also used for customary Voronoi
diagrams [Meh88]):

• base(vi): the positive vertex tj ∈ T such that vi ∈ N(tj);

• pred(vi): the predecessor of vi on the path from base(vi) to vi, set to
−1 if pvi > 0;

• dist(vi): the non-positive vertices distance dnpv(base(vi), vi).

Those values can be computed by the subsequent algorithm:

3.5 The Maximum Weight Connected Subgraph Problem 118

Algorithm 1 (Maximum Weight Voronoi Diagram).
Input: An MWCS instance (V,E, p)
Output: Values base, pred and dist to each vertex of G

1. Initialize a priority queue Q of capacity |V |. Further, apply step 1 and
step 2 of Transformation 5 to obtain a directed graph D′ = (V ′, A′)
with non-negative arc costs c′.

2. For all vi ∈ V ′ initialize values dist′, base′ and pred′ as follows: If
pvi ≤ 0 set dist′(vi) =∞, base′(vi) = −1, pred(vi) = −1 and mark vi
as unvisited, otherwise set dist′(vi) = −pvi, base′(vi) = vi, pred

′(vi) =
−1 mark vi as visited and insert it into Q.

3. If Q is empty, goto step 5, otherwise remove a vertex of minimal dist′

value from Q, denote it by vmin and mark it as visited.

4. For each unvisited neighbour v
(i)
min of vmin: If dist′(v

(i)
min) > dist′(vmin)+

p(v
(i)
min), set dist′(v

(i)
min) := dist′(vmin)+p(v

(i)
min), base′(v

(i)
min) = base′(vmin),

pred′(v
(i)
min) = vmin and add v

(i)
min to Q if it is not already contained.

Goto step 3.

5. For all vi ∈ V ′ set dist(vi) := −dist′(vi), pred(vi) := pred′(vi) and
base(vi) := base′(vi).

Lemma 50. Algorithm 1 is guaranteed to terminate and the values returned
by it form a Voronoi diagram.

Proof. It can be readily verified that the algorithm terminates after a finite
number of steps, since in each iteration one vertex is removed from Q and
no vertex is inserted more than once. However, its correctness cannot be
demonstrated quite as easily:

We conduct the proof by induction on the number of vertices that have
been removed from Q. Preliminarily, the following invariant hypothesis is
postulated, denoting each vertex that has been removed from the queue Q
by processed: For each processed vertex vi it holds that −dist′(vi) =
maxtj∈T dnpv(tj , vi). For each not yet processed vertex vi it holds that
−dist′(vi) is the maximum non-positive vertices distance on processed nodes
only, starting in a (processed) tj ∈ T ; if no such path exists dist′(vi) = ∞
holds. In both cases, a corresponding path with the value −dist(vi) (if fi-
nite) can be obtained by iteratively moving along the pred values starting
with pred(vi). This path starts in base(vi).

The base case is tantamount to exactly one, positive weight, vertex being
processed and hence the hypothesis holds.

Assume the hypothesis for n− 1 processed vertices. Next, choose a ver-
tex vi such that the dist′ value is minimal among all non-processed vertices.
Suppose −dist′(vi) < dnpv(tj , vi) for a tj ∈ T . Let P be a path between tj

3.5 The Maximum Weight Connected Subgraph Problem 119

and vi of vertex weight dnpv(tj , vi). Starting from tj let vk be the first vertex
in P not processed yet. If vk = vi, this would contradict the hypothesis for
unprocessed vertices. Otherwise, since all vertices on P except for tj are of
non-positive weight, it can be inferred that dnpv(tj , vk) ≥ dnpv(tj , vi). Hence,
vk would have been selected instead of vk, contradicting the initial assump-
tion. Consequently, −dist′(vi) = maxtj∈T dnpv(tj , vi) is satisfied. Moreover,
as the dist, pred and base values of vi endure unaltered, a path correspond-
ing to the value −dist(vi) and ending in base(vi) can still be obtained by
means of the pred values.

Finally, when step 4 of the algorithm has been performed, it is still true
that for each unprocessed vertex vr the value −dist′(vr) is the maximal non-
positive vertices distance on processed nodes starting in a tj ∈ T : If there
was a path of higher weight (in G) not containing vi, the vertex vr would
have been selected previously and there cannot be a path of higher weight
containing vi, since it would have been updated while processing vi. Further-
more, since by the hypothesis a path corresponding to the −dist(vi) value
and starting in base(vi) can be obtained by the pred values, the according
property holds true for each unprocessed vr updated while processing vi.

To conclude the demonstration, it remains to be verified that after the
termination of the algorithm all vertices of G are processed: Suppose that
this is not true and let be vi be a non-processed vertex in a connected
component Gk. Further, let tj ∈ Tk and P a path from tj to vi. The terminal
vertex is processed, since it is inserted into Q in step 2 of the algorithm.
Let v′0 be the first unprocessed vertex in P . However, v′0 would have been
inserted into Q (and subsequently processed) while the predecessor of v′0 in
P was being processed.

Still, some definitions are necessary to conclusively pave the way for
the MWCS bound-based reduction techniques: For a vi ∈ V \ T denote
by vi,1, vi,2 two positive vertices such that dnpv(vi, vi,1) ≥ dnpv(vi, vi,2) and
dnpv(vi, vi,2) ≥ dnpv(vi, tj) for all tj ∈ T \ {vi,1}. If only one terminal is
reachable from vi, set vi,2 := −1. The vi,1 values can be computed by
Algorithm 1, the vi,2 values by a simple adaption of Duin’s nearest terminals
algorithm, see Section 1.1.

Based on the preceding discussion, for ti ∈ T we define:

mwradius(ti) := max
{

0,

max{dnpv(ti, vj) | {vj , vk} ∈ E : vj ∈ N(ti), vk /∈ N(ti)}
}

(96)

Once again succumbing to the convenience of a lucid notation, it will be sup-
posed that for each i = 1, ..., r, all tj ∈ Ti are mapped by ϕ in such a manner
that mwradius(tϕ(t1)) ≤ mwradius(tϕ(t2)) ≤ ... ≤ mwradius(tϕ(tsr)).

Lemma 51. Let vi ∈ V with pvi ≤ 0 and assume that an optimal solution
S = (VS , ES) to PMW exists such that vi ∈ VS. Let Gr be the connected

3.5 The Maximum Weight Connected Subgraph Problem 120

component containing vs. The value

dnpv(vi, vi,1) + dnpv(vi, vi,2)− pvi +

sr∑
l=3

mwradius(ϕ(tl)) (97)

is an upper bound on the weight of S.

Proof. Denote the (unique) path in S between vi and a tj ∈ T ∩ V [Gr] by
Pj and the set of all such paths by P.

Analogously to the proof of Lemma 36, two distinct paths Pk ∈ P and
Pl ∈ P can be selected such that they jointly contain a minimal number of
Voronoi-boundary edges and V [Pk] ∩ V [Pl] = {vi}. Likewise, define P− :=
P \ {Pk, Pl}. For all Pu ∈ P−, denote by P ′u the subpath of Pu starting in
tu and ending in the last vertex still in N(tu) (so that P ′u lies completely in
N(tu)).

Suppose that Pk has a vertex vq ∈ VS in common with a P ′u. As a
consequence, Pl cannot have any vertex but vi in common with Pu, because
this would require a cycle in S. For the same reason, Pk and Pu contain a
joint subpath between vi and vq. However, the existence of such a subpath
implies that Pk includes at least one additional Voronoi-boundary edge (in
order to be able to reach tk which is by definition not in N(tu)). Therefore,
Pu would have initially been selected instead of Pk.

Following the same line of argumentation, one validates that likewise Pl
cannot share a vertex with any P ′u. Conclusively, the paths Pk, Pl and all
P ′u are vertex disjoint except for vi which is contained in both Pk and Pl.
Using their combined weight, one obtains an upper bound on the cost of S
as follows:

C(S) =
∑
v∈VS

pv

≤
(∑
Pu∈P−

C(P ′u)

)
+ C(Pk) + C(Pl)− pvi

≤
sr∑
q=3

mwradius(tϕ(q)) + C(Pk) + C(Pl)− pvi

≤
sr∑
q=3

mwradius(tϕ(q)) + dnpv(vi, vi,1) + dnpv(vi, vi,2)− pvi .

Thereupon, the claim is established.

Lemma 52. Let {vi, vj} ∈ E and let Gr be the connected component con-
taining {vi, vj}. If there is an optimal solution S = (VS , ES) containing
{vi, vj}, then U defined by

U := dnpv(vi, vi,1) + dnpv(vj , vj,1) +

sr∑
q=3

mwradius(tϕ(q)) (98)

3.5 The Maximum Weight Connected Subgraph Problem 121

if base(vi) 6= base(vj) and

U := max
{
dnpv(vi, vi,1) + dnpv(vj , vj,2), dnpv(vi, vi,2) + dnpv(vj , vj,1

}
+

sr∑
q=3

mwradius(tϕ(q)) (99)

otherwise, is an upper bound on the weight of S.

Proof. Define TS := VS ∩ T and denote the set of all paths in S between
vi and vertices in TS reachable without using the edge {vi, vj} by Pvi , and
analogously the set of all paths in S between vj and the remaining vertices in
TS by Pvj . Additionally, set P := Pvi∩Pvj . In line with the proof to Lemma
40, both Pvi and Pvj are non-empty. Likewise, choose two paths Pk ∈ Pvi
and Pl ∈ Pvj such that each of them contains a minimal number Voronoi-
boundary edges. Further, let P− := P \ {Pk, Pl} and for Pr ∈ P− define
P ′r ∈ P as the longest subpath of Pr starting from vr and lying completely in
N(vr). Analogously to the proof of Lemma 51, one validates that the paths
Pk, Pl and all P ′r are vertex disjoint. In the case of base(vi) 6= base(vj) the
weight of Pk plus the weight of Pl is at most dnpv(vi, vi,1) + dnpv(vj , vj,1).
With these results at hand one readily verifies that:

C(S) =
∑
v∈VS

pv

≤
(∑
Pr∈P−

C(P ′r)

)
+ C(Pk) + C(Pl)

≤
sr∑
q=3

mwradius(tϕ(q)) + C(Pk) + C(Pl)

≤
sr∑
q=3

mwradius(tϕ(q)) + dnpv(vi, vi,1) + dnpv(vj , vj,1).

In the case of tb := base(vi) = base(vj) the combined weight of Pk and
Pl is at most min

{
dnpv(vi, vi,1) +dnpv(vj , vj,2), dnpv(vi, vi,2) +dnpv(vj , vj,1)

}
,

since by definition: dnpv(tb, vi) = dnpv(vi, vi,1) and dnpv(tb, vj) = dnpv(vj , tj,1.
Consequently:

C(S) ≤
sr∑
q=3

mwradius(tϕ(q)) + C(Pk) + C(Pl)

≤
sr∑
q=3

mwradius(tϕ(q))

+ min{dnpv(vi, ti,1) + dnpv(vj , tj,2), dnpv(vi, vi,2) + d(vj , vj,1}

Consquently, U as defined in (81) is an upper bound on the weight of
S.

3.5 The Maximum Weight Connected Subgraph Problem 122

We apply a Bound (BND) reduction test in line with heretofore ap-
proaches for bound-based reduction tests; i.e. by first computing an upper
bound by means of a constructive, shortest path based primal heuristic and
then attempting to eliminate vertices and edges.

In addition to the methods described formulated in this section, further
reduction tests can be conceived, which have, owed to limited time, neither
been particularised nor implemented for this thesis:

First, the bound-based reduction tests could be naturally extended to
cover vertices of positive cost, as patterned by the bound-based lemmata to
the PCSTP.

Second, one might utilize the bound-based tests not only to eliminate
edges, but moreover to dispose of non-positive chains that could not be
eliminated by the NPV2 test: This approach would result in a test similar to
the one affiliated with Lemma 52, but instead of the endpoints vi and vj of an
edge, one would consider the endpoints of a non-positive chain. Moreover,
a bound-based test comparable to the one associated with Lemma 13 in
Section 2.2.4 could be used to prove that a vertex of both non-positive
weight and small degree is of degree at most two in at least one optimal
solution. This vertex could then possibly be eliminated by a simplified
version of the NPVk test, only considering ”maximum spanning trees” for
subsets of cardinality two.

Finally, it can be observed that the maximum-weight Voronoi decompo-
sition, is potentially very unbalanced, e.g. in the case of one or two vertices
being of comparatively high weight, most vertices might be assigned to the
corresponding one or two Voronoi regions. Hence, a different decomposition
leading to small

∑sr
q=3mwradius(tϕ(q)) values seems to be preferable.

Ordering

The settings for the reiteration of the reduction methods within the overall
loop as well as for the truncation of the latter are as heretofore, see for
example Section 2.2.5.

Naturally, empirically less expensive tests are performed first. In this
way, the BND test, which requires the computation of an upper bound, is
performed at the end of the loop. Moreover, all other tests are performed
prior to the execution of the NPVk test, in order to reduce the degree of
vertices. The final ordering is illustrated in Figure 13.

3.5.3 Implementation and Computational Results

The computational settings of SCIP-Jack are identical to those of the
PCSTP, except for the use of VQ, as the latter cannot so easily be adapted
to handle anti-parallel arcs of different weight and is therefore disabled.
Instead, we have implemented a simple improvement heuristic that attempts

3.5 The Maximum Weight Connected Subgraph Problem 123

UNPV, BTstart

ANS

CNS

NNP

NPV2,3,4,5

BT

BND

sufficient
number of
reductions?

stop

yes

no

Figure 13: Illustration of the MWCSP reduction package.

3.5 The Maximum Weight Connected Subgraph Problem 124

to connect vertices of positive weight to the current Steiner tree using only
one edge.

Name Instances |V | Status Description

ACTMOD 8 2034-5226 solved Real-world instances derived from integrative
biological network analysis [DKR+08].

JMPALMK 72 500-1500 solved Euclidean, randomly generated instances
introduced in [AMLM13].

Table 21: Classes of MWCSP instances.

For the computational experiments merely two classes of instances were
available which vary widely in their scope, with the JMPALMK set contain-
ing nine times as many instances as the ACTMOD class, see Table 21.

Of the JMPALMK test set all but two instances are solved to optimality
within one second, more than 90 percent of them even in less than 0.4
seconds. For the ACTMOD class more time is required, but SCIP-Jack
still manages to solve all of them within 20 seconds. Neither the JMPALMK
nor the ACTMOD instances require branching. The summarized results are
provided in Table 22.

Optimal
Class Instances Solved ∅Nodes ∅Time [s]

ACTMOD 8 8 1.0 5.6
JMPALMK 72 72 1.0 0.3

Table 22: Computational results for MWCS instances.

Since almost all instances of the JMPALMK are solved during prepro-
cessing, as will be demonstrated subsequently, and the ACTMOD instances
are solved very fast, we refrain from presenting detailed results on the im-
pact of the primal heuristics, but merely mark that without problem specific
primal heuristics the time required for solving the ACTMOD instances is
almost two times as high on average. In line with the experimental results
to the heretofore introduced Steiner problem variants, the recombination
heuristic does not improve the run time of the, easy, MWCSP test instances;
on the contrary, the execution time is prolonged by four percent on average.

Impact of Reduction Techniques

Within the MWCS section, a considerable weight has been given to develop-
ing efficient reduction techniques. The results illustrated in Table 23 prove
their strength. Not only 67 of all 72 JMPALMK instances are solved dur-
ing presolving, but furthermore on average the ACTMOD instances contain
less than a third of their original vertices and edges after reduction. We
ascribe the considerably stronger performance on the JMPALMK class to

3.5 The Maximum Weight Connected Subgraph Problem 125

the higher proportion of terminals, which fosters several reduction methods.
For instance, adjacent non-negative vertices are forthwith contracted by the
NNIV test and also the CNS test becomes empirically more effective on
problems with a higher percentage of non-negative vertices.

Remaining Remaining
Class Vertices[%] Edges[%] ∅Time [s]

ACTMOD 33.2 27.0 0.8
JMPALMK 0.3 0.1 0.2

Table 23: Computational results of the MWCSP reduction package. The
percentage of remaining edges and vertices is stated with respect to the
arithmetic mean, the time is given as a shifted geometric mean (with s = 1).

Additionally, Table 24 displays the computational results obtained from
iteratively excluding each reduction method from the otherwise unaltered
package. It can be seen that the simple reduction methods (BT) are once
again the most effective. However, the contextually almost astronomical
number of more than 25,000 percent for the JMPALMK set should be re-
garded against the backdrop of only 0.05 percent remaining edges on av-
erage. Furthermore, BT notably improves the run time of the overall re-
duction package on the JMPALMK class. However, the run time results
for the JMPALMK class should be interpreted cautiously, given the exceed-
ingly small times. Second place is the CNS test, resulting in 38.2 percent
more remaining edges for the ACTMOD and 104.4 for the JMPALMK class
when excluded. Additionally, the overall run time on JMPALMK is con-
siderably improved by CNS, while it slightly deteriorates on the ACTMOD
set. Both NNP and NPVk demonstrate a solid impact on the overall reduc-
tion, although the latter exhibits the worst time performance of all reduction
methods on the ACTMOD class. In the same way, excluding the BND test
would notably improve the total run time on ACTMOD, while its effect is
quite limited. Last and least are the ANS and UNPV tests that do not
achieve a measurable amount of reductions. While the UNPV test at least
allows to eliminate a few additional edges on ACTMOD and furthermore
improves the run time on JMPALMK, the ANS tests does not bring any
positive results. This is caused by CNS dominating ANS on all instances.
Therefore, ANS is disabled for the computational comparisons in Section 4.2.

In terms of reduction strength the performance of our package on the
ACTMOD instances is about twice as good as the best known results re-
ported in the literature [AB14]. This is illustrated in detail in Table 25: It
can be seen that our reduction strategy is superior on each instance for both
the number of reduced vertices and edges. In terms of reduced edges the
difference is most pronounced for the drosophila instances, while the highest
variation of reduced vertices can be found for the, very sparse, metabol-expr-
mice problems.

3.5 The Maximum Weight Connected Subgraph Problem 126

Class UNPV BT ANS CNS NNP NPVk BND

E
d
g
es ACTMOD +0.0 +48.0 0 +38.2 +34.7 +11.5 +0.2

JMPALMK 0 +25982.2 0 +104.4 +9.1 +82.4 0
T
im

e ACTMOD -11.8 -2.6 -8.0 -4.4 -11.6 -32.5 -26.6
JMPALMK +6.2 +275.9 -2.0 +98.4 -1.4 +0.1 -2.3

Table 24: Computational results of the MWCSP presolving. Each column
reports the results of the reduction package without the specified method.
The values denote the percentual change with respect to the default settings
(see Table 23).

For the JMPALMK test set we have not been able to find individual
results concerning reduction techniques. However, for the combined ACT-
MOD and JMPALMK instances the value of 16.8 percent remaining vertices
and 5.6 percent remaining edges is reported in [EK14]. As against to 3.8 and
2.7 percent of remaining vertices and edges, respectively, by our approach.
No run times for the preprocessing were reported by the authors, but at least
theoretically their reduction package is of higher cost, being laden with a
worst case complexity of O(n(m+ n log n)).

Original Reduced Reduced [AB14]

Name Nodes Edges Nodes Edges Nodes Edges

drosophila001 5226 93394 2404 21947 2857 45802
drosophila005 5226 93394 2095 12110 2802 43859
drosophila0075 5226 93394 1894 9839 2738 40017
HCMV 3863 29293 1406 10816 2659 21414
lymphoma 2034 7756 1045 4467 1461 6895
metabol-expr-mice1 3523 4345 704 1135 1813 2741
metabol-expr-mice2 3514 4332 706 1148 1808 2738
metabol-expr-mice3 2853 3335 442 727 1175 1796

Avg. ratio 33.2% 27.0% 55.7% 60.1%

Table 25: Reductions on the ACTMOD instances

3.6 The Degree Constrained Steiner Tree Problem 127

3.6 The Degree Constrained Steiner Tree Problem

The degree-constrained Steiner tree problem (DCSTP) is an SPG
with an additional constraint: Given a Steiner tree problem in graphs rep-
resented by (V,E, T, c) and a function b : V → N, the objective is to find a
minimum Steiner tree S such that δS(v) ≤ b(v) is satisfied for all v ∈ V [S].

A comprehensive discussion of the DCSTP, including its applications in
biology, can be found in [LMP14].

3.6.1 Primal Heuristics

We use a variation of RSPH, altered in such a way that while choosing a new
(shortest) path to be added to the current tree it is checked: First, whether
attaching this path would violate any degree constraints and second, whether
after having added this path at least one additional edge could be added (or
all terminals are spanned). If no such path can be found, a vertex of the tree
is pseudo randomly chosen that allows to add at least one adjacent edge,
and such an edge leading to a vertex of high degree and being of small cost
is chosen.

3.6.2 Implementation and Computational Results

The DCSTP is implemented by just adding the additional degree constraints
for each node as linear constraints to the customarily employed formulation
(Formulation 5). Problem specific reduction techniques have not been de-
veloped, neither by us nor in any publication we are aware of.

Computational experiments are performed on the 20 instances in the
TreeFam test set of the DIMACS challenge, derived from a computational
biology application. The size of the, invariably complete (i.e. containing the
maximum amount of edges), instances ranges from a problem comprised of
52 vertices, 1326 edges and 35 terminals to one of 832 vertices, 345696 edges
and 407 terminals. Furthermore, the degree bound for each vertex is less
than or equal to three. The results are presented in Table 26.

Optimal Timeout

Class Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

TreeFam 20 7 162.8 40.6 413.9 25.9

Table 26: Computational results for DCSTP instances.

SCIP-Jack solves five instances to optimality and proves the infeasibil-
ity of another two. However, SCIP-Jack stops short of solving the remain-
ing 13 instances within the time limit. The optimality gaps among these
problems range from 0.2 to 133.3 percent This result is attributed to the
lack of both reduction techniques and a more refined constructive heuristic.

3.6 The Degree Constrained Steiner Tree Problem 128

However, without using the constructive heuristic the average gap among
the unsolved instances is more than twice as high.

3.7 The Group Steiner Tree Problem 129

3.7 The Group Steiner Tree Problem

The group Steiner tree problem (GSTP) is another generalization of
the Steiner tree problem, originating from VLSI design [HRW92], where the
concept of terminals as a set of vertices to be interconnected is extended
to a set of vertex groups: Given an undirected graph G = (V,E), edge
costs c : E → Q+ and a series of vertex subsets T1, ..., Ts ⊂ V , s ∈ N, a
minimum cost tree spanning at least one vertex of each subset is required.
By interpreting each terminal t as a subset {t}, every SPG can be considered
as a GSTP. Therefore, the latter is likewise NP-hard.

3.7.1 Transformation

Not only can an SPG be considered a GSTP, but also it is possible to
transform each GTSP instance (V,E, T1, .., Ts, c) to an SPG by means of
the following scheme:

Transformation 6 (GSTP to SPG).
Input: A GSTP P = (V,E, T1, ...Ts, c)
Output: An SPG P ′ = (V ′, E′, T ′, c′)

1. Set V ′ := V , E′ := E, T ′ = ∅, c′ := c, K :=
∑

e∈E ce + 1.

2. For i = 1, ..., s add a new node t′i to V ′ and T ′ and for all vj ∈ Ti add
an edge e = {t′i, vj} , with c′e := K.

3. Return (V ′, E′, T ′, c′).

Let (V,E, T1, ...Ts, c) be a GSTP and P ′ = (V ′, A′, T ′, c′) an SPG ob-
tained by applying Transformation 6 on P . A solution S′ to P ′ can be
reduced to a solution S to P by deleting all vertices and edges of S not in
(V,E). The GSTP P can in this way be solved on the SPG P ′ as shown in
[HRW92] and [Vos88].

This approach has already been deployed by [DVV04] to solve group
Steiner tree problems and demonstrated to be competitive with specialized
solvers at the time of publishing.

3.7.2 Implementation and Computational Results

For SCIP-JACK to solve a GSTP, first Transformation 6 is applied. The
resulting problem is treated as a normal SPG, which is solved without any
alteration.

Computational results for two test sets of unpublished group Steiner
tree instances derived from a industry wire routing problem are presented
in Table 28. SCIP-Jack solves all but two of the first test set, with run
times ranging from 1.8 to 434.1 seconds. Five of the instances solved to

3.7 The Group Steiner Tree Problem 130

Name Instances |V | Status Description

GSTP1 8 349-1253 unsolved
 Sparse instances derived from a

problem in VLSI design.
GSTP2 10 838-3177 unsolved

Table 27: Classes of GSTP instances.

optimality only require a single node, with the remaining instance solved
using 614 nodes. Two instances of this set are terminated at the time limit
of two hours, exhibiting optimality gaps of 1.1 and 4.2 percent, respectively.
The performance on the second test set is notably weaker. Five instances
are solved within the time limit (with one requiring seven branch-and-bound
nodes), whereas all other instances terminate with 54.7 branch-and-bound
nodes on average. The best optimality gap among the unsolved instances of
GSTP2 is 0.8, the worst 2.9 percent.

Optimal Timeout

Class Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

GSTP1 8 6 11.6 39.2 178.2 2.7
GSTP2 10 5 2.0 3196.0 54.7 1.6

Table 28: Computational results for GSTP instances.

3.8 The Hop Constrained Directed Steiner Tree Problem 131

3.8 The Hop Constrained Directed Steiner Tree Problem

The hop-constrained directed Steiner tree problem (HCDSTP) can
be considered as an SAP incorporating additional conditions [BDK14]: First,
the arc costs are required to be positive. Second, the additional constraint
that the number of selected arcs must not exceed a predetermined bound
H, called hop limit, is incorporated. Finally, all terminals except the
root are necessarily leaves in each feasible solution. The flow-balance cut
formulation (Formulation 5) used by SCIP-Jack is easily extended to cover
this variation by adding one extra linear inequality bounding the sum of all
binary arc variables and removing all incoming arcs to each terminal other
than the root.

Still, the hop limit brings significant implications for the preprocessing
and the heuristics in its wake: Many of the reduction techniques remove
or include edges from the graph if a less costly alternative can be found,
regardless of whether this alternative includes a greater number of edges
and possibly violates the hop constraint. Likewise, the so far employed
heuristics do not consider the number of included edges, but merely their
costs.

Real-world applications of the HCDSTP include the three dimensional
placement of drones for multi-target surveillance, see [OKD+10].

3.8.1 Reductions

For the HCDSTP no reduction techniques that we are aware of have been
published yet. Several approaches that are effective for other Steiner prob-
lems, like the alternative-based reductions, are rendered prohibitive by the
hop constraint. Therefore, this section encompasses merely bound-based re-
duction techniques. Subsequently, it will be supposed that an HCDSTP
PHC = (V,A, T, c, r,H) is given. As with the SAP, the representation
T r := T \ {r} is used and r = t1 is presupposed.

Bound Based Reductions

Hereinafter, we reuse the concept of the rooted inward Voronoi diagram,
introduced in Section 3.1.1. Additionally, for each i = 2, ..., s we define
cimin := mina∈δ−(ti) ca.

Lemma 53. Let vi ∈ V \T and define tb := base(vi). If there is an optimal
solution S = (VS , AS) to PHC such that vi ∈ VS, then

~d(r, vi) + ~d(vi, tb) +

s∑
q=2

cimin − max
q=2,...,n

cqmin (100)

is a lower bound on the weight of S.

3.8 The Hop Constrained Directed Steiner Tree Problem 132

Proof. Since S is an arborescence rooted in r, it contains a path P1 from r
to vi that is of cost at least ~d(r, vi). Additionally, at least one path P2 from
vi to a terminal tj other than the root is contained in S, since the latter has

been assumed to be optimal. P2 is of cost at least ~d(vi, base(vi)) and due to
S being cycle free, P1 and P2 are arc-disjoint. Since for all tk ∈ T \ {r, tj}
it holds that δ+

S (tk) = ∅, none of their incoming arcs can be contained in
P1 or P2. However, as all of them are contained in S, for each terminal in
T \ {r, tj} one of its incoming arcs has to be part of S as well. Hence:

C(S) ≥ C(P1) + C(P2) +

s∑
q=2,q 6=tj

cqmin

≥ ~d(r, vi) + ~d(vi, tj) +
s∑

q=2,q 6=tj

cqmin

≥ ~d(r, vi) + ~d(vi, base(vi)) +
s∑
q=2

cimin − max
q=2,...,n

cqmin

The last term is tantamount to (100), so the lemma is established.

Not only the rooted inward Voronoi diagram, but also the associated
lemmata can be adopted from the SAP. To this end, assume the setting for
the lemmata 20 and 21 in Section 3.1.1.

Lemma 54. Let vi ∈ V \ T . If there is an optimal solution S = (VS , AS)
such that vi ∈ VS, then

d(vi, vi,1) + d(vi, vi,2) +
s−2∑
q=2

inradius(tq), (101)

where the d-distances are affiliated with GD, is a lower bound on the weight
of S.

Proof. Analogous to the proof of Lemma 21.

Lemma 55. Let (vi, vj) ∈ A. If there is an optimal solution S = (VS , AS)
such that (vi, vj) ∈ AS, then L defined by

L := cij + d(vi, vi,1) + d(vj , vj,1) +

s−2∑
q=2

inradius(tq) (102)

if vi,1 6= vj,1 and

L := min
{
d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1)

}
+

s−2∑
q=2

inradius(tq)

(103)

3.8 The Hop Constrained Directed Steiner Tree Problem 133

otherwise, is a lower bound on the weight of S. The d-distances are stated
with respect to GD.

Proof. Analogous to the proof of Lemma 21.

We denote the reduction test combining the antecedent three lemmata
by Cost Bound (CBND) test: First, a solution S is computed by the
heuristic introduced in Section 3.8.2. Second, we traverse each vertex vi ∈ V .
If vi is a non-terminal and the bound (100) or (101) is higher than C(S) (or
equal in the case of vi /∈ VS), the vertex vi can be deleted. Otherwise, we
traverse each outgoing arc δ+(vi) and attempt to eliminate it in the same
way using the bounds (102) and (103) respectively.

While the idiosycracy of the HCDSTP in the shape of the hop constraint
impedes numerous reduction techniques, it concomitantly gives rise to tests
of a novel type. In the remainder of this section, denote by ~d1 the directed
distance function with respect to the arc costs 11. Consequently, ~d1(vi, vj) is
equal to the minimal number of arcs necessary to reach the vertex vj from
the vertex vi. Further, let N1 be a rooted inward Voronoi diagram on (V,A)
with respect to d1.

Lemma 56. Let vi ∈ V \ T and tb ∈ T r such that vi ∈ N1(tb). If

~d1(r, vi) + ~d1(vi, tb) + |T | − 2 > H (104)

is satisfied, vi cannot be contained in any optimal solution.

Proof. Let S = (VS , AS) be an optimal solution and suppose vi ∈ VS . Analo-
gously to the proof of Lemma 53 it can be verified that S contains arc-disjoint
paths P1, from r to vi and P2, from vi to a tj ∈ T r. Considering the defini-

tion of d1 one readily acknowledges that at least ~d(r, vi) arcs are contained
in P1 and at least ~d1(vi, tj) arcs are contained in P2. Furthermore, both P1

and P2 contain exactly one terminal, since to all terminal other than the
root there are no outgoing arcs. Noting that to each terminal in T \ {r, tj}
there is at least one arc included in S, one obtains that

|As| ≥ ~d1(r, vi) + ~d1(vi, tj) + |T | − 2

≥ ~d1(r, vi) + ~d1(vi, tb) + |T | − 2

(104)
> H.

Hence it can be inferred that, violating the hop constraint, S is not a feasible
solution.

Furthermore, by exploiting the hop constraint property, both Lemma 54
and Lemma 55 can be reshaped. To this end, denote for ti ∈ T r by
inradius1(ti) the inradius(ti) value with respect to N1 and assume that

3.8 The Hop Constrained Directed Steiner Tree Problem 134

the ti ∈ T r are ordered in such a way that the corresponding inradius1

values are non-decreasing in i. Further, the d1-distances are stated with
respect to GD with edge costs 11.

Lemma 57. Let vi ∈ V \ T . If

d1(vi, vi,1) + d1(vi, vi,2) +
s−2∑
q=2

inradius1(tq) > H (105)

is satisfied, vi cannot be contained in any optimal solution.

Proof. Assume that (105) is satisfied for a vi ∈ V \ T . Using d1 as the
distance function d, one can be infer from Lemma 20 that for an optimal
solution S = (VS , AS) containing vi it would hold that

|AS | = C(S) ≥ d1(vi, vi,1) + d1(vi, vi,2) +

s−2∑
q=2

inradius1(tq)
(105)
> H.

Therefore, no such S = (VS , AS) can exist.

Lemma 58. Let (vi, vj) ∈ A. If

1 + d1(vi, vi,1) + d1(vj , vj,1) +
s−2∑
q=2

inradius1(tq) > H (106)

in the case of vi,1 6= vj,1 or

1 + min
{
d1(vi, vi,1) + d1(vj , vj,2), d1(vi, vi,2) + d1(vj , vj,1)

}
+
s−2∑
q=2

inradius1(tq) > H (107)

otherwise, (vi, vj) cannot be contained in any optimal solution.

Proof. Let (vi, vj) ∈ A. Suppose that (vi, vj) was contained in an optimal
solution S = (VS , AS). Using Lemma 21 this would imply in the case of
vi,1 6= vj,1 that:

|AS | = C(S) ≥ 1 + d1(vi, vi,1) + d1(vj , vj,1) +

s−2∑
q=2

inradius1(tq)
(106)
> H

and in the case of vi,1 = vj,1 that:

|AS | = C(S)

≥ 1 + min
{
d1(vi, vi,1) + d1(vj , vj,2), d1(vi, vi,2) + d1(vj , vj,1)

}
+

s−2∑
q=2

inradius1(tq)

(107)
> H.

Hence, no such S can exist and the lemma is established.

3.8 The Hop Constrained Directed Steiner Tree Problem 135

Associated to the antecedent three lemmata is the Hop Bound (HBND)
test: Successively, we process each vertex vi ∈ V : If vi is a non-terminal
and the bound (104) or (105) is greater than the hop bound H, the vertex
vi is deleted. Otherwise, each outgoing arc aj ∈ δ+(vi) is traversed and if
the bound (106) or (107) respectively is greater than H, the arc is deleted.
It should be noted that a predecessor of HBND was already introduced in
[GKM+15].

3.8.2 Primal Heuristics

Similar to the presolving techniques, the heretofore introduced Steiner prob-
lem heuristics do not take into account the hop limit. As such, any identified
solution may not be feasible. Therefore, a simple variation of RSPH, see Sec-
tion 2.3, is used for the HCDSTP: Each arc a, having original costs ca, is
assigned the new cost c′a := 1 +λ ca

cmax
, with λ ∈ Q+ and cmax := maxa∈A ca.

Initially λ is set to 3 but its value is decreased or increased after each itera-
tion of the constructive heuristic, depending on whether the last computed
solution exceeds or is below the hop limit, respectively. This modification
to λ is performed relatively to the deviation of the number of edges from
the hop limit.

3.8.3 Implementation and Computational Results

Name Instances |V | Status Description

Gr12 19 809 solved


Prevalently dense instances with |T | = 10.
Gr14 20 3209 unsolved

Derived from 3D placement of unmanned aerial vehicles [BDK14].

Gr16 21 12509 unsolved

Table 29: Classes of HCDSTP instances.

The three different test sets considered for the computational experi-
ments, see Table 29, contain all instances used in the evaluation of the
DIMACS challenge.

Of the Gr12 set SCIP-Jack is able to solve all instances in less than 435
seconds, 16 of them within 13 seconds. On average, the instances require
13.4 seconds of run time and 6.7 nodes, as illustrated in Table 30. Only two
instances of this test set were not solved at the root node. The performance
on the Gr14 test set is notably diminished, only ten of the instances can
be solved to optimality within two hours. All of the unsolved instances
terminate with large optimality gaps, ranging from 3.5 % to 40.6 %, after
102.1 nodes on average.

Finally, more than half of the Gr16 instances were terminated due to
insufficient memory. Therefore, we resorted for this test set to a different

3.8 The Hop Constrained Directed Steiner Tree Problem 136

machine, being endowed with Intel Xeon E5-2697 CPUs with 2.70 GHz and
128 GB RAM. Although this machine can boast more RAM than the ma-
chines of the cluster used for the other experimental results of this thesis
(see Section 2.6), it is also notably slower.

The results for the Gr16 test set are remarkably worse than for the
other two sets: None of the instances can solved to optimality, with the
lowest gap being 26.2 percent; the hardest one exhibits a gap of even 191.3
percent. However, it should be taken into consideration that the number
of arcs of the instances ranges from more than 1.6 to almost nine million,
far more than in most other instances in this thesis. Furthermore, only on
four instances a branch-and-bound search was performed; on all of them the
number of branching nodes stays below 20. We put this down to the fact
that compared to the Gr12 and Gr16 instances far more time is required for
computations at the root node, such as LP-solving.

Optimal Timeout

Class Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

Gr12 19 19 6.7 13.4 – –
Gr14 21 10 60.7 462.9 102.1 18.4
Gr16 20 0 – – 2.1 81.6

Table 30: Computational results for HCDSTP instances.

Impact of Reduction Techniques

The efficiency of the HCDSTP reduction package on the classes Gr12, Gr14
and Gr16 is presented in Table 31. In terms of effectiveness, the results
on all three test sets are comparable, with an average of 69 and 71 percent
of vertices and edges, respectively. In contrast, the execution times differ
considerably, ranging from less than 0.1 seconds on Gr12 to more than seven
seconds on Gr16. Responsible for this behavior is the computation of a
primal solution for the CBND test. Indeed, this test occupies more than 95
percent of the run time for the Gr16 set.

Remaining Remaining
Class Vertices[%] Edges[%] ∅Time [s]

Gr12 69.2 72.1 0.0
Gr14 67.2 66.7 0.6
Gr16 69.7 73.8 7.6

Table 31: Computational results of the HCDSTP reduction package. The
percentage of remaining edges and vertices is stated with respect to the
arithmetic mean, the time is given as a shifted geometric mean (with s = 1).

137

4 Final Computational Results and Comparisons

Although several computational results have been presented in the course of
this work, they have been primarily focused on evaluating the performance of
separate components and have therefore not been collated with other exact
solving results from the literature. In contrast, in the following SCIP-Jack
is compared on several Steiner variants with the best problem specific solvers
described in the literature. To this end, the heretofore computational envi-
ronment is used. These settings are identical to the ones that were used to
evaluate the solvers competing in the 11th DIMACS Challenge, which allows
for an equitable comparison with the results obtained there. In this context
it should be noted that the results described in this thesis are significantly
better than those obtained by the previous version of SCIP-Jack that was
submitted to the DIMACS Challenge. However, we do not provide com-
parisons between the current and just mentioned version of SCIP-Jack,
but merely report the results yielded by the latest version. Besides in the
DIMACS Challenge, results for a previous version of SCIP-Jack can be
found in [GKM+15].

4.1 The Steiner Tree Problem in Graphs 138

4.1 The Steiner Tree Problem in Graphs

First of all, it must be noted that SCIP-Jack is outperformed on three of
the four heretofore used SPG test sets (see Section 2.6) by the currently best
known SPG solver [PVD14] (an improved version of the program described
in [Pol04]). A further notably strong, but overall inferior, SPG solver is
introduced in [PUW14]. The results given in [PVD14] were obtained on a
single-threaded PC with an Intel Core i7 920 of 2.66 GHz, using a Linux
3.4.2-1.fc16.x86 64 operating system and CPLEX 12.6. Using this setting,
the authors manage to solve all 20 E instances in less than four seconds to
optimality, 19 of them in less than one second (as opposed to more than five
seconds on average required by SCIP-Jack, with more than 300 seconds for
the e18 instance). Furthermore, they solve all I320 and vienna-I instances
to optimality in at most 2915 and 624 seconds, respectively. However, of the
PUC set only 12 instances are solved within two hours, while SCIP-Jack
manages to solve nine instances in the same time.

To provide a broader picture of the performance of SCIP-Jack on the
SPG, which has been covered in most detail compared to the other Steiner
problem variants in thesis, computational results on additional test sets from
the SteinLib are provided in Table 32.

Optimal Timeout

Class Instances Solved ∅Nodes ∅Time [s] ∅Nodes ∅Gap [%]

D 20 20 1.0 0.6 – –
X 3 3 1.0 1.7 – –
SP 8 5 1.0 0.0 8.1 0.8
I640 100 72 27.3 47.5 120.5 0.8
LIN 37 23 1.0 10.6 1.0 21.1

Table 32: Computational results for additional SPG instances.

As a comparison, in [PVD14] all D and X instances can be solved to
optimality. Furthermore, 95 of the I640 instances and 32 of the LIN instances
can be solved within two hours. However, on the SP class SCIP-Jack
manages to obtain better optimality gaps for the two instances w13c29 and
w23c23 that could not be solved in [PVD14] (using a time limit of 24 hours
as opposed to two hours for our experiments).

4.1 The Steiner Tree Problem in Graphs 139

Instance |V | |E| |T | Best SCIP-Jack Instance |V | |E| |T | Best SCIP-Jack

bip42p 1200 3982 200 24657 24657* cc3-5u 125 750 13 36 36*
bip42u 1200 3982 200 236 236* cc5-3p 243 1215 27 7299 7299*
bip52p 2200 7997 200 24535 24526 cc5-3u 243 1215 27 71 71*
bip52u 2200 7997 200 234 234 cc6-2p 64 192 12 3271 3271*
bip62p 1200 10002 200 22870 22843 cc6-2u 64 192 12 32 32*
bip62u 1200 10002 200 220 219 cc6-3p 729 4368 76 20456 20270*
bipa2p 3300 18073 300 35379 35326 cc6-3u 729 4368 76 197 197*
bipa2u 3300 18073 300 341 338 cc7-3p 2187 15308 222 57088 57117
bipe2p 550 5013 50 5616 5616* cc7-3u 2187 15308 222 552 552
bipe2u 550 5013 50 54 54* cc9-2p 512 2304 64 17296 17199
cc10-2p 1024 5120 135 35379 35227 cc9-2u 512 2304 64 167 167*
cc10-2u 1024 5120 135 342 343 hc10p 1024 5120 512 60494 59797
cc11-2p 2048 11263 244 63826 63636 hc10u 1024 5120 512 581 575
cc11-2u 2048 11263 244 614 618 hc11p 2048 11264 1024 119779 119689
cc12-2p 4096 24574 473 121106 122099 hc11u 2048 11264 1024 1154 1151
cc12-2u 4096 24574 473 1179 1184 hc12p 4096 24576 2048 236949 236080
cc3-10p 1000 13500 50 12860 12837 hc12u 4096 24576 2048 2275 2262
cc3-10u 1000 13500 50 125 126 hc6p 64 192 32 4003 4003*
cc3-11p 1331 19965 61 15609 15648 hc6u 64 192 32 39 39*
cc3-11u 1331 19965 61 153 153 hc7p 128 448 64 7905 7905*
cc3-12p 1728 28512 74 18838 18997 hc7u 128 448 64 77 77*
cc3-12u 1728 28512 74 186 187 hc8p 256 1024 128 15322 15322*
cc3-4p 64 288 8 2338 2338* hc8u 256 1024 128 148 148*
cc3-4u 64 288 8 23 23* hc9p 512 2304 256 30258 30242
cc3-5p 125 750 13 3661 3661* hc9u 512 2304 256 292 292

Table 33: Primal bound improvements on the PUC instances.

4.1.1 Parallel Computing

In the following, computational results of the parallel approach introduced in
Section 2.5 are presented. Although only results for the unsolved instances
of the PUC test set are provided, it should be noted that the parallel version
of SCIP-Jack is capable of handling all 11 variants covered in this thesis;
indeed, SCIP-Jack was able to take first place not only in the single-,
but also in the multi-thread RPCSTP category of the DIMACS Challenge.
Furthermore, we once more want to emphasize that the parallel results pre-
sented in this subsection were obtained in corporation with Yuji Shinano
and are already published in [GKM+15].

Owned to limited availability, different clusters and supercomputers were
used for the parallel computations. The largest of these computations com-
prised up to 864 cores, but only involved eight instances (bip52p, bip62u,

bipa2p, bipa2u, cc11-2p, cc12-2p, cc3-12p, hc9p). In contrast, all
other computations were conducted with 192 or less cores. As a reference to
the scalability of ParaSCIP, the largest computation previously performed
was an 80,000 cores run on Titan at ORNL [SAB+15]. We expect SCIP-
Jack to also run on such a large scale computing environment, although
at this stage only computational experiments of comparatively small scale
have been conducted.

Table 33 shows the results on the instances of the PUC test set. We

4.1 The Steiner Tree Problem in Graphs 140

list the number of vertices, edges and terminals, as well as the best primal
bound known at the beginning of the challenge (August 2014), and the
primal solution value obtained by our experiments with the parallel version
of SCIP-Jack, which employs the LP solver of CPLEX 12.6. Prior to
the experiments performed with SCIP-Jack, 32 instances of the PUC test
set remained unsolved. Three of these instances have been solved by SCIP-
Jack to proven optimality. These instances are underlined and marked with
an asterisk in Table 33. For a further 16 instances SCIP-Jack improved
the best known solution. All instances for which the best known primal
bound has been improved are marked in bold. Finally, all previously solved
instances of the PUC test set have also been solved by SCIP-Jack to proven
optimality; signified by an asterisk (without underline).

In summary, the heretofore reported results demonstrate an overall strong
performance of the parallel version of SCIP-Jack in solving computation-
ally difficult instances.

4.2 Variants of the Steiner Tree Problem 141

4.2 Variants of the Steiner Tree Problem

In the following, for several Steiner problem variants comparisons are drawn
between the results presented in this thesis and the best known ones from
the literature. For this purpose, results obtained in the course of the 11th
DIMACS Challenge are used predominantly. However, also other results re-
ported in the literature are provided. Once again, we want to point out that
in our thesis an improved version of SCIP-Jack is used as compared to the
one that competed in the DIMACS Challenge. Preliminarily, some remarks
on the Steiner problem variants not covered hereinafter are necessary:

For the Steiner arborescence problem merely very easy instances were
available, solvable in fractions of a second. Therefore, comparisons with
other results from the literature do not seem reasonable.

For the node-weighted Steiner tree problem only two instances have been
covered in this thesis (and published in the course of the DIMACS Chal-
lenge); unfortunately we could not find any publication reporting results for
these instances.

The rectilinear Steiner minimum tree instances of dimension two can
be solved by the geometric Steiner problem solver GeoSteiner, which was
already mentioned in Section 3.3. As described in the same section, more
advanced modifications would be necessary to render SCIP-Jack competi-
tive with this solver. Nevertheless, we are not aware of any other solver being
able to handle the high dimensional RMST instances that can be solved by
SCIP-Jack as demonstrated in Section 3.3.2.

Finally, the group Steiner tree problem instances have not been made
publicly available yet and can therefore not be used for computational com-
parisons.

To the best of our knowledge, for all Steiner problem variants covered
hereinafter no results published in the literature exceed those achieved in
the course of the DIMACS Challenge.

4.2.1 The Prize Collecting Steiner Tree Problem

Both the Cologne1 and Cologne2 class were used as test sets in the DIMACS
Challenge. In the following two tables we compare our results with the best
known other ones. These were achieved by the solver Mozartballs [FLL+14].
The best results reported for the RPCSTP instances outside the DIMACS
Challenge can be found in [LWP+06]. Requiring more than 40,000 seconds
of run time for several instances, these results are clearly inferior to the ones
of the best two groups competing in the challenge.

4.2 Variants of the Steiner Tree Problem 142

Instance |V | |A| |T | Optimum SCIP-Jack t [s] Mozartballs t [s]

i101M1 758 12704 11 109271.503 0.2 1.0
i101M2 758 12704 11 315925.31 3.4 20.0
i101M3 758 12704 11 355625.409 5.0 23.0
i102M1 760 12730 12 104065.801 0.2 1.0
i102M2 760 12730 12 352538.819 6.4 26.0
i102M3 760 12730 12 454365.927 7.9 42.0
i103M1 764 12738 14 139749.407 0.2 1.0
i103M2 764 12738 14 407834.228 3.6 16.0
i103M3 764 12738 14 456125.488 5.8 29.0
i104M2 744 12598 4 89920.8353 0.3 6.0
i104M3 744 12598 4 97148.789 1.0 12.0
i105M1 744 12604 4 26717.2025 0.2 1.0
i105M2 744 12604 4 100269.619 2.1 8.0
i105M3 744 12604 4 110351.163 4.2 15.0

Table 34: Comparison on the Cologne1 test set between SCIP-Jack and
Mozartballs.

The results presented in Table 34 demonstrate the superiority of SCIP-
Jack on the Cologne1 instances: Each instance is solved at least thrice
as fast as by Mozartballs. For the i104M2 instance the execution time of
Mozartballs is even 20 times higher than that of SCIP-Jack.

Instance |V | |A| |T | Optimum SCIP-Jack t [s] Mozartballs t [s]

i201M2 1812 33522 10 355467.684 0.6 16.0
i201M3 1812 33522 10 628833.614 23.2 126.0
i201M4 1812 33522 10 773398.303 47.6 170.0
i202M2 1814 33520 11 288946.832 6.2 15.0
i202M3 1814 33520 11 419184.159 31.4 63.0
i202M4 1814 33520 11 430034.264 23.8 109.0
i203M2 1824 33584 16 459894.776 3.5 14.0
i203M3 1824 33584 16 643062.02 51.9 255.0
i203M4 1824 33584 16 677733.067 54.2 211.0
i204M2 1805 33454 5 161700.545 0.3 8.0
i204M3 1805 33454 5 245287.203 24.6 27.0
i204M4 1805 33454 5 245287.203 28.6 36.0
i205M2 1823 33640 14 571031.415 19.0 12.0
i205M3 1823 33640 14 672403.143 36.8 46.0
i205M4 1823 33640 14 713973.623 26.4 56.0

Table 35: Comparison on the Cologne2 test set between SCIP-Jack and
Mozartballs.

The same pattern continues on the Cologne2 class as evidenced in Ta-
ble 35: Although one instance, i205M2, is solved faster by Mozartballs, on
the remainder of the test set SCIP-Jack clearly prevails.

For the unrooted prize-collecting Steiner tree problem, unfortunately,
none of our test sets was fully covered in the DIMACS Challenge. How-
ever, from each of the three test sets four instances were included. For all
CRR as well as for all JMP instances (C13-A, D19-B, D03-B, D20-A and

4.2 Variants of the Steiner Tree Problem 143

P400-3, P400-4, K400-7, K400-10) our solver prevails against all participat-
ing groups, being on average more than twice as fast as the respective best
competitor. The results for the four included PUCNU instances are some-
what lesser: One instance, cc3-12nu, is solved to optimality by SCIP-Jack,
while no other group manages to reduce the optimality gap to less than
two percent. For another one, cc12-2nu, SCIP-Jack achieves the smallest
optimality gap. Yet, the other two instances, bip52-nu and bip62-nu, are
solved by Mozartballs to optimality, but not by SCIP-Jack (nor any other
group).

4.2.2 The Maximum Weight Connected Subgraph Problem

In this subsection SCIP-Jack is compared with the best groups participat-
ing in the DIMACS Challenge in the category MWCS. For this purpose, in
Table 36 the results of both SCIP-Jack and its nemesis Mozartballs (re-
emerging this time in an MWCS variant) are presented. Notably, Mozart-
balls was the fastest solver for each ACTMOD instance.

Instance |V | |A| |T | Optimum SCIP-Jack t [s] Mozartballs t [s]

drosophila001 5298 187214 72 24.3855064 16.2 21.6
drosophila005 5421 187952 195 178.663952 17.6 15.5
drosophila0075 5477 188288 251 260.523557 8.5 10.5
HCMV 3919 58916 56 7.55431486 5.4 2.2
lymphoma 2102 15914 68 70.1663087 1.9 0.4
metabol expr mice 1 3674 9590 151 544.94837 2.0 2.7
metabol expr mice 2 3600 9174 86 241.077524 0.9 1.9
metabol expr mice 3 2968 7354 115 508.260877 0.8 1.1

Table 36: Comparison on the ACTMOD test set between SCIP-Jack and the winner
of the MWCS category of the 11th DIMACS Challenge.

It can be seen that SCIP-Jack is faster on five out of the eight ACT-
MOD instances. However, one might see the differences as being moderate,
considering that all instances can be solved in less than half a minute.

We do not provide detailed information on the JMPALMK class since
only a subset of it was part of the DIMACS Challenge. Notwithstanding,
on 15 of the 20 JMPALMK instances tested in the course of the Challenge
SCIP-Jack proves to be faster than Mozartballs, which is in turn faster
on only two. Additionally, on 11 of the instances SCIP-Jack exceeds all
participants of the Challenge, whereas it is outperformed on only four (by
the solver Heinz described in [EK14]).

Summarizing, the results suggest that SCIP-Jack is superior or at least
competitive to state-of-the-art solvers for the MWCSP on the available
benchmark sets.

4.2 Variants of the Steiner Tree Problem 144

4.2.3 The Degree Constrained Steiner Tree Problem

All DCSTP instances described in Section 3.6.2 were used in the DIMACS
Challenge. Furthermore, experimental results on these instances are re-
ported in [LMP14], where a DCSTP specific solver is introduced. The com-
putations were performed on a ”compute server with 12-core Opteron pro-
cessors and 64GB RAM” [LMP14]. If one excepts the differences in the
machines used for the computations, our results are superior for all but one
instance.

A comparison with the best results obtained in the DIMACS Challenge
is provided in Table 37.

SCIP-Jack Mozartballs

Instance |V | |E| |T | Gap % t [s] Gap % t [s]

TF101057-t1 52 1326 35 0.0 0.0 0.0 0.3
TF101057-t3 52 1326 35 0.0 46.7 0.0 0.7
TF101125-t1 304 46056 155 0.0 4.6 0.0 14.0
TF101125-t3 304 46056 155 3.7 7200 0.0 3194.1
TF101202-t1 188 17578 72 2.2 7200 0.0 131.3
TF101202-t3 188 17578 72 0.6 7200 0.0 87.2
TF102003-t1 832 345696 407 102.0 7200 >100 7200
TF102003-t3 832 345696 407 7.6 7200 62.2 7200
TF105035-t1 237 27966 104 32.8 7200 0.0 407.4
TF105035-t3 237 27966 104 1.6 7200 0.0 1181.3
TF105272-t1 476 113050 223 113.1 7200 >100 7200
TF105272-t3 476 113050 223 8.2 7200 10.5 7200
TF105419-t1 55 1485 24 0.0 161.4 0.0 1.1
TF105419-t3 55 1485 24 0.0 5.9 0.0 2.6
TF105897-t1 314 49141 133 62.4 7200 0.0 3206.9
TF105897-t3 314 49141 133 2.5 7200 51.6 7200
TF106403-t1 119 7021 46 0.0 493.3 0.0 15.5
TF106403-t3 119 7021 46 0.0 64.4 0.0 71.3
TF106478-t1 130 8385 54 0.4 7200 0.0 20.5
TF106478-t3 130 8385 54 0.2 7200 0.0 37.5

Table 37. Comparison on the TreeFam test set between SCIP-Jack and Mozartballs.

The results display an overall stronger performance of Mozartballs: While
SCIP-Jack yields smaller optimality gap on three instances (TF102003-t3,
TF105272-t3 and TF105897-t3) and is faster one another three (TF101057-
t1, TF101125-t1 and TF106403-t3), Mozartballs obtains smaller optimality
gaps on eight and better time results on additional four problems.

Notwithstanding the better performance of Mozartballs, SCIP-Jack is
by no means outranked and has also achieved better results than the spe-
cialized solver described in [LMP14]; against the backdrop of the limited
efforts having been made for the DCSTP in this thesis, the comparative
performance of SCIP-Jack certainly bears mentioning.

4.2.4 The Hop Constrained Directed Steiner Tree Problem

For the HCDSTP, besides SCIP-Jack only several versions of the special-
ized primal heuristic framework Stephop, see [BDK14], competed in the

4.2 Variants of the Steiner Tree Problem 145

DIMACS Challenge. Therefore, no detailed information is provided here.
Nevertheless, it should not go unnoticed that for the 20 instances of the
Gr12 and Gr14 sets being part of the Challenge, the upper bounds com-
puted by SCIP-Jack within two hours are equal for three and better for 13
instances, as compared to the results achieved by the competing heuristics.

4.3 Using SoPlex 146

4.3 Using SoPlex

Having established a powerful Steiner problem solver able to handle a no-
table number of variants, we still perceive that a certain blemish lingers:
Using the commercial LP solver CPLEX, we cannot equitably claim that
SCIP-Jack is genuinely non-commercial and available in source code. There-
fore, in this subsection results are provided for employing SoPlex (see Sec-
tion 2.5) instead.

The results of using SoPlex 2.2.0 as the underlying LP solver of SCIP-
Jack are presented in Table 38. In each line of the table aggregated results
for the test set specified in the first column are provided. The second col-
umn denotes the Steiner problem type that the current test set belongs to.
In the last three columns, the percentual change of the number of solved
instance, the required branch-and-bound nodes and finally the execution
time is stated, all with respect to the results obtained by using SCIP-
Jack/CPLEX.

For the evaluation of SCIP-Jack/SoPlex we have singled out those six
Steiner problem variants on which the main focus has been set throughout
this thesis. The results reveal an overall deterioration of both the number
of solved instances and, more conspicuously, the execution time. Although
the run time is comparable on the, easy, SAP instances, the solving process
on all other non-trivial test sets is prolonged. Most notable is the JMP test
set, which requires more than two times the execution time it consumed
when CPLEX was being used. The number of solved instances decreases
on four test sets, increases for one (PUCNU) and remains unchanged for
the rest. Interestingly, although two more instances can be solved on the
PUCNU test set using SoPlex, the average run time is more than 40 percent
higher. With respect to the branch-and-bound nodes the results are overall
balanced.

Overall, the results demonstrate that although slower than SCIP-Jack
combined with CPLEX, SCIP-Jack/SoPlex still constitutes a powerful,
fast solver that allows to solve 443 out of 555 benchmark instances within
two hours.

4.3 Using SoPlex 147

Class Type Solved Instances Nodes Time

E – +32.2 +30.2
I320

SPG
-3.2 -6.7 +16.2

vienna-I -14.0 +46.0 +44.8
PUC -11.1 -48.6 +10.9

Gene
SAP

– – +4.7
Gene2002 – – -9.9

JMP
PCSTP

– – +120.0
CRR – – +32.0
PUCNU +20.0 +41.8 +42.8

Cologne1
RPCSTP

– – +52.3
Cologne2 – – +63.7

JMPALMK
MWCSP

– – -26.9
ACTMOD – +21.4 +10.3

Gr12
HCDSTP

– +50.1 +25.4
Gr14 -30.0 -83.2 +65.1

Table 38: Computational results of SCIP-Jack/SoPlex. In each line the
percentual changes with respect to the results obtained by using CPLEX
are reported.

4.3 Using SoPlex 148

149

5 Conclusions and Outlook

In this thesis an approach has been presented that allows to solve 11 different
Steiner problems within a single framework, standing in stark contrast to
the problem specific strategy of other state-of-the-art Steiner tree solvers.
This achievement has been rendered possible by employing various, often
novel, methods to transform the problems into a general form, which can
be solved by a branch-and-cut based procedure using the academic MIP
framework SCIP. Two advantages of employing this generic approach are
immediately conspicuous:

First, the amount of problem specific code is notably reduced. While for
the SPG around 20,000 lines of code (with more than 10 percent being com-
ments) were needed, each additional problem variant required only about
500 lines on average. As a comparison, the pure SPG solver described in
[Pol04] is reported to encompass ”roughly thousand pages” of code, which
amounts to about 60,000 lines of code taking the size of each page in [Pol04]
as a reference.

Second, a number of general solution methods natively implemented in
SCIP, e.g. cutting planes (being notably effective for several hard instances
such as in the PUC class), are available and will be kept up-to-date auto-
matically by the continuous improvements in the framework.

Moreover, not entirely in line with the overall generic approach, vari-
ous novel reduction techniques have been introduced that surpass existing
methods for several Steiner problem variants such as the maximum-weight
connected subgraph problem. Likewise, several heuristics have been devised,
although they can all be seen as variations of three basic versions, the RSP,
VQ and RC heuristics. Albeit both the reduction techniques and, partly,
the heuristics are problem specific, they easily assimilate within our general
framework, also by virtue of the plugin-based structure of SCIP.

In this way, the combination of the generic branch-and-cut based ap-
proach and problem specific techniques has enabled us to achieve our initial
goal to be able to handle a large variety of Steiner problem variants, but
to allow at the same time for fast solving: The exact solver SCIP-Jack
(the offspring of embedding the pure SPG solver Jack-III into SCIP) ac-
companying this work is capable of solving several problem classes, e.g. the
(real-world) RPCSTP instances, faster than any other solver we are aware
of. Furthermore, it should be marked that the opportunity to solve instances
in a massively parallel distributed memory environment has been added at
minimal cost.

Still, there surely is potential for further improving the performance of
the solver. Concerning the Steiner tree problem in graphs, additional meth-
ods described in the literature, most notably in [Pol04], such as dual heuris-
tics and additional reduction tests are expected to bear a high capability for
improving the run time of SCIP-Jack.

150

Concerning the Steiner problem variants, there are many heuristic ap-
proaches that can be employed to specific variants. Likewise, we expect that
the development of additional efficient reduction techniques would exert a
notable impact on the execution time; some suggestions for such extensions
have already been provided in the course of this thesis, e.g. to the maximum-
weight connected subgraph problem. Using the plugin structure of SCIP,
we hope to include some of these heuristics and reduction techniques in the
future. Also, SCIP-Jack could be extended to encompass further variants
described in the literature, such as the hop-constrained minimum spanning
tree problem which can be reduced to a Steiner tree problem in graphs
[GSU11].

Summarizing, pursuing our generic approach we have succeeded in in-
corporating a variety of novel and known techniques to a general-purpose
Steiner problem framework. The accompanying solver is competitive or even
superior to specialized state-of-the-art programs for several Steiner problem
variants. Moreover, we deem it important to point out that, to the best
of our knowledge, this has been the first time a powerful exact solver for
non-geometric Steiner problems is available in source code to the scientific
community: The SCIP Optimization Suite already contains a previous ver-
sion of our solver and we furthermore plan to publish the current version of
SCIP-Jack, presented in this thesis, as part of the next release of SCIP.
We hope that the availability of such a device will foster the use of Steiner
trees in modelling real-world phenomena as has already been the case for
instance in genetics [JKC+00].

Ultimately, we have succeeded in creating a powerful exact solving frame-
work of unprecedented versatility that can veritably be designated as a
Steiner class solver.

References 151

References

[AB09] Tobias Achterberg and Timo Berthold. Hybrid Branching. In
Willem Jan van Hoeve and John N. Hooker, editors, Integra-
tion of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, 6th International Con-
ference, CPAIOR 2009, volume 5547 of Lecture Notes in Com-
puter Science, pages 309–311. Springer, May 2009.

[AB14] Ernst Althaus and Markus Blumenstock. Algorithms
for the Maximum Weight Connected Subgraph and Prize-
collecting Steiner Tree Problems. Unpublished manuscript at
http://dimacs11.cs.princeton.edu/workshop.html, 2014.

[ABCC11] David L Applegate, Robert E Bixby, Vasek Chvatal, and
William J Cook. The Traveling Salesman Problem: A Com-
putational Study. Princeton University Press, Princeton, New
Jersey, 2011.

[Ach07] Tobias Achterberg. Constraint Integer Programming. PhD the-
sis, Technische Universität Berlin, 2007.

[Ach09] Tobias Achterberg. SCIP: Solving constraint integer programs.
Mathematical Programming Computation, 1(1):1–41, 2009.

[AKM04] Tobias Achterberg, Thorsten Koch, and Alexander Martin.
Branching rules revisited. Operations Research Letters, 33:42–
54, 2004.

[AMLM13] Eduardo Álvarez-Miranda, Ivana Ljubić, and Petra Mutzel. The
maximum weight connected subgraph problem., pages 245–270.
Berlin: Springer, 2013.

[Ane80] Yash P. Aneja. An integer linear programming approach to the
Steiner problem in graphs. Networks, 10(2):167–178, 1980.

[BDK14] Oleg Burdakov, Patrick Doherty, and Jonas Kvarnström. Lo-
cal Search for Hop-constrained Directed Steiner Tree Problem
with Application to UAV-based Multi-target Surveillance. In
Butenko, S., Pasiliao, E.L., Shylo, and V., editors, Examining
Robustness and Vulnerability of Networked Systems, volume 37
of NATO Science for Peace and Security Series - D: Infor-
mation and Communication Security, pages 26–50. IOS Press,
2014.

[Bea84] J. E. Beasley. An algorithm for the Steiner problem in graphs.
Networks, 14(1):147–159, 1984.

References 152

[Bea89] J.E. Beasley. An SST-based algorithm for the Steiner problem
in graphs. Networks, 19:1–16, 1989.

[Bea92] J.E. Beasley. A heuristic for Euclidean and rectilinear Steiner
problems. European Journal of Operational Research, 58:284–
292, 1992.

[BGG+12] Timo Berthold, Gerald Gamrath, Ambros M. Gleixner, Stefan
Heinz, Thorsten Koch, and Yuji Shinano. Solving mixed inte-
ger linear and nonlinear problems using the SCIP Optimization
Suite. Technical Report 12-27, ZIB, Takustr.7, 14195 Berlin,
2012.

[BGRS13] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and
Laura Sanità. Steiner Tree Approximation via Iterative Ran-
domized Rounding. The Journal of the ACM, 60(1):6, 2013.

[BGTZ14] M. Brazil, R. L. Graham, D. A. Thomas, and M. Zachariasen.
On the History of the Euclidean Steiner Tree Problem. Archive
for History of Exact Sciences, 68:327–354, 2014.

[BP87] Anantaram Balakrishnan and Nitin R. Patel. Problem reduc-
tion methods and a tree generation algorithm for the Steiner
network problem. Networks, 17(1):65–85, 1987.

[BP89] Marshall W. Bern and Paul E. Plassmann. The Steiner Problem
with Edge Lengths 1 and 2. Information Processing Letters,
32(4):171–176, 1989.

[BW05] Dimitris Bertsimas and Robert Weismantel. Optimization over
integers. Athena Scientific, 2005.

[CC08] Miroslav Chleb́ık and Janka Chleb́ıková. The Steiner tree prob-
lem on graphs: Inapproximability results. Theoretical Computer
Science, 406(3):207–214, 2008.

[CCC+98] Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai,
Ashish Goel, Sudipto Guha, and Ming Li. Approximation Al-
gorithms for Directed Steiner Problems. In Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’98, pages 192–200, Philadelphia, PA, USA, 1998. Soci-
ety for Industrial and Applied Mathematics.

[CGSW14] Krzysztof Ciebiera, Piotr Godlewski, Piotr Sankowski, and Pi-
otr Wygocki. Approximation Algorithms for Steiner Tree Prob-
lems Based on Universal Solution Frameworks. Computing Re-
search Repository, abs/1410.7534, 2014.

References 153

[CR94] Sunil Chopra and M. Rao. The Steiner tree problem I: For-
mulations, compositions and extension of facets. Mathematical
Programming, 64(2):209–229, 1994.

[CSHH+13] Salim Akhter Chowdhury, Stanley Shackney, Kerstin
Heselmeyer-Haddad, Thomas Ried, Alejandro A. Schäffer, and
Russell Schwartz. Phylogenetic analysis of multiprobe fluores-
cence in situ hybridization data from tumor cell populations.
Bioinformatics, 29(13):189–198, 2013.

[dAW02] Marcus Poggi de Aragao and Renato F. Werneck. On the Im-
plementation of MST-based Heuristics for the Steiner Problem
in Graphs. In Proceedings of the 4th International Workshop on
Algorithm Engineering and Experiments, pages 1–15. Springer,
2002.

[DHK14] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Philip N.
Klein. Node-Weighted Steiner Tree and Group Steiner Tree in
Planar Graphs. ACM Transactions on Algorithms, 10(3):13:1–
13:20, 2014.

[DKR+08] Marcus T. Dittrich, Gunnar W. Klau, Andreas Rosenwald,
Thomas Dandekar, and Tobias Müller. Identifying functional
modules in protein-protein interaction networks: an integrated
exact approach. In ISMB, pages 223–231, 2008.

[Dui93] C. Duin. Steiner Problems in Graphs. PhD thesis, University
of Amsterdam, 1993.

[DV89] C. W. Duin and A. Volgenant. Reduction tests for the Steiner
problem in graphs. Networks, 19(5):549–567, 1989.

[DVV04] C. W. Duin, A. Volgenant, and S. Voss. Solving group Steiner
problems as Steiner problems. European Journal of Operational
Research, 154(1):323–329, 2004.

[EK14] Mohammed El-Kebir and Gunnar W. Klau. Solving the
Maximum-Weight Connected Subgraph Problem to Optimal-
ity. Computing Research Repository, abs/1409.5308, 2014.

[Ema10] Nahit Emanet. The Rectilinear Steiner Tree Problem. Lambert
Academic Publishing, 2010.

[ES03] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. Springer, 2003.

[Fis91] M. Fischetti. Facets of two Steiner arborescence polyhedra.
Mathematical Programming, 51:401–419, 1991.

References 154

[FLL+14] Matteo Fischetti, Markus Leitner, Ivana Ljubic, Martin
Luipersbeck, Michele Monaci, Max Resch, Domenico Salvagnin,
and Markus Sinnl. Thinning out Steiner trees: a node-based
model for uniform edge costs. Unpublished manuscript at
http://dimacs11.cs.princeton.edu/workshop.html, 2014.

[FT84] Michael L. Fredman and Robert Endre Tarjan. Fibonacci Heaps
and Their Uses in Improved Network Optimization Algorithms.
In FOCS, pages 338–346. IEEE Computer Society, 1984.

[GHNP01] Clemens Gröpl, Stefan Hougardy, Till Nierhoff, and
Hans Jürgen Prömel. Approximation algorithms for the Steiner
tree problem in graphs. In Steiner trees in industry, volume 11
of Combinatorial Optimization, pages 235–279. Kluwer Acad.
Publ., Dordrecht, 2001.

[GJ77] M.R. Garey and D.S. Johnson. The rectilinear Steiner tree
problem is NP-complete. SIAM Journal of Applied Mathemat-
ics, 32:826–834, 1977.

[GK99] Sudipto Guha and Samir Khuller. Improved Methods for
Approximating Node Weighted Steiner Trees and Connected
Dominating Sets. Information and Computation, 150(1):57–74,
1999.

[GKM+15] Gerald Gamrath, Thorsten Koch, Stephen Maher, Daniel Re-
hfeldt, and Yuji Shinano. SCIP-Jack - A solver for STP and
variants with parallelization extensions. Technical Report 15-
27, ZIB, Takustr.7, 14195 Berlin, 2015.

[GM90] Martin Grötschel and Clyde L. Monma. Integer Polyhedra Aris-
ing from Certain Network Design Problems with Connectivity
Constraints. SIAM Journal on Discrete Mathematics, 3(4):502–
523, 1990.

[GM93] Michel X. Goemans and Young-Soo Myung. A catalog of Steiner
tree formulations. Networks, 23(1):19–28, 1993.

[GSU11] Luis Gouveia, Luidi Simonetti, and Eduardo Uchoa. Model-
ing hop-constrained and diameter-constrained minimum span-
ning tree problems as Steiner tree problems over layered graphs.
Mathematical Programming, 128(1-2):123–148, 2011.

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A new approach
to the maximum flow problem. The Journal of the ACM,
35(4):921–940, 1988.

References 155

[Hak71] S. Louis Hakimi. Steiner’s problem in graphs and its implica-
tions. Networks, 1(2):113–133, 1971.

[Han66] M. Hanan. On Steiner’s problem with rectilinear distance.
SIAM Journal of Applied Mathematics, 14(2):255–265, 1966.

[Hau] Karpinski Hauptmann. A Compendium on Steiner Tree
Problems. http://theory.cs.uni-bonn.de/info5/

Steinerkompendium/. Accessed: Sep. 18, 2015.

[Hel] Keld Helsgaun. Helsgaun’s Lin-Kernighan heuristic. http://

www.akira.ruc.dk/~keld/research/LKH/. Accessed: Sep. 18,
2015.

[Hel09] Keld Helsgaun. General k-opt submoves for the Lin-Kernighan
TSP heuristic. Mathematical Programming Computation, 1(2-
3):119–163, 2009.

[Hin08] Michalewicz Hingston, Barone, editor. Design by Evolution.
Natural computing series. Springer, New York, 2008.

[HK03] Eran Halperin and Robert Krauthgamer. Polylogarithmic inap-
proximability. In Lawrence L. Larmore and Michel X. Goemans,
editors, STOC, pages 585–594. ACM, 2003.

[HRW92] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree
Problem. Annals of Discrete Mathematics. Elsevier Science,
1992.

[JKC+00] J.J. Johnston, R.I. Kelley, T.O. Crawford, D.H. Morton,
R. Agarwala, T. Koch, A.A. Schäffer, C.A. Francomano, and
L.G. Biesecker. A novel nemaline myopathy in the Amish
caused by a mutation in troponin T1. American Journal of
Human Genetics, pages 814–821, October 2000.

[JMP00] David S. Johnson, Maria Minkoff, and Steven Phillips. The
Prize Collecting Steiner Tree Problem: Theory and Practice. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’00, pages 760–769, Philadelphia,
PA, USA, 2000. Society for Industrial and Applied Mathemat-
ics.

[Kar72] R. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

[KLM+04] Gunnar W. Klau, Ivana Ljubic, Andreas Moser, Petra Mutzel,
Philipp Neuner, Ulrich Pferschy, Günther R. Raidl, and René

http://theory.cs.uni-bonn.de/info5/Steinerkompendium/
http://theory.cs.uni-bonn.de/info5/Steinerkompendium/
http://www.akira.ruc.dk/~keld/research/LKH/
http://www.akira.ruc.dk/~keld/research/LKH/

References 156

Weiskircher. Combining a Memetic Algorithm with Integer Pro-
gramming to Solve the Prize-Collecting Steiner Tree Problem.
In Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-
Georg Beyer, Edmund K. Burke, Paul J. Darwen, Dipankar
Dasgupta, Dario Floreano, James A. Foster, Mark Harman,
Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tetta-
manzi, Dirk Thierens, and Andrew M. Tyrrell, editors, GECCO
(1), volume 3102 of Lecture Notes in Computer Science, pages
1304–1315. Springer, 2004.

[KM98] Thorsten Koch and Alexander Martin. Solving Steiner tree
problems in graphs to optimality. Networks, 32:207–232, 1998.

[KMV01] Thorsten Koch, Alexander Martin, and Stefan Voß. SteinLib:
An updated library on Steiner tree problems in graphs. In D.-
Z. Du and X. Cheng, editors, Steiner Trees in Industries, pages
285–325. Kluwer, 2001.

[Koc95] Thorsten Koch. Jack-III: Ein Branch & Cut-Verfahren zur
Lösung des gewichteten Steinerbaumproblems in Graphen.
Master’s thesis, Technische Universität Berlin, 1995.

[KV07] Bernhard Korte and Jens Vygen. Combinatorial Optimization:
Theory and Algorithms. Springer Publishing Company, Incor-
porated, 4th edition, 2007.

[Lju04] Ivana Ljubić. Exact and Memetic Algorithms for Two Network
Design Problems. PhD thesis, Vienna University of Technology,
2004.

[LLL+14] M. Leitner, I. Ljubic, M. Luipersbeck, M. Prossegger, and
M. Resch. New Real-world Instances for the Steiner Tree Prob-
lem in Graphs. Technical report, ISOR, Uni Wien, 2014.

[LMP14] Frauke Liers, Alexander Martin, and Susanne Pape. Steiner
Trees with Degree Constraints: Structural Results and an Exact
Solution Approach. Technical report, Department Mathematik,
2014.

[LR04] Abilio Lucena and Mauricio G. C. Resende. Strong lower
bounds for the prize collecting Steiner problem in graphs. Dis-
crete Applied Mathematics, 141(1-3):277–294, 2004.

[LWP+06] Ivana Ljubic, René Weiskircher, Ulrich Pferschy, Gunnar W.
Klau, Petra Mutzel, and Matteo Fischetti. An Algorith-
mic Framework for the Exact Solution of the Prize-Collecting
Steiner Tree Problem. Mathematical Programming, 105(2-
3):427–449, 2006.

References 157

[Meh88] Kurt Mehlhorn. A Faster Approximation Algorithm for the
Steiner Problem in Graphs. Information Processing Letters,
27(3):125–128, 1988.

[Mit02] J. E. Mitchell. Branch-and-cut algorithms for combinatorial
optimization problems. In P. M. Pardalos and M. G. C. Re-
sende, editors, Handbook of Applied Optimization, pages 65–77.
Oxford University Press, January 2002.

[Mit15] Hans Mittelmann. Benchmarks for optimization software, Ac-
cessed Sep. 18, 2015. http://plato.asu.edu/bench.html.

[MR01] Anna Moss and Yuval Rabani. Approximation algorithms for
constrained for constrained node weighted Steiner tree prob-
lems. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis
Yannakakis, editors, STOC, pages 373–382. ACM, 2001.

[MW95] Thomas L. Magnanti and Laurence A. Wolsey. Handbooks in
Operations Research and Management Science, volume Volume
7, chapter Chapter 9 Optimal trees, pages 503–615. Elsevier,
1995.

[OKD+10] Per-Magnus Olsson, Jonas Kvarnström, Patrick Doherty, Oleg
Burdakov, and Kaj Holmberg. Generating UAV communication
networks for monitoring and surveillance. In In Proceedings of
the International Conference on Control, Automation, Robotics
and Vision (ICARCV, 2010.

[PD01] Tobias Polzin and Siavash Vahdati Daneshmand. Improved Al-
gorithms for the Steiner Problem in Networks. Discrete Appl.
Math., 112(1-3):263–300, September 2001.

[Pol04] Tobias Polzin. Algorithms for the Steiner problem in networks.
PhD thesis, Saarland University, 2004.

[PS02] Hans-Jürgen Prömel and Angelika Steger. The Steiner Tree
Problem: A Tour Through Graphs, Algorithms, and Complex-
ity. Advanced Lectures in Mathematics. Vieweg, 2002.

[PUW14] Thomas Pajor, Eduardo Uchoa, and Renato F. Werneck. A Ro-
bust and Scalable Algorithm for the Steiner Problem in Graphs.
Computing Research Repository, 2014.

[PVD14] Tobias Polzin and Siavash Vahdati-Daneshmand. The Steiner
Tree Challenge: An updated Study. Unpublished manuscript
at http://dimacs11.cs.princeton.edu/downloads.html, 2014.

http://plato.asu.edu/bench.html

References 158

[RdAR+01] I. Rosseti, M.P. de Aragão, C.C. Ribeiro, E. Uchoa, and R.F.
Werneck. New benchmark instances for the Steiner problem in
graphs. In Extended Abstracts of the 4th Metaheuristics Inter-
national Conference (MIC’2001), pages 557–561, Porto, 2001.

[Reh] Daniel Rehfeldt. SCIP-JACK documentation. http://scip.

zib.de/doc/applications/STP/. Accessed: Sep. 18, 2015.

[RUW01] Celso C. Ribeiro, Eduardo Uchoa, and Renato F. Werneck. A
Hybrid Grasp With Perturbations For The Steiner Problem In
Graphs. Informs Journal on Computing, 14:200–2, 2001.

[SAB+12] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz,
and Thorsten Koch. ParaSCIP: a parallel extension of SCIP.
In Christian Bischof, Heinz-Gerd Hegering, Wolfgang Nagel,
and Gabriel Wittum, editors, Competence in High Performance
Computing 2010, pages 135 – 148, 2012.

[SAB+15] Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz,
Thorsten Koch, and Michael Winkler. Solving Open MIP In-
stances with ParaSCIP on Supercomputers using up to 80,000
Cores. Technical Report 15-53, ZIB, Takustr.7, 14195 Berlin,
2015.

[Seg87] Arie Segev. The node-weighted Steiner tree problem. Networks,
17(1):1–17, 1987.

[SHVW13] Yuji Shinano, Stefan Heinz, Stefan Vigerske, and Michael Win-
kler. FiberSCIP - a shared memory parallelization of SCIP.
Technical Report 13-55, ZIB, Takustr.7, 14195 Berlin, 2013.

[Sny92] Timothy Law Snyder. On the Exact Location of Steiner Points
in General Dimension. SIAM Journal of Applied Mathematics,
21(1):163–180, 1992.

[TA80] H. Takahashi and Mastsuyama A. An approximate solution for
the Steiner problem in graphs. Mathematica Japonicae, 24:573
– 577, 1980.

[Tar79] Robert Endre Tarjan. Applications of Path Compression on
Balanced Trees. The Journal of the ACM, 26(4):690–715, Oc-
tober 1979.

[Uch06] Eduardo Uchoa. Reduction Tests for the Prize-collecting Steiner
Problem. Oper. Res. Lett., 34(4):437–444, July 2006.

[UW10] Eduardo Uchoa and Renato Fonseca F. Werneck. Fast Local
Search for Steiner Trees in Graphs. In Guy E. Blelloch and

http://scip.zib.de/doc/applications/STP/
http://scip.zib.de/doc/applications/STP/

References 159

Dan Halperin, editors, ALENEX, pages 1–10. SIAM Journal of
Applied Mathematics, 2010.

[VD04] Siavash Vahdati-Daneshmand. Algorithmic approaches to the
Steiner problem in networks. PhD thesis, University of
Mannheim, 2004.

[Vos88] S. Voss. A survey on some generalizations of Steiner’s prob-
lem. 1st Balkan Conference on Operational Research Proceed-
ings, 1:41–51, 1988.

[VW10] François Vanderbeck and Laurence A. Wolsey. Reformulation
and Decomposition of Integer Programs. In Michael Jünger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi,
and Laurence A. Wolsey, editors, 50 Years of Integer Program-
ming, pages 431–502. Springer, 2010.

[Wik] Wikipedia. Skipjack tuna. https://en.wikipedia.org/wiki/
Skipjack_tuna. Accessed: Sep. 18, 2015.

[Won84] R.T. Wong. A dual ascent approach for Steiner tree problems
on a directed graph. Mathematical Programming, 28:271–287,
1984.

[Wun96] Roland Wunderling. Paralleler und objektorientierter Simplex-
Algorithmus. PhD thesis, Technische Universität Berlin, 1996.

[WWZ00] D.M. Warme, P. Winter, and M. Zachariasen. Exact algorithms
for plane Steiner tree problems: A computational study. In D.-
Z. Du, J.M. Smith, and J.H. Rubinstein, editors, Advances in
Steiner Trees, pages 81–116. Kluwer, 2000.

[Zac99] Martin Zachariasen. Rectilinear full Steiner tree generation.
Networks, 33(2):125–143, 1999.

[ZR00] M. Zachariasen and A. Rohe. Rectilinear group Steiner trees
and applications in VLSI design. Technical Report 00906, In-
stitute for Discrete Mathematics, 2000.

https://en.wikipedia.org/wiki/Skipjack_tuna
https://en.wikipedia.org/wiki/Skipjack_tuna

160

A Zusammenfassung (German Summary)

Das Steinerbaumproblem in Graphen ist ein klassisches NP-schweres Opti-
mierungsproblem. Sei G = (V,E) ein ungerichteter, zusammenhängender
Graph mit Kantengewichten c : E → Q+ und einer Menge T ⊂ G von Ter-
minalen. Gesucht ist ein Baum in G, der alle Terminale enthält und die
Summe seiner Kantengewichte minimiert.

Ungeachtet der Prädominanz des klassischen Steinerbaumproblems in
der Literatur findet sich dieses in praktischen Anwendungen meist in abge-
wandelter Form wieder. Obwohl diese Variationen untereinander eine starke
Verwandtschaft aufweisen, sind moderne (exakte) Lösungsanansätze
überwiegend problemspezifisch. Dem entgegengestellt wird in dieser Arbeit
ein generisches Konzept eingeführt, das schließlich das exakte Lösen von 11
verschiedenen Steinerbaum Varianten mit Hilfe eines einzigen Programms
ermöglicht. Dies wird realisiert durch die Transformation der verschiedenen
Varianten in eine allgemeine Form. Im Zuge der Umsetzung dieses Ansatzes
wurde der Steinerbaumlöser Jack-III in das MIP-Framework SCIP einge-
bettet und grundlegend erweitert. Neben den Transformationen liegt eine
wesentliche Erweiterung in neu entwickelten Reduktionstechniken und Heuris-
tiken für eine Vielzahl der behandelten Probleme.

Nach einer Einführung in Abschnitt 1 behandelt Abschnitt 2 einen Ansatz
zum exakten Lösen des Steinerbaumproblems in Graphen, der gleichzeitig
die Grundlage für die behandelten Variationen bildet. Im Wesentlichen
lassen sich hier drei Komponenten unterscheiden:

• Reduktionen, die eine Reduzierung der Größe (Anzahl an Knoten,
Kanten und Terminalen) des Problems ermöglichen.

• Primale Heuristiken, die das Berechnen guter zulässiger Lösungen er-
leichtern.

• Branch and Cut, welches das exakte Lösen eines Problems erlaubt.

In Abschnitt 3 wird der beschriebene Ansatz auf 10 Variationen des
klassischen Steinerbaumproblems übertragen. Hierzu werden diese mit Hilfe
von Transformationen oder zusätzlicher (linearer) Nebenbedingungen auf
eine Form gebracht, die vom generischen Branch and Cut Ansatz gelöst
werden kann. Im Zuge dessen wird weiterhin demonstriert, dass die neu
entwickelten Reduktionstechniken existierenden Methoden überlegen sind,
siehe etwa Abschnitt 3.5.

Abschließend erfolgt in Abschnitt 4 ein Vergleich des entwickelten Lösers
SCIP-Jack auf mehreren Steinerbaum Varianten mit den jeweils besten
bekannten problemspezifischen Programmen. Wenngleich SCIP-Jack für
das klassischen Steinerbaumproblem in Graphen dem besten Löser auf den
meisten Problemklassen unterlegen ist, erzielt er für mehrere Varianten,

161

am deutlichsten für das RPCSTP, bessere Ergebnisse als alle bekannten
Löser. Dies ist umso bemerkenswerter vor dem Hintergrund der generischen
Ausrichtung des Lösungsansatzes. Weiterhin wird eine Parallelisierung von
SCIP-Jack vorgestellt, mit deren Hilfe drei Benchmark Instanzen erstma-
lig gelöst und die besten bekannten oberen Schranken für mehrere weitere
verbessert werden konnten. Schließlich wird gezeigt, dass der akademische
LP-Löser SoPlex anstelle des zuvor verwendeten kommerziellen CPLEX
verwendet werden kann. Dies erlaubt das Lösen von Steinerbaumproblemen
ohne Verwendung kommerzieller Programme.

162

B Notation and Abbreviations

B.1 General Mathematical Notation

Symbol Definition

N the natural numbers N = {1, 2, 3, . . . }
Z the integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
Z≥0 the non-negative integers Z≥0 = N ∪ {0}
Q the rational numbers
Q≥0 the non-negative rational numbers: Q≥0 = {x ∈ Q | x ≥ 0}
Q+ the positive rational numbers: Q+ = {x ∈ Q | x > 0}
R the real numbers
R≥0 the non-negative real numbers: R≥0 = {x ∈ R | x ≥ 0}
R+ the positive real numbers: R+ = {x ∈ R | x > 0}

B.2 Steiner Problem Variants

Abbreviation Name

DCSTP Degree-constrained Steiner tree problem
GSTP Group Steiner tree problem
HCDSTP Hop-constrained directed Steiner tree problem
MWCSP Maximum-weight connected subgraph problem
NWSTP Node-weighted Steiner tree problem
PCSTP Prize-collecting Steiner tree problem
RPCSTP Rooted PCSTP
RSMTP Rectilinear Steiner minimum tree problem
OARSMTP Obstacle-avoiding RSMTP
SAP Steiner arborescence problem
SPG Steiner tree problem in graphs

163

C Detailed Experimental Results

Hereinafter, detailed computational results on the instance sets discussed in
the course of this thesis are provided.

The subsequent tables are consistently structured as follows: First, the
name of the respective instance is stated. In the next three columns the
number of vertices, arcs and terminals of the instance is itemised. In this
regard, it should be noted that in the case of problem classes that are solved
by using a graph transformation, only the number of vertices and arcs in
the final model are reported. Following, the segment labelled ”Presolved”
provides the core values of the reduced problem along with the reduction
time.

Finally, in the last segment the dual and primal bound or the optimal
solution value is given, respectively. Moreover, the number of branch-and-
bound nodes (N) and the total run time is listed. A time-out is signified
by a “>” in front of the termination time. Furthermore, opposed to other
publications, the reported final execution time includes the preprocessing.
The time limit for each instance is two hours.

C.1 The Steiner Tree Problem in Graphs

Table 39. Detailed computational results for the D test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

d01 1000 2500 5 128 502 5 0.1 106 1 0.2
d02 1000 2500 10 208 764 10 0.1 220 1 0.2
d03 1000 2500 167 28 96 17 0.0 1565 1 0.0
d04 1000 2500 250 22 62 14 0.0 1935 1 0.0
d05 1000 2500 500 8 24 6 0.0 3250 1 0.0
d06 1000 4000 5 195 894 5 0.2 67 1 0.4
d07 1000 4000 10 345 1494 10 0.6 103 1 0.8
d08 1000 4000 167 178 602 74 0.4 1072 1 0.8
d09 1000 4000 250 80 258 48 0.2 1448 1 0.2
d10 1000 4000 500 27 106 20 0.0 2110 1 0.1
d11 1000 10000 5 64 248 5 0.4 29 1 0.4
d12 1000 10000 10 314 1418 9 0.6 42 1 0.8
d13 1000 10000 167 28 90 18 0.8 500 1 0.8
d14 1000 10000 250 111 400 55 0.4 667 1 0.6
d15 1000 10000 500 11 34 8 0.1 1116 1 0.1
d16 1000 50000 5 123 644 5 0.4 13 1 0.4
d17 1000 50000 10 631 4442 9 0.5 23 1 1.2
d18 1000 50000 167 822 5102 94 0.5 223 1 2.7
d19 1000 50000 250 702 4010 96 0.5 310 1 1.0
d20 1000 50000 500 0 0 0 0.7 537 1 0.7

Table 40. Detailed computational results for the E test set.

C.1 The Steiner Tree Problem in Graphs 164

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

e01 2500 6250 5 11 34 4 0.2 111 1 0.2
e02 2500 6250 10 221 874 9 0.3 214 1 0.5
e03 2500 6250 417 135 432 80 0.1 4013 1 0.1
e04 2500 6250 625 109 496 63 0.1 5101 1 0.1
e05 2500 6250 1250 11 32 8 0.1 8128 1 0.1
e06 2500 10000 5 293 1486 5 0.8 73 1 1.0
e07 2500 10000 10 1233 6182 10 1.2 145 1 2.3
e08 2500 10000 417 537 1966 198 0.5 2640 1 2.0
e09 2500 10000 625 214 722 124 0.3 3604 1 0.7
e10 2500 10000 1250 52 202 36 0.2 5600 1 0.2
e11 2500 25000 5 293 1474 5 0.7 34 1 0.8
e12 2500 25000 10 2455 19838 10 1.0 67 1 6.4
e13 2500 25000 417 1076 4500 251 1.2 1280 1 12.7
e14 2500 25000 625 282 1092 140 0.6 1732 1 1.0
e15 2500 25000 1250 24 72 16 0.3 2784 1 0.3
e16 2500 125000 5 74 306 5 0.9 15 1 0.9
e17 2500 125000 10 1920 16818 10 1.9 25 1 5.5
e18 2500 125000 417 2071 14138 245 1.6 564 45 388.7
e19 2500 125000 625 1200 5856 174 5.7 758 2 10.4
e20 2500 125000 1250 0 0 0 17.1 1342 1 17.1

Table 41. Detailed computational results for the I320 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

i320-001 320 960 8 89 398 8 0.0 2672 1 0.1
i320-002 320 960 8 114 480 8 0.0 2847 1 0.1
i320-003 320 960 8 162 636 8 0.1 2972 1 0.3
i320-004 320 960 8 87 388 8 0.1 2905 1 0.1
i320-005 320 960 8 146 612 8 0.0 2991 1 0.2
i320-011 320 3690 8 320 3686 8 0.1 2053 7 1.5
i320-012 320 3690 8 319 3690 8 0.1 1997 1 0.8
i320-013 320 3690 8 320 3690 8 0.1 2072 1 1.6
i320-014 320 3690 8 320 3690 8 0.1 2061 15 2.2
i320-015 320 3690 8 319 3688 8 0.1 2059 9 1.8
i320-021 320 102080 8 320 5006 8 1.2 1553 1 2.8
i320-022 320 102080 8 320 5008 8 1.2 1565 1 2.5
i320-023 320 102080 8 320 5006 8 1.2 1549 1 1.9
i320-024 320 102080 8 320 5006 8 1.4 1553 1 2.4
i320-025 320 102080 8 320 5006 8 1.2 1550 1 2.0
i320-031 320 1280 8 201 1032 8 0.0 2673 7 0.9
i320-032 320 1280 8 232 1116 8 0.1 2770 3 0.8
i320-033 320 1280 8 137 726 8 0.1 2769 1 0.2
i320-034 320 1280 8 184 900 8 0.1 2521 1 0.1
i320-035 320 1280 8 127 680 8 0.0 2385 1 0.1
i320-041 320 20416 8 320 19926 8 0.3 1707 1 11.7
i320-042 320 20416 8 320 19802 8 0.3 1682 1 7.2
i320-043 320 20416 8 319 17174 8 0.3 1723 39 9.4
i320-044 320 20416 8 320 18976 8 0.3 1681 1 9.2
i320-045 320 20416 8 320 19666 8 0.3 1686 1 4.4
i320-101 320 960 17 147 590 16 0.0 5548 1 0.1
i320-102 320 960 17 154 602 15 0.0 5556 1 0.4
i320-103 320 960 17 154 602 17 0.1 6239 1 0.1
i320-104 320 960 17 152 602 17 0.0 5703 1 0.2

cont. next page

C.1 The Steiner Tree Problem in Graphs 165

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

i320-105 320 960 17 158 618 16 0.0 5928 1 0.6
i320-111 320 3690 17 320 3690 17 0.1 4273 19 5.2
i320-112 320 3690 17 320 3690 17 0.1 4213 125 16.3
i320-113 320 3690 17 320 3690 17 0.1 4205 57 10.0
i320-114 320 3690 17 320 3690 17 0.1 4104 13 4.2
i320-115 320 3690 17 319 3688 17 0.0 4238 5 2.5
i320-121 320 102080 17 320 101844 17 1.1 3321 1 73.7
i320-122 320 102080 17 320 101840 17 1.3 3314 1 75.9
i320-123 320 102080 17 320 101842 17 1.1 3332 1 84.3
i320-124 320 102080 17 320 101840 17 1.4 3323 1 89.0
i320-125 320 102080 17 320 101846 17 1.3 3340 1 82.7
i320-131 320 1280 17 250 1132 17 0.1 5255 1 1.3
i320-132 320 1280 17 249 1126 15 0.0 5052 1 0.9
i320-133 320 1280 17 240 1108 16 0.0 5125 1 1.4
i320-134 320 1280 17 241 1118 17 0.1 5272 1 0.5
i320-135 320 1280 17 254 1144 17 0.0 5342 11 2.2
i320-141 320 20416 17 320 20386 17 0.3 3606 139 121.9
i320-142 320 20416 17 320 20400 17 0.2 3567 9 24.1
i320-143 320 20416 17 320 20388 17 0.3 3561 13 29.3
i320-144 320 20416 17 320 20378 17 0.3 3512 1 12.0
i320-145 320 20416 17 320 20382 17 0.3 3601 121 105.0
i320-201 320 960 34 155 592 33 0.1 10044 1 0.3
i320-202 320 960 34 168 638 31 0.0 11223 1 1.5
i320-203 320 960 34 156 606 32 0.0 10148 1 0.2
i320-204 320 960 34 161 624 33 0.0 10275 1 0.7
i320-205 320 960 34 148 560 29 0.0 10573 1 0.1
i320-211 320 3690 34 320 3690 34 0.1 8039 110 42.9
i320-212 320 3690 34 320 3690 34 0.1 8044 107 35.7
i320-213 320 3690 34 320 3686 34 0.1 7984 82 56.9
i320-214 320 3690 34 319 3688 34 0.1 8046 281 150.5
i320-215 320 3690 34 319 3684 34 0.0 8015 752 236.7
i320-221 320 102080 34 320 101050 34 1.2 6679 13 340.4
i320-222 320 102080 34 320 101036 34 1.3 6686 13 389.0
i320-223 320 102080 34 320 101032 34 1.5 6695 39 719.7
i320-224 320 102080 34 320 101036 34 1.2 6694 25 494.6
i320-225 320 102080 34 320 101030 34 1.4 6691 27 578.5
i320-231 320 1280 34 243 1116 32 0.0 9862 3 3.4
i320-232 320 1280 34 245 1120 34 0.0 9933 15 6.2
i320-233 320 1280 34 245 1122 34 0.0 9787 1 0.8
i320-234 320 1280 34 242 1110 34 0.0 9517 1 2.2
i320-235 320 1280 34 249 1126 34 0.0 9945 1 2.2
i320-241 320 20416 34 320 20240 34 0.3 7027 279 766.8
i320-242 320 20416 34 320 20276 34 0.3 7072 527 932.7
i320-243 320 20416 34 320 20268 34 0.3 7044 426 974.0
i320-244 320 20416 34 320 20232 34 0.3 7078 479 791.5
i320-245 320 20416 34 320 20224 34 0.3 7046 167 449.7
i320-301 320 960 80 155 566 57 0.1 23279 1 1.2
i320-302 320 960 80 151 542 53 0.0 23387 1 1.0
i320-303 320 960 80 166 620 60 0.0 22693 1 1.6
i320-304 320 960 80 139 534 45 0.0 23451 1 1.4
i320-305 320 960 80 137 508 56 0.0 22547 3 1.2
i320-311 320 3690 80 320 3648 80 0.1 17945 5518 2894.0
i320-312 320 3690 80 320 3608 80 0.1 18122 8700 3694.0
i320-313 320 3690 80 320 3600 80 0.1 17991 4769 2243.2

cont. next page

C.1 The Steiner Tree Problem in Graphs 166

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

i320-314 320 3690 80 320 3624 80 0.0 18088 18252 7015.6
i320-315 320 3690 80 320 3642 80 0.1 17987 5495 3049.8
i320-321 320 102080 80 320 95950 80 1.2 15648 57 2714.1
i320-322 320 102080 80 320 95962 80 1.1 15646 165 5353.1
i320-323 320 102080 80 320 95940 80 1.2 15654 89 3715.9
i320-324 320 102080 80 320 95974 80 1.2 15663.0782 15667 0.0 306 >7210.2
i320-325 320 102080 80 320 95960 80 1.4 15649 61 4297.7
i320-331 320 1280 80 251 1094 73 0.0 21517 125 20.3
i320-332 320 1280 80 248 1102 74 0.0 21674 9 3.5
i320-333 320 1280 80 259 1138 75 0.0 21339 20 5.5
i320-334 320 1280 80 255 1130 76 0.0 21415 1 2.5
i320-335 320 1280 80 254 1130 76 0.0 21378 25 8.7
i320-341 320 20416 80 320 19338 80 0.3 16219.9271 16296 0.5 2174 >7210.0
i320-342 320 20416 80 320 19352 80 0.3 16228 843 3203.7
i320-343 320 20416 80 320 19332 80 0.5 16236.7206 16281 0.3 2042 >7210.0
i320-344 320 20416 80 320 19304 80 0.5 16234.8508 16302 0.4 1724 >7210.0
i320-345 320 20416 80 320 19354 80 0.9 16220.03 16289 0.4 1831 >7210.0

Table 42. Detailed computational results for the I640 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

i640-001 640 1920 9 277 1166 9 0.2 4033 1 0.6
i640-002 640 1920 9 170 798 9 0.1 3588 1 0.5
i640-003 640 1920 9 271 1158 9 0.2 3438 1 0.3
i640-004 640 1920 9 300 1230 9 0.2 4000 1 1.2
i640-005 640 1920 9 278 1230 9 0.2 4006 1 0.7
i640-011 640 8270 9 639 8270 9 0.2 2392 1 2.2
i640-012 640 8270 9 640 8270 9 0.3 2465 5 4.8
i640-013 640 8270 9 640 8270 9 0.3 2399 1 3.6
i640-014 640 8270 9 640 8270 9 0.3 2171 1 1.7
i640-015 640 8270 9 640 8270 9 0.2 2347 19 3.9
i640-021 640 408960 9 640 11374 9 6.6 1749 1 16.1
i640-022 640 408960 9 640 11374 9 6.0 1756 1 13.5
i640-023 640 408960 9 640 11374 9 6.1 1754 1 14.5
i640-024 640 408960 9 640 11374 9 6.9 1751 1 14.7
i640-025 640 408960 9 640 11374 9 7.0 1745 1 14.0
i640-031 640 2560 9 462 2228 9 0.2 3278 1 0.6
i640-032 640 2560 9 462 2224 9 0.1 3187 1 0.3
i640-033 640 2560 9 447 2236 9 0.1 3260 1 1.1
i640-034 640 2560 9 458 2224 9 0.1 2953 1 0.6
i640-035 640 2560 9 470 2198 9 0.1 3292 1 0.7
i640-041 640 81792 9 640 80302 9 1.4 1897 1 60.9
i640-042 640 81792 9 640 80570 9 1.6 1934 107 154.9
i640-043 640 81792 9 640 80142 9 1.9 1931 111 158.8
i640-044 640 81792 9 640 79876 9 2.0 1938 157 199.7
i640-045 640 81792 9 562 62656 9 1.8 1866 1 45.9
i640-101 640 1920 25 321 1262 25 0.1 8764 1 2.3
i640-102 640 1920 25 311 1230 25 0.1 9109 1 0.8
i640-103 640 1920 25 305 1230 24 0.1 8819 1 1.4
i640-104 640 1920 25 303 1222 23 0.1 9040 1 1.6
i640-105 640 1920 25 324 1270 25 0.1 9623 7 5.8
i640-111 640 8270 25 640 8270 25 0.1 6167 291 115.7
i640-112 640 8270 25 640 8270 25 0.1 6304 91 95.0

cont. next page

C.1 The Steiner Tree Problem in Graphs 167

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

i640-113 640 8270 25 640 8270 25 0.1 6249 361 226.1
i640-114 640 8270 25 640 8270 25 0.2 6308 152 100.9
i640-115 640 8270 25 640 8270 25 0.2 6217 426 213.0
i640-121 640 408960 25 640 408416 25 5.5 4906 3 1441.3
i640-122 640 408960 25 640 408416 25 5.4 4911 7 1615.5
i640-123 640 408960 25 640 408414 25 5.4 4913 15 1592.6
i640-124 640 408960 25 640 408414 25 5.4 4906 13 1807.0
i640-125 640 408960 25 640 408422 25 5.3 4920 23 2008.0
i640-131 640 2560 25 481 2234 25 0.2 8097 1 3.2
i640-132 640 2560 25 480 2226 24 0.1 8154 5 4.1
i640-133 640 2560 25 482 2236 25 0.1 8021 1 2.5
i640-134 640 2560 25 485 2244 25 0.1 7754 1 3.0
i640-135 640 2560 25 480 2228 25 0.1 7696 11 3.3
i640-141 640 81792 25 640 81714 25 1.5 5199 485 2224.2
i640-142 640 81792 25 640 81722 25 1.7 5193 375 2369.6
i640-143 640 81792 25 640 81728 25 1.7 5194 189 1250.3
i640-144 640 81792 25 640 81716 25 1.7 5205 340 1917.4
i640-145 640 81792 25 640 81726 25 1.9 5218 1299 2694.7
i640-201 640 1920 50 309 1230 46 0.1 16079 1 1.2
i640-202 640 1920 50 319 1242 48 0.1 16324 1 1.9
i640-203 640 1920 50 325 1272 47 0.1 16124 1 4.0
i640-204 640 1920 50 323 1266 48 0.1 16239 1 2.6
i640-205 640 1920 50 327 1270 48 0.1 16616 5 3.1
i640-211 640 8270 50 640 8270 50 0.1 11904.4959 12016 0.9 5971 >7200.0
i640-212 640 8270 50 640 8270 50 0.1 11795 2360 2226.9
i640-213 640 8270 50 640 8268 50 0.1 11879 6350 4615.0
i640-214 640 8270 50 640 8270 50 0.1 11843.1152 11898 0.5 5396 >7200.1
i640-215 640 8270 50 640 8262 50 0.1 12030.7071 12081 0.4 9017 >7200.0
i640-221 640 408960 50 640 406624 50 5.5 9788.06153 9821 0.3 23 >7201.3
i640-222 640 408960 50 640 406634 50 5.5 9770.69979 9798 0.3 15 >7205.6
i640-223 640 408960 50 640 406624 50 5.6 9774.94465 9813 0.4 8 >7204.3
i640-224 640 408960 50 640 406626 50 5.5 9778.96187 9805 0.3 15 >7202.5
i640-225 640 408960 50 640 406634 50 5.5 9775.42781 9810 0.4 10 >7203.4
i640-231 640 2560 50 492 2260 50 0.2 15014 183 59.8
i640-232 640 2560 50 494 2264 49 0.2 14630 17 13.0
i640-233 640 2560 50 508 2288 47 0.2 14797 21 26.1
i640-234 640 2560 50 485 2230 48 0.2 15203 1 5.3
i640-235 640 2560 50 484 2244 50 0.1 14803 210 157.7
i640-241 640 81792 50 640 81396 50 1.2 10161.1383 10252 0.9 193 >7200.0
i640-242 640 81792 50 640 81410 50 1.4 10163.1505 10195 0.3 537 >7200.0
i640-243 640 81792 50 640 81412 50 1.6 10167.8849 10237 0.7 166 >7200.0
i640-244 640 81792 50 640 81362 50 1.6 10166.136 10246 0.8 188 >7200.3
i640-245 640 81792 50 640 81424 50 1.5 10166.7729 10234 0.7 211 >7200.0
i640-301 640 1920 160 328 1202 123 0.1 45005 1 1.9
i640-302 640 1920 160 296 1136 110 0.1 45736 1 5.5
i640-303 640 1920 160 342 1260 125 0.2 44922 1 1.2
i640-304 640 1920 160 327 1206 126 0.1 46233 1 4.6
i640-305 640 1920 160 301 1110 115 0.1 45902 1 5.4
i640-311 640 8270 160 640 8068 160 0.1 35365.8747 36108 2.1 1256 >7200.1
i640-312 640 8270 160 639 8064 160 0.1 35356.474 36176 2.3 1250 >7200.0
i640-313 640 8270 160 640 8086 160 0.1 35237.914 35751 1.5 1351 >7200.1
i640-314 640 8270 160 640 8076 160 0.1 35165.0635 35849 1.9 1361 >7200.1
i640-315 640 8270 160 640 8060 160 0.1 35367.3911 36016 1.8 1335 >7200.0
i640-321 640 408960 160 640 383902 160 5.8 30991.7511 31301 1.0 1 >7201.5

cont. next page

C.1 The Steiner Tree Problem in Graphs 168

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

i640-322 640 408960 160 640 383916 160 5.3 30985.7443 31084 0.3 2 >7210.9
i640-323 640 408960 160 640 383890 160 5.2 30997.8703 31272 0.9 2 >7200.1
i640-324 640 408960 160 640 383934 160 5.3 30998.2933 31163 0.5 2 >7202.2
i640-325 640 408960 160 640 383924 160 5.4 30987.4202 31244 0.8 2 >7203.1
i640-331 640 2560 160 488 2206 145 0.2 42796 100 65.9
i640-332 640 2560 160 504 2250 152 0.2 42548 250 153.2
i640-333 640 2560 160 502 2230 147 0.2 42345 1088 386.4
i640-334 640 2560 160 512 2280 155 0.2 42768 4852 1756.1
i640-335 640 2560 160 516 2292 153 0.1 43035 1016 371.4
i640-341 640 81792 160 640 77124 160 1.6 31861.9808 32101 0.8 28 >7200.3
i640-342 640 81792 160 640 76946 160 1.6 31825.0182 32050 0.7 29 >7200.0
i640-343 640 81792 160 640 77018 160 1.6 31835.4551 32060 0.7 27 >7200.8
i640-344 640 81792 160 640 77240 160 1.6 31836.2263 32058 0.7 33 >7200.7
i640-345 640 81792 160 640 77140 160 1.5 31831.0111 32029 0.6 33 >7201.5

Table 43. Detailed computational results for the LIN test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

lin01 53 160 4 36 112 3 0.0 503 1 0.0
lin02 55 164 6 0 0 0 0.0 557 1 0.0
lin03 57 168 8 15 46 5 0.0 926 1 0.0
lin04 157 532 6 9 24 4 0.0 1239 1 0.0
lin05 160 538 9 108 410 8 0.0 1703 1 0.1
lin06 165 548 14 78 294 10 0.1 1348 1 0.1
lin07 307 1052 6 73 240 6 0.1 1885 1 0.2
lin08 311 1060 10 295 1014 9 0.1 2248 1 0.3
lin09 313 1064 12 298 1022 12 0.1 2752 1 0.9
lin10 321 1080 20 241 848 17 0.2 4132 1 1.3
lin11 816 2920 10 339 1176 10 1.6 4280 1 2.5
lin12 818 2924 12 734 2690 12 0.6 5250 1 5.6
lin13 822 2932 16 307 1050 16 1.6 4609 1 2.8
lin14 828 2944 22 413 1422 20 2.1 5824 1 3.4
lin15 840 2968 34 803 2864 33 0.3 7145 1 4.3
lin16 1981 7266 12 700 2500 11 6.1 6618 1 9.7
lin17 1989 7282 20 880 3166 20 7.7 8405 1 23.0
lin18 1994 7292 25 1097 3916 24 6.7 9714 1 38.7
lin19 2010 7324 41 1419 5090 41 7.3 13268 1 51.1
lin20 3675 13418 11 1344 4730 11 14.7 6673 1 24.2
lin21 3683 13434 20 1063 3692 18 18.4 9143 1 47.0
lin22 3692 13452 28 1468 5152 27 13.7 10519 1 80.8
lin23 3716 13500 52 2558 9110 51 19.1 17560 1 787.8
lin24 7998 29468 16 7985 29426 16 2.3 14885.9122 15076 1.3 1 >7200.1
lin25 8007 29486 24 7969 29382 24 2.9 17556.7813 17803 1.4 1 >7200.2
lin26 8013 29498 30 7999 29452 30 2.6 20851.8774 21768 4.4 1 >7200.1
lin27 8017 29506 36 7997 29442 36 2.3 20138.8247 20678 2.7 1 >7200.0
lin28 8062 29596 81 8032 29504 81 3.1 31535.6843 32627 3.5 1 >7200.1
lin29 19083 71272 24 19052 71204 24 7.3 20033.7382 23765 18.6 1 >7200.2
lin30 19091 71288 31 19069 71218 31 7.4 22598.1936 27690 22.5 1 >7200.1
lin31 19100 71306 40 19078 71226 40 7.6 25976.4075 31726 22.1 1 >7200.2
lin32 19112 71330 53 19091 71248 53 7.9 32240.0159 39995 24.1 1 >7200.2
lin33 19177 71460 117 19114 71256 117 12.9 47904.9813 56088 17.1 1 >7200.2
lin34 38282 143042 34 38265 142974 34 16.3 30461.1131 45051 47.9 1 >7200.1

cont. next page

C.1 The Steiner Tree Problem in Graphs 169

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

lin35 38294 143066 45 38274 142988 45 16.9 33934.0327 50590 49.1 1 >7200.2
lin36 38307 143092 58 38284 143018 58 17.3 38248.9295 55827 46.0 1 >7200.3
lin37 38418 143314 172 38320 142990 170 16.4 73789.2798 99846 35.3 1 >7200.1

Table 44. Detailed computational results for the vienna-I test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

I001 30190 95496 1184 12943 40240 979 36.9 253610976 253922544 0.1 1 >7205.0
I002 49920 155742 1665 21271 65932 1315 69.8 398609665 399814340 0.3 1 >7205.4
I003 44482 146838 3222 13588 40954 2391 21.0 788636184 788783445 0.0 1 >7208.6
I004 5556 17104 570 738 2028 286 1.4 279512692 1 7.2
I005 10284 31960 1017 1639 4530 609 2.1 390876350 1 42.4
I006 31754 105750 2202 11518 34756 1832 16.6 504512349 504528222 0.0 1 >7205.1
I007 15122 48742 737 6147 19016 614 13.5 177909660 1 2166.8
I008 15714 51134 871 5434 16594 711 12.9 201788202 3 1808.3
I009 33188 104014 1262 13367 41640 1071 46.0 275281214 275559586 0.1 1 >7206.7
I010 29905 94914 943 10721 34030 778 28.7 207889674 1 2302.9
I011 25195 82596 1428 7560 23138 1238 15.6 317589880 65 2506.6
I012 12355 39924 503 2419 7542 423 5.6 118893243 1 72.8
I013 18242 57952 891 5978 18462 675 11.0 193190339 1 1439.46
I014 12715 41264 475 2375 7610 359 4.6 105173465 1 41.9
I015 48833 159974 2493 16093 50092 2102 36.1 591844807 592254743 0.1 1 >7205.1
I016 72038 230110 4391 22722 68728 3453 49.5 1110221060 1110942710 0.1 1 >7205.2
I017 15095 48182 478 6542 20714 413 13.8 109739695 1 307.9
I018 31121 102226 1898 10765 32812 1584 19.8 463844907 463893137 0.0 1 >7206.2
I019 25946 83290 866 8551 27732 717 21.1 217628086 217647736 0.0 1 >7205.9
I020 21808 69842 594 4440 14264 509 14.2 146515460 1 331.1
I021 16013 50538 392 3386 11202 291 10.1 106470644 1 228.4
I022 16224 51382 437 7587 24222 364 19.5 106799980 3 4508.9
I023 22805 70614 582 12562 39168 438 45.0 131044872 1 3912.6
I024 68464 217464 3001 27346 85220 2485 68.9 756810911 758501064 0.2 1 >7205.1
I025 23412 75904 945 7234 22850 845 16.1 232687393 232792392 0.0 1 >7205.1
I026 47429 158614 3334 15019 45210 2796 19.6 927786863 928043068 0.0 1 >7205.1
I027 85085 277776 3954 32570 101462 3520 70.7 973458232 976869730 0.4 1 >7205.3
I028 72701 230860 1790 38476 121400 1631 117.3 381834536 384064899 0.6 1 >7208.8
I029 69988 223608 2162 26904 85158 1940 90.4 489246839 492219164 0.6 1 >7205.2
I030 33188 107360 1263 9200 29242 1074 17.9 321646787 3 4060.8
I031 54351 176422 2182 15625 49488 1804 40.5 577697592 578295319 0.1 1 >7211.2
I032 56023 182798 3017 17486 53486 2491 35.2 772960829 773101910 0.0 1 >7206.2
I033 18555 59460 636 7103 22118 560 19.3 134461857 3 700.9
I034 22311 71032 735 6772 21626 633 15.5 165115148 1 802.8
I035 30585 100908 1704 10630 32736 1438 19.2 414440229 414440370 0.0 362 >7218.1
I036 37208 120712 1411 12783 40694 1233 25.3 374880427 375274673 0.1 1 >7224.8
I037 13694 44252 427 4578 14890 394 10.2 105720727 3 520.8
I038 18747 61278 967 5888 18304 797 10.6 255767543 12 2566.0
I039 8755 28898 347 2922 9128 328 6.3 85566290 3 186.3
I040 40389 131640 1762 14563 45816 1497 28.7 431081352 431511925 0.1 1 >7205.2
I041 47197 150614 1193 17568 56282 1042 56.4 301397934 301916888 0.2 1 >7205.4
I042 51896 171100 2171 19487 61194 1961 39.3 531354770 532147163 0.1 1 >7205.7
I043 10398 33574 367 3338 10558 327 6.0 95722094 1 157.6
I044 68905 227778 3358 24891 77356 2940 55.1 803731728 804553575 0.1 1 >7205.2
I045 14685 46932 421 5256 16772 374 12.4 105944062 1 261.0

cont. next page

C.1 The Steiner Tree Problem in Graphs 170

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

I046 70843 234418 3598 25108 78610 3074 49.6 920138185 925523357 0.6 1 >7205.2
I047 28524 92502 2354 8541 25524 1716 11.6 695117478 695167342 0.0 1 >7205.0
I048 13189 42438 358 3844 12410 324 10.4 91509264 1 157.2
I049 30857 99182 990 11260 36432 833 28.2 294808863 294812582 0.0 1 >7205.0
I050 43073 142552 2868 14537 44222 2271 33.4 792282177 792618583 0.0 1 >7205.1
I051 27028 90812 1524 9900 30362 1343 15.7 357196933 357233443 0.0 1 >7205.0
I052 2363 7522 40 93 268 28 0.4 13309487 1 0.4
I053 3224 10570 126 557 1732 101 0.7 30854904 1 2.9
I054 3803 12426 38 380 1252 29 1.5 15841596 1 3.3
I055 13332 43160 570 3386 10648 463 10.3 144164924 1 128.3
I056 1991 6352 51 194 610 41 0.6 14171206 1 0.9
I057 33231 110298 1569 10549 32838 1305 23.7 412746415 11 3781.7
I058 23527 79256 1256 5971 18500 1033 9.6 305024188 1 411.4
I059 9287 29950 363 1991 6258 296 6.5 107617854 3 100.8
I060 42008 135144 1242 14071 45572 1152 31.5 337082707 337300029 0.1 1 >7205.1
I061 39160 127318 1458 17680 55568 1325 42.5 362757775 363047214 0.1 1 >7205.1
I062 66048 220982 3343 17146 54428 2751 28.9 792452883 792967961 0.1 1 >7216.2
I063 26840 87322 1645 7346 22372 1263 12.5 459801704 24 2877.8
I064 63158 214690 3458 26956 82030 3177 47.0 860958942 863131705 0.3 1 >7205.6
I065 3898 12712 144 892 2792 120 1.8 32965718 1 15.2
I066 15038 49192 551 3234 10402 444 6.6 174219813 1 150.2
I067 20547 66460 627 8213 26072 561 19.7 175540750 1 3387.1
I068 33118 110254 1553 8491 26302 1241 16.7 420730046 10 4047.3
I069 9574 32416 543 2742 8356 455 3.9 135161583 1 223.2
I070 15079 49216 550 4940 15794 510 7.7 136700139 1 1501.7
I071 33203 108854 1494 9643 30016 1267 17.1 382539099 1 1432.7
I072 26948 88388 993 8283 26838 839 16.9 289019226 3 2710.7
I073 21653 70342 1847 6197 18312 1308 7.3 663004987 1 2333.4
I074 13316 44066 653 3148 9732 532 5.0 165573383 3 71.4
I075 57551 190762 2973 17410 54174 2429 30.0 815008510 815427527 0.1 1 >7205.1
I076 14023 45790 598 3324 10432 484 7.0 166249692 3 192.5
I077 20856 68474 1787 7878 23480 1478 8.3 472503150 7 6238.7
I078 13294 43896 835 5005 15198 701 6.9 185525490 11 964.6
I079 19867 62542 565 5773 18436 519 11.5 150506933 1 2714.0
I080 18695 59416 548 5363 16978 502 10.9 164299652 1 729.7
I081 25081 81478 888 8005 25358 742 17.4 247527679 1 6652.8
I082 15592 49576 515 3898 12334 451 11.2 147407632 1 576.8
I083 89596 297166 4991 25706 78868 3984 42.9 1400707250 1405679260 0.4 1 >7205.1
I084 44934 147454 2319 12460 38814 1861 19.9 626875799 627199178 0.1 1 >7205.1
I085 9113 28982 301 2074 6576 253 2.8 80628079 1 34.3

Table 45. Detailed computational results for the PUC test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

bip42p 1200 7964 200 990 7236 200 0.2 24483.7332 24657 0.7 3704 >7205.0
bip42u 1200 7964 200 990 7220 200 0.1 233.157627 236 1.2 3371 >7205.1
bip52p 2200 15994 200 1819 14674 200 0.7 24251.398 24835 2.4 1059 >7205.0
bip52u 2200 15994 200 1819 14652 200 0.6 229.765274 235 2.3 828 >7205.0
bip62p 1200 20004 200 1199 20000 200 0.4 22511.5386 22973 2.0 404 >7205.0
bip62u 1200 20004 200 1199 20000 200 0.3 214.406798 220 2.6 557 >7205.0
bipa2p 3300 36146 300 3140 35594 300 0.9 34709.6655 35871 3.3 100 >7205.5
bipa2u 3300 36146 300 3140 35590 300 0.5 329.773497 342 3.7 90 >7210.4
bipe2p 550 10026 50 550 10026 50 0.1 5616 2306 1202.8
bipe2u 550 10026 50 550 10026 50 0.1 54 83 114.5
cc10-2p 1024 10240 135 1024 10240 135 0.1 34514.7527 35733 3.5 1 >7205.0

cont. next page

C.1 The Steiner Tree Problem in Graphs 171

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

cc10-2u 1024 10240 135 1024 10240 135 0.1 334.498719 346 3.4 1 >7205.9
cc11-2p 2048 22526 244 2048 22526 244 0.3 62166.4479 64846 4.3 1 >7206.0
cc11-2u 2048 22526 244 2048 22526 244 0.3 602.818662 624 3.5 1 >7205.4
cc12-2p 4096 49148 473 4096 49148 473 0.8 118482.56 124348 5.0 1 >7205.7
cc12-2u 4096 49148 473 4096 49148 473 0.8 1149.03005 1195 4.0 1 >7205.5
cc3-10p 1000 27000 50 1000 27000 50 0.7 12198.4462 13067 7.1 1 >7205.5
cc3-10u 1000 27000 50 1000 27000 50 0.5 117.414634 127 8.2 1 >7205.2
cc3-11p 1331 39930 61 1331 39930 61 1.0 14773.8367 15917 7.7 1 >7205.4
cc3-11u 1331 39930 61 1331 39930 61 0.8 142.640411 157 10.1 1 >7205.3
cc3-12p 1728 57024 74 1728 57024 74 1.2 17769.6393 19422 9.3 1 >7205.4
cc3-12u 1728 57024 74 1728 57024 74 1.1 172.205224 190 10.3 1 >7205.3
cc3-4p 64 576 8 64 576 8 0.0 2338 7217 189.4
cc3-4u 64 576 8 64 576 8 0.0 23 219 23.8
cc3-5p 125 1500 13 125 1500 13 0.0 3547.62569 3661 3.2 28060 >7205.0
cc3-5u 125 1500 13 125 1500 13 0.0 34.5383179 36 4.2 30693 >7205.0
cc5-3p 243 2430 27 243 2430 27 0.0 7206.3399 7303 1.3 4707 >7205.0
cc5-3u 243 2430 27 243 2430 27 0.0 71 2885 4570.0
cc6-2p 64 384 12 64 384 12 0.0 3271 165 7.8
cc6-2u 64 384 12 64 384 12 0.0 32 47 3.6
cc6-3p 729 8736 76 729 8736 76 0.1 20139.9549 20525 1.9 304 >7205.0
cc6-3u 729 8736 76 729 8736 76 0.1 195.638889 202 3.3 1 >7205.1
cc7-3p 2187 30616 222 2187 30616 222 0.7 55296.1132 58286 5.4 1 >7205.6
cc7-3u 2187 30616 222 2187 30616 222 0.3 535.84192 562 4.9 1 >7205.6
cc9-2p 512 4608 64 512 4608 64 0.1 16892.5375 17343 2.7 320 >7205.0
cc9-2u 512 4608 64 512 4608 64 0.1 163.718525 170 3.8 172 >7205.0
hc10p 1024 10240 512 1024 10240 512 0.1 59231.0381 60983 3.0 54 >7205.0
hc10u 1024 10240 512 1024 10240 512 0.1 567.777778 592 4.3 1 >7205.0
hc11p 2048 22528 1024 2048 22528 1024 0.3 117383.13 121326 3.4 5 >7205.0
hc11u 2048 22528 1024 2048 22528 1024 0.2 1124.87009 1186 5.4 1 >7205.9
hc12p 4096 49152 2048 4096 49152 2048 0.7 232522.973 244676 5.2 1 >7206.5
hc12u 4096 49152 2048 4096 49152 2048 0.4 2217.66667 2358 6.3 1 >7205.6
hc6p 64 384 32 64 384 32 0.0 4003 1547 24.7
hc6u 64 384 32 64 384 32 0.0 39 541 12.2
hc7p 128 896 64 128 896 64 0.0 7845.68193 7905 0.8 92143 >7205.0
hc7u 128 896 64 128 896 64 0.0 75.0990594 77 2.5 102661 >7205.0
hc8p 256 2048 128 256 2048 128 0.0 15194.7194 15327 0.9 17155 >7205.0
hc8u 256 2048 128 256 2048 128 0.0 145.247228 148 1.9 11027 >7205.0
hc9p 512 4608 256 512 4608 256 0.0 29933.1635 30254 1.1 1369 >7205.0
hc9u 512 4608 256 512 4608 256 0.0 286.875 292 1.8 213 >7205.0

Table 46. Detailed computational results for the X test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

berlin52 52 2652 16 36 214 13 0.0 1044 1 0.0
brasil58 58 3306 25 20 134 7 0.0 13655 1 0.0
world666 666 442890 174 480 5588 93 1.0 122467 1 5.9

C.2 The Steiner Arborescence Problem 172

C.2 The Steiner Arborescence Problem

Table 47. Detailed computational results for the Gene test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

gene41x 335 910 43 189 612 42 0.0 126 1 0.1
gene42 335 912 43 190 616 42 0.0 126 1 0.1
gene61a 395 1024 82 190 592 75 0.0 205 1 0.1
gene61b 570 1616 82 353 1176 78 0.0 199 1 0.3
gene61c 549 1580 82 357 1188 80 0.0 196 1 0.3
gene61f 412 1104 82 221 704 77 0.0 198 1 0.2
gene425 425 1108 86 206 644 78 0.0 214 1 0.2
gene442 442 1188 86 238 758 80 0.0 207 1 0.1
gene575 575 1648 86 368 1224 84 0.0 207 1 0.2
gene602 602 1716 86 380 1266 82 0.0 209 1 0.2

Table 48. Detailed computational results for the Gene2002 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

microtri1 347 952 47 201 656 47 0.0 128 1 0.1
microtri3 400 1112 47 252 810 45 0.0 146 1 0.1
microtri5 416 1124 47 237 754 46 0.0 150 1 0.1
microtri6 419 1164 47 261 842 45 0.0 146 1 0.1
microtri7 437 1172 47 261 812 46 0.0 159 1 0.1
microtri8 484 1412 47 317 1066 46 0.0 151 1 0.1
microtri9 297 792 47 168 528 46 0.0 131 1 0.0
microtri10 319 836 47 170 532 44 0.0 136 1 0.0
microtri11 382 1024 47 215 676 46 0.0 152 1 0.2

C.3 The Rectilinear Steiner Minimum Tree Problem 173

C.3 The Rectilinear Steiner Minimum Tree Problem

Table 49. Detailed computational results for the Solids test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

cube 8 24 8 0 0 0 0.0 7 1 0.0
dodecahedron 343 1764 20 343 1764 20 0.0 7.69398 6557 1232.6
icosahedron 125 600 12 125 600 12 0.0 20.944264 5 3.1
octahedron 27 108 6 0 0 0 0.0 6 1 0.0
tetrahedron 18 66 4 8 28 4 0.0 2.682521 1 0.0

Table 50. Detailed computational results for the Estein50 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

estein50-0 2500 9800 50 1967 7682 50 9.1 5.494867 1 1101.3
estein50-10 2500 9800 50 1903 7432 50 8.1 5.253293 1 1634.0
estein50-11 2500 9800 50 2462 9720 50 2.0 5.32590095 5.34093 0.3 107 >7200.0
estein50-12 2500 9800 50 1974 7714 49 11.5 5.389099 1 1335.1
estein50-13 2500 9800 50 2057 8042 49 7.4 5.355143 1 1881.8
estein50-14 2500 9800 50 2108 8246 50 8.6 5.218085 1 1124.6
estein50-1 2500 9800 50 1863 7268 50 7.1 5.548422 1 1573.6
estein50-2 2500 9800 50 1859 7252 50 9.1 5.469105 1 1627.8
estein50-3 2500 9800 50 1890 7382 50 8.6 5.153576 1 509.2
estein50-4 2500 9800 50 1911 7456 50 10.3 5.518601 1 664.2
estein50-5 2500 9800 50 2087 8164 50 8.0 5.58043 1 2017.0
estein50-6 2500 9800 50 1859 7260 50 8.8 4.996117 1 4617.0
estein50-7 2500 9800 50 2137 8358 50 8.0 5.375465 1 500.5
estein50-8 2500 9800 50 2458 9716 50 2.1 5.345677 67 2945.9
estein50-9 2500 9800 50 2448 9684 50 2.1 5.403795 1 1955.5

Table 51. Detailed computational results for the Estein60 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

estein60-0 3600 14160 60 2637 10326 60 16.0 5.376143 1 1796.2
estein60-10 3600 14160 60 3003 11798 60 14.8 5.614167 1 5453.9
estein60-11 3600 14160 60 3151 12378 60 13.5 5.96254703 5.979133 0.3 1 >7199.1
estein60-12 3600 14160 60 2791 10942 60 13.9 6.08189194 6.121356 0.6 1 >7199.1
estein60-13 3600 14160 60 2882 11316 60 15.1 5.603556 1 3568.7
estein60-14 3600 14160 60 3561 14074 60 2.6 5.662257 1 4161.8
estein60-1 3600 14160 60 2848 11168 59 15.6 5.53180429 5.536782 0.1 21 >7199.3
estein60-2 3600 14160 60 2814 11032 60 11.7 5.656678 1 4042.8
estein60-3 3600 14160 60 3058 12012 60 13.6 5.492529 5.537805 0.8 1 >7199.1
estein60-4 3600 14160 60 2769 10856 60 12.2 5.46620971 5.470499 0.1 308 >7199.0
estein60-5 3600 14160 60 2968 11654 60 12.0 6.042196 1 3821.4
estein60-6 3600 14160 60 3554 14060 60 2.6 5.89335023 5.897803 0.1 1 >7199.1
estein60-7 3600 14160 60 2943 11548 60 15.6 5.813816 1 3880.4
estein60-8 3600 14160 60 2976 11692 59 12.4 5.587713 1 4926.0
estein60-9 3600 14160 60 2767 10844 60 13.9 5.762446 1 2618.9

Table 52. Detailed computational results for the Cancer test set.

C.3 The Rectilinear Steiner Minimum Tree Problem 174

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

c10 6D 10000 94000 82 576 3266 11 0.7 92 1 0.8
c11 8D 4762800 64777860 75 4762776 64777218 51 0.0 – – – 1 memout
c12 8D 918750 12031250 58 918717 12030418 33 294.9 – 116 – 1 >7200.1
c13 8D 86400 1039680 70 44806 474578 16 11.6 88 1 384.8
c14 8D 27648 308736 54 621 3642 10 4.0 63 1 4.1
c1 4D 600 3820 20 584 3644 6 0.0 28 1 0.1
c2 4D 256 1536 20 237 1318 3 0.0 21 1 0.0
c3 6D 20580 197078 110 20493 195108 36 1.9 146 1 99.7
c4 6D 34560 340416 93 34491 338830 26 5.6 132.90 136 2.3 1 >7200.1
c5 6D 8000 74400 48 7833 72108 18 1.0 69 1 444.9
c6 6D 5120 46592 50 120 672 4 0.5 55 1 0.5
c7 6D 21000 203300 109 20919 201382 30 1.9 140 1 158.0
c8 6D 8640 80064 77 5520 46190 14 0.9 89 1 7.1
c9 6D 6000 54800 46 2064 14486 11 0.6 59 1 2.3

C.4 The Prize Collecting Tree Problem 175

C.4 The Prize Collecting Tree Problem

Table 53. Detailed computational results for the JMP test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

K100-10 115 722 15 71 432 11 0.0 133567 1 0.0
K100-1 112 762 12 78 550 10 0.0 124108 1 0.1
K100-2 114 756 14 57 390 9 0.0 200262 1 0.1
K100-3 111 874 11 62 494 8 0.0 115953 1 0.1
K100-4 111 788 11 86 562 10 0.0 87498 1 0.1
K100-5 117 812 17 79 554 10 0.0 119078 1 0.1
K100-6 112 680 12 67 432 10 0.0 132886 1 0.1
K100-7 114 708 14 69 440 10 0.0 172457 1 0.1
K100-8 116 776 16 78 512 12 0.0 210869 1 0.1
K100-9 112 732 12 77 518 11 0.0 122917 1 0.1
K100-0 115 786 15 70 478 13 0.0 135511 1 0.1
K200-0 234 1580 34 156 1016 22 0.0 329211 1 0.1
K400-10 450 3308 50 327 2220 41 0.1 394191 1 2.1
K400-1 465 3324 65 310 2018 45 0.1 490771 1 1.4
K400-2 462 3420 62 287 1868 47 0.1 477073 1 1.8
K400-3 456 3314 56 343 2380 47 0.1 415328 1 1.4
K400-4 456 3182 56 312 1998 46 0.1 389451 1 1.6
K400-5 477 3368 77 319 1948 59 0.1 519526 1 1.8
K400-6 456 3482 56 329 2348 47 0.1 374849 1 1.3
K400-7 468 3286 68 315 1936 54 0.1 474466 1 1.8
K400-8 461 3392 61 335 2364 52 0.1 418614 1 1.2
K400-9 454 3318 54 323 2210 42 0.1 383105 1 0.9
K400-0 463 3402 63 334 2248 50 0.1 350093 1 0.5
P100-1 133 760 33 69 294 23 0.0 926238 1 0.0
P100-2 127 750 27 70 306 19 0.0 401641 1 0.1
P100-3 125 776 25 3 6 2 0.0 659644 1 0.0
P100-4 133 760 33 21 86 10 0.0 827419 1 0.0
P100-0 134 832 34 24 100 10 0.0 803300 1 0.0
P200-0 249 1462 49 111 504 27 0.1 1317874 1 0.1
P400-1 521 3144 121 243 1184 65 0.2 2808440 1 0.5
P400-2 508 3034 108 292 1422 67 0.2 2518577 1 0.4
P400-3 514 3028 114 346 1720 84 0.2 2951725 1 0.5
P400-4 495 2852 95 308 1482 65 0.2 2852956 1 0.6
P400-0 495 2964 95 272 1298 61 0.1 2459904 1 0.3

Table 54. Detailed computational results for the CRR test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

C01-A 506 1280 6 3 6 2 0.0 18 1 0.1
C01-B 506 1280 6 13 46 5 0.0 85 1 0.1
C02-A 511 1310 11 3 6 2 0.0 50 1 0.1
C02-B 511 1310 11 79 304 9 0.0 141 1 0.1
C03-A 584 1748 84 179 728 41 0.0 414 1 0.2
C03-B 584 1748 84 114 490 34 0.0 737 1 0.2
C04-A 626 2000 126 172 730 50 0.0 618 1 0.2
C04-B 626 2000 126 136 578 39 0.0 1063 1 0.1
C05-A 751 2750 251 94 456 42 0.0 1080 1 0.1
C05-B 751 2750 251 16 64 7 0.0 1528 1 0.0
C06-A 506 2030 6 3 6 2 0.1 18 1 0.1
C06-B 506 2030 6 66 282 6 0.1 55 1 0.1

cont. next page

C.4 The Prize Collecting Tree Problem 176

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

C07-A 511 2060 11 3 6 2 0.1 50 1 0.1
C07-B 511 2060 11 286 1330 10 0.1 102 1 0.2
C08-A 584 2498 84 374 1770 56 0.2 361 1 0.5
C08-B 584 2498 84 306 1404 50 0.2 500 1 0.4
C09-A 626 2750 126 414 1986 84 0.2 533 1 0.6
C09-B 626 2750 126 358 1662 75 0.2 694 1 0.7
C10-A 751 3500 251 287 1482 99 0.1 859 1 0.6
C10-B 751 3500 251 3 6 2 0.1 1069 1 0.1
C11-A 506 5030 6 3 6 2 0.1 18 1 0.1
C11-B 506 5030 6 161 786 6 0.1 32 1 0.2
C12-A 511 5060 11 201 970 10 0.2 38 1 0.2
C12-B 511 5060 11 399 2442 10 0.2 46 1 0.3
C13-A 584 5498 84 459 2652 59 0.3 236 1 0.6
C13-B 584 5498 84 424 2338 54 0.3 258 1 0.7
C14-A 626 5750 126 388 2058 72 0.3 293 1 0.9
C14-B 626 5750 126 326 1672 61 0.3 318 1 0.7
C15-A 751 6500 251 243 1274 76 0.2 501 1 0.6
C15-B 751 6500 251 3 6 2 0.2 551 1 0.2
C16-A 506 25030 6 71 318 6 0.3 11 1 0.4
C16-B 506 25030 6 71 318 6 0.4 11 1 0.4
C17-A 511 25060 11 362 2342 9 0.5 18 1 0.6
C17-B 511 25060 11 185 966 9 0.5 18 1 0.5
C18-A 584 25498 84 482 3388 48 0.6 111 1 1.0
C18-B 584 25498 84 482 3384 48 0.5 113 1 1.1
C19-A 626 25750 126 322 1694 39 0.5 146 1 1.1
C19-B 626 25750 126 326 1710 41 0.5 146 1 1.1
C20-A 751 26500 251 3 6 2 0.3 266 1 0.3
C20-B 751 26500 251 3 6 2 0.4 267 1 0.4
D01-A 1006 2530 6 3 6 2 0.1 18 1 0.1
D01-B 1006 2530 6 139 552 6 0.1 106 1 0.1
D02-A 1011 2560 11 3 6 2 0.1 50 1 0.1
D02-B 1011 2560 11 228 872 11 0.1 218 1 0.2
D03-A 1168 3502 168 295 1228 65 0.1 807 1 0.3
D03-B 1168 3502 168 184 800 53 0.1 1509 1 0.3
D04-A 1251 4000 251 341 1480 99 0.1 1203 1 0.4
D04-B 1251 4000 251 97 414 34 0.1 1881 1 0.1
D05-A 1501 5500 501 295 1400 116 0.0 2157 1 0.8
D05-B 1501 5500 501 55 240 24 0.1 3135 1 0.1
D06-A 1006 4030 6 3 6 2 0.1 18 1 0.1
D06-B 1006 4030 6 384 1968 6 0.3 67 1 0.4
D07-A 1011 4060 11 3 6 2 0.1 50 1 0.1
D07-B 1011 4060 11 484 2298 11 0.3 103 1 0.4
D08-A 1168 5002 168 844 3992 126 0.5 755 1 2.2
D08-B 1168 5002 168 745 3482 117 0.5 1036 1 1.7
D09-A 1251 5500 251 842 4104 178 0.4 1070 1 4.0
D09-B 1251 5500 251 629 3078 139 0.5 1420 1 3.7
D10-A 1501 7000 501 697 3742 234 0.3 1671 1 5.4
D10-B 1501 7000 501 207 1068 76 0.2 2079 1 0.3
D11-A 1006 10030 6 3 6 2 0.2 18 1 0.2
D11-B 1006 10030 6 184 912 6 0.3 29 1 0.4
D12-A 1011 10060 11 371 1886 10 0.4 42 1 0.5
D12-B 1011 10060 11 360 1796 10 0.4 42 1 0.6
D13-A 1168 11002 168 975 5788 122 0.7 445 1 2.7
D13-B 1168 11002 168 896 5084 108 0.7 486 1 2.4

cont. next page

C.4 The Prize Collecting Tree Problem 177

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

D14-A 1251 11500 251 821 4618 138 1.0 602 1 3.7
D14-B 1251 11500 251 730 3942 119 0.8 665 1 2.2
D15-A 1501 13000 501 487 2666 146 0.8 1042 1 1.9
D15-B 1501 13000 501 8 28 4 0.8 1108 1 0.8
D16-A 1006 50030 6 132 690 6 1.1 13 1 1.1
D16-B 1006 50030 6 132 690 6 1.1 13 1 1.1
D17-A 1011 50060 11 867 8350 10 1.3 23 1 1.8
D17-B 1011 50060 11 647 4648 10 1.3 23 1 1.6
D18-A 1168 51002 168 1002 7976 95 1.5 218 1 4.1
D18-B 1168 51002 168 1002 7946 95 1.5 223 1 5.0
D19-A 1251 51500 251 857 5372 102 1.5 306 1 6.3
D19-B 1251 51500 251 845 5258 98 1.4 310 1 6.9
D20-A 1501 53000 501 3 6 2 2.1 536 1 2.1
D20-B 1501 53000 501 3 6 2 2.1 537 1 2.1

Table 55. Detailed computational results for the PUCNU test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

bip42nu 1401 9164 201 1191 8420 201 0.3 224.641338 226 0.6 2745 >7203.0
bip52nu 2401 17194 201 2020 15852 201 0.9 220.394682 223 1.2 1145 >7203.0
bip62nu 1401 21204 201 1400 21200 201 0.9 210.260966 215 2.3 7 >7203.4
bipa2nu 3601 37946 301 3441 37390 301 1.9 320.440715 329 2.7 20 >7203.3
bipe2nu 601 10326 51 601 10326 51 0.3 53 9 393.6
cc10-2nu 1160 11050 136 1066 9872 89 0.5 165.736515 168 1.4 129 >7203.0
cc11-2nu 2293 23990 245 2123 21678 160 1.0 299.885636 307 2.4 1 >7203.3
cc12-2nu 4570 51986 474 4220 46846 299 1.9 557.50564 569 2.1 1 >7203.0
cc3-10nu 1051 27300 51 1051 16500 51 0.8 61 35 424.3
cc3-11nu 1393 40296 62 1393 23826 62 1.1 79 6 237.1
cc3-12nu 1803 57468 75 1803 33048 75 1.0 95 1 114.3
cc3-4nu 73 624 9 73 480 9 0.0 10 1 0.1
cc3-5nu 139 1578 14 139 1110 14 0.1 17 1 0.5
cc5-3nu 271 2592 28 267 2282 26 0.1 36 1 2.9
cc6-2nu 77 456 13 77 456 13 0.0 15 1 0.1
cc6-3nu 806 9192 77 736 7268 42 0.3 95 1 29.1
cc7-3nu 2410 31948 223 2250 26534 143 1.1 267.717976 273 2.0 1 >7203.2
cc9-2nu 577 4992 65 567 4874 60 0.2 83 1 49.9

Table 56. Detailed computational results for the Cologne1 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i101M1 758 12704 11 3 4 2 0.2 109271.503 1 0.2
i101M2 758 12704 11 469 7650 11 0.4 315925.31 1 3.4
i101M3 758 12704 11 468 7644 11 0.4 355625.409 1 5.0
i102M1 760 12730 12 3 4 2 0.2 104065.801 1 0.2
i102M2 760 12730 12 427 7036 9 0.5 352538.819 1 6.4
i102M3 760 12730 12 470 7358 12 0.5 454365.927 1 7.9
i103M1 764 12738 14 3 4 2 0.2 139749.407 1 0.2
i103M2 764 12738 14 459 7680 11 0.3 407834.228 1 3.6
i103M3 764 12738 14 463 7578 14 0.5 456125.488 1 5.8
i104M2 744 12598 4 59 616 3 0.3 89920.8353 1 0.3
i104M3 744 12598 4 378 6912 4 0.4 97148.789 1 1.0
i105M1 744 12604 4 3 4 2 0.2 26717.2025 1 0.2

cont. next page

C.4 The Prize Collecting Tree Problem 178

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i105M2 744 12604 4 349 6520 4 0.3 100269.619 1 2.1
i105M3 744 12604 4 373 6890 4 0.3 110351.163 1 4.2

Table 57. Detailed computational results for the Cologne2 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

i201M2 1812 33522 10 330 5634 2 0.4 355467.684 1 0.6
i201M3 1812 33522 10 1117 22088 7 0.8 628833.614 1 23.2
i201M4 1812 33522 10 1588 28070 10 0.8 773398.303 1 47.6
i202M2 1814 33520 11 1010 19758 6 0.9 288946.832 1 6.2
i202M3 1814 33520 11 1231 22462 10 1.1 419184.159 1 31.4
i202M4 1814 33520 11 1258 22852 10 1.1 430034.264 1 23.8
i203M2 1824 33584 16 1020 20182 10 1.0 459894.776 1 3.5
i203M3 1824 33584 16 1240 22562 13 1.1 643062.02 1 51.9
i203M4 1824 33584 16 1450 25076 14 0.9 677733.067 1 54.2
i204M2 1805 33454 5 3 4 2 0.3 161700.545 1 0.3
i204M3 1805 33454 5 1093 21536 5 0.7 245287.203 1 24.6
i204M4 1805 33454 5 1093 21536 5 0.7 245287.203 1 28.6
i205M2 1823 33640 14 1132 21786 10 1.5 571031.415 1 19.0
i205M3 1823 33640 14 1198 22182 13 1.4 672403.143 1 36.8
i205M4 1823 33640 14 1343 24040 14 1.1 713973.623 1 26.4

C.5 The Maximum Weight Connected Subgraph Problem 179

C.5 The Maximum Weight Connected Subgraph Problem

Table 58. Detailed computational results for the ACTMOD test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

drosophila001 5298 187214 72 2452 43998 54 1.3 24.3855064 1 16.2
drosophila005 5421 187952 195 2190 24790 106 1.5 178.663952 1 17.6
drosophila0075 5477 188288 251 1998 20288 118 1.6 260.523557 1 8.5
HCMV 3919 58916 56 1445 21840 45 0.9 7.55431486 1 5.4
lymphoma 2102 15914 68 1092 9204 46 0.6 70.1663087 1 1.9
metabol expr mice 1 3674 9590 151 763 2670 77 0.4 544.94837 1 2.0
metabol expr mice 2 3600 9174 86 736 2520 47 0.4 241.077524 1 0.9
metabol expr mice 3 2968 7354 115 488 1748 53 0.2 508.260877 1 0.8

Table 59. Detailed computational results for the JMPALMK test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

1000-a-0-6-d-0-25-e-0-25 1443 12524 443 44 156 12 0.1 931.538552 1 0.2
1000-a-0-6-d-0-25-e-0-5 1638 13694 638 7 20 3 0.2 1872.2754 1 0.2
1000-a-0-6-d-0-25-e-0-75 1814 14750 814 3 6 2 0.1 2789.57911 1 0.1
1000-a-0-6-d-0-5-e-0-25 1621 13592 621 3 6 2 0.4 522.525615 1 0.4
1000-a-0-6-d-0-5-e-0-5 1757 14408 757 3 6 2 0.3 1197.85102 1 0.3
1000-a-0-6-d-0-5-e-0-75 1881 15152 881 3 6 2 0.6 1762.70747 1 0.6
1000-a-0-6-d-0-75-e-0-25 1815 14756 815 3 6 2 0.2 332.791924 1 0.2
1000-a-0-6-d-0-75-e-0-5 1894 15230 894 3 6 2 0.3 754.300601 1 0.3
1000-a-0-6-d-0-75-e-0-75 1949 15560 949 3 6 2 0.2 998.215414 1 0.2
1000-a-1-d-0-25-e-0-25 1443 29210 443 3 6 2 0.1 939.39337 1 0.1
1000-a-1-d-0-25-e-0-5 1638 30380 638 3 6 2 0.1 1883.21361 1 0.1
1000-a-1-d-0-25-e-0-75 1814 31436 814 3 6 2 0.1 2789.57911 1 0.1
1000-a-1-d-0-5-e-0-25 1621 30278 621 3 6 2 0.1 533.4294 1 0.1
1000-a-1-d-0-5-e-0-5 1757 31094 757 3 6 2 0.1 1205.42131 1 0.1
1000-a-1-d-0-5-e-0-75 1881 31838 881 3 6 2 0.1 1770.27776 1 0.1
1000-a-1-d-0-75-e-0-25 1815 31442 815 3 6 2 0.1 336.829944 1 0.1
1000-a-1-d-0-75-e-0-5 1894 31916 894 3 6 2 0.1 760.284581 1 0.1
1000-a-1-d-0-75-e-0-75 1949 32246 949 3 6 2 0.1 1004.19939 1 0.1
1500–a-0-6-d-0-25-e-0-25 2164 19302 664 93 326 24 0.2 1333.47643 1 0.3
1500–a-0-6-d-0-25-e-0-5 2457 21060 957 3 6 2 0.4 2799.67722 1 0.4
1500–a-0-6-d-0-25-e-0-75 2732 22710 1232 3 6 2 0.9 4230.25112 1 0.9
1500–a-0-6-d-0-5-e-0-25 2432 20910 932 3 6 2 3.4 847.452011 1 3.4
1500–a-0-6-d-0-5-e-0-5 2633 22116 1133 3 6 2 2.5 1858.0926 1 2.5
1500–a-0-6-d-0-5-e-0-75 2812 23190 1312 3 6 2 1.0 2697.45876 1 1.0
1500–a-0-6-d-0-75-e-0-25 2739 22752 1239 3 6 2 1.5 502.17599 1 1.5
1500–a-0-6-d-0-75-e-0-5 2850 23418 1350 3 6 2 0.7 1089.77117 1 0.7
1500–a-0-6-d-0-75-e-0-75 2924 23862 1424 3 6 2 0.2 1423.61063 1 0.2
1500–a-1-d-0-25-e-0-25 2164 45032 664 3 6 2 0.3 1377.0144 1 0.3
1500–a-1-d-0-25-e-0-5 2457 46790 957 3 6 2 0.2 2820.05174 1 0.2
1500–a-1-d-0-25-e-0-75 2732 48440 1232 3 6 2 0.3 4230.25112 1 0.3
1500–a-1-d-0-5-e-0-25 2432 46640 932 3 6 2 0.3 860.618961 1 0.3
1500–a-1-d-0-5-e-0-5 2633 47846 1133 3 6 2 0.4 1865.66289 1 0.4
1500–a-1-d-0-5-e-0-75 2812 48920 1312 3 6 2 0.2 2707.70001 1 0.2
1500–a-1-d-0-75-e-0-25 2739 48482 1239 3 6 2 0.3 502.17599 1 0.3
1500–a-1-d-0-75-e-0-5 2850 49148 1350 3 6 2 0.2 1089.77117 1 0.2

cont. next page

C.5 The Maximum Weight Connected Subgraph Problem 180

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum N t [s]

1500–a-1-d-0-75-e-0-75 2924 49592 1424 3 6 2 0.2 1423.61063 1 0.2
500-a-0-62-d-0-25-e-0-25 712 6460 212 27 94 7 0.0 460.577357 1 0.0
500-a-0-62-d-0-25-e-0-5 818 7096 318 3 6 2 0.0 992.967111 1 0.1
500-a-0-62-d-0-25-e-0-75 910 7648 410 3 6 2 0.0 1447.54452 1 0.1
500-a-0-62-d-0-5-e-0-25 805 7018 305 3 6 2 0.0 280.832378 1 0.1
500-a-0-62-d-0-5-e-0-5 878 7456 378 3 6 2 0.0 655.623217 1 0.1
500-a-0-62-d-0-5-e-0-75 945 7858 445 3 6 2 0.0 965.554694 1 0.1
500-a-0-62-d-0-75-e-0-25 910 7648 410 7 20 3 0.1 171.628785 1 0.1
500-a-0-62-d-0-75-e-0-5 945 7858 445 3 6 2 0.0 362.188212 1 0.1
500-a-0-62-d-0-75-e-0-75 972 8020 472 3 6 2 0.0 490.623986 1 0.1
500-a-1-d-0-25-e-0-25 712 14304 212 3 6 2 0.0 471.393285 1 0.0
500-a-1-d-0-25-e-0-5 818 14940 318 3 6 2 0.0 995.313181 1 0.0
500-a-1-d-0-25-e-0-75 910 15492 410 3 6 2 0.0 1447.54452 1 0.0
500-a-1-d-0-5-e-0-25 805 14862 305 3 6 2 0.0 286.920868 1 0.0
500-a-1-d-0-5-e-0-5 878 15300 378 3 6 2 0.0 661.711707 1 0.0
500-a-1-d-0-5-e-0-75 945 15702 445 3 6 2 0.0 965.554694 1 0.0
500-a-1-d-0-75-e-0-25 910 15492 410 3 6 2 0.0 171.628785 1 0.0
500-a-1-d-0-75-e-0-5 945 15702 445 3 6 2 0.0 362.188212 1 0.0
500-a-1-d-0-75-e-0-75 972 15864 472 3 6 2 0.0 490.623986 1 0.0
750-a-0-647-d-0-25-e-0-25 1079 10406 329 3 6 2 0.1 702.644057 1 0.1
750-a-0-647-d-0-25-e-0-5 1229 11306 479 3 6 2 0.1 1419.77986 1 0.1
750-a-0-647-d-0-25-e-0-75 1364 12116 614 3 6 2 0.1 2116.58233 1 0.1
750-a-0-647-d-0-5-e-0-25 1206 11168 456 3 6 2 0.5 403.177763 1 0.5
750-a-0-647-d-0-5-e-0-5 1315 11822 565 3 6 2 0.1 946.129495 1 0.1
750-a-0-647-d-0-5-e-0-75 1412 12404 662 3 6 2 0.1 1382.77203 1 0.1
750-a-0-647-d-0-75-e-0-25 1366 12128 616 3 6 2 0.2 266.983922 1 0.2
750-a-0-647-d-0-75-e-0-5 1423 12470 673 3 6 2 0.1 580.407832 1 0.1
750-a-0-647-d-0-75-e-0-75 1462 12704 712 3 6 2 0.0 764.156726 1 0.0
750-a-1-d-0-25-e-0-25 1079 21612 329 3 6 2 0.1 708.143835 1 0.1
750-a-1-d-0-25-e-0-5 1229 22512 479 3 6 2 0.1 1426.44904 1 0.1
750-a-1-d-0-25-e-0-75 1364 23322 614 3 6 2 0.0 2116.58233 1 0.0
750-a-1-d-0-5-e-0-25 1206 22374 456 3 6 2 0.1 403.177763 1 0.1
750-a-1-d-0-5-e-0-5 1315 23028 565 3 6 2 0.1 946.129495 1 0.1
750-a-1-d-0-5-e-0-75 1412 23610 662 3 6 2 0.1 1382.77203 1 0.1
750-a-1-d-0-75-e-0-25 1366 23334 616 3 6 2 0.1 266.983922 1 0.1
750-a-1-d-0-75-e-0-5 1423 23676 673 3 6 2 0.0 580.407832 1 0.0
750-a-1-d-0-75-e-0-75 1462 23910 712 3 6 2 0.1 764.156726 1 0.1

C.6 The Degree Constrained Steiner Tree Problem 181

C.6 The Degree Constrained Steiner Tree Problem

Table 60. Detailed computational results for the TreeFam test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

TF101057-t1 52 2652 35 52 2652 35 0.0 infeasible 1 0.0
TF101057-t3 52 2652 35 52 2652 35 0.0 2756 1226 46.7
TF101125-t1 304 92112 155 304 92112 155 0.1 infeasible 1 4.6
TF101125-t3 304 92112 155 304 92112 155 0.2 53636.694 55601 3.7 528 >7210.0
TF101202-t1 188 35156 72 188 35156 72 0.1 79350.8282 81122 2.2 1743 >7210.0
TF101202-t3 188 35156 72 188 35156 72 0.0 77640.4004 78144 0.6 2087 >7210.3
TF102003-t1 832 691392 407 832 691392 407 1.8 190488.292 384836 102.0 3 >7213.7
TF102003-t3 832 691392 407 832 691392 407 1.8 175828.601 189124 7.6 3 >7235.0
TF105035-t1 237 55932 104 237 55932 104 0.1 34519.3276 45833 32.8 612 >7210.0
TF105035-t3 237 55932 104 237 55932 104 0.1 32512.735 33046 1.6 1679 >7210.1
TF105272-t1 476 226100 223 476 226100 223 0.5 132587.705 282527 113.1 24 >7215.3
TF105272-t3 476 226100 223 476 226100 223 0.5 122923.989 133024 8.2 33 >7210.0
TF105419-t1 55 2970 24 55 2970 24 0.0 18668 10242 161.4
TF105419-t3 55 2970 24 55 2970 24 0.0 18223 41 5.9
TF105897-t1 314 98282 133 314 98282 133 0.2 106229.702 172495 62.4 194 >7210.0
TF105897-t3 314 98282 133 314 98282 133 0.1 96089.1786 98536 2.5 202 >7211.1
TF106403-t1 119 14042 46 119 14042 46 0.0 54124 1423 493.3
TF106403-t3 119 14042 46 119 14042 46 0.0 53760 31 64.4
TF106478-t1 130 16770 54 130 16770 54 0.0 54957.8681 55197 0.4 16271 >7210.1
TF106478-t3 130 16770 54 130 16770 54 0.0 54722.7843 54839 0.2 39489 >7210.0

C.7 The Group Steiner Tree Problem 182

C.7 The Group Steiner Tree Problem

Table 61. Detailed computational results for the GSTP1 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

andre30f2 474 1828 30 455 1780 30 0.1 569 1 3.0
andre31f2 349 1284 31 320 1210 30 0.1 635 1 2.9
andre33f2 452 1746 33 437 1704 33 0.1 513 1 2.3
andre34f2 1253 5000 34 1234 4952 34 0.5 638.967318 646 1.1 142 >7210.0
andre36f2 442 1672 36 428 1632 36 0.2 610 1 4.9
andre37f2 1054 4216 37 1042 4186 37 0.3 485 1 262.9
andre38f2 618 2504 38 608 2480 38 0.2 656 614 1672.0
andre39f2 707 3310 39 700 3294 39 0.1 433.793547 452 4.2 223 >7210.0

Table 62. Detailed computational results for the GSTP2 test set.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap % N t [s]

andre50f2 1142 4622 50 1120 4572 50 0.2 666.012134 674 1.2 192 >7210.0
andre55f2 1751 6804 55 1691 6680 55 0.4 888 7 5604.2
andre60f2 838 3528 60 835 3522 60 0.1 1154.41773 1164 0.8 1565 >7210.0
andre64f2 1860 7380 64 1789 7212 60 1.0 931 1 3446.7
andre66f2 2623 10100 66 2478 9804 62 2.0 920 1 3455.5
andre73f2 1911 7308 73 1797 7044 65 1.0 1207 1 2846.9
andre76f2 1818 6990 76 1657 6540 67 1.9 1026 1 1752.9
andre78f2 2355 9384 78 2275 9204 74 1.1 1065.17799 1096 2.9 15 >7210.1
andre83f2 3177 12530 83 3050 12270 80 1.9 890.996184 906 1.7 1 >7210.2
andre84f2 2358 9134 84 2169 8648 74 1.6 1080.97377 1094 1.2 3 >7210.3

C.8 The Hop Constrained Directed Steiner Tree Problem 183

C.8 The Hop Constrained Directed Steiner Tree Problem

The hop-constrained directed Steiner tree instances described hereinafter
encompass ten terminals each, both before and after preprocessing.

Table 63. Detailed computational results for the Gr12 test set.

Original Presolved
Instance |V | |A| |V | |A| t [s] Optimum N t [s]

wo11-cr100-se10 809 7432 335 3390 0.1 136516 1 2.8
wo11-cr100-se11 809 7430 507 5212 0.1 145251 1 3.5
wo11-cr100-se1 809 7444 609 6550 0.1 182082 1 3.8
wo11-cr100-se2 809 7394 481 5092 0.1 163872 1 2.7
wo11-cr200-se10 809 15262 483 9946 0.1 59523 1 5.1
wo11-cr200-se11 809 15260 661 14214 0.1 66786 1 9.6
wo11-cr200-se1 809 15274 663 14594 0.1 76353 1 10.8
wo11-cr200-se2 809 15224 651 13856 0.1 75434 1 9.2
wo12-cr100-se10 809 9360 510 6256 0.1 167223 1 3.2
wo12-cr100-se11 809 9852 569 7056 0.1 199679 1 4.6
wo12-cr100-se1 809 9446 544 6724 0.1 164198 1 2.6
wo12-cr100-se7 809 9702 293 3574 0.1 136232 1 1.8
wo12-cr200-se9 809 28346 281 7772 0.1 46408 1 3.9
wo10-cr100-se0 809 14396 809 14396 0.1 171486 1 38.2
wo10-cr100-se10 809 14428 616 10690 0.1 117081 1 8.1
wo10-cr100-se11 809 14386 663 11312 0.1 125785 1 12.7
wo10-cr200-se7 809 44696 435 19174 0.2 46306 1 11.0
wo10-cr200-se8 809 44654 805 44392 0.3 61177 495 434.1
wo10-cr200-se9 809 44670 721 37392 0.3 51737 643 376.0

Table 64. Detailed computational results for the Gr14 test set.

Original Presolved
Instance |V | |A| |V | |A| t [s] Dual Primal Gap % N t [s]

wo10-cr100-se0 3209 215940 3209 215940 1.0 149509.585 177721 18.9 59 >7210.0
wo10-cr100-se11 3209 215932 2786 182390 1.3 113542.879 124962 10.1 103 >7210.0
wo10-cr200-se3 3209 643552 3187 635486 4.3 45450.3838 53467 17.6 15 >7210.7
wo10-cr200-se4 3209 643414 3157 622726 3.8 40143.3633 56435 40.6 30 >7210.3
wo11-cr100-se6 3209 115502 2773 115502 0.7 200986.868 218436 8.7 40 >7210.1
wo11-cr200-se2 3209 232858 2725 225484 1.7 71134 615 3340.8
wo11-cr200-se3 3209 233104 1795 129456 1.4 57930 219 553.1
wo11-cr200-se4 3209 233038 2773 232526 1.4 63313 967 3158.2
wo12-cr100-se0 3209 153366 933 39686 0.7 116288 1 52.7
wo12-cr100-se5 3209 156578 1436 67248 0.8 131631 1 186.3
wo12-cr100-se6 3209 157214 2030 99256 0.9 146049 3078 6981.4
wo12-cr100-se7 3209 158984 1336 63418 0.7 122306 9 195.0
wo12-cr100-se8 3209 157912 1511 73304 0.8 116077 5 242.9
wo12-cr100-se9 3209 156658 712 28752 0.6 99170 1 23.5
wo12-cr200-se0 3209 445774 1512 180812 2.0 53883 9 615.6
wo12-cr200-se10 3209 446040 2317 311642 2.2 54658.2011 69264 26.7 97 >7210.1
wo12-cr200-se11 3209 457496 2383 330774 2.3 59396.3375 81839 37.8 124 >7210.2
wo12-cr200-se4 3209 460250 2395 329386 2.4 64347.5161 76291 18.6 119 >7210.3
wo12-cr200-se5 3209 456998 2159 277314 2.6 56114.3522 58096 3.5 831 >7210.5
wo12-cr200-se6 3209 460500 2377 327696 3.2 55507.5041 63843 15.0 78 >7210.0
wo12-cr200-se7 3209 464090 1777 216648 2.7 59315.5318 62393 5.2 647 >7210.3

Table 65. Detailed computational results for the Gr16, test set.

C.8 The Hop Constrained Directed Steiner Tree Problem 184

Original Presolved
Instance |V | |A| |V | |A| t [s] Dual Primal Gap % N t [s]

wo10-cr100-se0 12509 2843882 11604 2843882 7.4 66973.2336 178781 166.9 1 >7202.5
wo10-cr100-se10 12509 2844058 8712 2052626 6.6 68262.564 117703 72.4 1 >7207.1
wo10-cr100-se6 12509 2843894 11604 2843894 8.3 67271.103 195958 191.3 1 >7209.2
wo10-cr200-se0 12509 8741560 11604 8741556 37.2 36040 73205 103.1 1 >7204.2
wo10-cr200-se3 12509 8741850 11574 8696942 37.9 32990 61182 85.5 1 >7218.9
wo10-cr200-se4 12509 8741234 11604 8740240 42.8 32514.3333 67764 108.4 1 >7226.9
wo10-cr200-se5 12509 8740874 11604 8740258 34.8 36667 70322 91.8 1 >7218.4
wo10-cr200-se7 12509 8741906 7144 4598798 30.2 33804.1825 46743 38.3 1 >7212.3
wo11-cr100-se0 12509 1634066 10654 1634066 3.4 87738.7339 199018 126.8 1 >7201.7
wo11-cr100-se10 12509 1633968 5796 823916 3.1 90636.2695 124333 37.2 13 >7201.3
wo11-cr200-se2 12509 3416158 10556 3309796 11.6 44726.0407 75610 69.1 1 >7204.5
wo11-cr200-se3 12509 3416916 7052 2080676 8.8 46697.5926 58933 26.2 2 >7201.9
wo12-cr100-se2 12509 2172502 9244 1706008 4.8 105972.314 194887 83.9 1 >7201.3
wo12-cr100-se3 12509 2173508 8427 1543676 5.1 99608.1257 152280 52.9 1 >7201.2
wo12-cr200-se2 12509 6560440 9244 4840680 19.7 43934.0818 82444 87.7 1 >7211.2
wo12-cr200-se3 12509 6557828 9109 4728220 22.5 40624.491 66228 63.0 1 >7207.6
wo12-cr200-se4 12509 6420904 9224 4737270 21.0 43293.0246 81199 87.6 2 >7204.0
wo12-cr200-se7 12509 6766046 7388 3497142 26.9 43853.9189 69449 58.4 1 >7205.2
wo12-cr200-se8 12509 6207724 8650 4109658 23.7 38963.7265 52826 35.6 1 >7203.4
wo12-cr200-se9 12509 6571406 4924 2013348 25.3 36482.7692 53142 45.7 18 >7204.5

	Eidesstattliche Erklärung (German Affidavit)
	Acknowledgments
	Introduction
	Preliminaries and Definitions
	Background and Complexity
	A Brief History
	Complexity

	The Steiner Tree Problem in Graphs
	Formulating the Problem: Integer Programming
	Cut Formulations
	Flow Formulations
	Flow Balance Inequalities

	Simplifying the Problem: Reduction Techniques
	Definitions
	Basic Reductions
	Alternative Based Reductions
	Bound Based Reductions
	Implementation

	Finding a Solution: Primal Heuristics
	Constructive Heuristics
	Local Search Heuristics
	Recombination Heuristics

	Solving to Optimality: Branch and Cut
	Separation Methods
	Branching

	Implementation
	SCIP-Jack: A General Purpose Solver for Steiner Tree Problems
	Parallel Computing

	Computational Results and Discussion
	Impact of Reduction Techniques
	Impact of Primal Heuristics
	Branching

	Variants of the Steiner Tree Problem
	The Steiner Arborescence Problem
	Reductions
	Heuristics
	Implementation and Computational Results

	The Node Weighted Steiner Problem
	Transformation
	Implementation and Computational Results

	The Rectilinear Steiner Minimum Tree Problem
	Transformation
	Implementation and Computational Results

	The Prize Collecting Steiner Tree Problem
	Transformation
	Reductions
	Heuristics
	Implementation and Computational Results

	The Maximum Weight Connected Subgraph Problem
	Transformation
	Reductions
	Implementation and Computational Results

	The Degree Constrained Steiner Tree Problem
	Primal Heuristics
	Implementation and Computational Results

	The Group Steiner Tree Problem
	Transformation
	Implementation and Computational Results

	The Hop Constrained Directed Steiner Tree Problem
	Reductions
	Primal Heuristics
	Implementation and Computational Results

	Final Computational Results and Comparisons
	The Steiner Tree Problem in Graphs
	Parallel Computing

	Variants of the Steiner Tree Problem
	The Prize Collecting Steiner Tree Problem
	The Maximum Weight Connected Subgraph Problem
	The Degree Constrained Steiner Tree Problem
	The Hop Constrained Directed Steiner Tree Problem

	Using SoPlex

	Conclusions and Outlook
	Zusammenfassung (German Summary)
	Notation and Abbreviations
	General Mathematical Notation
	Steiner Problem Variants

	Detailed Experimental Results
	The Steiner Tree Problem in Graphs
	The Steiner Arborescence Problem
	The Rectilinear Steiner Minimum Tree Problem
	The Prize Collecting Tree Problem
	The Maximum Weight Connected Subgraph Problem
	The Degree Constrained Steiner Tree Problem
	The Group Steiner Tree Problem
	The Hop Constrained Directed Steiner Tree Problem

