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THE ONLINE-TSP AGAINST FAIR ADVERSARIES

ABSTRACT. In the online traveling salesman problem requests for visits to cities
(points in a metric space) arrive online while the salesman is traveling. The salesman
moves at no more than unit speed and starts and ends his work at a designated origin.
The objective is to find a routing for the salesman which finishes as early as possible.

Performance of algorithms is measured through their competitive ratio, compar-
ing the outcome of the algorithms with that of an adversary who provides the prob-
lem instance and therefore is able to achieve the optimal offline solution. Objections
against such omnipotent adversaries have lead us to devise an adversary that is in a
natural way, in the context of routing problems, more restricted in power.

For the exposition we consider the online traveling salesman problem on the met-
ric space given bR}, the non-negative part of the real line. We show that a very nat-
ural strategy is3/2-competitive against the conventional adversary, which matches
the lower bound on competitive ratios achievable for algorithms for this problem.

Against the more fair adversary, that we propose, we show that there exists
an algorithm with competitive ratié*;ﬂ ~ 1.28 and provide a matching lower
bound.

We also show competitiveness results for a special class of algorithms (called
zealous algorithms) that do not allow waiting time for the server as long as there are
requests unserved.

1. INTRODUCTION

The traveling salesman problem is a well studied problem in combinatorial opti-
mization. In the classical setting, one assumes that the complete input of an instance is
available for an algorithm to compute a solution. In many caseffiise optimiza-
tion model does not reflect the real-world situation appropriately. In many applications
not all requests for points to be visited are known in advance. Decisions have to be
madeonlinewithout knowledge about future requests.

Online algorithms are tailored to cope with such situations. Whereas offline algo-
rithms work on the complete input sequence, online algorithms only see the requests
released so far and thus, in planning a route, have to account for future requests that
may or may not arise at a later time. A common way to evaluate the quality of on-
line algorithms iscompetitive analysifBEY98, FW98]. The outcome of the online
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2 THE ONLINE-TSP AGAINST FAIR ADVERSARIES

algorithm is compared to that of an adversary, that provides the input sequence and
therefore can achieve the optimal offline solution.

In this paper we consider the following online variant of the traveling salesman
problem (calledOLTSP in the sequel) which was introduced in [AFR9]. Cities (re-
guests) arrive online over time while the salesman is traveling. The requests are to
be handled by a salesman-server that starts and ends his work at a designated origin.
The objective is to find a routing for the server which finishes as early as possible (in
scheduling theory this goal is usually referred to as minimizingntfadkespan In
this model the server is allowed to wait at the cost of time that elapses. Decisions are
revocable, as long as they have not been executed. Only history is irrevocable.

1.1. Previous Work. Ausiello et al. [AFL"99] present &-competitive algorithm

for OLTsp which works in general metric spaces. The authors also show that for
general metric spaces no deterministic algorithm camr-bempetitive withc < 2.

For the special case that the metric spacR,ighe real line, their best algorithm is
7/4-competitive, whereas a lower bound on the competitive ratio of any algorithm of
(9 +V/17)/8 ~ 1.64 is derived [AFL99]. Recently, Lipmann [Lip99] designed an
algorithm for the problem on the real line with competitive ratio that matches the just
mentioned lower bound.

1.2. Our Contribution. In this paper the effect of restricting the class of algorithms
allowed and restricting the power of the adversary in the competitive analysis is stud-
ied. We introduce and analyze a new class of online algorithms which weezdtius
algorithms Roughly speaking, a zealous algorithm never sits idle while there is work
to do. A similar concept was used for scheduling problems in [LL74]. A precise
definition of zealousness is presented in Section 3 where we also show that in gen-
eral zealous algorithms are strictly weaker than algorithms that allow waiting time. In
particular we prove that no zealous algorithm can achieve a competitive ratio lower
than7/4 for the OLTsP on the real line. Th& /4-competitive algorithm in [AFL 99]
is in fact a zealous algorithm and therefore best possible within this restricted class of
algorithms.

We then concentrate on the special cas®wafspwhen the underlying metric space
is RS, the non-negative part of the real line. In Section 4 we show that an extremely
simple and natural zealous strategy j2-competitive and that this result is best pos-
sible for (zealous and non-zealous) deterministic algorithrriEgbn

The main contribution is contained in Section 5. Here we deal with an objection
frequently encountered against competitive analysis concerning the unrealistic power
of the adversary against which performance is measured. Indeed, fortise on the
real line the before mentionéd'4-competitive algorithm reaches its competitive ratio
against an adversary that moves away from the previously released requests without
giving any information to the online algorithm. We introduce an adversary who is in a
natural way restricted in the context of the online traveling salesman problem studied
here. We call it &air adversary It should be seen as a more reasonable adversary
model. A fair adversary always keeps its server within the convex hull of the requests
released so far. We show that this adversary model indeed allows for lower competitive
ratios. For instance, the above mentioB¢d-competitive zealous strategy against the



THE ONLINE-TSP AGAINST FAIR ADVERSARIES 3

conventional adversary i’ 3-competitive against the fair adversary. This resultis best
possible for zealous algorithms against a fair adversary.

] | Zealous Algorithmg General Algorithms \
General Adversary LB = UB = 3/2 LB =UB = 3/2

Fair Adversary |LB=UB=4/3 |LB=UB=(1+17)/4
TABLE 1. Overview of the lower bound (LB) and upper bound (UB)
results for the competitive ratio of deterministic algorithms@amsp
onR{ in this paper.

We also present a non-zealous algorithm with competitive rfatie- /17)/4 ~
1.28 < 4/3 competing against the fair adversary. Our result is the first one that shows
that waiting is actually advantageous in t@eTsp. The before mentioned algorithm
in [Lip99] also uses waiting, but became known after the one presented in this paper
and has not been published officially yet. Such results are known already for online
scheduling problems (see e.g. [HV96, CYW97, PSW95]) and, again very recently,
also for an online dial-a-ride problem [AKR0O]. Our competitiveness result is com-
plemented by a matching lower bound on the competitive ratio of algorithms against
the fair adversary. Table 1 summarizes our resultfiorsponR .

We first continue the paper by giving precise descriptions of the problems studied,
and the measure for analyzing performance of the algorithms.

2. PRELIMINARIES

An instance of th®©nline Traveling Salesman Problg/@LTSP) consists of a metric
spaceM = (X, d) with a distinguished origie € M and a sequenee= o1,... ,0.,
of requests. A server is located at the origirat time 0 and can move at most at
unit speed. In this paper we are mainly concerned with the special casg/tlst
R(T, the non-negative part of the real line endowed with the Euclidean metric, i.e.,
X=R{={xeR:z >0} andd(z,y) = |z — y; the origino equals the point.

Eachrequests a pairo; = (t;, x;), wheret; € R is the time at which request, is
released (becomes known), ande X is the point in the metric space requested to be
visited. We assume that the sequence o1, ... , o, Of requests is given in order of
non-decreasing release times. For a real number denote by, the subsequence
of requests i released up to timeé Similarly, o, is the subsequence efconsisting
of those requests with release time strictly smaller than

It is assumed that the online algorithm does neither have information about the time
when the last request is released nor about the total number of requests.

An online algorithm forOLTSP must determine the behaviour of the server at a
certain moment of time as a function of all the requestsdn; (and of the current
time ¢). In contrast, the offline algorithm has information about all requests in the
whole sequence already at timé). A feasible online/offline solution is a route for the
server which serves all requested points, where each request is served not earlier than
the time it is released, and which starts and ends in the asigin

The objective in th€®LTsPis to minimize the total completion time (also called the
makespaiin scheduling) of the server, that is, the time when the server has served all
requests and returned to the origin.
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Let ALG(0) denote the completion time of the server moved by algoritu® on
the sequence of requests. We usePT to denote the optimal offline algorithm. An
online algorithmaLG for OLTSPis c-competitiveif there exists a constantsuch that
for every request sequeneaehe inequalityALG (o) < ¢ - OPT(o) holds.

3. ZEALOUS ALGORITHMS

In this section we introduce a particular class of algorithmsdaorsp which we
call zealous algorithms Intuitively, a zealous algorithm should never sit and wait
when it could serve yet unserved requests. A zealous server should also move towards
work that has to be done directly without any detours. To translate this intuition into a
rigorous definition some care has to be taken.

Definition 3.1 (Zealous Algorithm) An algorithmALG for OLTSP is calledzealous
if it satisfies the following conditions:

1. If there are still unserved requests, then the direction of the server operated
by ALG changes only if a new request becomes known, or the server is either
in the origin or at a request that has just been served.

2. At any time when there are yet unserved requests, the server operated by
either moves towards an unserved request or the origin at maximum (i.e. unit)
speed. (The latter case is only allowed if the server operated &ys not yet in
the origin).

We emphasize that a zealous algorithm is allowed to move its server towards an
unserved request and change his direction towards another unserved request or to the
origin at the moment a new request becomes known.

Theorem 3.2(JAFL 799]). Let ALG be a zealous online algorithm f@LTsP on the
real lineR. Then the competitive ratio ofLG is at least(9 + /17)/8 ~ 1.64.

Lemma 3.3. Let ALG be a zealous online algorithm fdDLTSP on the real lineR.
Then the competitive ratio ofLG is at least7 /4.

Proof. Suppose thatLG is a zealous algorithm foDLTSP on the real line. Con-
sider the following adversarial input sequence. At tionend1/2 two requests; =
(0,1/2) andoy = (1/2,0), respectively, are released. There will be no further re-
guests before timé. Thus, by the zealousness of the algorithm the server will be at
the origin at timel.

At time 1 two new requests at pointsand—1, respectively, are released. Since the
algorithm is zealous, starting at timét must move its server to one of these requests
at maximum, i.e., unit, speed. Without loss of generality assume that this is the request
at1. ALG’s server will reach this point at timg. Starting at time2, ALG will have
to move its server either directly towards the unserved request air towards the
origin, which essentially gives the same movement and implies that the server is at the
origin at time3. At that time, the adversary issues another requekt @hus,ALG’S
server will still need at least time units to serve-1 and1 and return at the origin.
Therefore, it will not be able to complete its work before time

The offline adversary handles the sequence by first serving the requekttaen
the two requests dt and finally returns to the origin at timg yielding the desired
result. O
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This lower bound shows that thig4-competitive algorithm presented in [AF99],
which is in fact a zealous algorithm, is best possible within the class of zealous algo-
rithms for theOLTSP on the real line.

4, THE OLTSP ON THENON-NEGATIVE PART OF THEREAL LINE

We first consideOLTsPon R} when the offline adversary is the conventional (om-
nipotent) opponent.

Theorem 4.1. Let ALG be any deterministic algorithm faDLTsP onRj. Then the
competitive ratio ofALG is at least3 /2.

Proof. At time 0 the request; = (0,1) is released. Lef’ > 1 be the time that
the server operated by .G has served the request and returned to the origifl.
If T > 3, then no further request is released and is no better thai /2-competitive
sinceoPT(o) = 2. Thus, assume thdt < 3.

In this case the adversary releases a new request(7', T'). Clearly,0PT(o1, 02) =
2T. On the other handLG(o1, 02) > 3T, yielding a competitive ratio a$/2. O

The following extremely simple strategy achieves a competitive ratio that matches
this lower bound (as we will show below):

Strategy MRIN(“Move-Right-If-Necessary”): If a new request is released and the
request is to the right of the current position of the server operateakiny, then
the MRIN-server starts to move right at full speed. The server continues to move
right as long as there are yet unserved requests to the right of the server. If there
are no more unserved requests to the right, then the server moves towards the
origin 0 at full speed.

Itis easy to verify that AlgorithnMRIN is in fact a zealous algorithm. The following
theorem shows that the strategy has a best possible competitive ra@iorfePon R} .

Theorem 4.2. StrategyMRIN is a zealous3/2-competitive algorithm for th©LTsP
on the non-negative paﬁg of the real line.

Proof. We show the theorem by induction on the number of requests in the sequence
It clearly holds ifo contains at most one request. The induction hypothesis states that
the claim of the theorem holds for any sequence:of 1 requests.

Suppose that request,, = (¢, z) is the last request of = o1,...,0m—1,0m.

If ¢ =0, thenmRIN is obviously3/2-competitive, so we will assume that> 0. Let f
be the position of the request unserved by MraN-server at time (excludingo,,),
which is furthest away from the origin (if all requestsdn, . .., o,,_1 have already
been served byRIN at timet then we seff = 0).

Incaser < f, MRIN’s cost for servingr is equal to the cost for serving the sequence
consisting of the firstn — 1 requests of. Since new requests can never decrease the
optimal offline cost, the induction hypothesis implies the theorem.

Now assume thaf < z. Thus, at time the request in: is the furthest unserved
request. If the position ofiRIN at timet is to the right ofz, then its cost does not
increase by the release®f,. The claim then follows from the induction hypothesis as
above. On the other hand, if at timeRIN is to the left ofz, thenmRIN will complete
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its work no later than time + 2z. The optimal offline cosbpPT (o) is bounded from
below bymax{t + =, 2x}. Therefore,

MRlN(a)<t+x r itttz =z 3

OPT(c) ~ OPT(c) OPT(o) ~— t+=x T Ty

O

The result established above can be used to obtain competitiveness results for the
generalization of thé®LTsP on the real line when there ake> 2 servers, and the
goal is to minimize the time when the last of its servers returns to the drigfter all
requests have been served.

Lemma 4.3. There is an optimal offline strategy f@LTspon the real line withk > 2
servers such that no server ever crosses the origin.

Proof. Leto be any request sequence andigt = ) and(t:, z7) be the leftmost and
rightmost request ie. For any timet we denote byr-; the subsequence of requests
released strictly after time

Now consider the following offline strategy for routing the servers. Only two of the
servers are used. At tintethe first server moves to the right until poirf, the second
moves to the left until it reaches, . We now describe the strategy for the servergat
for moving left. The situation for the other server is symmetric.

The server waits at until time 7' := max{zg,tJ}. Then it moves left until it
reaches the position @f}: the rightmost request in the subsequence, with release
timet1. It waits there until time5 := max{T + z§ — =, t}}. The time parametef
is updated tdl" := S and the left movement is continued as aboverJf- becomes
empty the server moves back to the origin.

It is easy to see that the paraméelemaintained by the right server always has the
property thafl” + xJTF is a lower bound for the optimum offline completion time. Thus,
the strategy described above yields in fact an optimal offline solution. O

Corollary 4.4. There is &/2-competitive algorithm for th®LTspwith &k > 2 servers
on the real line.

Proof. The online algorithm uses two servers. One server handles all requEgt,on
the other one serves the request®gn Each server uses tivrIN-strategy. It follows
from Theorem 4.2 and Lemma 4.3 that this stratedy)/icompetitive. O

5. FAIR ADVERSARIES

The adversaries used in the bounds of the previous section are abusing their power
in the sense that they can move to points where they know a request will pop up without
revealing the request to the online server before reaching the point. As an alternative
we propose the following more reasonable adversary that we bafizediversary
We show that one can obtain better competitive ratios fotiesp on R under this
model. We will also see that under this adversary model there exists a distinction in
competitiveness between zealous and non-zealous algorithms.

Recall thato.; is the subsequence ef consisting of those requests with release
time strictly smaller thanm.
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Definition 5.1 (Fair Adversary) An offline adversary for th©LTsSP in the Euclidean
space(R™, ||.||) is fair, if at any moment, the position of the server operated by the
adversary is within the convex hull of the origirand the requested points fram;,.

In the special case d{g a fair adversary must always keep its server in the inter-
val [0, F'|, whereF is the position of the request with the largest distance to the ayigin
among all requests released so far.

The following lower bound result shows that tBeTsP on the real line against fair
adversaries is still a non-trivial problem.

Theorem 5.2. Let ALG be any deterministic algorithm foDLTSP on R. Then the
competitive ratio ofALG against a fair adversary is at leagb + /57)/8 ~ 1.57.

Proof. Suppose there existspacompetitive online algorithmLG, whith p = (5 +
V/57)/8. The adversarial sequence starts with two requests attime= (0, 1) and

o2 = (0,—1). Without loss of generality, we assume that the first request which is
served byALG is o;. At time 2 the online server can not have served both requests.
We distinguish two main cases divided in some subcases.

Case 1:None of the requests has been served at ime

e If at time 3 requestr is still unserved, let’ be the first time the server crosses
the origin after serving the request. Clearly> 4. At time ¢’ the online server
still has to visit the request in 1.

If ¢ > 4p — 2 the server can not becompetitive because the fair adversary
can serve the sequence and be back in the origin at4ime

Thus, suppose that< ¢’ < 4p — 2. Attime t’ a new requests = (¢',1) is
released. The online server can not finish the complete sequence tefote
whereas the adversary needs titfhel. Thereforep > Zﬁ Ford <t' <4p-2
we have that the expressi@ﬁ—‘f is decreasing it'. Thus

(4p—2)+4  4p+2
T 4p—-2)+1 4p-—1

implying p > (5 + v/57)/8.

e If at time 3 the request; has already been served, the online server can not be
to the left of the origin at time& (given the fact that at time& no request had
been served). The adversary now gives a new reagiest (3, 1). There are two
possibilities: eithews, the request in-1, is served befores or the other way
round.

If the server decides to serve beforeos then it can not complete before
time 7. Since the adversary completes the sequence in4jniee competitive
ratio is at least /4.

If the online server serves; first, then again, let’ be the time that the server
crosses the origin after serving. As before, we must have< ¢/ < 4p — 2. At
timet’ the fourth request, = (¢/,1) is released. The same arguments as above
apply to show that the algorithm is at leastompetitive withp = (5 + /57) /8.

Case 2.0 has been served at timdoy the online server.
At time 2 the third requests = (2,1) is released. In fact, we are now back in the
situation in which at time 2 none of the two requests are served. In case the movements
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of the online server are such that no further request is released by the adversary, the
latter will complete at timel. In the other cases the last released requests are released
after time4 and the adversary can still reach them in time.

O

For comparison, the best possible algorithm for€hgsprin R against an adversary
that is not restricted to be fair %JFS—\/ﬁ—competitve [Lip99]. So far we have not been
able yet to design algorithm that has competitive rdfio+- +/57)/8 against a fair
adversary. In that sense the picture is complete for the problem on the non-negative
part of the real line (see Theorems 5.4 and 5.5 for zealous algorithms and Theorems
5.3 and 5.6 for non-zealous algorithms below).

Theorem 5.3. Let ALG be any deterministic algorithm faDLTsP onRj. Then the
competitive ratio ofALG against a fair adversary is at leaét + /17)/4 ~ 1.28.

Proof. Suppose thaALG is p-competitive for some > 1. At time 0 the adversary
releases request = (0,1). LetT" denote the time that the server operatedabg
has served this request and is back at the origin. Atar to be p-competitive, we
must have thal” < p - oPT(o1) = 2p. Attime T the adversary releases a second
requesbs = (T, 1). The completion time oALG becomes then at least+ 2.

On the other hand, starting at tifi¢he fair adversary moves its serverltgets it
wait there until timel” and then goes back to the oridiryielding a completion time
of T'+ 1. Therefore,

ALG(0) > T+2 > 2p+ 2 14 1

OPT(oc) “T+1~ 2p+1 20+ 1’
given the fact thal” < 2p. Since by assumptioaLG is p-competitive, we have that
14+1/(2p+1) < p, implying thatp > (1 + /17) /4. O

For zealous algorithms we can show a higher lower bound against a fair adversary.

Theorem 5.4. Let ALG be any deterministic zealous algorithm f@LTspP on R{{.
Then the competitive ratio ofLG against a fair adversary is at leagy/3.

Proof. Consider the adversarial sequence consisting of the three requestf0, 1),
02 = (1,0), andog = (2, 1).

By its zealousness the online algorithm will start to travel &t time0, back to0
at time1, arriving there at time. Then its server has to visitagain, so that he will
finish no earlier than timé. Obviously, the optimal fair offline solution is to leave
not before time2, and finishing at tima. O

We show now that the algorithmRIN presented before has a better competitive
ratio against the fair adversary than @ against a conventional adversary. In fact we
show the ratio matches the lower bound for zealous algorithms proved in Theorem 5.4.

Theorem 5.5. StrategyMRIN is a 4/3-competitive algorithm for th©LTsP on R
against a fair adversary.

Proof. Again we use induction on the number of requests in the sequetaoestablish

the claim of the theorem. The claim clearly holdsritontains at most one request.
The induction hypothesis states that the claim of the theorem holds for any sequence
of m — 1 requests.
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Leto = o4,...,0., be any sequence of requests. We consider the tisnehen
the last set of requests.,,, is released. It = 0, then the claim obviously holds, so
we will assume for the remainder of the proof that- 0. Leto,, = (¢,z) be that
request ob—, which is furthest away from the origin.

In the sequel we denote byt) ands*(¢) the positions of theurIN- and the fair
adversary server at tinterespectively.

Letry = (ts, f) be the furthest unserved requestNoyIN of the subsequence.,
at timet, that is, the unserved request frem; most remote from the origit. Finally,
letrr = (tr, F') be the furthest request in.,. Notice that by definitiory < F.

We now distinguish different cases depending on the positiohthe request,,
relative tof andF'.

—

FIGURE 1. Case 1 of the proofs of Theorem 5.5 and Theorem 5.6.

Case 1:x < f (see Figure 1)

Since themRIN-server still has to travel tg, all the requests iw—_; will be served

on the way back to the origin and the total completion time ofnireN-server will

not increase by releasing the requests. Since new requests can never decrease the
optimal offline solution value, the claim follows from the induction hypothesis.
Case2:f <x < F

If s(t) > z, againMRIN’s completion time does not increase compared to the situ-

_ __rangefors(t) ____ _>i
| |

I | |
0 f F

FIGURE 2. Case 2 of the proof of Theorems 5.5 and 5.6.

ation before the requests in.; were released, so we can assume #iat < = (see
Figure 2). ThemRIN-server will now travel to point: which needs timel(s(t), x),
and then return to the origin. ThugrIN(c) = t + d(s(t), z) + =. On the other hand
OPT(o) >t + x. It follows that

MRIN (o) - d(s(t),x)
OPT(o) — OPT(0o)

(1)

We now show thaopPT(o) is at leasB timesd(s(t), z), this will establish the claimed
ratio of4/3. Notice thatf < I (sincef < x < F) and the fact thaf is the furthest
unserved request at timiemplies that thevRIN-server must have already visitéd
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at timet (otherwise the furthest unserved request would bE ahd not atf < F).
Thereforet > F + d(F, s(t)), and

OPT(0) > t+ 2 > F + d(F,s(t)) + z. )

Clearly, each of the terms on the right hand side of inequality (2) is atd¢agt), z).
Case 3.f < F < x (see Figure 3)

First remember that therIN-server always moves to the right if there are yet unserved
requests to the right of his present position available.

T o

| |
[ | l
0 f F

FIGURE 3. Case 3 of the proof of Theorem 5.5 and Theorem 5.6.

Since the last request, x) is at least as far away from the origin Asthe optimal
offline server will only move left after it has served the furthest request iim this
case ate. In fact, the optimal fair offline strategy is as follows: as long as there are
unserved requests to the right of the server, move right, otherwise wait at the current
position. As soon as the last requéstz) has been released and the offline server has
reachedr, it moves to the origin and completes its work (see also the description of
the optimal offline strategy has been described in the proof of Lemma 4.3).

This implies that at any time in the intenjl ¢] the fair adversary’s server is to the
right of theMRIN-server (or at the same position).

Because the offline server does not return to the origin as long as there will be new
requests released to the right of its current position, the distance betwegr e
server and the offline server increases only if the offline server is waiting at some point.
Let W*(t) be the total waiting time of the offline server at the momenhen the last
requests is released. Then we know that

d(s(t), s*(t)) < W*(t). ®3)
Moreover, the following relation between the current time and the waiting time holds:
t = d(o,s"(t)) + W (t). (4)

Since the adversary is fair, its positiefi(¢) at timet can not be to the right of".
Thus,d(s*(t),z) = d(s*(t), F) + d(F, =) which gives us

OPT(0) > t + d(s*(t), F) + d(F,z) + (5)

@ d(o, s*(£)) + W*(t) + d(s*(t), F) + d(F,z) + a
=W*t)+ F+d(F,z)+x

=W*(t) + 2z

> W*(t) + 2d(s(t), s* (1))

©) i
> 3d(s(t), s*(t)) (6)
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At time ¢ MRIN’s server has to move from its current positigi) to = and from there
move to the origin:

MRIN(o) =t +d(s(t),z) +x
=t+d(s(t),s"(t)) +d(s*(t),F)+d(F,x) + .

Hence,
MRIN(o)  t+d(s*(t), F) +d(F,z)+x  d(s(t),s"(t))
oPT(o) oPT(0) oPT(0)
G d(s(t),s*(t))
= oer()
©) 4
<3
This proves the claim. O

Given the lower bound for general non-zealous algorithms in Theorem 5.3 we con-
clude that online algorithms which may obtain better competitive ratio’s against a fair
adversary will have to be non-zealous, i.e., incorporate waiting times.

The problem with AlgorithmvRIN is that shortly after it starts to return towards
the origin from the furthest previously unserved request, a new request to the right of
its server arrives (becomes known). In this caseMireNn-server has to return to a
position it just left. Algorithmws presented below attempts successfully to avoid this
pitfall.

Strategy ws(“Wait Smartly”): The ws-server moves right if there are yet un-
served requests to the right of his present position. Otherwise, it takes the fol-
lowing actions. Suppose it arrives at his present posiiohat timet.

1. Compute the the optimal offline solution valoeT(o<;) for all requests
released up to time

2. Determine a waiting tim&/’ := a OPT(0<;) — s(t) — ¢, with o = (1 +
VIT)/4.

3. Wait at points(¢) until time ¢+ 1/ and then start to move back to the origin

We note that when the server is moving back to the origin and no new requests are
released until time + W + s(t), then thews-server reaches the origihat timet +
W + s(t) = a- OPT(0<¢) having served all requests released so far. If a new request
is released at tim& < W + ¢ + s(¢) and the request is to the right eft’), then
thews-server interrupts its waiting and starts to move to the right immediately until it
reaches the furthest unserved request.

Theorem 5.6. Algorithm ws is a-competitive for theOLTSP on the non-negative
part RS of the real line against a fair adversary, whete= (1 + /17)/4 ~ 1.28.

Proof. By the definition of the waiting time it is sufficient to prove that at any point
where a waiting time is computed this waiting time is non-negative. In that case the
server will always return ab before timea oPT(cs). This is clearly true if the se-
guencer contains at most one request. We make the induction hypothesis shiat
«a-competitive for any sequence of at mast— 1 requests.

Leto = o4,...,0,, be any sequence of requests. As in the proof of Theorem 5.5
we consider the time¢ = t,, when the last set of requesis.; is released and let
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om = (t,z) be that requests ef—; which is furthest away from the origin. if= 0,
then the claim obviously holds, so we will assume for the remainder of the proof
thatt > 0.

We denote by(t) ands*(t) the positions of thevs- and the fair adversary’s server
at timet, respectively. As before we lef = (t¢, f) be the furthest (i.e. most remote
from the origin) yet unserved requestiws at timet of o,. Finally, letrp = (tp, F)
be the furthest released requestrif.

We now distinguish three different cases depending on the positionedditive to f
andF'. Recall thatf < F.
Case 1.z < f (see Figure 1)
Since thews-server has to travel t¢ anyway and by the induction hypothesis there
was a non-negative waiting time ifi or s(¢) (depending on whethes(¢) > f or
s(t) < f) before requests_; were released, the waiting time jhor s(¢) can not
decrease since the optimal offline completion time can not decrease by an additional
request.
Case2:f <z < F
If s(t) > x, then again by the induction hypothesis and the fact that the route length of
WSs’s server does not increase, the possible waiting timéstis non-negative.

Thus we can assume thdt) < = (see Figure 2). Thevs-server will now travel to
pointz, arrive there at time+ d(s(t), z), and possibly wait there some tiriié before
returning to the origin, with

W = a0PT(0) — (t +d(s(t),x) + ).
Inserting the obvious lower bour@PT(o) > t + z yields
W > (a—1)oPT(0) — d(s(t), x). (7)

To boundoPT(c) in terms ofd(s(t), x) consider the time’ when thews-server
had served the request Atand started to move left. It must be that< ¢ since
otherwises(t) could not be smaller tham as assumed. Thus, the subsequenge
of o does not contaiiit, z). By the induction hypothesisys is a-competitive for the
sequence <. Attime ¢’ when it left ' it would have arrived at times the optimal
offline costoPT(o<,/) on that subsequence:

t'+ F=a-0PT(o<y). (8)
Notice thatt > t' + d(F, s(t)). SinceoPT(o<y) > 2F we obtain from (8) that
t>a2F — F+d(F,s(t) = (2a—1)F +d(s(t), F). 9)

Since by assumption we hayéf) < x < F we get thatd(s(t),z) < d(s(t), F') and
d(s(t),z) < F,which inserted in (9) yields

t > (2a—1)d(s(t),x) + d(s(t),x) = 2ad(s(t), ). (10)

We combine this with the previously mentioned lower bowwmfr(c) > ¢t + z to
obtain:

OPT(0) > 2ad(s(t),z) + = > (2a+ 1)d(s(t), z). (12)
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Using inequality (11) in (7) gives
W > (a—1)2a+ 1)d(s(t),z) — d(s(t), z)
= (20% —a — 2)d(s(t), x)

_ (9 +4\/ﬁ 1 +4*/ﬁ _ 2) d(s(t), )

=0.

This completes the proof for the second case.

Case 3:f < F < x (see Figure 3)

Starting at time the ws-server moves to the right until it reachesand after waiting
there an amourit/ returns to0, with

W = aOPT(0) — (t +d(s(t),z) + x). (12)

Again we will show thatiW > 0, i.e., that also in this case the computed waiting
time atz for ws is nonnegative. At time the adversary’s server still has to travel at
leastd(s*(t), x) 4+ 2 units. This results in

OPT(0) > t+d(s*(t),z) + =.

Since the offline adversary is fair, its positieh(¢) at timet can not be strictly to the
right of F'. This yields

OPT(0) > t+d(F,z) + x. (13)
Insertion into (12) yields
W > (a—1)oPT(0) + OPT(0) — (t + d(s(t),z) + z)
> (o —1)oPT(0) + d(F, z) — d(s(t), x))

= (a—1)oPT(o) — d(s(t), F) (14)

sinces(t) < F by definition of the algorithnws.
The rest of the arguments are similar to those used in the previous case. Again
suppose that/s’s server started to move to the left frafhat some time’ < ¢ (where
t" is chosen maximal). By the induction hypothesisweserver would have returned
to the origin at timex oPT (o) (if the requests im—; had not been released). Hence

' +F =aoPT(oy). (15)

Notice thatt > t'+d(s(t), F') andopPT (o) > 2F (by the fact that-_,» must contain
at least one request &t since otherwisevs would not have moved its server f0).
Hence we obtain from (15) that

t>a2F — F+d(s(t),F) = (2a—1)F +d(s(t), F) > 2ad(s(t), F).
We combine this with (13) and the fact that> F' > d(s(t), F') to achieve

OPT(0) > 2ad(s(t), F) + d(F,z) + x > (2a + 1)d(s(t), F).
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Using this inequality in (14) gives
W > (a—1)2a+ 1)d(s(t), F) — d(s(t), F)
= (202 —a —2)d(s(t), F)

_ <9+m_ 1+m_2> d(5(t), F)
4 4
=0.
This completes the proof. O

6. CONCLUSIONS

We introduced an alternative more fair performance measure for online algorithms
for the traveling salesman problem. The first results are encouraging. On the non-
negative part of the real line the fair model allows a strictly lower competitive ratio
than the conventional model with an omnipotent adversary.

Next to that we considered a restricted class of algorithms for the online travel-
ing salesman problems, suggestively called zealous algorithms. We showed that in
general zealous algorithms have strictly higher competitive ratios than algorithms that
sometimes leaves the server idle, to wait for possible additional information. In online
routing companies, like courier services or transportation companies waiting instead
of immediately starting as soon as requests are presented is common practice. Our
results support this strategy.

For the problem on the real line our results together with the recent result of Lip-
mann [Lip99] show that non-zealous algorithms can do strictly better than zealous
algorithms against a conventional adversary, and uor results suggest that this is the
same against a fair adversary. However, it remains open to find a non-zealous algo-
rithm that beats the best possible zealous ones against a fair adversary in case of the
real line as underlying metric space.

We notice here that for general metric spaces the lower bouddnfthe competi-
tive ratio of algorithms in [AFLF99] is established with a fair adversary as opponent.
Moreover, a zealous algorithm is presented which has a competitive ratio that meets
the lower bound.

We hope to have encouraged research into ways to restrict the power of adversaries
in online competitive analysis.

Acknowledgement: Thanks to Maarten Lipmann for providing the lower bound in
Theorem 5.2.
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