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THE ONLINE-TSP AGAINST FAIR ADVERSARIES

ABSTRACT. In the online traveling salesman problem requests for visits to cities
(points in a metric space) arrive online while the salesman is traveling. The salesman
moves at no more than unit speed and starts and ends his work at a designated origin.
The objective is to find a routing for the salesman which finishes as early as possible.

Performance of algorithms is measured through their competitive ratio, compar-
ing the outcome of the algorithms with that of an adversary who provides the prob-
lem instance and therefore is able to achieve the optimal offline solution. Objections
against such omnipotent adversaries have lead us to devise an adversary that is in a
natural way, in the context of routing problems, more restricted in power.

For the exposition we consider the online traveling salesman problem on the met-
ric space given byR+

0 , the non-negative part of the real line. We show that a very nat-
ural strategy is3/2-competitive against the conventional adversary, which matches
the lower bound on competitive ratios achievable for algorithms for this problem.

Against the more “fair adversary”, that we propose, we show that there exists
an algorithm with competitive ratio1+

√
17

4 ≈ 1.28 and provide a matching lower
bound.

We also show competitiveness results for a special class of algorithms (called
zealous algorithms) that do not allow waiting time for the server as long as there are
requests unserved.

1. INTRODUCTION

The traveling salesman problem is a well studied problem in combinatorial opti-
mization. In the classical setting, one assumes that the complete input of an instance is
available for an algorithm to compute a solution. In many cases thisoffline optimiza-
tion model does not reflect the real-world situation appropriately. In many applications
not all requests for points to be visited are known in advance. Decisions have to be
madeonlinewithout knowledge about future requests.

Online algorithms are tailored to cope with such situations. Whereas offline algo-
rithms work on the complete input sequence, online algorithms only see the requests
released so far and thus, in planning a route, have to account for future requests that
may or may not arise at a later time. A common way to evaluate the quality of on-
line algorithms iscompetitive analysis[BEY98, FW98]. The outcome of the online
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2 THE ONLINE-TSP AGAINST FAIR ADVERSARIES

algorithm is compared to that of an adversary, that provides the input sequence and
therefore can achieve the optimal offline solution.

In this paper we consider the following online variant of the traveling salesman
problem (calledOLTSP in the sequel) which was introduced in [AFL+99]. Cities (re-
quests) arrive online over time while the salesman is traveling. The requests are to
be handled by a salesman-server that starts and ends his work at a designated origin.
The objective is to find a routing for the server which finishes as early as possible (in
scheduling theory this goal is usually referred to as minimizing themakespan). In
this model the server is allowed to wait at the cost of time that elapses. Decisions are
revocable, as long as they have not been executed. Only history is irrevocable.

1.1. Previous Work. Ausiello et al. [AFL+99] present a2-competitive algorithm
for OLTSP which works in general metric spaces. The authors also show that for
general metric spaces no deterministic algorithm can bec-competitive withc < 2.
For the special case that the metric space isR, the real line, their best algorithm is
7/4-competitive, whereas a lower bound on the competitive ratio of any algorithm of
(9 +

√
17)/8 ≈ 1.64 is derived [AFL+99]. Recently, Lipmann [Lip99] designed an

algorithm for the problem on the real line with competitive ratio that matches the just
mentioned lower bound.

1.2. Our Contribution. In this paper the effect of restricting the class of algorithms
allowed and restricting the power of the adversary in the competitive analysis is stud-
ied. We introduce and analyze a new class of online algorithms which we callzealous
algorithms. Roughly speaking, a zealous algorithm never sits idle while there is work
to do. A similar concept was used for scheduling problems in [LL74]. A precise
definition of zealousness is presented in Section 3 where we also show that in gen-
eral zealous algorithms are strictly weaker than algorithms that allow waiting time. In
particular we prove that no zealous algorithm can achieve a competitive ratio lower
than7/4 for theOLTSP on the real line. The7/4-competitive algorithm in [AFL+99]
is in fact a zealous algorithm and therefore best possible within this restricted class of
algorithms.

We then concentrate on the special case ofOLTSPwhen the underlying metric space
is R+

0 , the non-negative part of the real line. In Section 4 we show that an extremely
simple and natural zealous strategy is3/2-competitive and that this result is best pos-
sible for (zealous and non-zealous) deterministic algorithms onR+

0 .
The main contribution is contained in Section 5. Here we deal with an objection

frequently encountered against competitive analysis concerning the unrealistic power
of the adversary against which performance is measured. Indeed, for theOLTSPon the
real line the before mentioned7/4-competitive algorithm reaches its competitive ratio
against an adversary that moves away from the previously released requests without
giving any information to the online algorithm. We introduce an adversary who is in a
natural way restricted in the context of the online traveling salesman problem studied
here. We call it afair adversary. It should be seen as a more reasonable adversary
model. A fair adversary always keeps its server within the convex hull of the requests
released so far. We show that this adversary model indeed allows for lower competitive
ratios. For instance, the above mentioned3/2-competitive zealous strategy against the
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conventional adversary is4/3-competitive against the fair adversary. This result is best
possible for zealous algorithms against a fair adversary.

Zealous Algorithms General Algorithms

General Adversary LB = UB = 3/2 LB = UB = 3/2
Fair Adversary LB = UB = 4/3 LB = UB = (1 +

√
17)/4

TABLE 1. Overview of the lower bound (LB) and upper bound (UB)
results for the competitive ratio of deterministic algorithms forOLTSP

onR+
0 in this paper.

We also present a non-zealous algorithm with competitive ratio(1 +
√

17)/4 ≈
1.28 < 4/3 competing against the fair adversary. Our result is the first one that shows
that waiting is actually advantageous in theOLTSP. The before mentioned algorithm
in [Lip99] also uses waiting, but became known after the one presented in this paper
and has not been published officially yet. Such results are known already for online
scheduling problems (see e.g. [HV96, CVW97, PSW95]) and, again very recently,
also for an online dial-a-ride problem [AKR00]. Our competitiveness result is com-
plemented by a matching lower bound on the competitive ratio of algorithms against
the fair adversary. Table 1 summarizes our results forOLTSP onR+

0 .
We first continue the paper by giving precise descriptions of the problems studied,

and the measure for analyzing performance of the algorithms.

2. PRELIMINARIES

An instance of theOnline Traveling Salesman Problem(OLTSP) consists of a metric
spaceM = (X, d) with a distinguished origino ∈ M and a sequenceσ = σ1, . . . , σm
of requests. A server is located at the origino at time 0 and can move at most at
unit speed. In this paper we are mainly concerned with the special case thatM is
R+

0 , the non-negative part of the real line endowed with the Euclidean metric, i.e.,
X = R+

0 = {x ∈ R : x ≥ 0 }, andd(x, y) = |x− y|; the origino equals the point0.
Eachrequestis a pairσi = (ti, xi), whereti ∈ R is the time at which requestσi is

released (becomes known), andxi ∈ X is the point in the metric space requested to be
visited. We assume that the sequenceσ = σ1, . . . , σm of requests is given in order of
non-decreasing release times. For a real numbert we denote byσ≤t the subsequence
of requests inσ released up to timet. Similarly,σ<t is the subsequence ofσ consisting
of those requests with release time strictly smaller thant.

It is assumed that the online algorithm does neither have information about the time
when the last request is released nor about the total number of requests.

An online algorithm forOLTSP must determine the behaviour of the server at a
certain momentt of time as a function of all the requests inσ≤t (and of the current
time t). In contrast, the offline algorithm has information about all requests in the
whole sequenceσ already at time0. A feasible online/offline solution is a route for the
server which serves all requested points, where each request is served not earlier than
the time it is released, and which starts and ends in the origino.

The objective in theOLTSP is to minimize the total completion time (also called the
makespanin scheduling) of the server, that is, the time when the server has served all
requests and returned to the origin.
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Let ALG(σ) denote the completion time of the server moved by algorithmALG on
the sequenceσ of requests. We useOPT to denote the optimal offline algorithm. An
online algorithmALG for OLTSP is c-competitive, if there exists a constantc such that
for every request sequenceσ the inequalityALG(σ) ≤ c · OPT(σ) holds.

3. ZEALOUS ALGORITHMS

In this section we introduce a particular class of algorithms forOLTSP which we
call zealous algorithms. Intuitively, a zealous algorithm should never sit and wait
when it could serve yet unserved requests. A zealous server should also move towards
work that has to be done directly without any detours. To translate this intuition into a
rigorous definition some care has to be taken.

Definition 3.1 (Zealous Algorithm). An algorithmALG for OLTSP is calledzealous,
if it satisfies the following conditions:

1. If there are still unserved requests, then the direction of the server operated
by ALG changes only if a new request becomes known, or the server is either
in the origin or at a request that has just been served.

2. At any time when there are yet unserved requests, the server operated byALG

either moves towards an unserved request or the origin at maximum (i.e. unit)
speed. (The latter case is only allowed if the server operated byALG is not yet in
the origin).

We emphasize that a zealous algorithm is allowed to move its server towards an
unserved request and change his direction towards another unserved request or to the
origin at the moment a new request becomes known.

Theorem 3.2([AFL+99]). Let ALG be a zealous online algorithm forOLTSP on the
real lineR. Then the competitive ratio ofALG is at least(9 +

√
17)/8 ≈ 1.64.

Lemma 3.3. Let ALG be a zealous online algorithm forOLTSP on the real lineR.
Then the competitive ratio ofALG is at least7/4.

Proof. Suppose thatALG is a zealous algorithm forOLTSP on the real line. Con-
sider the following adversarial input sequence. At time0 and1/2 two requestsσ1 =
(0, 1/2) andσ2 = (1/2, 0), respectively, are released. There will be no further re-
quests before time1. Thus, by the zealousness of the algorithm the server will be at
the origin at time1.

At time 1 two new requests at points1 and−1, respectively, are released. Since the
algorithm is zealous, starting at time1 it must move its server to one of these requests
at maximum, i.e., unit, speed. Without loss of generality assume that this is the request
at 1. ALG’s server will reach this point at time2. Starting at time2, ALG will have
to move its server either directly towards the unserved request at−1 or towards the
origin, which essentially gives the same movement and implies that the server is at the
origin at time3. At that time, the adversary issues another request at1. Thus,ALG’s
server will still need at least4 time units to serve−1 and1 and return at the origin.
Therefore, it will not be able to complete its work before time7.

The offline adversary handles the sequence by first serving the request at−1, then
the two requests at1 and finally returns to the origin at time4, yielding the desired
result.
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This lower bound shows that the7/4-competitive algorithm presented in [AFL+99],
which is in fact a zealous algorithm, is best possible within the class of zealous algo-
rithms for theOLTSP on the real line.

4. THE OLTSP ON THENON-NEGATIVE PART OF THEREAL L INE

We first considerOLTSPonR+
0 when the offline adversary is the conventional (om-

nipotent) opponent.

Theorem 4.1. Let ALG be any deterministic algorithm forOLTSP on R+
0 . Then the

competitive ratio ofALG is at least3/2.

Proof. At time 0 the requestσ1 = (0, 1) is released. LetT ≥ 1 be the time that
the server operated byALG has served the requestσ1 and returned to the origin0.
If T ≥ 3, then no further request is released andALG is no better than3/2-competitive
sinceOPT(σ1) = 2. Thus, assume thatT < 3.

In this case the adversary releases a new requestσ2 = (T, T ). Clearly,OPT(σ1, σ2) =
2T . On the other handALG(σ1, σ2) ≥ 3T , yielding a competitive ratio of3/2.

The following extremely simple strategy achieves a competitive ratio that matches
this lower bound (as we will show below):

Strategy MRIN(“Move-Right-If-Necessary”): If a new request is released and the
request is to the right of the current position of the server operated byMRIN, then
theMRIN-server starts to move right at full speed. The server continues to move
right as long as there are yet unserved requests to the right of the server. If there
are no more unserved requests to the right, then the server moves towards the
origin 0 at full speed.

It is easy to verify that AlgorithmMRIN is in fact a zealous algorithm. The following
theorem shows that the strategy has a best possible competitive ratio forOLTSPonR+

0 .

Theorem 4.2. StrategyMRIN is a zealous3/2-competitive algorithm for theOLTSP

on the non-negative partR+
0 of the real line.

Proof. We show the theorem by induction on the number of requests in the sequenceσ.
It clearly holds ifσ contains at most one request. The induction hypothesis states that
the claim of the theorem holds for any sequence ofm− 1 requests.

Suppose that requestσm = (t, x) is the last request ofσ = σ1, . . . , σm−1, σm.
If t = 0, thenMRIN is obviously3/2-competitive, so we will assume thatt > 0. Let f
be the position of the request unserved by theMRIN-server at timet (excludingσm),
which is furthest away from the origin (if all requests inσ1, . . . , σm−1 have already
been served byMRIN at timet then we setf = 0).

In casex ≤ f , MRIN’s cost for servingσ is equal to the cost for serving the sequence
consisting of the firstm− 1 requests ofσ. Since new requests can never decrease the
optimal offline cost, the induction hypothesis implies the theorem.

Now assume thatf < x. Thus, at timet the request inx is the furthest unserved
request. If the position ofMRIN at timet is to the right ofx, then its cost does not
increase by the release ofσm. The claim then follows from the induction hypothesis as
above. On the other hand, if at timet MRIN is to the left ofx, thenMRIN will complete
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its work no later than timet + 2x. The optimal offline costOPT(σ) is bounded from
below bymax{t + x, 2x}. Therefore,

MRIN(σ)
OPT(σ)

≤ t + x
OPT(σ)

+
x

OPT(σ)
≤ t + x

t + x
+

x
2x

=
3
2
.

The result established above can be used to obtain competitiveness results for the
generalization of theOLTSP on the real line when there arek ≥ 2 servers, and the
goal is to minimize the time when the last of its servers returns to the origin0 after all
requests have been served.

Lemma 4.3. There is an optimal offline strategy forOLTSPon the real line withk ≥ 2
servers such that no server ever crosses the origin.

Proof. Letσ be any request sequence and let(t−0 , x−0 ) and(t+0 , x+
0 ) be the leftmost and

rightmost request inσ. For any timet we denote byσ>t the subsequence of requests
released strictly after timet.

Now consider the following offline strategy for routing the servers. Only two of the
servers are used. At time0 the first server moves to the right until pointx+

0 , the second
moves to the left until it reachesx−0 . We now describe the strategy for the server atx+

0
for moving left. The situation for the other server is symmetric.

The server waits atx+
0 until time T := max{x+

0 , t+0 }. Then it moves left until it
reaches the position ofx+

T , the rightmost request in the subsequenceσ>T , with release
time t+T . It waits there until timeS := max{T +x+

0 −x+
T , t+T }. The time parameterT

is updated toT := S and the left movement is continued as above. Ifσ>T becomes
empty the server moves back to the origin.

It is easy to see that the parameterT maintained by the right server always has the
property thatT + x+

T is a lower bound for the optimum offline completion time. Thus,
the strategy described above yields in fact an optimal offline solution.

Corollary 4.4. There is a3/2-competitive algorithm for theOLTSPwithk ≥ 2 servers
on the real line.

Proof. The online algorithm uses two servers. One server handles all request onR+
0 ,

the other one serves the requests onR−0 . Each server uses theMRIN-strategy. It follows
from Theorem 4.2 and Lemma 4.3 that this strategy is3/2-competitive.

5. FAIR ADVERSARIES

The adversaries used in the bounds of the previous section are abusing their power
in the sense that they can move to points where they know a request will pop up without
revealing the request to the online server before reaching the point. As an alternative
we propose the following more reasonable adversary that we baptizedfair adversary.
We show that one can obtain better competitive ratios for theOLTSP onR+

0 under this
model. We will also see that under this adversary model there exists a distinction in
competitiveness between zealous and non-zealous algorithms.

Recall thatσ<t is the subsequence ofσ consisting of those requests with release
time strictly smaller thant.
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Definition 5.1 (Fair Adversary). An offline adversary for theOLTSP in the Euclidean
space(Rn, ‖.‖) is fair, if at any momentt, the position of the server operated by the
adversary is within the convex hull of the origin0 and the requested points fromσ<t.

In the special case ofR+
0 a fair adversary must always keep its server in the inter-

val [0, F ], whereF is the position of the request with the largest distance to the origin0
among all requests released so far.

The following lower bound result shows that theOLTSP on the real line against fair
adversaries is still a non-trivial problem.

Theorem 5.2. Let ALG be any deterministic algorithm forOLTSP on R. Then the
competitive ratio ofALG against a fair adversary is at least(5 +

√
57)/8 ≈ 1.57.

Proof. Suppose there exists aρ-competitive online algorithmALG, whith ρ = (5 +√
57)/8. The adversarial sequence starts with two requests at time0, σ1 = (0, 1) and

σ2 = (0,−1). Without loss of generality, we assume that the first request which is
served byALG is σ1. At time 2 the online server can not have served both requests.
We distinguish two main cases divided in some subcases.
Case 1:None of the requests has been served at time2.

• If at time 3 requestσ1 is still unserved, lett′ be the first time the server crosses
the origin after serving the request. Clearly,t′ ≥ 4. At time t′ the online server
still has to visit the request in−1.

If t′ > 4ρ − 2 the server can not beρ-competitive because the fair adversary
can serve the sequence and be back in the origin at time4.

Thus, suppose that4 ≤ t′ ≤ 4ρ − 2. At time t′ a new requestσ3 = (t′, 1) is
released. The online server can not finish the complete sequence beforet′ + 4,
whereas the adversary needs timet′+1. Therefore,ρ ≥ t′+4

t′+1 . For4 ≤ t′ ≤ 4ρ−2
we have that the expressiont′+4

t′+1 is decreasing int′. Thus

ρ ≥ (4ρ− 2) + 4
(4ρ− 2) + 1

=
4ρ + 2
4ρ− 1

implying ρ ≥ (5 +
√

57)/8.
• If at time 3 the requestσ1 has already been served, the online server can not be

to the left of the origin at time3 (given the fact that at time2 no request had
been served). The adversary now gives a new requestσ3 = (3, 1). There are two
possibilities: eitherσ2, the request in−1, is served beforeσ3 or the other way
round.

If the server decides to serveσ2 beforeσ3 then it can not complete before
time 7. Since the adversary completes the sequence in time4, the competitive
ratio is at least7/4.

If the online server servesσ3 first, then again, lett′ be the time that the server
crosses the origin after servingσ3. As before, we must have4 ≤ t′ ≤ 4ρ− 2. At
time t′ the fourth requestσ4 = (t′, 1) is released. The same arguments as above
apply to show that the algorithm is at leastρ-competitive withρ = (5 +

√
57)/8.

Case 2:σ1 has been served at time2 by the online server.
At time 2 the third requestσ3 = (2, 1) is released. In fact, we are now back in the
situation in which at time 2 none of the two requests are served. In case the movements
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of the online server are such that no further request is released by the adversary, the
latter will complete at time4. In the other cases the last released requests are released
after time4 and the adversary can still reach them in time.

For comparison, the best possible algorithm for theOLTSP in R against an adversary
that is not restricted to be fair is9+

√
17

8 -competitve [Lip99]. So far we have not been
able yet to design algorithm that has competitive ratio(5 +

√
57)/8 against a fair

adversary. In that sense the picture is complete for the problem on the non-negative
part of the real line (see Theorems 5.4 and 5.5 for zealous algorithms and Theorems
5.3 and 5.6 for non-zealous algorithms below).

Theorem 5.3. Let ALG be any deterministic algorithm forOLTSP on R+
0 . Then the

competitive ratio ofALG against a fair adversary is at least(1 +
√

17)/4 ≈ 1.28.

Proof. Suppose thatALG is ρ-competitive for someρ ≥ 1. At time 0 the adversary
releases requestσ1 = (0, 1). Let T denote the time that the server operated byALG

has served this request and is back at the origin. ForALG to beρ-competitive, we
must have thatT ≤ ρ · OPT(σ1) = 2ρ. At time T the adversary releases a second
requestσ2 = (T, 1). The completion time ofALG becomes then at leastT + 2.

On the other hand, starting at time0 the fair adversary moves its server to1, lets it
wait there until timeT and then goes back to the origin0 yielding a completion time
of T + 1. Therefore,

ALG(σ)
OPT(σ)

≥ T + 2
T + 1

≥ 2ρ + 2
2ρ + 1

= 1 +
1

2ρ + 1
,

given the fact thatT ≤ 2ρ. Since by assumptionALG is ρ-competitive, we have that
1 + 1/(2ρ + 1) ≤ ρ, implying thatρ ≥ (1 +

√
17)/4.

For zealous algorithms we can show a higher lower bound against a fair adversary.

Theorem 5.4. Let ALG be any deterministic zealous algorithm forOLTSP on R+
0 .

Then the competitive ratio ofALG against a fair adversary is at least4/3.

Proof. Consider the adversarial sequence consisting of the three requestsσ1 = (0, 1),
σ2 = (1, 0), andσ3 = (2, 1).

By its zealousness the online algorithm will start to travel to1 at time0, back to0
at time1, arriving there at time2. Then its server has to visit1 again, so that he will
finish no earlier than time4. Obviously, the optimal fair offline solution is to leave1
not before time2, and finishing at time3.

We show now that the algorithmMRIN presented before has a better competitive
ratio against the fair adversary than the3/2 against a conventional adversary. In fact we
show the ratio matches the lower bound for zealous algorithms proved in Theorem 5.4.

Theorem 5.5. StrategyMRIN is a 4/3-competitive algorithm for theOLTSP on R+
0

against a fair adversary.

Proof. Again we use induction on the number of requests in the sequenceσ to establish
the claim of the theorem. The claim clearly holds ifσ contains at most one request.
The induction hypothesis states that the claim of the theorem holds for any sequence
of m− 1 requests.
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Let σ = σ1, . . . , σm be any sequence of requests. We consider the timetm when
the last set of requestsσ=tm is released. Ift = 0, then the claim obviously holds, so
we will assume for the remainder of the proof thatt > 0. Let σm = (t, x) be that
request ofσ=t which is furthest away from the origin.

In the sequel we denote bys(t) ands∗(t) the positions of theMRIN- and the fair
adversary server at timet, respectively.

Let rf = (tf , f) be the furthest unserved request byMRIN of the subsequenceσ<t
at timet, that is, the unserved request fromσ<t most remote from the origin0. Finally,
let rF = (tF , F ) be the furthest request inσ<t. Notice that by definitionf ≤ F .

We now distinguish different cases depending on the positionx of the requestσm
relative tof andF .

0 Ff

x

FIGURE 1. Case 1 of the proofs of Theorem 5.5 and Theorem 5.6.

Case 1:x ≤ f (see Figure 1)
Since theMRIN-server still has to travel tof , all the requests inσ=t will be served
on the way back to the origin and the total completion time of theMRIN-server will
not increase by releasing the requestsσ=t. Since new requests can never decrease the
optimal offline solution value, the claim follows from the induction hypothesis.
Case 2:f ≤ x < F
If s(t) ≥ x, againMRIN’s completion time does not increase compared to the situ-

0 f F

xrange fors(t)

FIGURE 2. Case 2 of the proof of Theorems 5.5 and 5.6.

ation before the requests inσ=t were released, so we can assume thats(t) ≤ x (see
Figure 2). TheMRIN-server will now travel to pointx which needs timed(s(t), x),
and then return to the origin. Thus,MRIN(σ) = t + d(s(t), x) + x. On the other hand
OPT(σ) ≥ t + x. It follows that

MRIN(σ)
OPT(σ)

≤ 1 +
d(s(t), x)
OPT(σ)

(1)

We now show thatOPT(σ) is at least3 timesd(s(t), x), this will establish the claimed
ratio of 4/3. Notice thatf < F (sincef ≤ x < F ) and the fact thatf is the furthest
unserved request at timet implies that theMRIN-server must have already visitedF
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at timet (otherwise the furthest unserved request would be atF and not atf < F ).
Therefore,t ≥ F + d(F, s(t)), and

OPT(σ) ≥ t + x ≥ F + d(F, s(t)) + x. (2)

Clearly, each of the terms on the right hand side of inequality (2) is at leastd(s(t), x).
Case 3:f ≤ F ≤ x (see Figure 3)
First remember that theMRIN-server always moves to the right if there are yet unserved
requests to the right of his present position available.

0 f

x

F

range fors(t)

FIGURE 3. Case 3 of the proof of Theorem 5.5 and Theorem 5.6.

Since the last request(t, x) is at least as far away from the origin asF , the optimal
offline server will only move left after it has served the furthest request inσ, in this
case atx. In fact, the optimal fair offline strategy is as follows: as long as there are
unserved requests to the right of the server, move right, otherwise wait at the current
position. As soon as the last request(t, x) has been released and the offline server has
reachedx, it moves to the origin and completes its work (see also the description of
the optimal offline strategy has been described in the proof of Lemma 4.3).

This implies that at any time in the interval[0, t] the fair adversary’s server is to the
right of theMRIN-server (or at the same position).

Because the offline server does not return to the origin as long as there will be new
requests released to the right of its current position, the distance between theMRIN-
server and the offline server increases only if the offline server is waiting at some point.
Let W ∗(t) be the total waiting time of the offline server at the momentt when the last
requestx is released. Then we know that

d(s(t), s∗(t)) ≤ W ∗(t). (3)

Moreover, the following relation between the current time and the waiting time holds:

t = d(o, s∗(t)) + W ∗(t). (4)

Since the adversary is fair, its positions∗(t) at time t can not be to the right ofF .
Thus,d(s∗(t), x) = d(s∗(t), F ) + d(F, x) which gives us

OPT(σ) ≥ t + d(s∗(t), F ) + d(F, x) + x (5)
(4)
= d(o, s∗(t)) + W ∗(t) + d(s∗(t), F ) + d(F, x) + x

= W ∗(t) + F + d(F, x) + x

= W ∗(t) + 2x

≥ W ∗(t) + 2d(s(t), s∗(t))
(3)
≥ 3d(s(t), s∗(t)) (6)
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At time t MRIN’s server has to move from its current positions(t) to x and from there
move to the origin:

MRIN(σ) = t + d(s(t), x) + x

= t + d(s(t), s∗(t)) + d(s∗(t), F ) + d(F, x) + x.

Hence,

MRIN(σ)
OPT(σ)

=
t + d(s∗(t), F ) + d(F, x) + x

OPT(σ)
+

d(s(t), s∗(t))
OPT(σ)

(5)
≤ 1 +

d(s(t), s∗(t))
OPT(σ)

(6)
≤ 4

3
.

This proves the claim.

Given the lower bound for general non-zealous algorithms in Theorem 5.3 we con-
clude that online algorithms which may obtain better competitive ratio’s against a fair
adversary will have to be non-zealous, i.e., incorporate waiting times.

The problem with AlgorithmMRIN is that shortly after it starts to return towards
the origin from the furthest previously unserved request, a new request to the right of
its server arrives (becomes known). In this case theMRIN-server has to return to a
position it just left. AlgorithmWS presented below attempts successfully to avoid this
pitfall.

Strategy WS(“Wait Smartly”): The WS-server moves right if there are yet un-
served requests to the right of his present position. Otherwise, it takes the fol-
lowing actions. Suppose it arrives at his present positions(t) at timet.
1. Compute the the optimal offline solution valueOPT(σ≤t) for all requests

released up to timet.
2. Determine a waiting timeW := α OPT(σ≤t) − s(t) − t, with α = (1 +√

17)/4.
3. Wait at points(t) until timet+W and then start to move back to the origin0.

We note that when the server is moving back to the origin and no new requests are
released until timet + W + s(t), then theWS-server reaches the origin0 at timet +
W + s(t) = α · OPT(σ≤t) having served all requests released so far. If a new request
is released at timet′ ≤ W + t + s(t) and the request is to the right ofs(t′), then
theWS-server interrupts its waiting and starts to move to the right immediately until it
reaches the furthest unserved request.

Theorem 5.6. Algorithm WS is α-competitive for theOLTSP on the non-negative
part R+

0 of the real line against a fair adversary, whereα = (1 +
√

17)/4 ≈ 1.28.

Proof. By the definition of the waiting time it is sufficient to prove that at any point
where a waiting time is computed this waiting time is non-negative. In that case the
server will always return at0 before timeα OPT(σ). This is clearly true if the se-
quenceσ contains at most one request. We make the induction hypothesis thatWS is
α-competitive for any sequence of at mostm− 1 requests.

Let σ = σ1, . . . , σm be any sequence of requests. As in the proof of Theorem 5.5
we consider the timet = tm when the last set of requestsσ=t is released and let
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σm = (t, x) be that requests ofσ=t which is furthest away from the origin. Ift = 0,
then the claim obviously holds, so we will assume for the remainder of the proof
thatt > 0.

We denote bys(t) ands∗(t) the positions of theWS- and the fair adversary’s server
at timet, respectively. As before we letrf = (tf , f) be the furthest (i.e. most remote
from the origin) yet unserved request byWS at timet of σ<t. Finally, letrF = (tF , F )
be the furthest released request inσ<t.

We now distinguish three different cases depending on the position ofx relative tof
andF . Recall thatf ≤ F .
Case 1:x ≤ f (see Figure 1)
Since theWS-server has to travel tof anyway and by the induction hypothesis there
was a non-negative waiting time inf or s(t) (depending on whethers(t) > f or
s(t) ≤ f ) before requestsσ=t were released, the waiting time inf or s(t) can not
decrease since the optimal offline completion time can not decrease by an additional
request.
Case 2:f ≤ x < F
If s(t) ≥ x, then again by the induction hypothesis and the fact that the route length of
WS’s server does not increase, the possible waiting time ats(t) is non-negative.

Thus we can assume thats(t) < x (see Figure 2). TheWS-server will now travel to
pointx, arrive there at timet+d(s(t), x), and possibly wait there some timeW before
returning to the origin, with

W = αOPT(σ)− (t + d(s(t), x) + x).

Inserting the obvious lower boundOPT(σ) ≥ t + x yields

W ≥ (α− 1)OPT(σ)− d(s(t), x). (7)

To boundOPT(σ) in terms ofd(s(t), x) consider the timet′ when theWS-server
had served the request atF and started to move left. It must be thatt′ < t since
otherwises(t) could not be smaller thanx as assumed. Thus, the subsequenceσ≤t′

of σ does not contain(t, x). By the induction hypothesis,WS is α-competitive for the
sequenceσ≤t′ . At time t′ when it leftF it would have arrived atα times the optimal
offline costOPT(σ≤t′) on that subsequence:

t′ + F = α · OPT(σ≤t′). (8)

Notice thatt ≥ t′ + d(F, s(t)). SinceOPT(σ≤t′) ≥ 2F we obtain from (8) that

t ≥ α2F − F + d(F, s(t)) = (2α− 1)F + d(s(t), F ). (9)

Since by assumption we haves(t) < x < F we get thatd(s(t), x) ≤ d(s(t), F ) and
d(s(t), x) ≤ F , which inserted in (9) yields

t ≥ (2α− 1)d(s(t), x) + d(s(t), x) = 2αd(s(t), x). (10)

We combine this with the previously mentioned lower boundOPT(σ) ≥ t + x to
obtain:

OPT(σ) ≥ 2αd(s(t), x) + x ≥ (2α + 1)d(s(t), x). (11)
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Using inequality (11) in (7) gives

W ≥ (α− 1)(2α + 1)d(s(t), x)− d(s(t), x)

= (2α2 − α− 2)d(s(t), x)

=

(

9 +
√

17
4

− 1 +
√

17
4

− 2

)

d(s(t), x)

= 0.

This completes the proof for the second case.
Case 3:f ≤ F ≤ x (see Figure 3)
Starting at timet theWS-server moves to the right until it reachesx, and after waiting
there an amountW returns to0, with

W = αOPT(σ)− (t + d(s(t), x) + x). (12)

Again we will show thatW ≥ 0, i.e., that also in this case the computed waiting
time atx for WS is nonnegative. At timet the adversary’s server still has to travel at
leastd(s∗(t), x) + x units. This results in

OPT(σ) ≥ t + d(s∗(t), x) + x.

Since the offline adversary is fair, its positions∗(t) at timet can not be strictly to the
right of F . This yields

OPT(σ) ≥ t + d(F, x) + x. (13)

Insertion into (12) yields

W ≥ (α− 1)OPT(σ) + OPT(σ)− (t + d(s(t), x) + x)

≥ (α− 1)OPT(σ) + d(F, x)− d(s(t), x))

= (α− 1)OPT(σ)− d(s(t), F ) (14)

sinces(t) ≤ F by definition of the algorithmWS.
The rest of the arguments are similar to those used in the previous case. Again

suppose thatWS’s server started to move to the left fromF at some timet′ ≤ t (where
t′ is chosen maximal). By the induction hypothesis theWS-server would have returned
to the origin at timeα OPT(σ<t′) (if the requests inσ=t had not been released). Hence

t′ + F = α OPT(σ<t′). (15)

Notice thatt ≥ t′+d(s(t), F ) andOPT(σ<t′) ≥ 2F (by the fact thatσ<t′ must contain
at least one request atF since otherwiseWS would not have moved its server toF ).
Hence we obtain from (15) that

t ≥ α2F − F + d(s(t), F ) = (2α− 1)F + d(s(t), F ) ≥ 2αd(s(t), F ).

We combine this with (13) and the fact thatx ≥ F ≥ d(s(t), F ) to achieve

OPT(σ) ≥ 2αd(s(t), F ) + d(F, x) + x ≥ (2α + 1)d(s(t), F ).
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Using this inequality in (14) gives

W ≥ (α− 1)(2α + 1)d(s(t), F )− d(s(t), F )

= (2α2 − α− 2)d(s(t), F )

=

(

9 +
√

17
4

− 1 +
√

17
4

− 2

)

d(s(t), F )

= 0.

This completes the proof.

6. CONCLUSIONS

We introduced an alternative more fair performance measure for online algorithms
for the traveling salesman problem. The first results are encouraging. On the non-
negative part of the real line the fair model allows a strictly lower competitive ratio
than the conventional model with an omnipotent adversary.

Next to that we considered a restricted class of algorithms for the online travel-
ing salesman problems, suggestively called zealous algorithms. We showed that in
general zealous algorithms have strictly higher competitive ratios than algorithms that
sometimes leaves the server idle, to wait for possible additional information. In online
routing companies, like courier services or transportation companies waiting instead
of immediately starting as soon as requests are presented is common practice. Our
results support this strategy.

For the problem on the real line our results together with the recent result of Lip-
mann [Lip99] show that non-zealous algorithms can do strictly better than zealous
algorithms against a conventional adversary, and uor results suggest that this is the
same against a fair adversary. However, it remains open to find a non-zealous algo-
rithm that beats the best possible zealous ones against a fair adversary in case of the
real line as underlying metric space.

We notice here that for general metric spaces the lower bound of2 on the competi-
tive ratio of algorithms in [AFL+99] is established with a fair adversary as opponent.
Moreover, a zealous algorithm is presented which has a competitive ratio that meets
the lower bound.

We hope to have encouraged research into ways to restrict the power of adversaries
in online competitive analysis.

Acknowledgement:Thanks to Maarten Lipmann for providing the lower bound in
Theorem 5.2.
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