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ABSTRACT. The traveling repairman problem (TRP) is a variant of the famous trav-
eling salesman problem (TSP). The objective for theTRP is to minimize the latency,
that is, the the weighted sum of completion times of the cities, where the completion
time of a city is defined to be the time in the tour before the city is reached.

In the online traveling repairman problemOLTRP requests for visits to cities
(points in a metric space) arrive online while the repairman is traveling. We ana-
lyze the performance of algorithms using competitive analysis, where the cost of an
online algorithm is compared to that of an optimal offline algorithm. An optimal
offline algorithm knows the entire request sequence in advance and can serve it with
minimum cost.

Recently, Feuerstein and Stougie [FS00] presented a9-competitive algorithm for
theOLTRPon the real line. In this paper we show how to use techniques from online-
scheduling to obtain an8-competitive deterministic algorithm which works for any
metric space. We also present a randomized algorithm which has a competitive ratio
of 4

ln 2 ≈ 5.7708 against an oblivious adversary. All of our results also hold for the
“dial-a-ride” generalization of theOLTRP, where objects have to be picked up and
delivered by a server.

1. INTRODUCTION

The traveling repairman problem(TRP) is a variant of the famous traveling sales-
man problem. Given a set ofn pointsp1, . . . , pn in a metric space and a tour which
visits the points in some order, define the completion timeCj of a pointpj (in this
tour) to be the length of the tour from the origin before it reachespj . Given weights
w1, . . . , wn for the points, the goal of theTRP is to minimize the average weighted
completion time or equivalently the total weighted completion time, i.e., the objective
function

∑n
j=1 wjCj . This objective function is also referred to as thelatency.

In this paper we consider the following online variant of theTRP called theonline
traveling repairman problem(OLTRP). Requests to visits for points arrive over time
while the repairman is traveling. The repairman moves at unit speed through the metric
space starting its work at a designated origin. A request is considered served when its
corresponding point in the metric space is visited by the repairman but not earlier
than its release time. The completion time of a request is the time in the tour before
the request is served. In this model the server is allowed to wait at the cost of time
that elapses. Decisions are revocable as long as they have not been executed. Only
history is irrevocable. The objective for theOLTRP is to minimize the weighted sum
of completion times.
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An online algorithm does not know about the existence of a request before its release
time. A common way to evaluate the quality of online algorithms iscompetitive anal-
ysis[BEY98]: An algorithm is calledc-competitive if its cost on any input sequence
is at mostc-times the cost of an optimal offline algorithm.

The two main results of this paper are an8-competitive deterministic algorithm and
a randomized algorithm which achieves a competitive ratio of4

ln 2 ≈ 5.7708 against
an oblivious adversary. These algorithms are adoptions of theGREEDY-INTERVAL

algorithm for online-scheduling presented in [HSW96, HS+97] and of the randomized
version given in [CP+96].

For the case of the real line our results improve previous best known upper bounds
for the competitive ratio of algorithms for theOLTRP. Moreover, for the case of gen-
eral metric spaces our algorithms are the first competitive algorithms. All of our results
continue to hold for the “dial-a-ride” generalization (calledOLLDARP) of theOLTRP.
In fact, we present the results for the generalized version. In the dial-a-ride problem
each request consists of an object which has to be picked up and delivered at its source
and destination, respectively. Preemption is not allowed: once the server has picked
up an object, it is not allowed to drop it at any other place than its destination.

1.1. Previous Work. Feuerstein and Stougie [FS00] present a9-competitive algo-
rithm for theOLTRPon the real line and a15-competitive algorithm forOLLDARP on
the real line for the case that the server has infinite capacity. Feuerstein and Stougie
also prove lower bounds of1+

√
2 and3 for the competitive ratio of any deterministic

algorithm forOLTRP andOLLDARP, respectively, on the real line.
The problem of minimizing the makespan was considered in [AF+99] for the case

of the Online-TSP. Online dial-a-ride problems with this objective were studied in
[AKR00, FS00].

1.2. Outline. In Section 2 we formally define the problems under study. Section 3
contains the deterministic algorithmINTERVAL and the proof of its competitiveness.
In Section 4 we present the randomized algorithmRANDINTERVAL which achieves
an improved competitive ratio. In that section we also show how to apply the ran-
domization techniques from algorithmRANDINTERVAL to obtain an extremely simple
algorithm RANDSLEEP for the problem of minimizing the makespan. Although the
competitive ratio ofRANDSLEEP, which equals1 + 1/ ln 2 ≈ 2.4427, does not beat
the best known bound of2 for the makespan problem, the proof of the performance
is very simple. The competitive ratios for the algorithms and the corresponding lower
bounds are given in Table 1.

TABLE 1. Competitive ratios for the problemsOLTRP andOLLDARP.

Algorithm INTERVAL RANDINTERVAL Previous best Lower bound

OLTRP 8 4/ ln 2 9 [FS00] 1 +
√

2 [FS00]
OLLDARP 8 4/ ln 2 — 3 [FS00]
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2. PRELIMINARIES

An instance of the online dial-a-ride problemOLLDARP consists of a metric spaceM =
(X, d) with a distinguished origino ∈ X and a sequenceσ = r1, . . . , rm of requests.
It is assumed that for all pairs of points(x, y) from M , there is a pathp : [0, 1] → X in
X with p(0) = x andp(1) = y of lengthd(x, y) (see [AF+99] for a thorough discus-
sion of this model). Examples of a metric spaces that satisfy the above condition are
the Euclidean spaceRp and a metric space induced by an undirected edge-weighted
graph.

Each request is a quadrupleri = (ti, wi, ai, bi), whereti ≥ 0 is a real number, the
time where requestri is released (becomes known),wi ≥ 0 is its weight factor (used
in the objective function), andai, bi ∈ V are the source and destination, respectively,
between which the new object is to be transported. We assume that the sequence
σ = r1, . . . , rm of requests is given in order of non-decreasing release times.

A server is located at the origino ∈ X at time0 and can move at constant unit speed.
The server has capacityC ∈ N ∪ {∞}, i.e., it can carry at mostC objects at a time.
We do not allowpreemption: once the server has picked up an object, it is not allowed
to be dropped at any other place than its destination. The online traveling repairman
problemOLTRP is obtained as the special case of theOLLDARP when for each request
its source and destination coincide (regardless of the capacity of the server).

An online algorithm forOLLDARP does neither have information about the release
time of the last request nor about the total number of requests. The online algorithm
must determine the behavior of the server at a certain momentt in time as a function
of all the requests released up to timet (an of the current timet). In contrast, an offline
algorithm has information about all requests in the whole sequenceσ already at time0.

Given a sequenceσ of requests, avalid transportation schedulefor σ is a sequence
of moves of the server such that the following conditions are satisfied: (a) The server
starts its movement in the origin vertexo, (b) each transportation request inσ is served,
but starting not earlier than its release time.

The objective function of theOLLDARP is the latency, which is defined to be the
weighted sum of completion times: Let Cj denote the time when requestrj completes
in the schedule produced by some algorithmALG. Then the latency of the solution
of ALG on σ is ALG(σ) :=

∑n
j=1 wjCj . We useOPT to denote an optimal offline

algorithm.
An online algorithmALG for OLLDARP is c-competitive, if there exists a constantc

such that for any request sequenceσ:

ALG(σ) ≤ c · OPT(σ).

If ALG is a randomized algorithm, thenALG(σ) must be replaced by the expected
cost E[ALG(σ)], where the expectation is taken over the random choices made byALG.
In this paper we evaluate randomized online algorithms only against anoblivious ad-
versary. An oblivious adversary must generate a request sequence in advance and is
not allowed to see the random choices made by the online algorithm. We refer to
[BEY98] for details on the various adversary models. A randomized online algorithm
ALG is c-competitive against an oblivious adversary if for any request sequenceσ:

E [ALG(σ)] ≤ c · OPT(σ).
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3. A DETERMINISTIC ALGORITHM

Our deterministic strategy is an adaption of the algorithmGREEDY-INTERVAL pre-
sented in [HSW96, HS+97] for online-scheduling. The modifications in the algorithm
are minor and the proof of the performance uses the same techniques.

Strategy INTERVAL : We first describe the initialization phase of the algorithm, that
is, the initial behavior of the algorithm, before schedules are actually computed
or followed.

If there is no request released at time0, the server waits until the timet1,
where the first request is released. We then setL := t1.

If requestsR are released at time0, compute the minimum timeT by that the
first of the requests inR could be completed. In what follows we assume that
T > 0, since in the caseT = 0 there are requests with source and destination0
released at time0 and these requests can be served at no cost by the algorithm.

If no further requests are released before timeT , the server waits until timeT
and we setL := T . Otherwise, if requests are released at some timet with
0 < t < T , then we setL := t. This completes the initialization.

After the initialization the algorithm works in phases as follows. Fori =
1, 2, . . . let Bi := 2i−1L. We also setB0 := L/2. For i ≥ 1, the ith phase
starts at timeBi. At time Bi the algorithm considers all the requests released up
to timeBi but not yet scheduled (in any of the previously computed schedules).
Call the set of those requestsRi. The algorithm now computes a schedule for the
requests inRi with the following properties:
(i) The schedule starts and ends in the origino.
(ii) The schedule has length at most2Bi = Bi+1.
(iii) The schedule maximizes the weight of requests served among all schedules

satisfying (i) and (ii).
The schedule computed this way is set to be followed from timeBi+1 until Bi+2
(SinceBi+2 − Bi+1 = (2i+1 − 2i)L = 2iL = Bi+1, the schedule can actually
be completed in the designated time period).

We now analyze the competitiveness of algorithmINTERVAL. Notice that the num-
berL computed in the initialization phase is clearly a lower bound on the completion
time of any request in an optimal offline solution. We will need this later.

Lemma 3.1. Let Si be the set of requests scheduled in phasei ≥ 1 of Algorithm IN-
TERVAL and denote byS∗i denote the set of requests in the optimal offline schedule
that complete in the time interval]Bi−1, Bi]. Then

k
∑

i=0

w(Si) ≥
k

∑

i=0

w(S∗i ) for k = 1, 2, . . . . (1)

Proof. Consider thekth phase of the algorithm. A schedule is computed at timeBk =
2k−1L. Let S :=

⋃k
i=1 S∗k \

⋃k−1
i=1 Sk be the requests in the schedule ofOPT that

complete by timeBk but have not yet been scheduled byINTERVAL. Clearly, none of
those requests can have been released before timeBk. Thus, all of them are available
for planning at timeBk for INTERVAL.
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Consider the optimum offline schedule which starts in the origino but not necessar-
ily ends ino. If we follow the firstBk time units of this schedule (with the modifica-
tion that if an object is picked up but not delivered before timeBk we omit this pickup
action) and then return to the origin, we obtain a schedule of length at most2Bk deliv-
ering all requests in

⋃k
i=1 S∗k and in particular all requests inS. Since this schedule is

one possibility forINTERVAL in phasek, it follows that the weight of requests sched-
uled in iterations1 to k is at least that of

⋃k
i=1 S∗k , which means that inequality (1)

holds.

The previous lemma gives us the following bound on the number of phases that
INTERVAL uses to process a given input sequenceσ.

Corollary 3.2. Suppose that the optimum offline schedule is completed at timeT ∈
]Bp−1, Bp] for somep ≥ 1. Then, the number of phases of AlgorithmINTERVAL is at
mostp. The schedule ofINTERVAL is completed no later than timeBp+2.

Proof. By Lemma 3.1 the weight of all requests scheduled in the firstp phases equals
the total weight of all requests. Hence all requests must be scheduled within the firstp
phases. Since, by construction ofINTERVAL, the schedule computed in phasep com-
pletes by timeBp+2, the claim follows.

To prove the performance result forINTERVAL we need one more elementary lemma.

Lemma 3.3. Let ai, bi ∈ R≥0 for i = 1, . . . , p and suppose that the following two
conditions are satisfied:

(i)
∑p

i=1 ai =
∑p

i=1 bi;

(ii)
∑p′

i=1 ai ≥
∑p′

i=1 bi for all 1 ≤ p′ ≤ p.

Then the inequality

p
∑

i=1

τiai ≤
p

∑

i=1

τibi (2)

holds for any nondecreasing sequence0 ≤ τ1 ≤ · · · ≤ τp.

Proof. Straightforward induction byp.

Theorem 3.4. Let σ = r1, . . . , rm be any sequence of requests. Denote byC∗
j ∈

]Bφj , Bφj+1 ] the completion time of requestrj in the optimal scheduleOPT(σ). Then

INTERVAL(σ) ≤ 8
n

∑

j=1

wjBφj . (3)

Proof. By definition of INTERVAL, each request scheduled in phasei completes no
later than timeBi+2. Summing up over all phases1, . . . , p we get that

INTERVAL(σ) ≤
p

∑

i=1

Bi+2w(Si) = 8
p

∑

i=1

Bi−1w(Si). (4)
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Applying Lemma 3.3 to the sequencesw(Si) andw(S∗i ) with the weighing sequence
τi := Bi−1 we get that the right and side of (4) is bounded by

8
p

∑

i=1

Bi−1w(S∗i ) = 8
n

∑

j=1

Bφjwj .

This proves the claim.

Since the completion timeC∗
j of requestσj in the optimum schedule satisfiesC∗

j >
Bφj , it follows immediately from Theorem 3.4 that the total weighted sum of com-
pletion times produced byINTERVAL is at most8 times the optimum value. We thus
obtain the following theorem.

Theorem 3.5. Algorithm INTERVAL is 8-competitive forOLLDARP.

4. AN IMPROVED RANDOMIZED ALGORITHM

In this section we show how to use techniques from [CP+96] to obtain an algorithm
RANDINTERVAL with improved competitive ratio.

At the beginning, the algorithmRANDINTERVAL chooses a random numberx ∈
]0, 1] according to the uniform distribution. From this moment on the algorithm is
completely deterministic, working like the deterministic algorithmINTERVAL pre-
sented in the last section. The only difference is that the first phase starts at timeL
(we setB′

1 := 2−xL) and fori ≥ 2 theith phase starts at timeB′
i := 2i−1−xL instead

of at timeBi = 2i−1. For i ≥ 1 the schedule computed in theith phase is followed
from timeB′

i+1 to B′
i+2. Notice that for any random choice ofx ∈]0, 1] the starting

time 21−xL of the schedule computed in the first phase is not earlier than the timeL
where this phase starts. Thus, in fact, the algorithm produces a feasible schedule.

By the proof of Theorem 3.4 it follows that for a sequenceσ = r1, . . . , rm of
requests the expected objective function value ofRANDINTERVAL satisfies:

E [RANDINTERVAL(σ)] ≤ E

[

8
n

∑

i=1

B′
φj

wj

]

= 8
n

∑

i=1

wjE
[

B′
φj

]

, (5)

where]B′
φj

, B′
φj+1

] is the interval containing the completion timeC∗
j of requestrj in

the optimal solutionOPT(σ). To prove a bound on the performance ofRANDINTER-

VAL we now compute E
[

B′
φj

]

. Notice thatBφj is the largest value2k−xL in the set

{2−xL, 21−xL, 22−xL, . . . } which is strictly smaller thanC∗
j .

Lemma 4.1. Let z ≥ L be a real number and letx ∈]0, 1] be randomly chosen ac-
cording to the uniform distribution on]0, 1]. Define the random variableB by

B := max{ 2k−xL : 2k−xL < z andk ∈ N }

Then, the expected value E[B] of B satisfies

E [B] =
z

2 ln 2
.
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Proof. Suppose that2kL ≤ z < 2k+1L for somek ≥ 0. Observe that

B =

{

2k−xL if x ≤ log2
2k+1L

z
2k+1−xL otherwise

Hence

E [B] =
∫ log2

2k+1L
z

0
2k−xLdx +

∫ 1

log2
2k+1L

z

2k+1−xLdx

=
∫ log2

2k+1L
z

0
2k−xLdx +

∫ 1

log2
2k+1L

z

2k−xLdx +
∫ 1

log2
2k+1L

z

2k−xLdx

= L2k
∫ 1

0
2−x dx + L2k

∫ 1

log2
2k+1L

z

2−x dx

= L2k
[

− 1
ln 2

2−x
]1

0
+ L2k

[

− 1
ln 2

2−x
]1

log2
2k+1L

z

=
z

2 ln 2
.

This completes the proof.

From Lemma 4.1 we can conclude that E
[

B′
φj

]

= 1
2 ln 2C∗

j . Using this result in

inequality (5) yields the following theorem:

Theorem 4.2. AlgorithmRANDINTERVAL is c-competitive withc = 4
ln 2 ≈ 5.7708 for

OLLDARP with respect to the objective function latency against an oblivious adver-
sary.

4.1. A Randomized Algorithm for the Minimization of the Makespan. We close
this section by showing how the randomization technique presented above can be used
to obtain an algorithm for the Online Dial-a-Ride Problem when the objective function
is themakespan. Call this versionOLDARP. We use the setting of [FS00, AKR00],
where the server has to return to the origin after serving all requests. The makespan is
then defined to be the the time when the server is back at the origin after all requests
have been served.

The algorithmRANDSLEEP presented below has a competitive ratio of1+1/ ln 2 ≈
2.4427 against an oblivious adversary. Although the best deterministic algorithm
called SMARTSTART is 2-competitive [AKR00],RANDSLEEP beats the competitive
ratio of5/2 achieved by the algorithmsIGNORE andREPLAN(see [FS00, AKR00] for
the definitions of these algorithms and proofs of their performance). Moreover, the
beauty ofRANDSLEEP are its simplicity and the easy proof of its performance.

Strategy RANDSLEEP : At the beginning, the algorithm chooses a random number
x ∈]0, 1] according to the uniform distribution. After this random choice, the
algorithm is again completely deterministic.

We first compute a lower boundL on the optimal offline makespan. If there
are requests released at time0 then we letL be the makespan of the shortest
schedule serving all these requests which starts and ends in the origino (as in
Algorithm INTERVAL we can assume that in this caseL > 0). If no requests
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are released at time0, thenL is set to the release time of the first request. This
completes the initialization.

Again the algorithm works in phases. Fori = 1, 2, . . . let Bi := 2i−xL.
Phasei is started at timeBi. At this time the algorithm considers all requestsRi
that have been released up to timeBi but not been served yet.RANDSLEEP com-
putes a shortest schedule for all requests inRi which starts and ends in the origin.
If this schedule can be completed no later than timeBi+1, the server follows this
schedule. If on the other hand the schedule needs more thanBi+1 − Bi = Bi
time units, then the server simply does nothing: it sleeps until timeBi+1.

Theorem 4.3. Algorithm RANDSLEEP is c-competitive forOLDARP with respect to
the makespan, wherec = 1 + 1/ ln 2 ≈ 2.4427.

Proof. Let Z∗ = OPT(σ) denote the optimum makespan for the input sequenceσ and
suppose that2k−xL < Z∗ ≤ 2k+1−xL for somek ≥ 0. Notice that such ak ≥ 0
must exist, sinceL is a lower bound onZ∗ and x > 0. By Lemma 4.1 we have
that E

[

2k−xL
]

= Z∗/(2 ln 2). Since the optimum schedule can be completed before
time 2k+1−xL, we can conclude two facts: first, all requests have been released by
time 2k+1−xL, and second, in the(k + 1)st phaseRANDSLEEP must have scheduled
all requests, since in this phase it allows2k+1−xL time units for a schedule serving all
unserved requests. The length of the schedule computed in the(k +1)st phase can not
exceedZ∗. Hence

E [RANDSLEEP(σ)] ≤ 4E
[

2k−1−xL
]

+ Z∗ =
(

1 +
1

ln 2

)

Z∗.

This is what we wanted to show.
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