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NEWS FROM THE ONLINE TRAVELING REPAIRMAN

SVEN O. KRUMKE!

ABSTRACT. The traveling repairman problerigp) is a variant of the famous trav-
eling salesman problenT éP). The objective for thdRPis to minimize the latency,

that is, the the weighted sum of completion times of the cities, where the completion
time of a city is defined to be the time in the tour before the city is reached.

In the online traveling repairman proble®LTRP requests for visits to cities
(points in a metric space) arrive online while the repairman is traveling. We ana-
lyze the performance of algorithms using competitive analysis, where the cost of an
online algorithm is compared to that of an optimal offline algorithm. An optimal
offline algorithm knows the entire request sequence in advance and can serve it with
minimum cost.

Recently, Feuerstein and Stougie [FS00] presented@mpetitive algorithm for
theOLTRPoON the real line. In this paper we show how to use techniques from online-
scheduling to obtain aB-competitive deterministic algorithm which works for any
metric space. We also present a randomized algorithm which has a competitive ratio
of ﬁ ~ 5.7708 against an oblivious adversary. All of our results also hold for the
“dial-a-ride” generalization of th©LTRP, where objects have to be picked up and
delivered by a server.

1. INTRODUCTION

Thetraveling repairman problenTRP) is a variant of the famous traveling sales-
man problem. Given a set af pointsps, ..., p, in a metric space and a tour which
visits the points in some order, define the completion titheof a pointp; (in this
tour) to be the length of the tour from the origin before it reaghesGiven weights
wy,...,w, for the points, the goal of th&RP is to minimize the average weighted
completion time or equivalently the total weighted completion time, i.e., the objective
function"_, w;C;. This objective function is also referred to as tatency

In this paper we consider the following online variant of Trep called theonline
traveling repairman problenfOLTRP). Requests to visits for points arrive over time
while the repairman is traveling. The repairman moves at unit speed through the metric
space starting its work at a designated origin. A request is considered served when its
corresponding point in the metric space is visited by the repairman but not earlier
than its release time. The completion time of a request is the time in the tour before
the request is served. In this model the server is allowed to wait at the cost of time
that elapses. Decisions are revocable as long as they have not been executed. Only
history is irrevocable. The objective for tl@® TRP is to minimize the weighted sum
of completion times.

!Konrad-Zuse-Zentrumiif Informationstechnik Berlin, Department Optimization, Takustr. 7, D-
14195 Berlin-Dahlem, Germany. Emaicumke @zib.de . Research supported by the German Science
Foundation (DFG, grant Gr 883/5-3)

Key words and phraseslraveling Repairman, Latency, Dial-a-Ride-Problem, Competitive Analysis.

1



2 SVEN O. KRUMKE

An online algorithm does not know about the existence of a request before its release
time. A common way to evaluate the quality of online algorithmsaspetitive anal-
ysis[BEY98]: An algorithm is called:-competitive if its cost on any input sequence
is at mostc-times the cost of an optimal offline algorithm.

The two main results of this paper are&nompetitive deterministic algorithm and
a randomized algorithm which achieves a competitive ratign‘i?fm 5.7708 against
an oblivious adversary. These algorithms are adoptions ofGHEEDY-INTERVAL
algorithm for online-scheduling presented in [HSW96,193] and of the randomized
version given in [CP96].

For the case of the real line our results improve previous best known upper bounds
for the competitive ratio of algorithms for tf@LTRP. Moreover, for the case of gen-
eral metric spaces our algorithms are the first competitive algorithms. All of our results
continue to hold for the “dial-a-ride” generalization (call®@dLDARP) of the OLTRP.

In fact, we present the results for the generalized version. In the dial-a-ride problem
each request consists of an object which has to be picked up and delivered at its source
and destination, respectively. Preemption is not allowed: once the server has picked
up an object, it is not allowed to drop it at any other place than its destination.

1.1. Previous Work. Feuerstein and Stougie [FS00] preserfi-eompetitive algo-
rithm for theOLTRP onN the real line and &-competitive algorithm foOLLDARP 0N
the real line for the case that the server has infinite capacity. Feuerstein and Stougie
also prove lower bounds af+ v/2 and3 for the competitive ratio of any deterministic
algorithm forOLTRPandOLLDARP, respectively, on the real line.

The problem of minimizing the makespan was considered in"[@dj for the case
of the OnlineTsp. Online dial-a-ride problems with this objective were studied in
[AKROO, FS00].

1.2. Outline. In Section 2 we formally define the problems under study. Section 3
contains the deterministic algorithmeTERVAL and the proof of its competitiveness.

In Section 4 we present the randomized algoritRANDINTERVAL which achieves

an improved competitive ratio. In that section we also show how to apply the ran-
domization techniques from algorithRANDINTERVAL to obtain an extremely simple
algorithm RANDSLEEP for the problem of minimizing the makespan. Although the
competitive ratio oRANDSLEEP, which equalsl + 1/1n2 ~ 2.4427, does not beat

the best known bound f for the makespan problem, the proof of the performance
is very simple. The competitive ratios for the algorithms and the corresponding lower
bounds are given in Table 1.

TABLE 1. Competitive ratios for the problen@LTRPandOLLDARP.

| Algorithm [| INTERVAL | RANDINTERVAL | Previous besf Lower bound |

OLTRP 8 4/1n2 9[FS00] || 1+ +/2[FS00]
OLLDARP 8 4/1n2 — 3 [FS00]
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2. PRELIMINARIES

An instance of the online dial-a-ride problédn LD ARP consists of a metric spadd =

(X, d) with a distinguished origim € X and a sequence = ry, ... ,r,, of requests.

Itis assumed that for all pairs of points, y) from M, there is a pathp : [0,1] — X in

X with p(0) = x andp(1) = y of lengthd(z, y) (see [AF99] for a thorough discus-

sion of this model). Examples of a metric spaces that satisfy the above condition are
the Euclidean spad®? and a metric space induced by an undirected edge-weighted
graph.

Each request is a quadruple= (t;, w;, a;, b;), wheret; > 0 is a real number, the
time where request; is released (becomes knowm), > 0 is its weight factor (used
in the objective function), and;, b; € V are the source and destination, respectively,
between which the new object is to be transported. We assume that the sequence
oc=ry,...,rm Of requests is given in order of non-decreasing release times.

A serveris located at the origine X attime0 and can move at constant unit speed.
The server has capacity € N U {co}, i.e., it can carry at most' objects at a time.

We do not allowpreemption once the server has picked up an object, it is not allowed
to be dropped at any other place than its destination. The online traveling repairman
problemOLTRPis obtained as the special case ofd_DARP when for each request

its source and destination coincide (regardless of the capacity of the server).

An online algorithm forOLLDARP does neither have information about the release
time of the last request nor about the total number of requests. The online algorithm
must determine the behavior of the server at a certain motriaritme as a function
of all the requests released up to titm@n of the current timé). In contrast, an offline
algorithm has information about all requests in the whole sequeateady at timé).

Given a sequence of requests, &alid transportation scheduli®r ¢ is a sequence
of moves of the server such that the following conditions are satisfied: (a) The server
starts its movement in the origin vertex(b) each transportation requestitis served,
but starting not earlier than its release time.

The objective function of th©LLDARP is thelatency which is defined to be the
weighted sum of completion timdset C'; denote the time when requestcompletes
in the schedule produced by some algorithnG. Then the latency of the solution
of ALG on o is ALG(0) := 7, w;C;. We useoPT to denote an optimal offline
algorithm.

An online algorithmaLG for OLLDARP is c-competitiveif there exists a constant
such that for any request sequence

ALG(0) < c¢-OPT(0).

If ALG is a randomized algorithm, thexLG (o) must be replaced by the expected
cost E[ALG(0)], where the expectation is taken over the random choices maslechy

In this paper we evaluate randomized online algorithms only againsblanous ad-
versary An oblivious adversary must generate a request sequence in advance and is
not allowed to see the random choices made by the online algorithm. We refer to
[BEY98] for details on the various adversary models. A randomized online algorithm
ALG is c-competitive against an oblivious adversary if for any request sequence

E[ALG(0)] < ¢- OPT(0).



4 SVEN O. KRUMKE

3. A DETERMINISTIC ALGORITHM

Our deterministic strategy is an adaption of the algorithREEDY-INTERVAL pre-
sented in [HSW96, HS97] for online-scheduling. The modifications in the algorithm
are minor and the proof of the performance uses the same techniques.

Strategy INTERVAL: We first describe the initialization phase of the algorithm, that
is, the initial behavior of the algorithm, before schedules are actually computed
or followed.

If there is no request released at tiiethe server waits until the timg,
where the first request is released. We thenset ¢;.

If requestsRk are released at tim& compute the minimum tim& by that the
first of the requests ik could be completed. In what follows we assume that
T > 0, since in the cas® = 0 there are requests with source and destindtion
released at timé and these requests can be served at no cost by the algorithm.

If no further requests are released before tifh¢he server waits until tim@&
and we setl, := T. Otherwise, if requests are released at some timéth
0 <t < T,thenwe seL := t. This completes the initialization.

After the initialization the algorithm works in phases as follows. For
1,2,... let B; := 2"1L. We also seBy := L/2. Fori > 1, theith phase
starts at timeB;. At time B; the algorithm considers all the requests released up
to time B; but not yet scheduled (in any of the previously computed schedules).
Call the set of those requedts. The algorithm now computes a schedule for the
requests inRk; with the following properties:

() The schedule starts and ends in the origin
(i) The schedule has length at ma@d®; = B; .
(iii) The schedule maximizes the weight of requests served among all schedules
satisfying (i) and (ii).
The schedule computed this way is set to be followed from tiing until B;
(SinceB; o — Biy1 = (2171 — 20)L = 2! = B; 1, the schedule can actually
be completed in the designated time period).

We now analyze the competitiveness of algorittiNnmERVAL. Notice that the num-
ber L computed in the initialization phase is clearly a lower bound on the completion
time of any request in an optimal offline solution. We will need this later.

Lemma 3.1. Let S; be the set of requests scheduled in phagel of AlgorithmiN-
TERVAL and denote bys; denote the set of requests in the optimal offline schedule
that complete in the time intervéB;_;, B;]. Then

k

k
> w(S) =D w(Sy) fork=1,2,.... (1)

i=0 =0

Proof. Consider thé&th phase of the algorithm. A schedule is computed at tifpe-=
2--11. LetS := JF, S; \ U Sk be the requests in the scheduleasT that
complete by timeB,, but have not yet been scheduledibyERVAL. Clearly, none of
those requests can have been released beforeRim&hus, all of them are available
for planning at timeB;, for INTERVAL.
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Consider the optimum offline schedule which starts in the okidint not necessar-
ily ends ino. If we follow the first By, time units of this schedule (with the modifica-
tion that if an object is picked up but not delivered before tiBiewe omit this pickup
action) and then return to the origin, we obtain a schedule of length a2Bgsdeliv-
ering all requests iQJf:1 S} and in particular all requests . Since this schedule is
one possibility fonNTERVAL in phasek, it follows that the weight of requests sched-
uled in iterationsl to k is at least that onzl S}, which means that inequality (1)
holds. O

The previous lemma gives us the following bound on the number of phases that
INTERVAL uses to process a given input sequemnce

Corollary 3.2. Suppose that the optimum offline schedule is completed atftirae
|Bp—1, Bp) for somep > 1. Then, the number of phases of AlgorittTERVAL is at
mostp. The schedule ofNTERVAL is completed no later than tim@,,, ».

Proof. By Lemma 3.1 the weight of all requests scheduled in thefditases equals
the total weight of all requests. Hence all requests must be scheduled within tie first
phases. Since, by constructionigfrERVAL, the schedule computed in phgseom-
pletes by timeB, 12, the claim follows. O

To prove the performance result iolTERVAL we need one more elementary lemma.

Lemma 3.3. Leta;,b; € R>q fori = 1,...,p and suppose that the following two
conditions are satisfied:

(i) Zf/ﬂ a; = Zf/:l bi;
(i) S a; >3 bforall 1< p <p.
Then the inequality

M“@

p
2 mia @)
=1 =1
holds for any nondecreasing sequefce 71 < --- < 7,
Proof. Straightforward induction by. O
Theorem3.4.Leto = ry,...,rn be any sequence of requests. DenoteChye

1By, By, ,,] the completion time of request in the optimal schedulePT(c). Then

INTERVAL (0 <SZwJB¢J (3)
7j=1

Proof. By definition of INTERVAL, each request scheduled in phassompletes no
later than timeB;,». Summing up over all phasés. .., p we get that

INTERVAL(0) < ZBHQw - 8231 Tw(S, (4)
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Applying Lemma 3.3 to the sequence$S;) andw(.S;) with the weighing sequence
7; := B;_1 we get that the right and side of (4) is bounded by

p n
8> Bi1w(S;) =8> Byw;.
i=1 j=1
This proves the claim. O

Since the completion tim€’; of request; in the optimum schedule satisfi€§ >
By,, it follows immediately from Theorem 3.4 that the total weighted sum of com-
pletion times produced byWwTERVAL is at most8 times the optimum value. We thus
obtain the following theorem.

Theorem 3.5. AlgorithmINTERVAL is 8-competitive forOLLDARP. O

4. AN IMPROVED RANDOMIZED ALGORITHM

In this section we show how to use techniques from{@€] to obtain an algorithm
RANDINTERVAL with improved competitive ratio.

At the beginning, the algorithrRANDINTERVAL chooses a random numberc
10, 1] according to the uniform distribution. From this moment on the algorithm is
completely deterministic, working like the deterministic algorithkTERVAL pre-
sented in the last section. The only difference is that the first phase starts at time
(we setB] := 27*L) and fori > 2 theith phase starts at timg/ := 2:~1~* L instead
of attimeB; = 2°~!. Fori > 1 the schedule computed in tligh phase is followed
from time Bj , to B;,. Notice that for any random choice of<]0, 1] the starting
time 2' =7 L of the schedule computed in the first phase is not earlier than theltime
where this phase starts. Thus, in fact, the algorithm produces a feasible schedule.

By the proof of Theorem 3.4 it follows that for a sequence= rq,...,r, of
requests the expected objective function valur fiDINTERVAL satisfies:
n n
E[RANDINTERVAL(0)] <E (8> Bj w;| =8> w;E [B(’bj} : (5)
i=1 =1

Where]Bébj,B(’bN] is the interval containing the completion tini& of requestr; in
the optimal solutioroPT (o). To prove a bound on the performancerRa#NDINTER-
VAL we now compute %B;J}. Notice thatB,, is the largest value*~*L in the set
{27%L,2'7"L,2°7"L,. ..} which is strictly smaller thad’s.

Lemma4.1. Letz > L be a real number and let €]0, 1] be randomly chosen ac-
cording to the uniform distribution ofo, 1]. Define the random variabl® by

B :=max{2" %L : 2L < zandk e N}

Then, the expected valug B] of B satisfies

E[B]

. V4
 2In2°
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Proof. Suppose tha?*L < z < 2*+1 [ for somek > 0. Observe that

_ . k+1
B:{2k z] if z <log, 2—L

z
ok+l-z1  otherwise

Hence
log, 2 'L 1
E[B] = / k=L dx + / ok =2 [, dx
0 log, thlL
log, 2 - 1 1
= / 2P T dy + / k=2 dx + / k2L dx
0 log thlL log, thlL
1 1
= 2% / 27" dx + L2* / 277 dx
0 logy 2XE1L
1 ! 1 !
=2k | ——2 7| 4L2k|-—27®
In2 0 In2 log., 2EH1L
- z
- 2In2’
This completes the proof. O
From Lemma 4.1 we can conclude tha{E(;J = 513C;. Using this result in

inequality (5) yields the following theorem:

Theorem 4.2. AlgorithmRANDINTERVAL is c-competitive withe = % ~ 5.7708 for
OLLDARP with respect to the objective function latency against an oblivious adver-
sary. O

4.1. A Randomized Algorithm for the Minimization of the Makespan. We close
this section by showing how the randomization technique presented above can be used
to obtain an algorithm for the Online Dial-a-Ride Problem when the objective function
is themakespan Call this versionOLDARP. We use the setting of [FS00, AKROO],
where the server has to return to the origin after serving all requests. The makespan is
then defined to be the the time when the server is back at the origin after all requests
have been served.

The algorithmRANDSLEEP presented below has a competitive ratid efl / In 2 ~
2.4427 against an oblivious adversary. Although the best deterministic algorithm
called SMARTSTART is 2-competitive [AKROO],RANDSLEEP beats the competitive
ratio of 5/2 achieved by the algorithmsNORE andREPLAN(see [FS00, AKROO] for
the definitions of these algorithms and proofs of their performance). Moreover, the
beauty ofRANDSLEEP are its simplicity and the easy proof of its performance.

Strategy RANDSLEEP: At the beginning, the algorithm chooses a random number
x €]0,1] according to the uniform distribution. After this random choice, the
algorithm is again completely deterministic.

We first compute a lower bount on the optimal offline makespan. If there
are requests released at tifiehen we let be the makespan of the shortest
schedule serving all these requests which starts and ends in the @(@gsnin
Algorithm INTERVAL we can assume that in this case> 0). If no requests
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are released at tim& thenL is set to the release time of the first request. This
completes the initialization.

Again the algorithm works in phases. For= 1,2,... let B; := 20-*L,
Phase is started at time3;. At this time the algorithm considers all reque&ts
that have been released up to tifgbut not been served yeRANDSLEEP com-
putes a shortest schedule for all request®;imwhich starts and ends in the origin.
If this schedule can be completed no later than tihe,, the server follows this
schedule. If on the other hand the schedule needs moreRhan— B; = B;
time units, then the server simply does nothing: it sleeps until fiing.

Theorem 4.3. Algorithm RANDSLEEP is c-competitive forOLDARP with respect to
the makespan, where= 1+ 1/1n2 ~ 2.4427.

Proof. Let Z* = oPT(o) denote the optimum makespan for the input sequeraed
suppose tha2**L < Z* < 21—, for somek > 0. Notice that such & > 0

must exist, since. is a lower bound orZ* andz > 0. By Lemma 4.1 we have
that E[2*~2L] = Z*/(21n2). Since the optimum schedule can be completed before
time 2*t1=* L, we can conclude two facts: first, all requests have been released by
time 2k+1-2 1, and second, in thgt + 1)st phaseRANDSLEEP must have scheduled

all requests, since in this phase it allofs'~* L time units for a schedule serving all
unserved requests. The length of the schedule computed (& thé)st phase can not
exceed”Z*. Hence

1
E [RANDSLEEP(0)| < 4E [Qk‘l‘mL} +7" = (1 + 12) zZ*.
n

This is what we wanted to show. O
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