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Abstract

Optical 3D simulations in many-query and real-time contexts require
new solution strategies. We study an adaptive, error controlled reduced
basis method for solving parametrized time-harmonic optical scattering
problems. Application fields are, among others, design and optimization
problems of nano-optical devices as well as inverse problems for parameter
reconstructions occuring e. g. in optical metrology. The reduced basis
method presented here relies on a finite element modeling of the scattering
problem with parametrization of materials, geometries and sources.

1 Introduction

Electromagnetic field solvers must be efficient to be of use for optimization tasks
of 3D structures where computation times are of importance as typically a large
number of computations with varying parameters have to be performed until
the optimal structure is found. The same holds true for inverse problems where
measured data is given and structural details are sought after. Hence there
is a demand for highly accurate, error controlled results at low computation
times. Especially for real time applications new solution strategies for a repeated
solution of 3D problems are required.

The reduced basis method (RBM) is such a strategy. Here we consider
application of the RBM to time-harmonic Maxwell’s equations based on a finite
element (FEM) discretization. The setup discussed here is light scattering off
a fin field-effect transistor (FinFET)(analyzed previously without the RBM[3]).
FinFETSs are realized on wafers and measured after manufacturing by optical
methods to control the actual geometrical shape. The measurement consists of
an illumination of an array of periodically placed FinFETs and a determination
of the reflectance in dependence of the wavelength and polarization.



2 Reduced basis method

The reduced basis method [8, 9] allows to construct error controlled approxi-
mations to the relationship of an input, a specific configuration of parameters
p € R?, to an output quantity s(u) = s(E(u)) derived from a solution E of the
parameter dependent Maxwell’s equations. Here we consider electromagnetic
scattering problems where a parameter p may describe geometry and/or prop-
erties of the illumination or materials. In the following we describe the method
only briefly and refer to [5, 6] for details.

Essential for the RBM is the splitting of the solution process into two phases:
a computationally expensive offline phase and an inexpensive, fast online phase.
The discrete Maxwell operator thus must be parametrized in a way that permits
an effective offline-online decomposition. As it is generally not affine in p it has
to be approximated by the Empirical Interpolation Method (EIM)[1].

During the offline construction of the reduced basis the underlying, high-
dimensional FEM model is solved multiple times for certain parameter configu-
rations to compute so-called snapshots. Subsequently solutions of the reduced
problem are sought in the linear space spanned by these snapshots by a Galerkin
projection. As the number of snapshots is typically in the order of 10 to 100, the
reduced problem stated on the reduced basis requires only a low dimensional
linear system to be solved. This operation can be done real time and for many
parameters online if the assembly of the reduced system remains independent
of the FEM dimension and only depends on the reduced basis dimension N.
This is guaranteed by EIM.

The selection of snapshots spanning the reduced basis can be carried out self-
adaptively through a Greedy strategy by selecting the worst resolved parameter
configuration contained within a finite dimension training set ¢4, C © of the
parameter domain. An efficient and cheap a posteriori error estimator for the
reduced basis approximation error is crucial for this selection[7].

3 Results

Optical model The investigated structure is a periodic array of FinFETs (at
the 22 nm technology node). These complex 3D architectures have become a
crucial driver for down-scaling of structures on integrated circuits [2].

The device geometry is depicted schematically in two side views together
with FEM meshes in Figure 1. The device dimensions and optical parameters
are taken from [2] and [4]. The pitches of fin and gate are 44 nm and 83 nm
respectively. The fin is 12.7 nm wide and 40 nm high with an undercut of 2.1 nm
and a side-wall angle of 89.5 deg. The gate is 40 nm wide and 95 nm high with
an undercut of 2 nm. A SiN layer (dark red) of 5 nm, a high-k layer (green) of
2 nm and a TiN layer (grey) of 7 nm complete the structure sitting on top a
200 nm thick substrate. Additionally a rounding of the fin and gate top edges
is used. The FinFET is discretized with a parametrized tetrahedral mesh which
accurately resolves the undercuts and corner roundings.



Figure 1: Left: Schematic side views of the FInFET geometry and varied pa-
rameters. Right: FEM-meshes of the unit cell without and with corner rounding
of gate and fin.

The structure is illuminated by a plane wave at 390 nm and tilted 30 deg
along the gate direction. Using 4th order ansatz functions and 190 089 degrees
of freedom the FEM problem is solved in = 270 s of cpu time.
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Figure 2: (a): Error estimates with increasing reduced basis dimension in a semi-
logarithmic plot. The residual error estimate (black solid line) is normalized
with the estimate for N = 1. The error estimate for the Fourier transform
(black dashed line) estimates the relative error in the Lo, norm. (b): Snapshot
positions in parameter space are marked as circles and the number indicates the
sequence of snapshot selection.

Reduced basis construction We build a reduced basis for the corner round-
ing radii radiusgqte and radiussy, in the parameter domain © = [1 nm, 15 nm]| x
[.5 nm, 4 nm]. The reduced model is constructed for the Fourier transform of the
electromagnetic field which is used to compute the reflectance of the structure.

The training set Dipqin used for the Greedy searches is adaptively refined
from a fine initial mesh of 11 by 11 equidistant values. The EIM approximation
uses 13 snapshots for the system matrix leading to an estimated approxima-



tion error of 5.3- 1077 over the training set. A single snapshot is sufficient to
approximate the right-hand side.

In the offline phase 38 truth solutions are computed to construct the reduced
basis. Figure 2 (b) depicts the snapshot order and location in the parameter
domain ® (numbered circles). The first snapshot is chosen in the centre and
the subsequent snapshots cover the corner of © first. Generally the snapshot
locations follow the boundaries of ® with a slight clustering at the corners.

The Greedy algorithm choses in each iteration the worst resolved parame-
ter in the training set as the new snapshot location. Thus the error estimate
generally decreases with increasing reduced basis dimension N. In Figure 2
the residual error estimate (solid black line) with increasing N is shown in a
semi-logarithmic plot. The estimate is normalized with the first estimate. The
normalized estimate converges exponentially with N up to an estimated error
of less than 2.5 - 10~!!. The adaptive refinement of the training set leads to the
non-monotonic convergence as new values are included.

The estimated error in the output quantity (dashed black line, Fourier trans-
form in the z direction) shows a similar decrease although with a different rate
due to different norms employed (relative Lo, norm and H(curl,f2) norm). The
error estimate convergences up to an estimated error of less than 1-1076.

Online evaluation of the reduced basis In the online phase we evaluated
the reduced system on 21 by 21 equidistant points evenly spread over the whole
parameter space ©. Each evaluation takes ~200 ms. The contour plots in Fig-
ure 3 (center column) show the computed reflectance of P and S polarization
respectively. The plots beside the contourplots show the horizontal and vertical
(left and right) cross-sections through the center of the parameter space supple-
mented by reference solutions (blue dots) and in the outermost plots the linear
trend of the reference data is removed to highlight deviations. We observe a
much stronger dependence on the corner rounding radius of the gate than of the
fin in both polarizations. In both polarizations the deviations to reference is in
the order of 1-1075.

Error analysis In the following we investigate these different errors by com-
paring the reduced basis approximations to reference solutions for a randomly
selected set = of 100 parameter values. For u € = we solve the truth approxi-
mation including the EIM approximation and compare the results.

In Figure 2 the relative errors in the Fourier transform are shown in addition
to the error estimate on the left. The mean relative error over = is depicted by
the blue dashed linear whereas the maximum is shown in red. Both lines follow
the error estimate very closely. The errors are reduced from about 1-107! to
1-10~% with increasing reduced basis dimension.

In Figure 4 the max and mean of of the approximation error over = in
the H(curl,f2) norm are shown as well as a scatter plot relating the estimated
error and the true error in the H(curl,f2) norm. The maximum as well as the
mean error exhibit identical convergence trends to the estimated error. With
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Figure 3: Reflectance for the P (top row) and S polarization (bottom row) over
radii as contour plots (central column), as cross-sections through the parameter
domain (left and right from center columns) and with removed linear trend
(outermost columns).

increasing N the error decreases exponentially from 1-1072 to 1.2-10712 at
most with the mean beeing an order of magnitude smaller. The scatter plot
demonstrates the good performance of the error estimator. The error and the
estimate are highly correlated over more than 9 orders of magnitude.

4 Conclusions

The reduced basis method is well suited for many-query and real-time simulation
tasks. We have demonstrated its application to optical scattering simulations
of a parameterized FinFET where it allows to compute online solutions with
three orders of magnitude speedup. The errors in both the field solution and
the output are satisfyingly controlled. As a result we have an efficient, error
controlled, real-time capable procedure for situations where the application of
the direct problem would be not realistic.

The results were obtained at the Berlin Joint Lab for Optical Simulations for
Energy Research (BerOSE) of Helmholtz-Zentrum Berlin fir Materialien und
Energie, Zuse Institute Berlin and Freie Universitdt Berlin. This research was
carried out in the framework of MATHEON supported by Einstein Foundation
Berlin through ECMath within subprojects SE6 and OTS.
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Figure 4: Maximum and mean error of = C @Y . in H(curl,£2) norm over

the reduced basis dimension (left) and estimated reduced basis error over the
error in H(curl,2) norm (right). The maximal and mean error decrease with
increased reduced basis dimension. The estimated and actual error are highly
correlated.
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