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Abstract

One of the main goals of mathematical modeling in systems biology related
to medical applications is to obtain patient-specific parameterizations and model
predictions. In clinical practice, however, the number of available measurements for
single patients is usually limited due to time and cost restrictions. This hampers the
process of making patient-specific predictions about the outcome of a treatment. On
the other hand, data are often available for many patients, in particular if extensive
clinical studies have been performed. Using these population data, we propose an
iterative algorithm for constructing an informative prior distribution, which then
serves as the basis for computing patient-specific posteriors and obtaining individual
predictions. We demonstrate the performance of our method by applying it to a
low-dimensional parameter estimation problem in a toy model as well as to a high-
dimensional ODE model of the human menstrual cycle, which represents a typical
example from systems biology modeling.
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1 Introduction

Bayesian inference is a powerful tool in the field of uncertainty quantification [5],
which allows to determine the probability distribution (posterior distribution) of a
quantity of interest (or set of parameters) X ∈ Rd after measuring certain charac-
teristics, mathematically expressed as mappings φ : Rd → Rn of this quantity. The
measurements Z ∈ Rn are considered to be perturbed, therefore an error term E is
added to the map φ:

Z = φ(X) + E,

where E ∈ Rn is a random variable with the probability density function ρE .
Given the measurement Z = z∗, Bayes’ theorem updates our knowledge about the
distribution of X:

ρX(x |Z = z∗) =
ρX(x) ρZ(z |X = x)

ρZ(z∗)
,

where

ρZ(z) :=

∫
ρX(x) ρZ(z |X = x) dx

is the distribution of the measurement Z (the “evidence”) and acts as a normal-
ization constant. ρX denotes the distribution of X (the “prior distribution”) and
ρZ(z |X = x) denotes the likehood function, which in the above case is given by

ρZ(z |X = x) = ρE(z∗ − φ(x)).

So, the application of Bayesian inference requires the prior distribution of the quan-
tity, reflecting our initial knowledge about it. However, in many cases no compre-
hensible prior can be assigned, which results in pure guessing and therefore different
posterior distributions depending on who made the guess. This unsatisfactory lack
of knowledge has lead to many controversial discussions about the reasonability and
trustability of Bayesian inference.

This paper aims at estimating the prior distribution, which, naturally, will re-
quire further knowledge, in our case the measurements of the characteristics of
several individuals or, mathematically, ρZ-distributed samples z1, . . . , zM , where
ρZ denotes the probability density of the measurement Z. This knowledge exists
in many applications.

One important application is the prediction of patient-specific treatment success
rates based on clinical measurement data and a mathematical model describing the
underlying physiological processes. One example are hormonal treatments of the
human menstrual cycle, as they are frequently performed in reproductive medicine.
In this case, clinical data are available as well as a robust mathematical model,
which allows to simulate the cyclic behavior under varying external conditions [4].

Typically, predictions are required for a specific patient in the daily clinical prac-
tice, where the number of measurements is limited due to time and cost restrictions.
On the other hand, data are often available for many (hundreds or even thousands
of) patients, in particular if extensive clinical studies have been performed for the
approval of a drug. Using these population data, we propose an iterative algorithm
for constructing an informative prior distribution, which then serves as the basis
for computing patient-specific posteriors and obtaining individual predictions.

We will set out the theory in Section 2, introduce the notation and derive
the scheme for the numerical algorithm. Two different scenarios and their im-
plementation are discussed in Section 3. Corresponding numerical results for a
low-dimensional toy example are presented in Section 4. Finally, in Section 5 the
algorithm is applied to a high-dimensional parameter estimation problem in an
ODE model of the human menstrual cycle, which represents a typical example
from systems biology modeling.
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2 Theory

First, let us introduce the following

Notation 1.

(1) the letters ρ, π and p will denote probability density functions. π will be used
for “prior” densities, p for posterior densities and ρX for the density of some
(continuous) random variable X ∈ Rd.

(2) For two continuous random variables X ∈ Rd and Z ∈ Rn with joint proba-
bility density ρ(X,Z),

ρZ(z |X = x) :=
ρ(X,Z)(x, z)

ρX(x)

denotes the probability density of (Z |X = x) (Z conditioned on the event
X = x), as long as ρX(x) 6= 0.
In our case, where Z = φ(X) +E is a perturbed measurement, this is just the
likelihood function given by

ρZ(z |X = x) := ρE (z − φ(x)) .

(3) It follows, that the probability density of Z and the posterior density of X
given the measurement Z = z are given by

ρZ(z) =

∫
ρ(X,Z)(x, z) dx =

∫
ρZ(z |X = x) ρX(x) dx,

pz(x) := ρX(x |Z = z) =
ρ(X,Z)(x, z)

ρZ(z)
=

ρZ(z |X = x) ρX(x)∫
ρZ(z |X = x̃) ρX(x̃) dx̃

,

latter being the continuous version of Bayes’ rule.

(4) If X had the probability density π instead of ρX , the probability density of Z
and the posterior density of X given a measurement Z = z would have the
form and will be denoted by

ρZ,π(z) :=

∫
ρZ(z |X = x)π(x) dx,

pzπ(x) :=
ρZ(z |X = x)π(x)

ρZ,π(z)
.

Following this notation, the actual probability density of Z is given by ρZ =
ρZ,ρX . We will sometimes use the notation ρZ,π in the more general case
π ∈ L1(Rd).

In order to reproduce the probability density ρX of the parameters from the
measurements z1, . . . , zM , we will recursively apply the iteration

πn+1(x) = (Ψπn) (x), where (2.1)

(Ψπ) (x) :=

∫
pzπ(x) ρZ(z) dz = π(x)

∫
ρZ(z |X = x)

ρZ,π(z)
ρZ(z) dz. (2.2)

This iteration is motivated by the observation that the correct probability den-
sity ρX of X is a fixed point of Ψ:

(ΨρX) (x) = ρX(x)

∫
ρZ(z |X = x)

ρZ(z)
ρZ(z) dz = ρX(x). (2.3)

More precisely, the following statement holds:
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Proposition 2. Let π ∈ L1(Rd) be a globally supported probability density func-
tion. Then the following two statements are equivalent:

(i) ρZ,π = ρZ ,

(ii) Ψπ = π.

Proof. The proof for (i)⇒(ii) goes analogously to (2.3). For (ii)⇒(i) define the
following subspace of L1(Rn)

E =
{
ρZ,f | f ∈ L1(Rd)

}
⊆ L1(Rn)

with weighted L2 inner products

〈ρZ,f1 , ρZ,f2〉π :=

∫
Rn

ρZ,f1(z) ρZ,f2(z)

ρZ,π(z)
dz,

where π ∈ L1(Rd) denotes a globally supported probability density function.
We can formulate the following chain of implications:

(ii) =⇒ ∀x :

∫
ρZ(z)

ρZ,π(z)
ρZ(z |X = x) dz = 1

=⇒ ∀x :

∫ (
1− ρZ(z)

ρZ,π(z)

)
ρZ(z |X = x) dz = 0

=⇒ ∀x :

∫
ρZ,π(z)− ρZ(z)

ρZ,π(z)
ρZ(z |X = x) dz = 0

=⇒
∫

(π − ρX)(x)

∫
ρZ,π(z)− ρZ(z)

ρZ,π(z)
ρZ(z |X = x) dz dx = 0

=⇒
∫
ρZ,π(z)− ρZ(z)

ρZ,π(z)
ρZ,(π−ρX)(z) dz = 0

=⇒ 〈ρZ,π − ρZ , ρZ,π − ρZ〉π = 0,

which implies (i) using the positive definiteness of the inner product.

Therefore, (2.1) is a fixed point iteration and our numerical experiments show,
that it truly converges to some π∞ that fulfills ρZ,π∞ = ρZ . In case of identifiability,
see Section 2.1 below, we even have π∞ = ρX . Further, this fixed point iteration is
easy to approximate numerically in the case of a high number of measurements M ,
see Section 2.2.

2.1 Identifiability and convergence

Identifiability of a parameter X ∈ Rd is always an issue when it comes to conver-
gence results of parameter estimators with a growing number of measurements, like
convergence of the ML and MAP estimators or the Bernstein-von Mises theorem
(see e.g. [1], [2]). If the model φ is non-injective (and the error-distribution of E
is independent of the parameters as in our case), there is no chance to give precise
statements about the parameter X from just measuring Z = φ(X) +E (no matter
how many realizations), since different parameters can lead to the same distribution
of the measurements!

Therefore, one either has to add further assumptions on the model φ, or, more
generally, the conditional densities ρZ(·|X = x), or settle with weaker, less precise
statements. We will follow both paths.

Let us first consider the usual assumption for the identifiability of x∗:

‖ρZ(·|X = x)− ρZ(·|X = x∗)‖L1(Rn) = 0 ⇐⇒ x = x∗. (2.4)
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It applies to the case of making several measurements for one individual with one
true parameter x∗ ∈ Rd and guarantees the convergence of certain estimators to
the true parameter x∗ (in some probabilistic sense).

However, in our case we have one measurement for each of several individu-
als with varying (ρX -distributed) parameters and we hope for convergence of the
approximate probability density to the true density ρX (in L1-sense). Therefore,
condition (2.4) has to be replaced by an assumption for the identifiability of ρX :

‖ρZ,π − ρZ,ρX‖L1(Rn) = 0 ⇐⇒ π = ρX . (2.5)

In fact, if the distribution of the measurements would not change when replac-
ing the actual prior ρX by the prior π, we have no way of telling which of these
two distributions the measurements stem from, making (2.5) the weakest possible
identifiability assumption for ρX .

Remark 3. From a more abstract point of view, we can consider ρX as a parameter
that has to be identified from the measurements (z1, . . . , zM ) and lies in the set P
of all possible priors π. If we denote this parameter by a random variable Π, the
likelihood of each measurement z is given by

ρZ(z |Π = π) =

∫
ρZ(z |X = x)π(x) dx = ρZ,π(z).

Therefore, the identifiability assumption (2.5) has exactly the same form as assump-
tion (2.4) for the proper choice of the unknown parameter, namely Π.

If assumption (2.5) is fulfilled, we observe a convergence of the fixed point iter-
ation πn defined in (2.1)–(2.2) to ρX in the L1-norm:

‖πn − ρX‖L1(Rd)
n→∞−−−−→ 0.

If assumption (2.5) is not fulfilled, we have to enforce it by restricting ourselves
to equivalence classes of densities with respect to the equivalence relation

π ∼ π′ ⇐⇒ ‖ρZ,π − ρZ,π′‖L1(Rn) = 0.

Note, that the set of equivalence classes L1(Rd)/∼ is, in fact, the quotient space
L1(Rd)/ker(ψ) emerging from the linear map

ψ : L1(Rd)→ L1(Rn), π 7→ ρZ,π =

∫
ρZ(·|X = x)π(x) dx.

Therefore, L1(Rd)/∼ inherits the L1-norm and L1-distance via

‖[π]‖L1 = inf
π′∈[π]

‖π′‖L1 and ‖[π1]− [π2]‖L1 = inf
π′1∈[π1]

π′2∈[π2]

‖π′1 − π′2‖L1

and we can choose from the following two definitions for the convergence of πn to
π∞:

πn
n→∞−−−−→
Z

π∞ :⇐⇒ ‖[πn]− [π∞]‖L1

n→∞−−−−→ 0

or

πn
n→∞−−−−→
Z

π∞ :⇐⇒ ‖ρZ,πn − ρZ,π∞‖L1

n→∞−−−−→ 0.

Both definitions appear meaningful. At the moment we have no proof for the
convergence for either definition. However, we can already say that the second
definition yields a weaker form of convergence as stated by the following lemma:
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Lemma 4. Let π1, π2 ∈ L1(Rd). Then, in the above notation,

‖ρZ,π1 − ρZ,π2‖L1 ≤ ‖[π1]− [π2]‖L1 .

Proof. For each π′1 ∈ [π1] and π′2 ∈ [π2] we have

‖ρZ,π1
− ρZ,π2

‖L1 =
∥∥ρZ,π′1 − ρZ,π′2∥∥L1

=

∫ ∣∣∣∣∫ ρZ(z |X = x) (π′1(x)− π′2(x)) dx

∣∣∣∣dz
≤
∫ ∫

ρZ(z |X = x) |π′1(x)− π′2(x)|dxdz

=

∫
|π′1(x)− π′2(x)|

∫
ρZ(z |X = x)dz︸ ︷︷ ︸

=1

dx

= ‖π′1 − π′2‖L1 ,

which proves the claim.

2.2 Numerical realization

Since the measurements z1, . . . , zM are ρZ-distributed, the evaluation of the integral
in (2.2) can be realized by a Monte Carlo approximation:

(Ψπ) (x) =

∫
pzπ(x) ρZ(z) dz ≈ 1

M

M∑
m=1

pzmπ (x). (2.6)

In the first iteration step (going from π0 to π1) we will therefore produce a pzmπ0
-

distributed sampling (x
(m)
1 , . . . , x

(m)
L ) for each m = 1, . . . ,M by the Metropolis-

Hastings algorithm. Merging them will produce a π1-distributed sampling

X = {x1, . . . , xk} =

M⋃
m=1

{
x

(m)
1 , . . . , x

(m)
L

}
.

For the Metropolis-Hastings algorithm it is necessary that π0 is given in an explicit
form, which we will assume from now on. π1, however, is not given explicitly, but
by the sampling X . This form is often more suitable, e.g. for the evaluation of
expectation values of certain quantities of interest q ∈ L1(π1):

Eπ1 [q] =

∫
q(x)π1(x) dx ≈

K∑
k=1

w
(1)
k q(xk)

with equal weights w
(1)
k = 1/K.

However, this forms hinders us to produce a Monte Carlo sampling of π2 (and
further iteration steps), since we cannot evaluate the density π1. This can be
overcome by either using kernel density estimation or similar in order to obtain
approximations of the density values or by keeping the sampling X constant and

adapting the weights w(n) =
(
w

(n)
k

)
k=1,...,K

. We will follow the latter approach,

which is nothing else than an application of the importance sampling technique.
Since

πn+1(x) = (Ψπn) (x) ≈ πn(x)

M

M∑
m=1

ρZ(zm |X = x)∫
ρZ(zm |X = x̃)πn(x̃) dx̃

,

and using the abbreviation Lmk := ρZ(zm |X = xk) for the likelihoods, the weights
will be adapted in the following way:

w(n+1) := Ψ
(
w(n)

)
:=

(
w

(n)
k

M

M∑
m=1

Lmk∑K
j=1 w

(n)
j Lmj

)
k=1,...,K

.
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This choice relies on the following observation (this time q ∈ L1(πn+1)):

Eπn+1
[q] =

∫
q(x)πn+1(x) dx

=
1

M

M∑
m=1

∫
q(x) ρZ(zm |X = x)πn(x) dx∫
ρZ(zm |X = x̃)πn(x̃) dx̃

≈ 1

M

M∑
m=1

∑K
k=1 w

(n)
k q(xk)Lmk∑K

j=1 w
(n)
j Lmj

=

K∑
k=1

q(xk)
w

(n)
k

M

M∑
m=1

Lmk∑K
j=1 w

(n)
j Lmj

=

K∑
k=1

w
(n+1)
k q(xk).

(2.7)

Alternatively, from the importance sampling point of view, we have:

Eπn+1 [q] =

∫
q(x)

πn+1

πn
(x)πn(x) dx ≈

K∑
k=1

w
(n)
k q(xk)

πn+1

πn
(xk) and

πn+1

πn
(xk) =

∫
ρZ(z |X = xk)∫

ρZ(z |X = x̃)πn(x̃) dx̃
ρZ(z) dz ≈ 1

M

M∑
m=1

Lm,k∑K
j=1 w

(n)
j Lm,j

.

Remark 5. The observed convergence of the fixed point iteration (2.1)–(2.2) is
not inherited exactly by its Monte Carlo approximation (2.6) (for a fixed number
of measurements M). After a certain number of iterations n, the priors πn start
peaking at certain values yj ∈ Rd and the iteration converges to a discrete proba-
bility distribution, where the probability is concentrated on a discrete subset of Rd.
Therefore, in practice, the iteration has to be stopped after a reasonable number of
iterations, depending on the number of measurements M . The larger M , the more
iteration steps can be performed without encountering this problem. As an alterna-
tive to stopping the iteration, the priors πn can be regularized. These options will
be considered in the near future.

3 Resulting Algorithm

Given the data Z = {z1, . . . , zM} ⊆ Rn of M patients we will follow two scenarios:

(A) No diagnoses have been made.

(B) The patients have been diagnosed with diseases/sicknesses s1, . . . , sL (for sim-
plicity, we will assume that each patient has exactly one disease), resulting in
a partition of the data set, where Z(l) denotes the data of the patients with
disease sl:

Z = {z1, . . . , zM} =

L⊔
l=1

Z(l), Z(l) = {z(l)
1 , . . . , z

(l)
Ml
} (M =

L∑
l=1

Ml).

Approach for Scenario (A):

• Starting with a non-informative prior π0 we construct an informative prior
π∞ := limn→∞ πn by the fixed point iteration discussed in Section 2.2

πn+1 =
1

M

M∑
m=1

pzmπn ,

given by the sampling X = {x1, . . . , xK} ∼ π1 and weights w(∞) = limn→∞ w(n).
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Prior π∞

Patient Data z1 Patient Data z2 . . . Patient Data zM

Likelihood Lz1 Likelihood Lz2 . . . Likelihood LzM

Posterior pz1π∞ Posterior pz2π∞ . . . Posterior pzMπ∞

Treatment in Silico

Success Rate R1 Success Rate R2 . . . Success Rate RM

Figure 1: Algorithmic scheme for the computation of patient-specific parametrizations
and predictions of individual treatment success rates.

• For each patient we compute his or her personal posterior pzmπ∞ , m = 1, . . . ,M ,
with respect to this prior π∞.

• We can compute the success rate of a treatment for each patient or even a
new patient with data z∗ using the sampling X and adapted weights v∗ =
(v∗1 , . . . , v

∗
K) given by

v∗k =
w

(∞)
k L∗,k∑K

j=1 w
(∞)
j L∗,j

.

This reweighting is justified analogously to (2.7).

The success rate R∗ can now be approximated via

R∗ =

∫
r(x) pz∗π∞(x) dx ≈ 1

K

K∑
k=1

v∗k r(xk), where

r(x) =

{
1 if the treatment, given the parameters x, is successful,

0 otherwise.

Approach for Scenario (B):
If the patients are diagnosed with diseases s1, . . . , sL and the number of patients
Ml is large for each disease sl, then this extra information can be used by applying
the procedure described in (A) to each subset Z(l) separately in order to obtain
more precise results.

4 Toy Example

We will start with an easy to grasp low-dimensional mechanical example, where
the patients will be represented by springs with different stiffness values as possible
parameter values. Different stiffness values result in different system responses
when a certain force is applied to the springs, which represents a treatment of the
patients. The example demonstrates how our algorithm can be applied to predict
success rates of such a treatment.

We buy two boxes (representing two diseases) of springs, the first containing
10000 springs with stiffness K1 = 15N/m, the second containing 10000 springs
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with stiffness K2 = 30N/m. The springs are of a low quality and their actual
stiffness varies from the nominal value with a standard deviation of 15% (we assume
a normal distribution for each box).

Once we arrive at home, we realize that the boxes are not labeled and that we
already forgot the values K1 and K2 as well as the standard deviation.

We will discuss two scenarios:

(A) We mix up the springs by putting all of them into one big box (no diagnosis
for each spring).

(B) We keep them in the two separate boxes (the springs are diagnosed with
diseases s1 or s2, depending on the box they come from).

In order to determine the stiffness of a single spring, we perform the following
experiment (see Figure 2):

• We fix one end of the spring and put a mass m = 700g to the other end.

• After compressing it by 10cm, we let it swing. Applying Hooke’s law this
results in the following ODE

x′′(t) = −K
m
x(t) , x(0) = −10cm.

• We measure its amplitude at times t1 = 1s and t2 = 1.7s. Therefore the model
φ : R→ R2 and the measurement Z ∈ R2 are given by

φ(K) = (x(t1), x(t2))ᵀ , Z = φ(K) + (E1, E2)ᵀ,

where the measurement errors E1, E2 ∈ R are assumed to be standard normal
distributed with mean 0 and a standard deviation of 5cm. Denoting the
probability density of the error E = (E1, E2) by ρE : R2 → R, the likelihoods
are given by ρZ(z |X = K) = ρE(z − φ(K)).

x0 = −10 xrest = 0 xBell = 13

Figure 2: Experimental arrangement for the toy example described above.

We implemented the fixed point iteration described in Section 2, starting with a
“non-informative” prior π0, which we chose as the Beta(2, 4)-distribution on [0, 110].
The result is shown in Figure 3. Though π∞ appears to be a better approximation
to the true prior ρX , the approximation is far from perfect. The lack of convergence
πn 9 ρX arises from the non-identifiability of the system (as defined in Section 2.1).
However, the approximated evidence ρZ,π converges to the true evidence ρZ , as can
be seen in Figures 4 and 5. As argued in Section 2.1, this is the best we can hope
to achieve.

9



0 10 20 30 40 50 60 70 80 90 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

ρX
π∞

π0

Figure 3: The true prior ρX , the non-informative prior π0 and the approximation π∞
of the true prior (after 100 iteration steps) plotted over the stiffness K.
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Figure 4: The evidence ρZ,π induced by the three different priors ρX , π∞ and π0 plotted
over the measurements (z1, z2) ∈ R2. Even though π∞ differs substantially from the
true prior ρX , as can be seen in Figure 3, the evidences they induce are very similar.
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‖ρZ,πn − ρZ‖L1

Figure 5: Convergence of the approximated evidence ρZ,πn to the true evidence ρZ =
ρZ,ρX . The L1-error is plotted over the number of iterations n.

The “treatment procedure” will be modeled by hitting the mass in positive x-
direction with several pulses at certain times given by the force F (t) plotted in
Figure 6, which results in the following perturbed ODE:

x′′(t) = −K
m
x(t) + F (t) , x(0) = −10cm.
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The treatment will be considered successful, if the mass hits the bell located at
xBell = 13cm within ten seconds.

We are interested in the success rate of this treatment for a each spring separately
computed only from their performance in the first experiment!

We implemented the procedure described in Section 3 and computed the success
rate R∗ for many randomly chosen springs with measurements z∗ using the following
priors:

• the true prior ρX ,

• our approximation π∞ to the true prior,

• the non-informative initial guess π0 = Beta(2, 4).

In Figure 7, R∗ is plotted over z∗ for all three priors. One can clearly see the
improvement in approximating the true success rate (stemming from the true prior
ρX) when we switch from π0 to π∞. But again the non-identifiability of the system
results in a lack of convergence to the true success rate.
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F (t)

Figure 6: The force F used for modeling the treatment procedure plotted over time t.
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Figure 7: The resulting success rate R∗ for three different prior distributions plotted
over the measurement z∗ ∈ R2.

5 Parameter estimation in a large ODE model

As model system, we consider a model for the human menstrual cycle, named Gy-
nCycle [4]. This model consists of 33 ordinary differential equations (ODEs) and
114 parameters. It had been calibrated previously with time-series data of blood
concentrations for four hormones from 12 patients during the unperturbed cycle
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and during treatment (dose-response experiments). Using deterministic, local opti-
mization (an error-oriented Gauss-Newton method), only 63 out of 114 parameters
could be identified from the given data. The remaining parameters kept their values
from previous versions of the model. In the following, we will denote these param-
eter values as nominal values. The model is currently used to make patient-specific
predictions about the outcome of treatment strategies in reproductive medicine1.
Hence, quantification of uncertainty in these predictions is of utmost importance.

We got access to additional measurement values of 39 woman for the four hor-
mones LH, FSH, E2 and P4 during normal cycles2. These data are sparse or
incomplete in the sense that measurements were not taken on all cycle days, result-
ing in about 15 measurement time points per patient and hormone. Our approach,
however, is flexible enough to handle such a data situation.

Based on these data, our aim is to estimate the prior distribution for 82 out
of the 114 parameters Θ (Hill exponents have been fixed), denoted by πΘ

0 , as well
as for the initial values Y0 of the 33 model species, πY0

0 , resulting in a total of 115
dimensions: X = (Y0,Θ) ∈ R115 .

As initial guess for the prior πΘ
0 of model parameters, we have chosen uniform

distributions on the intervals between zero and five times the nominal parameter
values as non-informative approach. For πY0

0 we chose a mixture distribution of
independent normals around daily values of a reference cycle computed with the
nominal parameters, i.e.

πY0
0 =

1

31

30∑
t=0

G [yref(t),Σ] ,

where G[m,C] denotes the Gaussian function with mean m and covariance matrix
C, yref : R → R33 is the reference solution over one menstrual cycle and Σ is
a diagonal matrix consisting of the squared standard deviations of each species,
respectively,

Σ = diag(σ1
1 , . . . , σ

2
33), σ2

j =
1

30

30∑
t=0

|yref,j(t)− yref,j |2.

The total prior π0 : R115 → R is build up from πY0
0 and πΘ

0 under the assumption
that Y0 and Θ are independent,

π0(y0, θ) := πY0
0 (y0)πΘ

0 (θ).

The likelihood for specific measurements z ∈ R4×31 is modeled via relative
Gaussian errors with a (relative) standard deviation σ = 10%,

ρZ(z |X = x) ∝ exp

(
−d(Φ(x), z)2

2σ2

)
,

where

d(u, v)2 =

4∑
j=1

30∑
t=0

∣∣∣∣uj(t)− vj(t)vj(t)

∣∣∣∣2
is the relative distance between simulated and measured data,

Φ(x) = Φ(y0, θ) = (proj4(y(t)))t=1,...,30 ,

proj4 denotes the projection onto the four measurable components, and y(t) is the
solution of the GynCycle model with initial values y0 and parameters θ.

1EU project PAEON-Model Driven Computation of Treatments for Infertility Related Endocrino-
logical Diseases, project number 600773.

2Courtesy of Dorothea Wunder, University Hospital of Lausanne.
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Remark 6. As mentioned above, the measurements for most women were not taken
daily, resulting in incomplete data. In this case, Φ and d have to be chosen separately
for each woman, restricting them to measured components. This does not influence
the applicability of our algorithm.

We sampled the posterior using the adaptive mixture Metropolis algorithm by
Roberts and Rosenthal [3], which basically is a multivariate Metropolis Hastings
algorithm tuning its Gaussian proposal density for the current sample based on
the covariance of the former ones. As the computation is independent for each
person this problem is well scalable in the number of persons and we were thus
able to compute 10 million samples for each person. The Raftery-Lewis diagnostic
suggests around 7 million samples for convergence and the Gelman and Rubin
criterion confirms this in our case with potential scale reduction factors smaller
than 1.05.

As an example, we briefly present the results for one specific parameter, namely
the blood volume. Figure 8 shows the sampled posterior pzmπ0

in form of the marginal
densities of the individual patients as well as the resulting first prior estimation π1

in comparison to the flat uninformative prior π0. Figure 9 illustrates the next 20
iterations of the prior estimation. Note that for illustrative purposes we scaled ρ
in the likelihood for the iterations by a factor of five, decreasing the variation of
the iterations and thus slowing down the peaking process, to obtain a clearer view
of the proceedings. As it can be seen in the figure, the last prior estimate clearly
favors a blood volume of about 5 liters, which is the blood volume of a typical adult.

Our next step will be to compute individual success rates for treatments fre-
quently used in reproductive medicine and to compare the results with clinical
outcomes.
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Figure 8: Marginal blood volume densities of the prior π0 (gray), the individual poste-
riors pzmπ0 (colored) for each patient, and the first prior estimation π1 (blue).
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Figure 9: Marginal blood volume densities of the iterative prior estimations π1 (black)
to π21 (blue).

6 Conclusion

We have introduced a method that estimates the prior distribution in the setup of
Bayesian statistics in the case when measurements for a large number of individuals
are available. We have argued in which case a unique prior can, in principle, be
deduced from measurements and have formulated a clear criterion for this case (the
“identifiability assumption”, see Section 2.1). We have also discussed what happens
in the non-identifiable case.

A detailed scheme for the numerical realization of the method has been elab-
orated, see Sections 2.2 and 3. The numerical approximation to the fixed point
iteration has to be applied with caution, since its convergence properties differ
from the ones of the exact iteration, see Remark 5.

The method has been applied to a toy example in low dimensions to confirm our
theoretical results, see Section 4. The work on a high-dimensional real life problem
is in progress. The problem as well as a detailed line of action, how the method will
be applied in this case, have been formulated (Section 5). First results are already
available and have been presented.

As a byproduct, the method can be applied to deconvolve blurred images, as
has been discussed in Appendix A.
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A Deconvolution of Blurred Images

The probability densities πn turn out to be blurred versions of ρX , whereby ρX is
smoothed by a convolution kernel Gn:

πn+1(x) = Ψπn(x) =

∫
pzπn(x) ρZ(z) dz =

∫
ρX(x̃)

∫
pzπn(x) ρZ(z |X = x̃) dz︸ ︷︷ ︸

=:Gn+1(x,x̃)

dx̃.

With growing number n the iterates appear less and less smoothed, converging to
ρX (in the sense described in Section 2.1). Therefore, the fixed point iteration
(2.1)–(2.2) results in a deconvolution process of π0 to the original prior ρX .

This observation can readily be applied to the (“non-blind”) deconvolution of
blurred images. Setting φ = Id and choosing the error density ρE as the point
spread function, we can view ρX : R2 → R≥0 as the original image (without loss of
generality, we can assume that it is normalized and given by gray scale values) and
the evidence

ρZ(z) =

∫
ρX(x) ρE(z − φ(x)) dx = (ρX ∗ ρE)(z)

as the blurred image. In this setup, our algorithm provides a method for the
restoration of the original image from the blurred image, as demonstrated in Figure
10.

(a) original image (b) blurred image (c) deconvolved, 50 iter.

(d) deconvolved, 1500 iter. (e) deconvolved, 10000 iter. (f) deconvolved, 50000 iter.

Figure 10: Deconvolution of an artificially blurred image (b) using the fixed point
iteration (2.1)–(2.2).

—————————————————————————
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