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Abstract

This thesis investigates the shortest path problem with pair constraints or the pair
constraint problem (PCP) for short. We consider two types of pair constraints,
namely forbidden pairs and binding pairs consisting of two distinct vertices each.
A path respects a forbidden pair if it uses at most one of the two vertices and it
respects a binding pair (x, y) if it uses also y, if x is used.

Within this thesis, we bring together and compare several formulations and
variants of the pair constraint problem and their complexities. We also col-
lect existing recursive algorithms and present their running times. Most of the
presented contributions only consider forbidden pairs. We introduce a new recur-
sive algorithm also handling binding pairs and prove its theoretical complexity
of O(n4). We implemented the algorithm and tested it on real-world instances
provided by Lufthansa Systems AG. Therefore we needed to develop a heuristic
translating the real-world data into an instance of the shortest path problem with
pair constraints. This heuristic is presented as well as all computational results.

In Chapter 4, we start investigating the associated polytope of an integer pro-
gram formulation of the shortest path problem with pair constraints. For the
case of one forbidden or binding pair, we find a complete linear description of the
associated polytope. We prove that the number of facets grows exponentially in
|V | even in these simple cases. However, separation is still possible in polynomial
time. The complete linear description can be extended to the case of contiguously
disjoint pairs.
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They offered me the opportunity to work in their team and supervised me during
my research and writing of this thesis. I want to emphasize the helpful assistance
of Marco, who essentially promoted many of the results presented in this work
and was always available for all the time-consuming problems and questions. I
also want to thank my family and friends, who supported me writing this thesis.

Thanks to the Federal Ministry of Education and Research in Germany and
the Lufthansa Systems AG, who supported this thesis.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Shortest Path Problem with Pair Constraints (PCP) 7
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Problem Variants . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Structural Conditions . . . . . . . . . . . . . . . . . . . . . 23

3 Recursive Algorithms for the PCP 29
3.1 Existing Algorithms for PAFP . . . . . . . . . . . . . . . . . . . . 29

3.1.1 A Dynamic Programming Approach by Kováč . . . . . . . 29
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1 Introduction

1.1 Motivation

Air traffic is one of the most important means of transport, especially in Europe.
There are over 120.000 commercial flights a month only in Germany [7], which is
more than 4.000 a day. Moreover, the air traffic increases every year by around
5% [1]. Air traffic is connected with very high costs such as fuel, personnel or
fees e.g. for overflying a country.

Before the year 2000, flight planning was very static. This means, for example
in Germany there were fixed routes for every pair of airports that could be looked
up in a document containing the standard routes. Beginning around the year
2000, the philosophy came up that every trajectory is allowed. Since many airlines
tended to optimize their flight routes, there were regions of very high traffic
density. This was quite hard to handle for all the airlines and especially the
agencies managing, regulating and controlling the air traffic. The solution was
to distribute the traffic over the sky and to separate different traffic flows based
on their direction, height or speed.

Mainly over Europe, this is achieved by settling a bunch of rules and restrictions
to be respected during planning of the flight routes. The rules base on many
different aspects of a flight, such as its departure or arrival, daytime, the season,
the flight height or the usage of a concrete airspace or waypoint. Once a month,
the European air traffic regulating organisation Eurocontrol publishes the so-
called Route Availability Document (RAD) [11] of around 700 pages containing
only these rules. Figure 1.1 shows how the page number of the RAD has grown
in recent years.

Most of the current flight trajectory optimization software was developed be-
fore these rules are made. At this time, there were only a very few rules, which
then could be involved manually or by simple methods. During the last years, the
number of restrictions grew essentially to over 10.000. Whereas the previously
mentioned rules are a good way distributing the air traffic over the sky, math-
ematically, they are very hard to involve in the optimization process of flight
trajectories. It is already a hard problem to find just any route respecting all
rules not to mention computing the optimal one. For this reason, computing the
most cost-efficient flight trajectory is a mathematical problem of great intererest.

The project “Flight Trajectory Optimization on Airway Networks” is a research
project funded by the Federal Ministry of Education and Research in collabora-
tion with the Lufthansa Systems AG. It focuses on developing algorithms that
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1 Introduction

Figure 1.1: Average number of pages in the RAD per year. Source: Lufthansa
Systems AG

compute optimal flight trajectories for passenger or cargo airplanes through an
airway network, which is a discrete and finite graph spanned over the whole
world. It contains around 90,000 points and around 400,000 directed connections
between the points.

The project belongs to the joint project “E-Motion – energy-efficient mobility”.
In contrast to the computations in this airway network graph, another sub-project
of E-Motion is located for instance at the Helmut-Schmidt-University in Ham-
burg. It is concerned with the same route optimization, but instead of a discrete
graph, it deals with free flight. Whereas the airway network optimization is re-
stricted to this network, free flight means that only origin and destination of the
route are given; every trajectory connecting these two is allowed. The free flight
system is used mostly over the oceans, whereas the restriction to the graph is
usually used over mainland.

The optimal trajectory in both optimization ways is highly depending on sev-
eral factors such as the weather conditions. Since there is no connection to the
ground, airplane motion is not measured relatively to the ground, but to the
surrounding air. Thus, wind has an essential effect on the actual “length” of a
trajectory and hence on its costs. A similar influence holds for instance for the
temperature and pressure of the air, but also for many other conditions. Be-
side weather conditions, there are many governmental restrictions influencing the
price of flight trajectories as well. There are overflight fees for most countries,
which have to be respected. These fees are calculated by different methods and
not all of them are computationally easy to include in the complete optimization
method.

Also relevant for the optimization of the trajectory are properties of the air-
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1.2 Literature Survey

craft itself, for instance the initial weight, the airplane type or the speed mode.
The performance of aircrafts is given as tables determining how fast an airplane
rises or how much fuel it uses depending on the mentioned weather conditions
and its current weight. The conversion of these tables into usable data for the
optimization algorithm is a non trivial mathematical problem for itself, see [25].

This thesis is concerned with the rules of the RAD document. These rules are
of various formats and types and parsing them is highly not trivial. This is why
we decided to focus on two particular cases, called forbidden pair constraints and
binding pair constraints. Together, they are called pair constraints and they are
the main mathematical concept of this thesis.

The problem of this thesis is the shortest path problem with pair constraints.
We are given a directed graph D = (V,A), a source node s ∈ V , a destination
node t ∈ V and two sets F ⊆ V × V and B ⊆ V × V of forbidden and binding
pairs, respectively. The problem is to find the shortest path P through the
graph connecting s and t and respecting all pair constraints. A forbidden pair
(f1, f2) ∈ F is respected if the path either uses f1 or f2 or none of them, but
not both. The path respects a binding pair (b1, b2) ∈ B, if it also uses b2 if b1
is visited. Section 2.2 on page 11 states the problem formally. The next section
illustrates the importance of this problem also for other disciplines than finding
the shortest route in an airway network. Section 1.3 explains the golden thread
of this thesis.

1.2 Literature Survey

The shortest path problem with pair constraints has a background in several
fields of mathematics. Its origin seems to be the area of software testing, but as
we will see, the problem became interesting for several other research areas. The
technical contents of several of the following papers are presented in Section 2.2.3
on page 23. Table 1.1 summarizes the papers introduced here.

Krause, Smith and Goodwin [15] seem to be the first stating the problem of
finding a shortest path avoiding forbidden pairs. We did not suffice to find their
publication. According to Gabow, they formulated the forbidden pairs as arc
pair constraints and called them impossible pairs. The problem had the shortcut
IPP for the impossible pairs problem.

In 1976, Gabow, Maheshwari and Osterweil [12] showed the NP-completeness
of IPP for vertex pair constraints by reduction of 3-SAT to IPP. Their purpose
was automatic software testing. For a given software, they searched for a set of
input parameter combinations in a manner that every part of the source code
will be executed at least once by running the software for each of the chosen
combinations. To keep this set small, they took architectural information of the
source code into account. They built a directed graph from the source code:
Every set of consecutive statements gets a vertex in the graph and if one of them
executes the other, a directed arc is inserted. The impossible pairs modelled pairs

3



1 Introduction

Year Author Origin Contribution

1973 Krause et al. [15] – Formally introduced the
problem

1976 Gabow et al. [12] Software Testing Proved NP-hardness

1979 Ntafos et al. [23] Software Testing Introduced Binding pairs
NP-hardnes for B

1997 Yinnone [27] Skew symmetric graphs
Polynomial complexity

2001 Chen et al. [8] Comp. Biology Uses PCP for Peptide
Sequencing

2009 Kolman et al. [18] halving, hierarchical
structure
Polynomial Complexity

2009 Kováč [21] Bioinformatics Gene Prediction using
RP-PCR

2013 Kováč [20] Bioinformatics Several Constraint
Structures and their
Complexity

Table 1.1: Survey on the shortest path problem with pair constraints.

of code statements, which can’t be executed within one software run. A typical
example are if and else pairs.

Again coming from software industry, binding pairs are first introduced by
Ntafos and Hakimi in 1979 [23]. They called them must pairs and the problem of
determining whether there is a path respecting the binding pairs had the shortcut
MUSTPR. MUSTPR is NP-complete as well; they gave a proof by reduction of
the 3-SAT problem similar to the one of Gabow et al..

The first seemingly pure academical interest in the shortest path problem with
vertex pair constraints came from Yinnone in 1997 [27]. Yinnone was the first
finding a restriction of the problem making it solvable whithin polynomial time.
During the paper, a skew symmetry condition was introduced. Further details to
this condition can be found in Definition 2.19.

In 2001, Chen [8] extended the area of application of the shortest path problem
with pair constraints to computational biology. They were studying the de novo
peptide sequencing problem, whose goal is to reconstruct the peptide sequence
from the result data of a tandem mass spectrometry. There are several ions in the
sequence, for which it has to be determined whether they are so called N-terminal
or C-terminal ions. The technique they published constructs a graph from the
result data and with forbidden pairs, they assure that no ion is determined as
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1.3 Outline

both N- and C-terminal.
The problem seems to have awaked academical interest in the past few years; in

2009, Kolman and Pangrác began subdividing the problem according to structural
specialities of the constraint set F . They distinguished two particular structures,
namely halving and hierarchical structure. The problem remains NP-complete if
F is halving, but in the hierarchical case they found a “surprisingly simple” poly-
nomial algorithm, as they say. The algorithm will be presented in Section 3.1.2.

At the same time, the shortest path problem with pair constraints found an-
other application in bioinformatics, namely gene prediction using RP-PCR tests.
RP-PCR is a combination of biochemical methods, which is used to detect or
quantify several DNA molecules. Kováč [21] investigated, how these RP-PCR
results can be used for gene prediction, whose aim the finding of special genes
is. Kováč constructed a graph and reduced the biochemics to an instance of
the path-avoiding-forbidden-pairs problem (called PAFP). The following years,
Kováč used for intensive studies on the PAFP problem, a systematical distinc-
tion of several cases of structures of the constraint set F and their hardnesses.
These results are published in [20] and form the most valuable work on the PAFP
problem.

1.3 Outline

The following chapter introduces the pair constraint problem. We start with some
mathematical preliminaries followed by the formal statemant of the problem. We
present results to the complexity as well as variants and structural conditions to
the problem.

To the already known problem of paths avoiding forbidden pairs, there are
plenty of combinatorial and recursive approaches, which will be presented from
the literature in Chapter 3. The last algorithm we present is a new algorithm to
also handle binding pairs (Section 3.2 on page 35).

Our second approach to solve the PCP concentrates on the integer program
formulation of the problem. The problem can be easily formulated as an integer
program. We tried to re-gain the linear relaxation by investigating the convex hull
of all feasible solutions to the integer program. We present several new complete
linear descriptions of small special cases of the problem in Chapter 4 on page 39.

The last aspect contains some computational results. We implemented the
contraction algorithm we presented in Section 3.2 and tested it on real-world
problem instances provided by Lufthansa Systems. The conversion of real-world
data to instances of the PCP was highly non trivial. The chapter also explains the
complexity of these data sets and how we managed it to convert them into prob-
lem instances of the shortest path problem with pair constraints. This chapter
presents all computational results we gained by our implementation.
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2 The Shortest Path Problem with Pair
Constraints (PCP)

2.1 Preliminaries

This section captures some graph theoretical basics and lays the foundation of
the notation used in the following pages. For the understanding of this the-
sis, we recommend basic knowledge in discrete mathematics and combinatorial
optimization. The chosen notation follows mostly [22].

Definition 2.1 (Directed graph). A directed graph D is a tuple D = (V,A) with
a finite vertex set V and a set of arcs A ⊆ V × V . If it is not totally clear, which
graph is meant, we clearify this using the notation V (D) and A(D) for the sets
of vertices and arcs of a graph D. Usually we will use n := |V | and m := |A|.

An arc (v1, v2) represents a directed edge from v1 to v2. We assume all graphs to
be simple, i.e., there are no duplicate arcs and no loops (starting in and pointing
to the same vertex). For an easy access to vertices and their neighbors, we define
the following for each vertex and arc.

Definition 2.2 (δ+ and δ−, a− and a+). Let D = (V,A) be a directed graph and
v ∈ V a vertex. Then let δ−(v) := (V ×{v})∩A and δ+(v) := ({v}×V )∩A. For
every arc a ∈ A, let a− refer to its tail and a+ to its head, such that a = (a−, a+)
holds trivially.

The set δ−(v) contains all incoming arcs of vertex v ∈ V and δ+(v) all outgoing
ones. For the search after shortest paths in our graphs, we need a certain criterion
for measuring length of paths. This measurement is typically called weight and
defined as follows.

Definition 2.3 (Weight function). Let D be a directed graph. The map w :
A→ R+ is called a weight function on D.

A weight function w gives every arc a length, which makes it possible to com-
pare different paths by the sum of their arc lengths. Let us define this formally:

Definition 2.4 (Path). Let D be a directed graph and s, t ∈ V two vertices. A
path connecting s and t is a set P ⊆ A with

P := {a1, . . . , ak} = {(s, v1), (v1, v2), . . . , (vk−1, t)}.
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2 The Shortest Path Problem with Pair Constraints (PCP)

We also call P an s-t-path. Let Pv ⊆ V denote the set of vertices, P visits, i.e.,

Pv = {s, v1, . . . , vk−1, t}

Consequently, a path has the weight

w(P) :=
∑
a∈P

w(a).

Using the notion of paths, we can formalize when a vertex is reachable from
another.

Definition 2.5 (Reachability of vertices). Let D be a directed graph. Let ≺:
V × V → {0, 1} be a relation on V , such that x ≺ y holds if there exists a path
from x to y.

If D contains no cycles, we call it acyclic. Let us for short assume, D is acyclic.
In acyclic graphs, the situation x ≺ y and y ≺ x for two vertices x, y ∈ V can
only occur in the case x = y. This property is called antisymmetry. Under this
condition, ≺ is called a partial ordering on V . Partial means in this case that not
every two vertices are comparable in at least any of the two directions. Besides
antisymmetry, a partial ordering has to be reflexive and transitive. Reflexive
means x ≺ x, which holds trivially for all vertices in our purpose. Transitivity
means

a ≺ b ∧ b ≺ c⇒ a ≺ c

for every three vertices a, b, c ∈ V . This can be achieved by concatenating an
a-b-path with an b-c-path, which shall both exist. This is an a-c-path verifying
the transitivity of ≺. From set theory we know that we can extend every partially
ordered set to a totally ordered set. In terms of graph theory, this extension of
the reachability relation ≺ is called a topological sorting.

Definition 2.6 (Topological Sorting). Let D be a directed graph. A total order
< on the vertex set V is called a topological sorting if for all arcs (u, v) ∈ A holds
u < v. Let us call vertices u and v neighbours concerning < if either x < u or
v < x holds for all vertices x ∈ V \ {u, v}.

Topological sortings are in general not unique if the graph contains no path
traversing all vertices. The set theoretical argument about partial and total
orderings can be reformulated in graph theoretical terms as follows.

Lemma 2.1 (Knuth et al. [16]). A topological sorting on a directed graph D =
(V,A) exists if and only if it is acyclic.

The proof of this lemma is of constructive nature; it gives an algorithm com-
puting a topological sorting from a directed acyclic graph. This algorithm is
relevant for this thesis at two points, namely for the proof of Proposition 2.2 and

8



2.1 Preliminaries

for our own implementation, which is presented in section 5.1 on page 57. A
detailed explanation of partial orderings and the proof can be found in [16] or
in [24] (in German).

In Chapter 4, we often need to work with arc sets, which guarantee to intersect
certain paths in a graph. This is why we define an arc cut.

Definition 2.7 (Arc cut). Let D = (V,A) be a directed graph and C ⊆ A a set
of arcs. C is called an arc cut of D if it disconnects D. Or in other words, if
for every source s and every sink t in D and every s-t-path P ⊆ A there holds
P ∩ C 6= ∅.

With these graph notations, we are now able to state one of the most common
combinatorial problems, the Shortest Path Problem.

Problem 2.1 (Shortest Path Problem). Let D be a directed graph and s, t ∈ V
two different vertices in D. Let w : A → R+ be a weight function on all arcs in
D. The shortest path problem is to find a path P = {a1, . . . , ak} from s to t such
that w(P) is minimal among all s-t-paths.

The shortest path problem has been studied widely during the past seventy
years. In 2005, the Center for discrete mathematics and theoretical computer
science (called DIMACS) in New Jersey sponsored an implementation challenge
concerning the shortest path problem. Afterwards, they published the book “The
Shortest Path Problem” [10]. The first pages include a paper of Santos, which
gives a great overview over the development of shortest path algorithms and other
techniques for solving the problem. This is why we omit a detailed survey here
and refer to this paper for further information.

The following integer program is a formulation of the shortest path problem.

Algorithm 1 Procedure topSort sorts a directed acyclic graph topologically.

Input: Graph D = (V,A)
Output: List S of topologically sorted vertices

procedure topSort(D)
List S := ∅
while |V | > 0 do

Choose x ∈ V with δ−(x) = ∅
Add x to S
D := D − x

return S

9



2 The Shortest Path Problem with Pair Constraints (PCP)

maximize z =
∑
a∈A

waxa

subject to
∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =


1 i = s

−1 i = t

0 otherwise

∀i ∈ V (2.1)

xa ∈ {0, 1} ∀a ∈ A

Equation (2.1) ensures that in every vertex the same amount of paths is incom-
ing, as it leaves the vertex. For this reason, these are called the flow conservation
constraints. Let the feasible set of this problem be denoted by P . Define

x(C) :=
∑
a∈C

xa

for a subset C ⊆ A. To get an overview of how hard linear and integer pro-
grams actually are, let us consider some basics to the topic. Therefore we follow
Nemhauser and Wolsey [22], a great introduction into the basics and advanced
results of integer and combinatorial optimization. Another good overview with
pronounciation on integer optimization can be found in [6]. All definitions, which
we do not provide here can be found in these two books.

Definition 2.8 (Solution Set). Let P = {x ∈ Rn+ | Ax ≤ b} be the solution set
of a linear system

Ax ≤ b. (2.2)

P is called the associated polytope of (2.2) or the feasible region of (2.2). Let P
now be nonempty. Then, P is called integral if all of its nonempty faces intersect
Z|A|.

For a detailed introduction to polytopes and faces, see [28, 22].

Definition 2.9 (Total Unimodularity). Let A ∈ Rm×n be a matrix. A is called
totally unimodular if the determinant of every square submatrix of A equals −1,
0 or 1.

Proving that a matrix is not totally unimodular can be done by simply giving
a square matrix with determinant not in {−1, 0, 1}. But showing that a matrix is
totally unimodular is quite hard, since the number of square submatrices grows
exponentially in the size of the matrix. This is why the problem of determining
whether a matrix is totally modular is Co-NP.

Lemma 2.2 (Nemhauser et al. [22]). Let A ∈ Rm×n be a matrix and P (b) =
{x ∈ Rn+ | Ax ≤ b} be the associated polytope depending on b. If A is totally
unimodular, then P (b) is integral for every b ∈ Zm if it is not empty.

10



2.2 Problem Statement

This has an immense meaning to integer programming. Consider an integer
program

zIP = max{cx | Ax ≤ b x ∈ Z|A|≥0} (2.3)

with a totally unimodular matrix A. By the last lemma, independently of b and c,
if zIP is finite, there is always an optimal integral solution x∗ ∈ Zn+ with cx∗ = zIP

as long as b is integral. There is no known algorithm solving an integer program
in polynomial time. In contrast to that, this is the case for linear programs by for
example the ellipsoid method. This means, if the matrix of our integer program
is totally unimodular, we can solve the problem in polynomial time by relaxing
the integrality condition and solving the corresponding linear programm. This
linear program is called the LP-relaxation of the integer program (2.3).

Let
min

{
wx | Ax ≤ b x ∈ Z|A|≥0

}
be the integer program formulation of the shortest path problem as stated in
(2.1). Then, A is the incidence matrix of the graph D and b has a 1 in the row of
s, a −1 in the row of t and 0 everywhere else. The following lemma now comes
without surprise:

Lemma 2.3 (Bertsimas et al. [6]). The incidence matrix A of a directed acyclic
graph is totally unimodular.

2.2 Problem Statement

From now on, let all graphs considered in this thesis be acyclic. Let us now
consider several types of constraints for a shortest path problem.

Definition 2.10 (Forbidden Pair). A forbidden pair (`, r) ∈ V × V is a pair of
two vertices. A path P respects the forbidden pair (`, r) if

` /∈ Pv ∨ r /∈ Pv

holds. This means, P uses at most one of the two vertices ` and r.

Definition 2.11 (Binding Pair). A binding pair (`, r) ∈ V ×V is again a pair of
two vertices and a path P respects the binding pair (`, r) if

` ∈ Pv ⇒ r ∈ Pv

is satisfied. In other words, it also visits r if ` is used.

Definition 2.12 (Obligatory Pair). An obligatory pair (`, r) ∈ V ×V is respected
by a path P if

` ∈ Pv ∨ r ∈ Pv

holds. Thus, at least one of the two vertices ` or r is used by P.

11



2 The Shortest Path Problem with Pair Constraints (PCP)

Although obligatory pairs are mentioned here, we only consider forbidden and
binding pairs during this thesis, see Section 5.2 on page 58 for detailed reasons.
From now on, F ,B ⊆ V × V shall denote the sets of forbidden and binding
pairs. C is always the union of those, C := F ∪ B. For better access to the
individual constraints, let us denote C = {(`1, r1), . . . , (`k, rk)} and for individual
constraints the set Ci := {(`i, ri)}. Let the same notation also hold for F and B:
Fi := {(`i, ri)} denotes the i-th forbidden pair and Bi := {(`i, ri)} the i-th binding
pair. As stated here, all three constraint types are vertex pairs. Section 2.2.2 on
page 21 is concerned with an analogous formulation using arc pairs. All technical
issues concerning the choice of vertex or arc pairs can be found there. The
following definition is picked from [27].

Definition 2.13 (Yinnone [27]). Let C be a constraint set on any graph D. We
assume that every vertex is contained in at most one constraint in C. Then we
define v′ for every vertex v ∈ V as follows:

1. v′ = v if v is not contained in any constraint in C or
2. v′ = w if (v, w) ∈ C or (w, v) ∈ C.

We call v′ the mate of v if v′ 6= v. Otherwise we call v isolated with respect to C.

The combination of the previously mentioned shortest path problem and these
new constraints is the key problem in this thesis.

Problem 2.2 (Shortest path problem with pair constraints). Let D = (V,A)
a directed acyclic graph and let s, t ∈ V be a source and a sink. Let further
F ⊆ V × V be a set of forbidden pairs and B ⊆ V × V a set of binding pairs.
The shortest path problem with pair constraints is to find a shortest path P =
{a1, . . . , al} such that

` /∈ Pv ∨ r /∈ Pv

holds for all (`, r) ∈ F and

` ∈ Pv =⇒ r ∈ Pv

holds for all (`, r) ∈ B. Let Pair constraint Problem be a shorter name for the
shortest path problem with pair constraints and accordingly PCP be the abbrevi-
ation for it.

We assume that s and t do not belong to any forbidden or binding pair. Other-
wise, we could easily get rid of such a pair by altering the graph. If for example s
is contained in a forbidden pair, s′ can never be on a feasible s-t-path and hence,
we can remove s′ from D as well as the forbidden pair (s, s′) from F . This prob-
lem can be formulated as an integer program simply by extending the existing
formulation of the basic shortest path problem.

12



2.2 Problem Statement

Problem 2.3. The shortest path problem with pair constraints can be modelled
by the following integer program:

maximize z =
∑
a∈A

waxa

subject to
∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =


1 i = s

−1 i = t

0 otherwise

∀i ∈ V

∑
a∈δ+(i)

xa +
∑

a∈δ+(j)

xa ≤ 1 ∀(i, j) ∈ F

∑
a∈δ+(i)

xa −
∑

a∈δ+(j)

xa ≤ 0 ∀(i, j) ∈ B

xa ≥ 0 ∀a ∈ A.

Let the feasible set of this problem be denoted by P (C), whereas P is the feasible
set of the underlying unconstrained shortest path problem.

Note that the integer program formulation of the shortest path problem had
as matrix the incidence matrix of the underlying graph. This was why the uni-
modularity of the incidence matrix directly made the problem easy to solve. To
take the forbidden and binding pairs into account, we need additional constraints
to the feasible set of the integer program. This leads to additional rows in the
matrix of the integer program. The price for this purpose is the loss of the total
unimodularity. The following example shows a counterexample.

Example 2.1. Let V = {s, u, v, t} and A = {a1, a2, a3} = {(s, u), (u, v), (v, t)}.
With D = (V,A) and F = {(u, v)}, we have a pair constraint problem (let B = ∅
here). The matrix of the pair constraint problem integer program formulation is:

A =



a1 a2 a3

s −1 0 0
u 1 -1 0
v 0 1 −1
t 0 0 0
(u, v) 1 1 0

.

The four highlighted entries form a 2 × 2 submatrix with determinant 2. Thus,
this matrix is not totally unimodular.

After the insights concerning the integer program formulation of the PCP, there
are several ways to approach the problem. The pair constraints intuitively relate
to the logical or, since all constraints can be modelled as an or condition:

• A forbidden pair (f1, f2) ∈ F is respected if either f1 is not used or f2 is
not used.

13



2 The Shortest Path Problem with Pair Constraints (PCP)

• A binding pair (b1, b2) ∈ B is respected if either b2 is used or b1 is not used.
• An obligatory pair (o1, o2) ∈ O is respected if either o1 is used or o2 is used.

Generally, all constraints in the theory of linear programming are combined
with an and. This motivates the usage of disjunctive programming [3], a technique
enabling the usage of logical or between constraints of a linear program. This
gives now rise to several formulations of problems using and and or. In the
following, we will use the symbols ∨ for the logical or and ∧ for the logical
and. There are two normal forms called conjunctive normal form (CNF) and
disjunctive normal form (DNF). A disjunctive program in CNF has the feasible
set

Fc =
⋂
i∈I

⋃
j∈Ii

{x ∈ Rn | ajx ≤ bj}

 ,

where for each Ii, at least one of the constraints ajx ≤ bj with j ∈ Ii has to be
fulfilled. In general, ∩ and ∪ are the set theoretic equivalents to ∧ and ∨. In
contrast to that, the feasible set of a DNF looks as follows:

Fd =
⋃
i∈I
{x ∈ Rn | Aix ≤ bi}

In this case, for at least one i ∈ I, all of the constraints Aix ≤ bi have to be
satisfied. Note that this contains a hidden ∧, which leads to the desired symmetry
between CNF and DNF.

The shortest path problem with vertex pair constraints clearly relates to a con-
junctive normal form, since every pair constraint has to be satisfied individually
(∧), but internally, there are two possibilities to achieve that (∨). Unfortunately,
Balas [4] needs a disjunctive program in DNF for the conversion into a linear
program. If we reformulate our problem to a DNF, the outer disjunction would
combine a set of 2|C| linear programs. Each of these linear programs represents
one possibility, how to satisfy all the constraints in C. This is comparable with a
brute-force approach to find a path satisfying C. Since all the general constraints
of the pure shortest path problem have to be copied in all these linear programs,
the resulting linear program will grow into immense dimensions. This is why we
avoided the disjunctive programming approach.

2.2.1 Complexity

There are two main complexity results. Both results concern the path-avoiding-
forbidden-pairs problem, called PAFP. These results and their proofs easily ex-
tend to the PCP problem due to the following observation. We will restate the
both results from the literature and then conclude for PCP.

Observation 2.1. An instance x of the PAFP problem can be reduced to an
instance y of shortest path problem with pair constraints. The size of y is poly-
nomial in the size of x.
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2.2 Problem Statement

This can be easily achieved by setting y exactly as x with B = ∅. Gabow et
al. [12] gained in 1976 the following result concerning the PAFP. The results of
Gabow base on forbidden vertex pairs F ⊆ V × V . For a detailed introduction
to complexity theory, see [2]. Especially Sections 1.2 and 1.3 focus on NP and
NP-completeness.

Theorem 2.1 (Gabow et al. [12]). The PAFP problem is NP-Complete.

Proof. Let us first show that PAFP can be solved by a nondeterministic turing
machine and hence lies in NP. Consider the following procedure 2 detPath. The
method is a kind of brute-force. It chooses a set J of forbidden pairs. All vertices
` of a forbidden pair (`, r) ∈ J are removed from D in D′. This ensures that
from these forbidden pairs, only r is used if any. For the remaining pairs, r
is removed. Thus, the graph D′ allows per forbidden pair only one of the two
vertices ` or r, depending on J and hence, it only returns true if a feasible path
exists. Conversely, if there is a feasible path P, then it uses at most one vertex per
forbidden pair. Hence, there is at least one set J , for which P is fully contained
in D′. Hence, detPath will finds a path if it exists.

Algorithm 2 Procedure detPath finds a path respecting all forbidden pairs. [12]

Input: Graph D = (V,A), forbidden pairs F
Output: Boolean value, wether a feasible path exists

procedure detPath(D, F)
for all subsets J ⊆ F do

S := {l | (l, r) ∈ J} ∪ {r | (l, r) ∈ F \ J} ⊆ V
D′ := D − S
if ∃ s-t-path in D′ then return true

end for
return false

The detPath routine uses O(|E| · 2|F|) asymptotic time. The 2|F| term arises
by the iteration over all subsets of F . Once, the correct choice for J is found,
the procedure needs O(|E|) asymptotic time in the second step to find a path.
This can be achieved for example via depth-first-search. If we see detPath as
a nondeterministic procedure (i.e., it cleverly guesses instantly a proper J), the
running time reduces to O(|E|), which is polynomial and hence PAFP is in NP.

Now, we need to prove that PAFP is NP-hard (i.e., belongs to the hardest
problems in NP). We do this by reduction of an NP-hard hard problem, 3-SAT,
to PAFP.

Problem 2.4 (3-SAT). The 3-Satisfiability problem is to determine whether a
Boolean expression B in 3-conjunctive normal form is satisfiable. Let B be of the
form

B :=

m∧
i=1

(pr1 ∨ pr2 ∨ pr3).
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t

Figure 2.1: The graph constructed from a Boolean expression with m = 3 [12]

Each literal pij represents either a Boolean variable xk or its negation x̄k. B is
now satisfiable if there is an assignment of Boolean values to the variables xk,
such that B evaluates to true.

We now find a reduction of 3-SAT to PAFP, which makes it possible to solve
an instance of 3-SAT by constructing a PAFP instance, solving this and then
concluding back to the solution of the initial 3-SAT instance. Let G be the
constructed graph. The vertex set V constists of source and sink vertices s and
t and vertices vij for all literals pij in B. The arc set A is defined as

A := {(s, v1j) | 1 ≤ j ≤ 3}
∪ {(vij , vi+1,k | 1 ≤ i < m, 1 ≤ j, k ≤ 3}
∪ {(vmj , t) | 1 ≤ j ≤ 3}.

See Figure 2.1 for an illustration with m = 3. A shortest s-t-path P in this
graph shall choose one of the literals in each clause evaluating to true. To prevent
P from taking two contradicting literals of the same variable, we define all those
pairs as forbidden. That is,

F := {(vij , vkl) | pij = p̄kl}.

Consider now an s-t-path P respecting F . Let P traverse the following vertices:

s, v1l1 , v2l2 , . . . , vmlm , t

We now set the variables xk in a way that all the literals pili are true. Because P
respects F , this is possible without any conflicts. Hence, B is satisfiable if such a
path P exists. Analogously, if there is no path P , B is not satisfiable. This can
be seen via contraposition.

We now saw that 3-SAT can be solved using PAFP. If PAFP is polynomially
solvable, then 3-SAT also will be polynomially solvable and therefore not be NP-
hard, because the reduction from 3-SAT to PAFP was also polynomially. This
is not the case and hence PAFP is NP-hard. Together with the previous result
that PAFP is in NP, we have that PAFP is NP-complete.
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Corollary 2.1. PCP is NP-complete.

Proof. Since PAFP is trivially reducable to PCP, the only point left for proving
is that PCP actually lies in NP. Take a procedure enumerating all s-t-paths
and then checking them for validity. The validity check runs in linear time in
|C| · |V |, since it only runs through the vertices used by the path and checks the
individual conditions of forbidden and binding pairs. Hence, this procedure is
nondeterministically polynomial and therefore PCP lies in NP.

The second part of this section deals with a completely different set of com-
plexity classes. The previous considerations all dealed with algorithms exactly
solving a problem. A similar classification for the complexity of algorithms ex-
ists depending on how good can optimal solutions be approximated. [2] gives a
good introduction to plenty of approximative algorthms as well as their complex-
ity classes. We will shortly explain the necessary terms and thereby follow the
mentioned book.

Definition 2.14 (Performance Ratio [2]). Let P be an optimization problem, x
an instance of P. We define the performance ratio of a feasible solution y of x as

R(x, y) = max

(
m(x, y)

m∗(x)
,
m∗(x)

m(x, y)

)
,

where m∗(x) denotes the value of an optimal solution of x and m(x, y) the value
of solution y to problem instance x.

By this definition, a performance ratio of r for solution y means in fact

m(x, y) ∈
[

1

r
m∗(x), r ·m∗(x)

]
,

since r is a value not smaller than 1.

Definition 2.15 (Ausiello [2]). Let P be an optimization problem and A an
approximation algorithm solving P. Let r ∈ R+ be a bound, such that

R(x,A(x)) ≤ r

for all instances x. Then we call A an r-approximate algorithm.

Using this classification of optimization problems, we can now define the com-
plexity class APX.

Definition 2.16. The complexity class of all problems P, for which there is an
r ≥ 1 and an r-approximate algorithm, is called APX.
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P FPTAS PTAS APX NP

PCP
PAFP

3-SAT

Figure 2.2: The complexity classes for approximating algorithms.

Figure 2.2 illustrates that APX is the largest class of approximatively solvable
problems. Thus, not belonging to APX means beeing one of the hardest problems
to solve approximatively. See [2] for definitions of FPTAS and PTAS.

Let us now consider the following problem MAX-REP. Its first occurence was
in 1999 in [19]. This paper of Kortsarz was about finding k-spanners of a graph.
A k-spanner is a subgraph G′ of G = (V,E) with vertex set V and a subset of the
edges E, where the distance between any two vertices u and v in G′ is not larger
than k times the distance between u and v in G. The paper shows that finding
k spanners with a number of edges close to the optimum is at least as hard as
approximating the set cover problem.

Problem 2.5. Let A1, . . . , Ak and B1, . . . , Bk all pairwise disjoint sets of vertices
and let

V1 :=

k⋃
i=1

Ai and V2 :=

k⋃
i=1

Bi.

The sets Ai and Bi all have size n. Let further G = (V1, V2, E) be an undirected
bipartite graph. We now construct a super-graph H = (VH, EH) with VH =
{A1, . . . , Ak, B1, . . . , Bk}. Two vertices Ai and Bj in VH are adjacent if there is
an edge in G between any two vertices a ∈ Ai and b ∈ Bj. Since G is bipartite,
H is bipartite as well.

The problem MAX-REP is about of finding exactly one representative ai ∈ Ai
and bj ∈ Bj. A super-edge (Ai, Bj) is said to be covered if the representatives ai
and bj have an edge in G, i.e. (ai, bj) ∈ E. The problem is to find representatives
maximizing the number of covered super-edges in H.

Figure 2.3 contains an example instance with n = 3 and k = 2. The red
diamonds are a possible choice of representatives solving the MAX-REP instance.
In this case, all super-edges

{(A1, B2), (A2, B1), (A2, B2)}

are covered. The crux of this problem is that MAX-REP is not in APX. The proof
of this goes by reduction of SAT to MAX-REP. It is published in 2001 [14]. To
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A1

A2

B1

B2

Figure 2.3: An instance of the MAX-REP problem. The red diamonds cover all
super-edges.

avoid getting of the track, we omit the proof here and focus on the next theorem
and its proof. At this point, we need to mention that the following results are
concerned with a variant of the PAFP problem, namely the minimization of the
number of violated forbidden pairs PAFP’.

Theorem 2.2 (Hajiaghayi [13]). PAFP’ is not in APX.

The proof of this theorem goes by reduction as well, this time we reduce MAX-
REP to PAFP’. The proof was originally published in [13].

Proof. Let G, Ai, Bj and H be a given instance of the MAX-REP problem. Let
X1, . . . , X2k be an arbitrary enumeration of the vertices of H, i.e. the sets Ai and
Bj . We now create the directed acyclic graph D = (V,A) with vertex set

V := {s} ∪

(
2k⋃
i=1

Xi

)
∪ {t}.

In fact, except for s and t, this are exactly the vertices of G. This definition shall
pronounce the ordering of the vertices according to the sets Xi as illustrated in
Figure 2.4. The red diamonds are the same as in the previous Figure 2.3. The
arc set of D is

A := {(s, x) | x ∈ X1} ∪
2k−1⋃
i=1

{(x, y) | x ∈ Xi, y ∈ Xi+1} ∪ {(x, t) | x ∈ X2k},

which consists of a complete bipartite graph between consecutive super-vertices
Xi and Xi+1 and connections to s and t. The last point are now the forbidden
pairs

F := {(f1, f2) | f1 ∈ Ai, f2 ∈ Bj , (f1, f2) /∈ E, (Ai, Bj) ∈ EH}.
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s t

A1 A2 B1 B2

Figure 2.4: Transformation of the MAX-REP instance (Figure 2.3) to PAFP’.

By this definition, forbidden pairs correspond to pairs of vertices which are not
adjacent in G, but there super-vertices are in H. The size of this new PAFP’
instance is polynomially in the size of the given MAX-REP instance.

Clearly, there is a one-to-one correspondence between a set of representatives
for the MAX-REP instance and a path through the graph of the PAFP’ instance,
since they use the same vertices. Let now R ⊂ V (G) be a choice of representatives
in G and P be the corresponding path in D. We now prove that if P violates t
forbidden pairs, then R covers h−t super-edges, where h = e(H) is the number of
super-edges in H. In other words, minimizing the number of violated forbidden
pairs is equivalent to maximizing the number of covered super-edges and hence
an optimal solution of PAFP’ relates to an optimal solution of MAX-REP and
vice-versa.

In fact, a violated forbidden pair (ai, bj) occurs in P if ai and bi are not con-
nected in G, but Ai and Bj are connected in H and thus {Ai, Bj} is a violated
super-edge. Conversely, if a super-edge {Ai, Bj} is not covered in H, then P
chooses two vertices a ∈ Ai, b ∈ Bj which are not adjacent in G and hence (a, b)
is a forbidden pair violated by P.

We saw that MAX-REP can be reduced to PAFP’ and the solution of PAFP’
returns information to the solution of MAX-REP. This means PAFP’ is compu-
tationally harder than MAX-REP and since MAX-REP is not in APX, PAFP’ is
also not.

We can now conclude to the variant PCP’ of the pair constraint problem, which
minimizes the number of violated pair constraints.

Corollary 2.2. The PCP’ does not lie in APX as well.

We have now seen two results concerning the complexity of the shortest path
problem with pair constraints. The first one states that it is NP-complete and
hence belongs to the hardest problems to solve exactly. The second one is about
how good the optimal solution can be approximated and we saw that even in
this case, we are in the hardest possible complexity. Thus, the pair constraint
problem counts to the hardest problems.
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2.2.2 Problem Variants

Most of the literature we studied decided to define the pair constraints B and
F as vertex pair constraints. This is why we followed them and did it as well.
Nevertheless, there are arc pair formulations as well in the literature. This section
addresses these two variants.

Theorem 2.3. An instance of the shortest path problem with vertex pair con-
straints can be transformed into an instance of the shortest path problem with arc
pair constraints. Thereby the instance grows by at most 2k vertices and at most
2k arcs, where k = |C| is the number of constraints in the instance. The same
holds conversely.

Proof. We restrict the proof to the transformation of vertex pairs into arc pairs.
The opposite direction works similar. The core of the transformation is the
operation splitVertex, which is given in pseudo code in Algorithm 3. The two
for loops in the code reorganize the incoming and outgoing arcs of v. Afterwards,
the incoming arcs point to v− and the outgoing arcs start in v+. v is now
isolated and can be removed. The procedure alters the graph; this means for
an implementation that the graph should be called by reference or as a pointer.
Figure 2.5 illustrates it with an example. The figure also shows for the opposite
direction, how an arc can be divided into two arcs separated by a vertex.

We now apply the method splitVertex to every vertex contained in a vertex
pair constraint. Then, we define the new arc pair constraints with the arcs
splitVertex returns. Clearly, the method adds exactly one new vertex and
one new arc for every splitted vertex, which explains the increase of at most
2k vertices and arcs, since every vertex pair constraint consists of two distinct
vertices.

Algorithm 3 Procedure splitVertex replaces a vertex by an arc.

Input: Graph D = (V,A), vertex v
Output: The arc, in which v was splitted.

procedure splitVertex(D, v)
Add new vertices v− and v+ to D
for (x, v) ∈ A do

Change arc to (x, v−) in D

for (v, y) ∈ A do
Change arc to (v+, y) in D

Add new arc (v−, v+) to D
Remove v from D
return (v−, v+)

This allows the conclusion that for problem instances with |C| ∈ o(|V |), we can
consider the both description variants with vertex pairs and respectively with arc
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Figure 2.5: Splitting a vertex to an arc (above) and vice-versa (below).

pairs as almost equally hard. But the similarity of the two goes a step further. As
we will see in Section 2.2.3, reachability plays an important role for the relations
between the pair constraints. We already defined vertex reachability; here is the
arc equivalent.

Definition 2.17 (Reachability of arcs [26]). Let D be a directed acyclic graph.
Let ≺A: A × A → {0, 1} be a relation on A, such that a1 ≺A a2 holds if there
exists a path using first a1 and later a2.

Note that both operations increase the size of the instance and concatenating
them will not result in the original instance, although they can be identified by
simple preprocessing techniques. The following proposition ensures that both
operations do not change reachability among the pair constraints.

Proposition 2.1. Let D be a directed acyclic graph and C ⊆ V × V a pair
constraint set. Let D′ and C′ ⊆ A×A be the instance obtained by splitVertex.
Then, we have

x ≺ y ⇔ (x−, x+) ≺A (y−, y+)

for all vertices x, y ∈ V beeing contained in any forbidden pair.

Proof. For the direction “⇒”, let x ≺ y hold for any two properly chosen vertices.
Let Pv = {x = p1, . . . , ps = y} be the vertex set of a path connecting x and y.
By the operation, a new vertex x+ is generated and with it a new arc (x+, p2),
since (x, p2) is an arc in D. The same holds for y− and the new arc (ps−1, y

−).
Thus, P ′ = {x−, x+, p2, . . . , ps−1, y

−, y+} is a valid path in D′, since also the
arcs (x−, x+) and (y−, y+) are inserted. The existence of this path is exactly the
definition of (x−, x+) ≺A (y−, y+).

For the opposite direction, we can analogousy take a path and reconstruct the
original path from it.
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Figure 2.6: Two disjoint pairs, two halving pairs and two nested pairs. The lines
shall denote membership to the same pair constraint.

The proposition including its proof can be easily altered to match the case of
transforming arc pair constraints to vertex pair constraints. The similarity of
these to propblem types will become important in Chapter 4.

2.2.3 Structural Conditions

This section introduces some conditions on vertex pair constraints, as they occur
in the literature. The most comprehensive distinction of structural cases was
contributed by Kováč in 2013 [20]. He defined three relations in which two
forbidden pairs can be related to each other and results in a distinction of in
total seven different structures, which will be shortly explained now. Afterwards,
we will encounter other structural definitions and try to relate them between each
other.

Kováč used a fixed topological sorting < on the graph D, which allowed an
explicit relation of any two pairs.

Definition 2.18 (Kováč [20]). Let G = (V,A) be a directed, acyclic graph and
F ⊆ V × V a set of forbidden pairs. Let further < be a fixed topological sorting
on V . Two forbidden pairs (f1, f2), (g1, g2) ∈ F are called
• disjoint if f1 < f2 < g1 < g2 or g1 < g2 < f1 < f2 holds,
• halving if f1 < g1 < f2 < g2 or g1 < f1 < g2 < f2 holds or
• nested if f1 < g1 < g2 < f2 or g1 < f1 < f2 < g2 holds.

Figure 2.6 shows examples to the three definitions.

Observe that every two forbidden pairs have exactly one of these three struc-
tures. By allowing only a subset of them, we gain seven possibilities to restrict
the set of forbidden pairs. The general problem allows all three relations. If only
disjoint pairs are prohibited, Kováč calls the constraints overlapping if nested is
avoided, they are ordered and well-paranthesized if there are no halving pairs.
By these definitions, Kováč gave an overview with Table 2.1. The table also
contains complexities for all these cases. Most of them are found and proven in
the mentioned paper of Kováč.

In 1997, Yinnone [27] investigated the shortest path problem with forbidden
pairs under a skew symmetry condition.

Definition 2.19 (Yinnone [27]). Let D = (V,A) be a directed graph, s, t ∈ V
the unique source and sink and F ⊆ V × V a set of forbidden pairs. The graph
D is called skew symmetric if

(u, v) ∈ A⇒ (v′, u′) ∈ A
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Name disjoint halving nested Complexity

general X X X NP-hard
overlapping × X X NP-hard

ordered X X × NP-hard
well-paranthesized X × X O(nω)

disjoint X × × O(n+m)
halving × X × O(nω+1)
nested × × X O(nω)

Table 2.1: Overview over structures of forbidden pair sets. This table is taken
from Kováč [20].

holds for all u, v ∈ V \ {s, t}.

Note that Yinnone allows circles in his graphs. Nevertheless, the problem of
finding a feasible s-t-path in D (called SFP within the paper) remains polyno-
mial. The given proof shows that the problem is polynomially equivalent to the
augmenting path problem [5, 27].

If we restrict a skew symmetric graph to be acyclic, we are able to relate this
definition to the already seen ones of Kováč.

Proposition 2.2. Let D be a skew symmetric directed graph with the set F of
forbidden pairs. Let D be acyclic. Then, there is a topological sorting concern-
ing which F has nested structure. Furthermore, all vertices not contained in a
forbidden pair can be sorted into the center of the nested pairs.

Algorithm 1 in Section 2.1 provided a topological sorting of a directed acyclic
graph. We are going to change this algorithm a little bit using the skew sym-
metry. The pseudo code can be found in Algorithm 4. Whereas the original
procedure topSort works from a source vertex to a sink, the altered method
topSortSkewSymmetric sorts the vertices simultaneously from the source and the
sink side. This way we guarantee that the result sorting has a nested structure.
List S denotes the beginning of the topological sorting, whereas T is concurrently
filled from the sink side of D. Lines 2 to 5 do the first step manually: Source s
and sink t are removed from the graph and stored in the appropriate lists. The
while loop in line 6 then procedes with the removal of all forbidden pairs. To
facilitate the proof of this proposition, let us proof the next lemma first.

Lemma 2.4. Let D be the graph obtained after an iteration of the while loop
in Line 6 of Algorithm 4. If there are vertices left in the graph which belong to
a forbidden pair, then there is always a vertex v belonging to a forbidden pair
with δ−(v) = ∅ and its mate v′ has δ+(v′) = ∅.
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Proof. For the first part, assume for contradiction, the claim does not hold. Ar-
bitrarily choose any vertex v ∈ V contained in a forbidden pair. Since it is no
source, we now iteratively switch over to one of v’s predecessors searching for a
source. Since the graph is acyclic and finite, this clearly terminates after some
steps. To contradict the claim, the only possibility is, we end up in a vertex not
contained in a forbidden pair. If we now add some cleverness to the choice of the
predecessor, the claim immediately follows. We always choose a vertex belonging
to a forbidden pair and only take one without forbidden pair if there is no other
possibility. Assume, we went from v to an vertex x (with x′ = x), then the skew
symmetry tells us that x has v′ as a predecessor and we can proceed to v′. Thus,
this search procedure cannot end up in a vertex with x′ = x, which contradicts
the assumption. The second part of the claim trivially follows by the definition
of skew symmetry.

Now, the proof of Proposition 2.2 follows.

Proof. of Proposition 2.2. By Lemma 2.4, we know that after the while loop in
line 6, only the vertices are left, which aren’t contained in any forbidden pair.
They will now be sorted using the existing method topSort in line 12. Finally,
the three lists are concatenated and returned. The topological sorting induced
by R nests the forbidden pairs around the isolated vertices, which proves the
existence of such a sorting.

Algorithm 4 Procedure topSortSkewSymmetric sorts a skew symmetric graph
topologically.

Input: Graph D = (V,A)
Output: List R with nested structure

procedure topSortSkewSymmetric(D)
Vertex s := the unique source of D
Vertex t := the unique sink of D
List S := {s}, T := {t}
D := D − {s, t}
while |F| > 0 do

Choose x ∈ V with δ−(x) = ∅ and x′ 6= x
Add x to S
Add x′ as first element to T
Remove (x, x′) from F
D := D − {x, x′}

List M := topsort(D)
List R := S ∪M ∪ T
return R
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Figure 2.7: An example for a skew-symmetric graph. The topological sorting is
given by the x coordinates of all vertices. The numbers denote the
memberships to the four forbidden pairs.

The advanced structure of the isolated vertices inbetween all forbidden pairs
emphasizes the symmetry of the graph. Figure 2.7 shows an example for a skew-
symmetric graph. Two vertices labeled with the same number belong to the same
forbidden pair. There is no condition to arcs starting in s or ending in t. Among
the vertices not belonging to a forbidden pair, there is no arc allowed, because
otherwise the backwards arc is also contained by the skew-symmetry. This would
lead to a cycle. Hence, the skew-symmetric graphs are indeed a very restricted
class of graphs.

In the same year Kováč first published his structural distinctions of multiple
forbidden pairs, also Kolman and Pangrác worked on the problem. They went
in a similar direction, but took an approach not based on a topological sorting.
Instead, they based their definition on the reachability of vertices, which we
mentioned in Definition 2.5.

Definition 2.20 (Kolman, Pangrác [18]). Let G = (V,A) be a directed, acyclic
graph and F ⊆ V ×V a set of forbidden pairs. If no two pairs (f1, f2), (g1, g2) ∈ F
fulfill
• f1 ≺ g1 ≺ f2 ≺ g2, the set F has hierarchical structure and
• f2 ≺ g1 or f2 = g1, the set F has halving structure.

Let us compare these two definitions with the well-paranthesized and halving
structure introduced by Kováč. Since halving is ambiguous now, we will always
refer to the appropriate definition of halving, so there is no danger of confusion.

Lemma 2.5. If a set of vertex pairs is well-paranthesized, then it is also hierar-
chical. The converse is not true in general.

Proof. First, let D be a directed acyclic graph and F forbidden pairs on it with
well-paranthesized structure. We show that it is hierarchical. In a topological
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2.2 Problem Statement

ordering, xk 6< xl always implies xk 6≺ xl. Let now (u, v) and (x, y) be pairs in
F . Since they are not halving (in the Kováč-sense), one of the three relations
of u < x < v < y has to be violated and by the previous observation also the
corresponding ≺-relation of those vertices. This implies that the two pairs cannot
halve each other (in the Kolman and Pangrác sense). Thus, the instance is of
hierarchical structure.

As a counterexample for the opposite direction, consider the graph in Fig-
ure 2.8. The forbidden pairs shall be discernible by the indices of the vertices.
The next lines only refer to the halving definition for two forbidden pairs of Kováč,
since we need to see that there is halving in any possible topological sorting. We
need to find a topological sorting <, such that no two constraints halve each
other. Clearly, the bottom path {s, a1, a2, a3, b2, t} is fixed for any topological
sorting and hence, only the two upper vertices b3 and b1 need to be sorted into
this enumeration. Because of the two arcs (s, b3) and (b1, b2), they both need to
be located between s and b2. Now, consider the few remaining possibilities in
terms of halving. To avoid halving of the pairs 2 and 3, the vertex b3 needs to
be put after a2. But the pairs 1 and 2 halve if b1 is set after a2. These both
conditions contradict each other because of the arc (b3, b1).

s a1 a2 a3 b2 t

b3 b1

Figure 2.8: A hierarchical constraint set, which can not be well-paranthesized.

The first and according to our investigation only one considering structural
constraints to an arc equivalent of the pair constraint problem is Xing Tan in his
dissertation in 2012 [26].

Definition 2.21 (Tan [26]). Let D be a directed acyclic graph. Let FA ⊆ A×A
be a set of forbidden arc pairs. FA is called arc hierarchical if no two pairs
(a1, a2), (a3, a4) ∈ FA halve each other, i.e.,

a1 ≺A a3 ≺A a2 ≺A a4.

Note that Tan called his arc set E instead of A and calls them edges instead of
arcs. However, he is also concerned with directed acyclic graphs. We decided to
change the notation here to be consistent with the rest of this thesis.

In Section 2.2.2 we found two ways passing over from vertex pair constraints
to arc pair constraints and conversely. As seen, these two methods preserved
reachability among the vertex reachability and arc reachability relations of the
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2 The Shortest Path Problem with Pair Constraints (PCP)

members of the according pair constraint sets. Thus, the arc hierarchical case
of Tan classifies as hierarchical in the sence of Kolman and Pangrác, which we
observed already.
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3 Recursive Algorithms for the PCP

Over the last years, there have been several approaches to solve especially the
shortest path problem with forbidden vertex pairs. This chapter collects the
combinatorial and recursive approaches to several variants or special cases of the
shortest path problem with pair constraints.

This chapter is divided into two parts. The first part contains algorithms
solving the PAFP problem. These algorithms are presented in the literature and
collected here including their running times. The second part is Section 3.2, were
we present a new algorithm. Our algorithm also contracts the given graph, but
it is able to handle also binding pairs.

3.1 Existing Algorithms for PAFP

3.1.1 A Dynamic Programming Approach by Kováč

After the distinction into several structures, Kováč observed every case in more
detail in his paper. For the well-parenthesized case, he gave a dynamic program-
ming approach, which we will present here. The next paragraphs will shortly
explain the basics of recursion and then extend to the idea of dynamic program-
ming. Afterwards, Kováč’s approach is explained.

Solving combinatorial problems often leads to sub problems, which have exactly
the same structure as the given problem instance, but are of lower size. An easy
example is the factorial n! of an integer n, which can be defined explicitly by

n! :=
n∏
i=1

i.

The same factorial can also be defined as n! := n · (n − 1)!. For this definition,
we need to explicitly define 1! := 1. Whereas the first definition allows you to
explicitly compute n! without knowing any lower factorials, the second approach
forces you to recursively compute all factorials lower than n. Of course, in this
easy example, the actual calculation to be done is the same in both cases, but
this may change for larger or more complex problems.

Sometimes, a recursive definition needs to call itself more than once. Consider
for example the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13 and so on. The n-th
Fibonacci number is defined as fn := fn−2 + fn−1 and the explicit beginning
f0 = 1 and f1 = 1. To compute the Fibonacci number fn for some n � 1, you
need to compute fn−2. Once this is done, your recursion will compute fn−1, which
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3 Recursive Algorithms for the PCP

. . .
u q a b v

. . .

Figure 3.1: Two forbidden pairs (q, v) and (a, b). The black path is feasible and
its first arc jumps over q. Thus, J [u, v] = true.

itself is defined as fn−1 := fn−3 + fn−2. At this point, your method computes
fn−2 the second time. Again, the Fibonacci numbers are an easy example, but
for problems of huge size and complexity, this can become highly inefficient.

At this point, dynamic programming comes into play. The basic idea of dy-
namic programming is, to store the results of recursively computed solutions.
If the same recursion needs to be calculated again, the program can look-up if
the solution is already computed and then either return the computed one or
compute it, save it and then return it. This guarantees that no sub results are
computed twice. In the example of the Fibonacci numbers, this basically results
in a calculation of all Fibonacci numbers from 0 to n. The only thing to be
careful about is that there are no cyclic dependencies between the elements of
the recursion and that the recursion is guaranteed to terminate.

Kováč presents an approach for the shortest path problem using dynamic pro-
gramming. Therefore he defines the following two labels P and J on each pair of
vertices. For all vertices u, v ∈ V , let

• P [u, v] be true if a feasible u-v-path exists and
• J [u, v] be true if v is part of a forbidden pair (q, v) with u ≺ q ≺ v and

there is a feasible u-v-path such that its first arc jumps over q concerning
the topological sorting <. See Figure 3.1 for an example.

Note that Kováč allows the labels to have beside the values true and false

also the value undefined and null. Null is the initial value of all entries of P
and J and signals only that they have not been computed yet. The labels are
defined as

J [u, v] =

{∨
(u,w)∈A,q≺w P [w, v] u ≺ q, (q, v) ∈ F

undefined otherwise

and

P [u, v] =


true u = v

false (u, v) ∈ F∨
u�w≺v,(w,v)∈A P [u,w] v � v′ ∨ v′ ≺ u∨
u�w≺v(P [u,w] ∧ J [w, v]) ∃(q, v) ∈ F : u ≺ q ≺ v.

To solve the problem, we just compute P [s, t] now. Kováč defined the problem
as finding a shortest feasible path, but this algorithm just finds out, whether
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3.1 Existing Algorithms for PAFP

there is a path or not. We will now explain the given recursions and sketch their
correctness.

Let us first check the label J . Label J [u, v] shall only contain a value (true or
false) if there is a forbidden pair (q, v) ending in v. Kováč assumes x < y for a
forbidden pair (x, y), so this includes already that q is before v. Thus, only in the
correct case, the recursion starts computing anything. In this case, we consider
all arcs (u,w) starting in u and jumping over q. If any of their endpoints w has
a feasible path to v, the label P [w, v] will be true and hence, this is a correct
recursion for J [u, v].

Consider now P [u, v]. The first case u = v is trivially true, and if (u, v) is a
forbidden pair, there cannot be any feasible path. The third case is, that either
v has no forbidden pair or its mate v′ is “outside of [u, v]”. The recursion now
considers all arcs (w, v) ending in v. If there is a feasible path to any of those w’s,
then the path can be extended by (w, v) to a path from u to v. The last case now
considers a forbidden pair (q, v) at v with q “inside [u, v]”. Here, the search for a
feasible path is a bit more complicated. For all vertices w “in [u, v]”, we check if
there is a feasible path from u to w and a feasible w-v-path whose first arc jumps
over q. In fact, this searches for the last vertex w of the u-v-path before q. This
construction is a bit complicated. Its purpose is to guarantee, that there are no
cyclic calculation dependencies between the entries of J or P .

Proposition 3.1. There are no cyclic dependencies between the recursive defi-
nitions of J and P .

This proposition is not contained in [20], but we state it here for clarification.

Proof. The entries of the tables J and P can be imagined as vertices of a directed
graph, where an arc points from an entry [u, v] to all other entries, which are
needed for the computation of the entry [u, v]. Then, we would have to show,
that this graph is acyclic. We achieve this by finding a general “direction”, which
all arcs follow.

All calls in a recursion at the entry [u1, v1] (in any of the two labels) point
either to another entry [u2, v2], where v2 < v1 or where the distance concerning
the topological sorting1 is smaller than between u1 and v1. Calls to the same
entry [u1, v1] only point from P to J , namely in the fourth case of P , where w
can be also u.

This sketches, why there cannot be any cycles in this graph and hence in the
dependencies of the entries of P and J .

The proposition ensures, that the algorithm always terminates and the consid-
erations beforehand save the correctness of both labels. The running time of this
recursion is obviously O(n3), since there are 2n2 entries to be computed and the
computation of every entry is at most O(n).

1This shall sloppily denote the number of vertices strictly between the two mentioned ones.
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3 Recursive Algorithms for the PCP

x
−→

Figure 3.2: Contraction of the vertex x.

Kováč advanced his algorithm by a fast Boolean matrix multiplication tech-
nique. With some auxiliary properties, he gains a running time of less than
O(n2.5). This points away from our graph theoretic problems, wherefore we leave
this off here.

3.1.2 Graph Contraction by Kolman and Pangrac

Kolman and Pangrác were the first introducing a method contracting a graph
to solve the shortest path problem with vertex pair constraints. They defined
three rules, each contracting either vertices, arcs or forbidden pairs. Within this
section, we assume that every vertex is contained in at most one forbidden pair.

• Rule R1 (Contraction of a vertex). For every vertex x ∈ V with x′ = x do
the following: For every pair of arcs (u, x), (x, v) ∈ A, add a new arc (u, v)
with weight w(u, v) := w(u, x) + w(x, v) to A. In the case that (u, v) is
already contained in the graph, only keep the shorter one according to w.
Then, remove x from V and all arcs containing x from A. Figure 3.2 gives
an example.

• Rule R2 (Removal of an arc). Remove all arcs a ∈ A ∩ F from A.

• Rule R3 (Removal of a forbidden pair). For every pair (x, y) ∈ F with
x 6≺ y, remove (x, y) from F .

The power of these rules is revealed by the following lemma.

Lemma 3.1 (Kolman et al. [18]). Let D and F be an instance of the shortest
path problem with pair constraints. Then, at least one of the rules R1, R2 or R3

is applicable to D and F , unless V 6= {s, t}, where s and t are the desired source
and destination.

Proof. We assume for contradiction, that none of the rules are applicable, but
the graph has more than two vertices. Consider a vertex x ∈ V \ {s, t}. x must
be contained in a forbidden pair, because otherwise rule R1 is applicable. Since
there is a forbidden pair left, consider a forbidden pair (x, y) ∈ F such that there
is no other nested forbidden pair (u, v) ∈ F with x ≺ u ≺ v ≺ y. Because of the
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finiteness, this clearly exists. R3 is not applicable and hence there is a path from
x to y. And due to the inapplicability of R2, this consists of at least two arcs
combined by an internal vertex, say u. Again, since R1 is not possible, there has
to be a forbidden pair (u, v) ∈ F or (v, u) ∈ F . But by the hierarchical structure
of the graph we know, that v also lies on the shortest path between x and y. This
contradicts the choice of the pair (x, y).

This lemma states, that the algorithm terminates only if the graph consists of
only s and t. Since all rules remove anything from the graph, it gets smaller in
every loop and hence, the algorithm cannot hang in endless loops. These two
facts combined give the guarantee of a finite and correct termination. The final
procedure contractGraphKP of Kolman and Pangrác is located in algorithm 5.
In this state, the algorithm only determines the existence of a feasible s-t-path in
D. Kolman and Pangrác proposed arc labels which hold the information during
the contraction method. In the beginning, all labels are set to (u,v) for the arc
(u, v) ∈ A. The rule R1 concatenates the labels of the deleted arcs and sets that
as the label for the newly inserted arc. Finally, the arc (s, t) contains the whole
shortest path as its label if it exists.

Lemma 3.2 (Kolman et. al. [18]). Simply implemented, this algorithm takes
O(mn2) time.

Proof. The graph shrinks in every application of one of the rules. Thus, the while
loop in Line 2, has at most n iterations, since by Lemma 3.1 the application of
R2 and R3 guarantee a removable vertex. Let us now bound the three rules.
The contraction of vertices connects in the worst-case all predecessors with all
successors. Thus, contraction of a vertex needs O(n2) time. Removal of an arc is
constant once it is found and hence O(1) for R2. The most expensive part is the
detection of redundant forbidden pairs. Usual graph traversal algorithms such
as depth-first-search or breadth-first-search are bound by O(m). The number of
forbidden pairs is bounded by O(n), because we assumed every vertex to contain
to at most one forbidden pair. Thus, we have O(mn) for R3. We can also demand
D to be connected, since otherwise we simply remove components different from
the one holding s and t. This means n ∈ O(m). Altogether, we have O(mn2),
becauseO(n2) ⊆ O(mn) by the last argument and the n iterations of the loop.

3.1.3 A Contraction Variant for Arcs by Tan

Tan was concerned with an arc variant of Kolman and Pangrác’s problem. He
gave a polynomiality proof by altering the algorithm of Kolman and Pangrác to
an arc equivalent. He defined his three rules, called steps, in the following way.

• Step S1. Search for an arc a1 = (x, y) ∈ A not contained in a forbidden
pair. Add a new vertex u to D and change all arcs pointing to either x or
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Algorithm 5 Procedure contractGraphKP contracts a graph until only s and t
survive.

Input: Graph D = (V,A)
Output: true if a feasible path in D exists

procedure contractGraphKP(D, F)
while |V | > 2 do

apply R1

apply R2

apply R3

if |A| = 0 then
return false

else
return true

y, such that they now point to u. Analogously change all arcs starting in x
or y. Finally, remove x and y from D.

• Step S2 (Removal of an incident forbidden pair). Find a forbidden pair
((x, y), (y, z)) ∈ F of two contiguous arcs. For all arcs (y, u) ∈ A with u 6= z,
add a new arc (x, u). Now, add a new forbidden pair for all forbidden pairs
using (x, y) and all newly added arcs (x, u), whereby (x, y) is replaced by
(x, u) in the new forbidden pair. Finally, (x, y) is removed from A and all
forbidden pairs using (x, y) from F . See Algorithm 6 on the facing page for
a description in pseudo code.

• Step S3. For every pair (x, y) ∈ F with x 6≺A y, remove (x, y) from F .

Note, that steps S1 and S2 only do one operation, whereas step S3 (and the
rules of Kolman and Pangrác as well) remove all matching forbidden pairs. The
following observation of Tan directly resembles those of Kolman and Pangrác.

Lemma 3.3 (Tan [26]). Let D and F ⊆ A × A be an instance of the shortest
path problem with vertex pair constraints. Then, at least on of the steps S1, S2
or S3 is applicable to D and F , unless V 6= {s, t}.

Proof. We assume, that the assumption does not hold. This can be simply con-
tradicted following the proof of lemma 3.1.

Lemma 3.4 (Tan [26]). This algorithm takes O(m4) running time.

Proof. Clearly, the number of forbidden (arc) pairs is bounded by m2. Let us
now check the complexities of the 3 subroutines.

• Step S1 requires O(m) time iterating through the arcs searching for a free
one. Finding all arcs to the vertices x and y takes O(n) time and hence,
step S1 is bounded by O(m).

34



3.2 The Pair Constraint Reduction Algorithm

Algorithm 6 Step 2 of Tan’s contraction method.

Input: Graph D = (V,A), forbidden pairs F
Output: nothing (the graph D is altered)

procedure tanStep2(D, F)
find ((x, y), (y, z)) ∈ F
if No such pair found then return

for (y, u) ∈ δ+(y) \ {(y, z)} do
5: Add (x, u) to A

for (a1, a2) ∈ {(a1, a2) ∈ F | a1 = (x, y) ∨ a2 = (x, y)} do
Forbidden pair f = (c, d)
if a1 = (x, y) then

c = (x, u)
10: d = a2

else
c = a1

d = (x, u)

Add f to F
15: Remove (x, y) from A

• Step S2 searches for a connected forbidden pair. By brute force, this
takes O(m2) possibilities. The insertion of new forbidden pairs and arcs
is bounded by O(n). Thus, step S2 is bounded by O(m2).

• Step S3 Needs a reachability check for ≤ m2 forbidden pairs. Reachability
can be checked by a depth-first-search or breadth-first-search in O(m) time,
which leads to a bound for step S3 of O(m3).

Step S1 reduces the number of vertices in D by one and the other two steps
don’t change it. If S2 can be applied, it leaves the arc (y, z) without forbidden
pair. If S3 can be applied, there are two more arcs free. Thus, if any of the two
is applicable, there is work to do for S1 in the next iteration. And if both are not
applicable, S1 must be applicable because of Lemma 3.3. Thus, the number of
iterations is bounded by n and hence the running time is bounded by O(m4).

3.2 The Pair Constraint Reduction Algorithm

The previous algorithms deal with forbidden pairs. In this section, we introduce
a new algorithm similar to the contraction method of Kolman and Pangrác. Our
method contractGraph solves instances D = (V,A) with a set F of forbidden
pairs and B of binding pairs if their union C := F ∪ B has well-parenthesized
structure according to the definition of Kováč given in section 2.2.3 on page 23.
This requires a topological sorting < given on the vertices V .
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For our method, we need only two contraction rules, which are then iteratively
applied.

• Rule B1 (Contraction of a vertex). This is exactly the same as in sec-
tion 3.1.2 on page 32. For every vertex x ∈ V with x′ = x do the following:
For every pair of arcs (u, x), (x, v) ∈ A, add a new arc (u, v) with weight
w(u, v) := w(u, x)+w(x, v) to A. In the case that (u, v) is already contained
in the graph, only keep the shorter one according to w. Then, remove x
from V and all arcs containing x from A.

• Rule B2 (Removal of a pair constraint). For every vertex pair constraint
(u, v) ∈ C, for which u and v are neighbors concerning <:

1. If (u, v) ∈ F , remove (u, v) from A (if contained) and then remove the
forbidden pair (u, v) from F .

2. If (u, v) ∈ B, there are two cases. If u < v, remove all incoming arcs
(x, v) ∈ A except for (u, v). Otherwise (if v < u), remove all outgoing
arcs (u, x) ∈ A except for (v, u). In both cases, remove the binding
pair (u, v) from B.

This leads to an altered version of contractGraphKP. The only difference are
the names of the applied rules. We call this algorithm contractGraph and for
completeness, it is stated here again.

Algorithm 7 Procedure contractGraph reduces a graph respecting forbidden
and binding pairs.

Input: Graph D = (V,A), vertex pair constraints C
Output: true if a feasible path exists in D

procedure contractGraph(D, C)
while |V | > 2 do

apply B1

apply B2

if |A| = 0 then
return false

else
return true

We need to verify, that this method only terminates if V = {s, t}.

Lemma 3.5. Let D = (V,A) be a directed acyclic graph and F and B the
forbidden and binding pairs, which have well-parenthesized structure. Let further
D be the graph obtained after application of rule R1. Then, there is at least one
pair (x, y) ∈ B ∪ F of vertices, which are neighbors in the topological sorting.

Proof. Assume for contradiction, the lemma does not hold. Take any vertex pair
constraint (u, v) ∈ B ∪ F . Since the lemma does not hold, there is at least one
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vertex x between the vertices u and v. Rule R1 was applied and hence, x belongs
to a constraint (x, y) (or (y, x)). The two pairs (u, v) and (x, y) (resp. (y, x)) do
not halve, wherefore y also has to lie between u and v. Now, x and y have to be
neighbours and the same reflection hols for x and y again. This contradicts the
finiteness of the vertex set V and the constraint sets F and B.

The lemma says, that after each application of B1, there is work to do for B2.
And it can easily be seen, that in the opposite direction, B2 leaves work for B1.
Thus, the algorithm only stops if the condition of the while loop is not satisfied.

Our method seems to be the first algorithm finding a shortest path in a di-
rected graph, which respects forbidden pairs and binding pairs. Unfortunately,
we are loosing a bit generality compared to Kolman and Pangrác, since we are
using well-parenthesized constraints instead of hierarchical ones. We now inves-
tigate the running time complexity of contractGraph. Section 5.2 explains, how
this method can be extended to obligatory pairs and Chapter 5 presents our
implementation of the method including running times on various instances.

Theorem 3.1. Let D = (V,A) be a directed, acyclic graph and B and F pair
constraints with well-parenthesized structure. Let n = |V |, m = |A| and k =
|B ∪F|. Then, the algorithm contractGraph solves this instance in O(n4) time.

Proof. As usual for running time proofs of these contraction algorithms, we first
check the complexity of the individual contraction rules.

• Rule B1 iterates over all vertices. This takes O(n) time and then, all in-
coming and outgoing arcs are combined to a new arc. Since the number
of incoming arcs as well as the number of outgoing arcs is bounded by n,
we have at most n2 new arcs here. This leads to the total running time of
O(n3).

• Rule B2 visits all forbidden pairs and checks, whether the two vertices are
neighbors. This is O(n), since every vertex is contained in at most one
forbidden pair. Once a forbidden pair is found, the possibly existing arc
between the vertices is removed. This is O(n), since the arc has to be found
in the unordered list of outgoing arcs. For a binding pair, all other arcs have
to be deleted, which is O(n) as well. Hence, we have O(n2) here.

We already saw, that the two rules guarantee the applicability of each other.
Thus, in each iteration, at least one vertex is removed and hence, we have at
most n iterations. This leads to the overall running time of O(n4).
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4 A Polyhedral Study of the PCP

In the previous chapter, we concentrated on combinatorial and recursive algo-
rithms for solving the PCP. In this chapter, we are interested in deriving a good
IP formulation for the problem. We already saw that the constraint matrix of the
integer program formulation of the pair constraint problem given in Section 2.2
is not totally unimodular. Geometrically, this means that the given inequalities
describe a polytope, which is not necessarily integral. Thus, the solution of the
LP-relaxation is in general not a point corresponding to the shortest feasible path.

This problem can be solved by a obtaining complete linear description of the
polytope P (C). A complete linear description is precisely the convex hull of the
integer points in P (C) given as a system of linear inequalities. For the majority
of well-known optimization problems that can be formulated as IPs, a complete
linear description is unknown or contains an exponential number of inequalities.

In this chapter, we derive a complete linear description for the polytope P (C)
for some special cases of the shortest path problem with pair constraints. For
ease of notation, in this chapter we consider arc pair constraints instead of vertex
pair constraints. As we saw in Section 2.2.2, the problems are equivalent. Some
parts of this chapter will be published in the proceedings of the Latin-American
Algorithms, Graphs and Optimization Symposium (LAGOS) 2015.

To the best of our knowledge, we are the first to carry out polyhedral analysis
of the PCP. In Section 4.1, we examine P (C) for the case of exactly one forbidden
or binding pair. Already in this simple case, the number of additional inequalities
can be exponential in |V |. In Section 4.2, we extend these results to a contiguously
disjoint structure of pair constraints.

4.1 A Complete Description for one Pair

For first little insights, we start by considering instances of the pair constraint
problem with only one forbidden pair and one binding pair, respectively. For both,
we give a complete linear description of the associated polytope. Afterwards, we
examine the the number of inequalities needed for the linear description in the
case of a forbidden pair. Although the number can be exponentially large in |V |,
they can be separated in polynomial time.

4.1.1 One Forbidden Pair

During this section, we work on a given instance of the pair constraint problem.
Let therefore the network D = (V,A) and F ⊆ A × A be fixed. As the title

39
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` r`

Figure 4.1: The example graph K8 with gray arcs. The forbidden pair (`, r) is
highlighted in blue and the subgraph Dr\` is black.

suggests, we assume F = {(`, r)}, that is, we have exactly one forbidden pair.
Let also the source s and the sink t be fixed. For the following results, we need
to define some terms on the graph D.

Definition 4.1. For D and the forbidden pair F = {(`, r)}, define the following:

• Let Vr := {v ∈ V | v � r−} ⊆ V be the set of all vertices, from which r−

can be reached. This includes also r− itself.

• Denote by Ar := (Vr×Vr)∩A the set of all arcs with both endpoints in Vr.

• Ar\` := Ar \ {`} is the arc set on Vr excluding `.

• Let now Dr\` := (Vr, Ar\`) be the subgraph of D defined by the previous
sets.

• Γ(Dr\`) ⊆ 2Ar\` shall denote the set of all inclusion-minimal (s, r−)-arc-
cuts. Call every cut C ∈ Γr\` an r\`-cut.

As an example, let us consider D = K8 the complete graph with the highlighted
forbidden pair (`, r). This graph will follow us through the next explanations.
Figure 4.1 shows the graph including the forbidden pair and Dr\` highlighted.

Definition 4.2. For each r\`-cut C ∈ Γ(Dr\`), we define now the corresponding
cut inequality

x(C)− xr ≥ 0. (4.1)

We call the family of these inequalities the family of r\`-cut inequalities. They
are the basis for the following statements.

Lemma 4.1. The r\`-cuts inequalities are valid for P (F), i.e., all points x ∈
P (F) fulfill the r\`-cut inequalities.
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Proof. Let P be a feasible s-t-path in D and xP its characteristic vector. The
inequalities are trivially satisfied if P avoids r. Hence, let us assume r ∈ P. In
this case P avoids `, since it is feasible. Thus, its s-r−-subpath lies completely
in Dr\` and hence intersects all r\`-cuts C ∈ Γ(Dr\`). For this reason, x(C) ≥ 1
for all C ∈ Γ(Dr\`). Thus, all r\`-cut inequalities are satisfied with equality.

The next lemma is a bit more tricky. These two lemmata form the basis for
the following main theorem of this section.

Lemma 4.2. The forbidden pair inequality xl + xr ≤ 1 is implied by an r\`-cut
inequality.

Proof. Recall the flow conservation Equalities (2.1) of the shortest path problem
formulation for all vertices v ∈ V :

∑
a∈δ+(v)

xa −
∑

b∈δ−(v)

xb =


1 v = s

−1 v = t

0 otherwise

Let us now sum up the equalities for all the vertices S := {s, . . . , `−}1. Since
t /∈ S, the right side is clearly 1. All arcs appearing in the second sum are also
starting in the set S as well and hence vanish because of the first sum. Thus,
the remaining arcs are those jumping over or starting in `−. Let us give a name
to this set: T := {(a, b) | a � `− ≺ b}. Note that ` ∈ T . Of course, T is an arc
cut of D and hence T ′ := T ∩ Ar\` is an arc cut in Γ(Dr\`). This results in the
redundant equality

x(T ) = 1. (4.2)

Consider the cut inequality of T ′, x(T ′) − xr ≥ 0. If we subtract (4.2) from it,
we get

x(T ′)− x(T )− xr ≥ −1.

We know, that ` ∈ T , but ` /∈ T ′. Thus, we can summarize this to

−x` − xr − x(T \ (T ′ ∪ {`})) ≥ −1.

We see already the forbidden pair inequality appearing. Consider the negative of
this equation

x` + xr + x(T \ (T ′ ∪ {`})) ≤ 1

and by x(T \(T ′∪{`})), this implies the forbidden pair inequality x`+xr ≤ 1.

The following theorem states the main result of this section.

1The enumeration shall be according to the topological sorting < on the graph D.
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` r

Figure 4.2: K8 in gray, the subgraph Dr in black.

Theorem 4.1. For one forbidden pair,

P (F) = {x ∈ P | x(C)− xr ≥ 0 ∀C ∈ Γr\`} =: Q

holds, where P denoted the solution set of the unconstrained shortest path problem.

Proof. By Lemma 4.1, we have P (F) ⊆ Q. Lemma 4.2 states, that all infeasible
paths are excluded. Together, we have conv(Q ∩ Z|A|) = P (F). It only remains
to prove the integrality of Q.

Let therefore x∗ be a fractional vertex of Q, whose existence we have to con-
tradict. Note that x∗ corresponds to a flow in D. Let us now create a new graph
Dr by removing ` from D as well as all arcs not lying on any s-t-path through
r. In other words, no arcs on a r+-t-path are removed and on s-r−-paths, ` is
the only arc removed. Figure 4.2 shows the graph Dr for the example K8. The
graph Dr can be seen as an extension of the graph Dr\` to the complete vertex
set V . Conversely, if we restrict Dr to the vertex set Vr, we get Dr\` again.

We now define a maximum flow problem on Dr by defining arc capacities
ca := x∗a for all arcs in A(Dr). Let xr be a maximum flow in Dr. Clearly, xr

avoids ` completely and hence can be decomposed into valid paths. The classical
max-flow-min-cut theorem states that the value v(xr) is upper bounded by x∗r ,
since {r} is an inclusion-minimal arc cut of Dr. If we can now show that v(xr)
actually is x∗r , we know that the remaining flow x∗ − xr avoids r. Thus, let us
find lower bounds for v(xr).

We use the max-flow-min-cut theorem again and choose an arbitrary inclusion-
minimal s-t-cut C ∈ Γ(Dr). We need to show that this cut has at least capacity
x∗r . By the construction of Dr, we can distinguish three cases concerning the
location of C.

Case 1 C disconnects s and r−. Since C is inclusion-minimal, we have C ∈
Γ(Dr\`). By the cut inequality of C, we get

x∗r ≤ x∗(C) = c(C).
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Case 2 C disconnects r+ and t. x∗ is itself a feasible flow sending a value of at
least x∗r through r+. Since this subflow also reaches t, we get

x∗r ≤ x∗(C) = c(C),

because it needs to intersect C.

Case 3 C disconnects r− and r+. C is inclusion-minimal and hence C = {r}.
Of course, x∗r ≤ c(C).

This shows, that v(xr) is indeed x∗r . Thus, x` := x∗ − xr avoids r completely
and with x` and xr we found a decomposition into two feasible subflows, x`, xr ∈
P (F). Since x∗ = (1−x∗r)x` +x∗rx

r is a convex combination, x∗ is also contained
in P (F), which is the desired contradiction.

By this theorem we get that the forbidden pair inequalities (4.1) form a com-
plete linear description of the forbidden pair polytope with a single pair, together
with the flow conservation constraints (2.1) and x ≥ 0.

4.1.2 One Binding Pair

The same argument flow can be translated to the problem of one binding pair
B = {(`, r)} ⊆ A× A on the graph D = (V,A). Let us fix this problem instance
again. The additional inequalities for the binding pair problem arise from arc
cuts as well, but we need to define a different graph before.

Definition 4.3. For D and the binding pair B = {(`, r)}, define:

1. Let V b
`,r := {v ∈ V | `+ � v � r−} be the set of all vertices between the two

binding pair arcs.

2. Db
`,r := (V b

`,r, (V
b
`,r × V b

`,r) ∩A) The connection graph of ` and r.

3. Γ(Db
`,r) shall denote the set of all inclusion-minimal (`+, r−)-arc-cuts.

Figure 4.3 shows the graph Db
`,r for the example K8 again. In this example,

there are two possible minimal cuts in Γ(Db
`,r), namely the two arcs starting in

`+ or the two ending in r−. Introduce the following inequalities for all cuts C in
Γ(Db):

x(C)− x` ≥ 0 (4.3)

These inequalities look quite similar to the ones used for one forbidden pair,
but due to the different graph construction, they fulfill our needs, as we will see
shortly. In addition to these cut inequalities, we need the binding pair inequality

xr − x` ≥ 0 (4.4)

to describe the polytope P (B). This section goes alike the last one and the proofs
differ only slightly.

43



4 A Polyhedral Study of the PCP

` r

Figure 4.3: K8 in gray, the subgraph Db
`,r in black.

Proposition 4.1. The inequalities (4.3) and (4.4) are valid for P (B) and all
infeasible paths violate the binding pair inequality (4.4).

Proof. Take any feasible path P and its characteristic vector xP . If it avoids `
then the inequalities are trivially satisfied. So let us assume xP` = 1. Since P is
feasible, it also uses r and the binding pair inequality is valid again. And since
both ` and r are used, the path needs to go from `+ to r−, which is clearly in
Db
`,r. Here, it intersects all cuts and thus the cut inequalities are also valid.
Let P be infeasible now. The binding pair (`, r) can only be violated if P uses

`, but not r. In this case, xPr = 0 and xP` = 1, which obviously violates the
binding pair inequality.

With these two results we are in the same situation as before and now able to
state the theorem.

Theorem 4.2. For D = (V,A) and B = {(`, r)},

P (B) = {x ∈ P | (4.3), (4.4)} =: Q

holds.

Proof. The proposition tells us P (B) ⊆ Q and no additional integral points belong
to Q. Thus, the only possibility is an additional fractional vertex x∗ of Q whose
existence we have to contradict: Let Db be a new subgraph of D on the same
vertex set. A(Db) shall be the union of all s-t-paths using both ` and r. Db

restricted to [`+, r−] is precisely the graph Db
`,r. Note, that both {`} and {r} are

arc cuts in Db. Figure 4.4 illustrates Db.
On this graph, we are now interested in maximum flows. The capacities on the

arcs shall be ca := x∗a and let x be a maximum flow in Db. Of course, x uses both
` and r, since they are cuts. x∗ was a point in Q and hence it satisfies xr ≥ x`.
x∗` is again an upper bound for v(x). We will now show, that x∗` = v(x) using the
max-flow-min-cut theorem. Let C be any inclusion-minimal cut in Γ(Db). We
can distinguish several cases regarding the allocation of C on Db.
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` r

Figure 4.4: K8 in gray, the subgraph Db in black.

Case 1 C disconnects s and `− or r+ and t. Since x∗ is a feasible flow and
no arcs between s and `− (respectively r+ and t) are removed, it must be
possible to send an amount of x∗` through C (respectively, the same holds
due to the binding pair inequality (4.4) for the case C disconnects r+ and
t). Thus, x∗` ≤ x∗r ≤ c(C).

Case 2 C disconnects `+ and r−. Then, C ∈ Γ(Db
`,r) and the corresponding cut

inequality holds for x∗. Thus,

x∗` ≤ x∗(C) = c(C)

Case 3 C ∈ {{`}, {r}}. In this case, c(C) = x∗` or c(C) = x∗r . By the binding
pair inequality we get again x∗` ≤ c(C).

This shows that the subflow x of x∗ uses the whole of x∗ on ` and the remaining
flow x′ := x∗ − x avoids ` completely. In addition, the whole flow x uses r and
hence, the both subflows x and x′ are feasible concerning B and since x∗ =
(1− x∗` )x′ + x∗`x is a convex combination, all the three points x, x′ and x∗ are in
P (B). This contradicts the assumption, that x∗ is a fractional vertex of P (B).

This is the same result as for a forbidden pair: The inequalities (4.3) and (4.4)
form a complete linear description of the polytope associated with the shortest
path problem with pair constraints for the case of one binding pair (`, r).

4.1.3 Separation and the Number of Facets

As the complete linear descriptions derived in the previous sections suggest, the
number of inequalities needed to describe the polytope can be very large. We are
now going to show, that it can actually grow exponentially large. We show this
for the special case of a complete graph D = (V,A) and one forbidden pair (`, r).

Definition 4.4. Define the following:
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• Let Π be the set of infeasible paths in D using both ` and r.

• For I ∈ Π, let

CI,`,r := {(u, v) ∈ Ar\` | `+ � v � r−, u /∈ Iv, v ∈ Iv}

be the cut associated to this infeasible path. Note that CI,`,r ∈ Γ(Dr\`)
for all I ∈ Π. This cut can be seen as all the arcs “entering” the path I
between `+ and r−.

• Let [u, v] := {x ∈ V | u � x � v} be the set of all vertices between u and v
and P[u, v] the subpath of a path P between u and v.

• Let P and Q be two inner vertex-disjoint u-w-paths. We call the union
P ∪Q a (u,w)-split. For two s-t-paths, let s(P,Q) be the number of splits
in P ∪Q for which Q has at least one inner vertex.

With these definitions, we can now formulate the following theorem.

Theorem 4.3. Let I ∈ Π. Then, the r\`-inequality associated to CI,`,r, i.e.,

xr ≤ x(CI,`,r) (4.5)

defines a facet f(P) ⊆ P (F). Furthermore, two different paths I1, I2 ∈ Π define
different facets of P (F), f(I1) 6= f(I2).

For an infeasible path I ∈ Π, let ΠI be the set of feasible s-t-paths in D which
are tight for xr ≤ x(CI,`,r). The proof of this theorem gets quite technical. For
this reason, let us outsource a useful claim. Recall, that Pv denotes the set of
vertices of a path P.

Lemma 4.3. Let I ∈ Π. A feasible path Q satisfies the inequality xr ≤ x(CI,`,r)
with an equality if and only if one of the following holds:

(I) Q avoids both ` and r and Iv ∩Qv ∩ [`+, r−] = ∅.
(II) Q contains either ` or r and s(I,Q) = 0.

Proof. Let us prove the lemma separately for the cases of whether arcs ` and r
are used by Q. Let therefore I ∈ Π be fixed and take Q a feasible path which
avoids ` and r. Assume, Q satisfies the inequality with equality. Since xQr = 0,
we need to contradict the existence of a vertex in Iv ∩Qv ∩ [`+, r−]. Assume this
vertex w exists. Since Q avoids `, but meets I in w, there needs to be an entering
arc, Q uses to meet I. Let this arc be (u, v). Possibly, but not for sure, we have
v = w here. Since Q avoids r, there cannot be an equation in the cut equality,
which is the desired contradiction. The opposite direction works similar: If there
is no vertex v ∈ Iv ∩ Qv ∩ [`+, r−], Q cannot visit any arc in CI,`,r and hence
x(CI,`,r) = 0.

Let Q now visit ` and fulfill the r\`-cut inequality with equality. Q is feasible
and hence avoids r. Thus, we need to show, that there is no (u,w)-split (with
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an inner vertex on Q \ I) in I ∪ Q with u,w ∈ [`+, r−]. Assume, there is such a
(u,w)-split. Let v be the largest vertex on Q before w. As assumed, u ≺ v ≺ w
and hence v ∈ Q \ I. Thus, (v, w) ∈ CI,`,r and we are ready. For the backwards
direction, let Q have s(I,Q) = 0. Assume there is an arc (v, w) ∈ CI,`,r visited
by Q. Let u be the largest vertex before v that I and Q share. Since Q visits `,
`+ ≤ u and hence I[u,w] ∪ Q[u,w] is a (u,w)-split in [`+, r−], which has to be
counted in s(I,Q), a contradiction.

As the last case, let Q visit r with an equality in the cut inequality. Assume
again the existence of an (u,w)-split in I ∪ Q with u,w ∈ [`+, r−]. Let (v, w) be
the arc of Q ending in w. This arc is of course contained in CI,`,r. But since
Q avoids `, there have to be at least two arcs in CI,`,r, which uses Q. This is
the desired contradiction. Let now g be the smallest vertex I and Q share with
`+ ≤ g. Since Q avoids `, the arc (f, g) (with the proper vertex f) of Q is also
contained in CI,`,r. Thus, the sum of Q over this cut is at least two, which is
a contradiction. Finally, let there be no split between I and Q in [`+, r−]. In
this case, the both paths meet only once between `+ and r− and hence there is
only one entering arc (u,w) ∈ CI`,r used by Q, which leads us to the desired
equality.

Since the dimension of the polytope P (F) is completely unknown to us, we are
not able to say anything about the co dimension of a face of it. This is why we
apply a non-standard proof technique here. We show that

P (F) ⊆ aff({xQ} ∪ f(I)) (4.6)

holds for every infeasible path I ∈ Π and every feasible path Q, which is not
tight for the inequality associated to I. This is possible by the following lemma.

Lemma 4.4. Let I ∈ Π be an infeasible path and Q ∈ P (F) \ f(I) a feasible
path not tight for the inequality of I. Then, we can find the following affine
combination

xI = λQx
Q +

∑
P∈ΠI

λPx
P

of xI with λQ+
∑
P∈ΠI

λP = 1. In particular, if Q belongs to case I of Lemma 4.3

then λQ = − 1
s(I,Q) , while for case II λQ = − 1

s(I,Q)+1 holds.

This lemma is quite complicated. After its proof, the proof of Theorem 4.3
finally follows. There is explained, how we can use this unexpected affine combi-
nation for proving (4.6).

Proof. For this proof, fix the infeasible path I ∈ Π. Since for every path Q, the
number s(I,Q) is constant, we do an induction over this number. In other words,
we find the desired affine combination with Q using other affine combinations of
paths with a lower split number.

47



4 A Polyhedral Study of the PCP

u` r
I I

Q Q

Figure 4.5: The infeasible path I uses both ` and r, whereas Q avoids both. The
two paths meet in their only common point u.

Let us begin the induction with the cases s(I,Q) = 0. Take a path Q, which is
not tight for the cut inequality associated to I, see Figure 4.5. By Lemma 4.3, Q
avoids both ` and r. The lemma further tells us, that there is a common vertex
u of the paths I and Q. The affine combination is

xI = (xI[s,u] + xQ[u,t])

+ (xQ[s,u] + xI[u,t])

− x(Q).

The two new paths are rearrangements of I and Q at u. Obviously, both are
feasible. It remains to check, that they are tight for the considered inequality.
This can – in this case and in the plenty following ones – be easily checked by
lemma 4.3.

To facilitate the induction step, we also give the induction start for the case
s(I,Q) = 1 and start the induction with at least two splits. We need to distin-
guish three cases for Q. Let S be the given (u,w)-split and let v be a node in
(Q \ I) ∩ S.

1. Q contains neither ` nor r.

xI =
1

2
(xI[s,u] + xQ[u,v] + x(v,t))

+
1

2
(x(s,v) + xQ[v,w] + xI[w,t])

− 1

2
(x(s,v) + x(v,t))

+
1

2
(xQ[s,u] + xI[u,t])

+
1

2
(xI[s,w] + xQ[w,t])

− 1

2
xQ

48



4.1 A Complete Description for one Pair

2. Q contains ` but not r.

xI = (xQ[s,w] + x(v,t))

+ (x(s,v) + xQ[v,w] + xI[w,t])

+ xI[s,w] + xQ[w,t])

− (x(s,v) + x(v,t))

− xQ

3. Q contains r but not `.

xI = (xQ[s,u] + xQ[u,t])

+ (xI[s,w] + xQ[u,v] + x(v,t))

+ (x(s,v) + xQ[v,t])

− (x(s,v) + x(v,t))

− xQ

Here, the new paths are similarly to the ones of s(P,Q) = 0 generated. Fig-
ure 4.6 illustrates the three situations. At this point we need that D is the
complete graph, which guarantees us the existence of the arcs (0, v) and (v, n).

The induction step uses the same argument of rearranging the paths. We again
need to distinguish the same cases as above, which will be as similar as the above
ones. For this reason, we will completely prove the first one. For the other two,
we only show the differences in the construction of the new paths.

As induction hypothesis, assume that the claim holds for all paths Q′ with
s(I,Q′) ≤ k − 1. Let therefore Q be a feasible path, which is not tight for the
cut inequality of CI,`,r and with s(I,Q) = k. Let for all cases the vertices u and
w define the smallest (u,w)-split of I ∪Q and let v be an inner vertex on Q \ I.

Case 1: Q avoids both ` and r

We can reformulate xQ as

xQ = (x(s,v) + xQ[u,t]) =: Q1

+ (xQ[s,u] + x(v,t)) =: Q2

− (x(s,v) + x(v,t)). =: Q3

Table 4.1 on page 51 lists some properties of the paths Q1, Q2 and Q3, which can
easily be verified in Figure 4.7. The table shows that for Q1 and Q2 the induction
hypothesis holds, which leads us to the following two affine combinations for xI .

xI = −1

k
xQ1 +

∑
P∈ΠI

λ1
Px
P (4.7)
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u

v

w` rI I

Q

I

QQ Q

(s, v) (v, t)

u

v

w` rI I

Q

I

Q

Q

Q

(s, v) (v, t)

u

v

w` rI I

Q

I

QQ
Q

(s, v) (v, t)

Figure 4.6: The three cases for s(I,Q) = 1.

xI = −xQ2 +
∑
P∈ΠI

λ2
Px
P (4.8)

With ∑
P∈ΠI

λ1
P = 1 +

1

k
and

∑
P∈ΠI

λ2
P = 2. (4.9)

Let us now compute the equation [k · (4.7) + (4.8)].

(k + 1)xI = −xQ1 + k ·
∑
P∈ΠI

λ1
Px
P − xQ2 +

∑
P∈ΠI

λ2
Px
P

From the construction of the paths Qi we know xQ = xQ1 + xQ2 − xQ3 . Let us
replace −xQ1 − xQ2 in the last equation by −xQ − xQ3 and divide it by (k + 1)
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u

v

w`
r

Q

I

Q

I

Q Q

I
· · ·

Q

I

Q

I

(s, v)

(v, t)

Figure 4.7: Q avoids both ` and r and s(I,Q) = k.

Path Tight for I Number of Splits Case (Lemma 4.3)

Q1 not tight s(I,Q1) = k − 1 Case I
Q2 not tight s(I,Q2) = 0 Case I
Q3 tight s(I,Q3) = 0 Case I

Table 4.1: Properties of the three new paths Q1, Q2 and Q3 for Q avoiding both
` and r.

to get

xI = − 1

k + 1
· xQ − 1

k + 1
· xQ3 +

k

k + 1
·
∑
P∈ΠI

λ1
Px
P +

1

k + 1
·
∑
P∈ΠI

λ2
Px
P

= − 1

k + 1
· xQ − 1

k + 1
· xQ3 +

∑
P∈ΠI

(
k · λ1

P + λ2
P

k + 1
· xP

)
. (4.10)

Obviously we approach an affine combination of xI with xQ and the vertices in
f(I). By Table 4.1 we know that Q3 is tight for the inequality to CI,`,r and hence
appears as a path P ∈ ΠI in the sum. This gives rise to a definition of the new
affine combination coefficients λP . Define for P ∈ ΠI the coefficient

λP :=

{
k·λ1P+λ2P
k+1 P 6= Q3

k·λ1P+λ2P−1
k+1 P = Q3.

It is easy to see, that the affine combination (4.10) transforms into

xI = − 1

k + 1
· xQ +

∑
P∈ΠI

λPx
P
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Path Tight for I Number of Splits Case (Lemma 4.3)

Q1 not tight s(I,Q1) = k − 1 Case II
Q2 not tight s(I,Q2) = 0 Case I
Q3 tight s(I,Q3) = 0 Case I

Table 4.2: Properties of the three new paths Q1, Q2 and Q3 for Q using ` but
not r.

using the new coefficients λP . This is precisely the combination we wanted to
achieve. The last point to verify is now, that this is actually an affine combina-
tion, i.e., ∑

P∈ΠI

λP =
k + 2

k + 1
.

This is achieved in the following calculation. The equality (∗) uses, that the two
formulations using Q1 and Q2 were affine combinations as well. Formally, this
was stated in (4.9).

∑
P∈ΠI

λP =
∑
P∈ΠI

k · λ1
P + λ2

P
k + 1

+
1

k + 1
=

1

k + 1
·

k · ∑
P∈ΠI

λ1
P +

∑
P∈ΠI

λ1
P − 1


∗
=

1

k + 1
·
[
k(1 +

1

k
) + 2− 1

]
=
k + 2

k + 1

Case 2: Q uses either ` or r

The computations for this case go quite similar to the last one. Mainly the
exact formulation of the coefficients λP differs. This is why we omit the repeated
calculation. Instead we just give an explanation, how we rearrange the paths and
which properties they have.

At first, let Q visit ` and not r. We do the same construction as before:

xQ = (x(s,v) + xQ[u,t]) =: Q1

+ (xQ[s,u] + x(v,t)) =: Q2

− (x(s,v) + x(v,t)). =: Q3

Table 4.2 lists the properties of the three paths Q1, Q2 and Q3. Note, that Q1

is in this case of type II concerning Lemma 4.3. For type II, the coefficient of Q
has to be − 1

s(I,Q) instead of − 1
s(I,Q)+1 for type I.

The last case, that Q uses r looks similar, but here Q2 is of type II. The latter
two are visualized in Figure 4.8. All three cases together prove the induction and
hence the lemma.
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Figure 4.8: Q meets ` above and r below. In both cases, we have s(I,Q) = k.

With this lemma, we can now prove the theorem.

Proof of theorem 4.3. Actually, Lemma 4.4 tells us xI ∈ aff({xQ}∪ f(I)), which
is the same as

xQ ∈ aff({xI} ∪ f(I)).

This can be achieved by a taking an affine combination of xI and solving the
equation for xQ. It can be easily seen that the result is again an affine com-
bination. Since this holds for every feasible path Q, we can use two of these
expressions

xI ∈ aff({xQ1 } ∪ f(I)) (4.11)

xQ2 ∈ aff({xI} ∪ f(I)) (4.12)

for different paths Q1 and Q2 to get the final expression

xQ2 ∈ aff({xQ1} ∪ f(I))

we originally searched for. This is easy to verify by taking an affine combination
of xI from (4.11) and plugging it into one of xQ2 of (4.12). The result is clearly
an affine combination of xQ2 in aff({xQ1} ∪ f(I)). Since the latter holds for all
Q2 with a fixed path Q1, we can conclude

P (F) ⊆ aff({xQ1} ∪ f(I)).
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4 A Polyhedral Study of the PCP

The theorem allows a direct corollary, since there are exponentially many sub-
paths between `+ and r−.

Corollary 4.1. The number of facets of P (F) is exponential in the number of
vertices |V |.

We have now seen, that the description of the convex hull of P (C) can grow
exponentially large. But this is not a hard problem because of the following
result.

Proposition 4.2. The system of inequalities

{x ∈ R|A| | (4.1), (2.1), x ≥ 0}

in the case of one forbidden pair or

{x ∈ R|A| | (4.3), (4.4), (2.1), x ≥ 0}

for a binding pair can be separated in polynomial time.

Proof. Let x∗ ∈ R|A| be the point to be separated. Since (2.1) together with
x ≥ 0 describe a flow problem and the number of these constraints is polynomial,
we can assume that x∗ ∈ P , that is, x∗ defines an (s, t)-flow of value 1. Otherwise,
we can easily find the violated constraint.

Consider the case of one forbidden pair. Create the graph Dr according to the
proof of Theorem 4.1 and use x∗ as capacities for the arcs. Let x′ be a maximum
(s, t)-flow over Dr satisfying these capacities. Assume the value v(x′) is equal
to x∗r . That means by the max-flow-min-cut theorem that the capacity of every
(s, t)-cut in Dr is at least x∗r . As all cuts in Cr\` are fully contained in Dr, all
r\`-cut-constraints (4.1) are satisfied. Contrarily, if the value of x′ is strictly
smaller than x∗r , then there must exist a bottleneck corresponding to a cut with
capacity smaller than x∗r . Clearly, this cut belongs to Cr\`. And the corresponding
inequality (4.1) is violated in this case.

The case of a binding pair can be proven by the same idea. In this case, the
graph construction of the binding pair section is needed here. By this method we
can separate the given inequality system in polynomial time.

Obviously, the same result holds also for problem instances with exactly one
binding pair.

4.2 Contiguously Disjoint Pair Constraints

This section extends our results to a first simple case of multiple constraints.
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4.2 Contiguously Disjoint Pair Constraints

Definition 4.5. The set C is called contiguously disjoint if the following condition
is satisfied:

s � `−1 ≺ `
+
1 � r

−
1 ≺ r

+
1 � . . . � `

−
k ≺ `

+
k � r

−
k ≺ r

+
k � t

In this case, for the complete linear description, there are no more inequali-
ties needed than the ones we got by each pair constraint for itself presented in
Section 4.1.

Theorem 4.4. Let C be a set of contiguously disjoint pair constraints. Then the
following holds:

P (C) =

k⋂
i=1

P (Ci).

In this proof, we need to be careful, whether the considered constraint is a
forbidden pair or a binding pair.

Proof. A great advantage of the proof in Section 4.1.1 for a forbidden pair is that
Lemma 4.1 and Lemma 4.2 can be easily extended to the more general case of
multiple pair constraints: They guarantee that all path vertices respecting the
appropriate forbidden pair are kept in the new polytope P (C) and that all invalid
ones are eliminated by the r\`-inequalities. An analogous argument holds for a
binding pair with Proposition 4.1. This is independent of other constraints in C.
So again, the only point left to prove is the following lemma.

Lemma 4.5. The polytope
⋂k
i=1 P (Ci) is integral.

Proof. Our proof takes an inductive approach over the number of considered pair
constraints. Let C≤i :=

⋃i
j=1 Ci. The induction hypothesis is: P (C≤i−1)∩P (Ci) =

P (C≤i) and P (C≤i) is integral. The induction start is already given in Section 4.1.1
for a forbidden pair and in Section 4.1.2 for a binding pair. Let us now solve the
induction step.

The direction P (C≤i−1)∩P (Ci) ⊇ P (C≤i) directly follows by the definition. For
the converse, let us take a fractional vertex x∗ in P (C≤i−1)∩P (Ci) and contradict
its existence. We are going to see that x∗ is contained in P (C≤i) by expressing it
as a convex combination of points in P (C≤i).

By using the split method from Sections 4.1.1 or 4.1.2, we can split the flow
x∗ into two flows x∗ = x1 + x2. For a forbidden pair, let x1 = x` and x2 = xr.
For a binding pair, let x1 = x and x2 = x′. In both cases, x1 and x2 are flows
respecting Ci.

Consider now the set C := {(u, v) ∈ A | u � `−i ≺ v}. Clearly, this set is an
arc cut of D and since every arc in C is either jumping over `−i or starting in
`−i , no path can intersect C twice. Let us consider now path decompositions of
the three points x, x1, x2 and call them M , M1 and M2, respectively. Clearly,
M1∪M2 is a path decomposition of x as well, but in general a different one than
M .
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4 A Polyhedral Study of the PCP

Let us now take a closer look at C. This cut separates the first i− 1 forbidden
pairs from the i-th one, because C was contiguously disjoint. M is a path decom-
position, where all paths respect the first i − 1 forbidden pairs, and M1 ∪M2

a path decomposition respecting the i-th one. And clearly, both decompositions
use C in the same amounts per arc. Since all the decompositions are clearly
finite, we can compute a new decomposition of x by mixing the left part of M
with the right part of M1 ∪M2: For every arc a ∈ C, consider all paths in M
(and M1∪M2) using a. By arranging new paths out of the 0-a−-subpaths of the
paths in M , the arc a itself and the a+-n-subpaths contained in M1∪M2, we get
our new decomposition, called M∗. The paths in M∗ respect all pair constraints
in C≤i and hence, x∗ is a convex combination of these valid paths. That is, x∗ is
contained in P (C≤i). Since x∗ was fractional, M contained at least 2 paths and
hence, x∗ is no vertex, which is our desired contradiction.
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5 Computational Results

This chapter presents our algorithm introduced in chapter 3 on page 29 in a
practical way. We implemented the method contractGraph and tested it on
several instances. The following section gives a short introduction to the code of
our software and the workaround that comes with it. Then, we explain, why we
decided not to consider obligatory pairs. Sections 5.3 and 5.4 explain the real-
world data, how we transformed them into instances of the shortest path problem
with pair constraints and which test instances we chose. Finally, Section 5.5
harvests some pictures of flight trajectories and evaluates the calculation times
and some more details to the calculation in a practical view.

5.1 Implementation

We decided to implement an environment for the pair constraint contraction
algorithm in the programming language C++. In 9 files with a total of 3222 lines,
we implemented 15 classes. The environment consists of several components,
which we will present in the following paragraphs.

The first isolated part is a priority queue supporting a decreaseKey operation.
The built-in priority queue of C++ does not provide a decreaseKey operation. A
priority queue is a data structure supporting easy access to the first – or smallest
– element. Each element has an integer key, which is used to compare them to
determine the smallest element. The method decreaseKey resorts the queue,
after the key of one element decreased. This is required for Dijkstra’s Algorithm.
Our PriorityQueue<Item> class is implemented as a binary heap, which is itself
stored in a vector object. A good introduction to the priority queue and its
implementation based on an array can be found in [9, 17].

We implemented an environment handling directed graphs. This consists of
classes for vertices, arcs and directed graphs as well as an own class representing a
distance label for Dijkstra’s Algorithm. Of course, this algorithm is implemented
in this environment as well as Algorithm 1 for a topological sorting. Our graph
is stored in a doubly connected edge list (DCEL). This means, that every vertex
stores one incoming and one outgoing arc. Every arc then stores a link to the next
outgoing arc or to the next incoming arc. This structure allows easy navigation
in the graph, especially for rule R2’.

To handle the vertex pair constraints, we built a second couple of classes ex-
tending the previously mentioned ones. These classes now support forbidden and
binding pairs and the contractGraph algorithm presented in Chapter 3.
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5 Computational Results

This setting is surrounded by a management software, which allows the easy
creation, preparation, and deletion of problem instances. This part also runs
the contractGraph method and measures its result as well as some parameters
describing the performance. This will be explained further in section 5.5.

Every vertex gets a unique id of type unsigned short integer needing only two
byte rather than four compared to normal integers. Unsigned short integers have
a range of {0, . . . , 216 = 65536}. As we will see, we need to treat around 48.000
vertices and hence this range is perfect for vertex ids. The basic contractGraph

algorithm only determines whether there is a feasible path respecting all pair
constraints or not. To actually find such a path, we need a slight modification
of the graph. Every arc gets a label consisting of a list of vertex ids (unsigned
shorts). By default, every label of arc (x, y) begins with the id of x followed by
the id of y. The new arc (x, z), which arises from the contraction of y by the arcs
(x, y) and (y, z) gets the concatenation of their two labels as new label1. By this
way, we keep the information, which arcs and vertices this new arc represents.
By iterating this, we always keep track of the shortest path in the original graph
D connecting the two vertices x and z. Thus, the final label of the potential arc
(s, t) explains the shortest trajectory respecting C.

Summarized, our data structure for an arc (x, y) contains the following infor-
mation:

• Pointers to the two vertices.
• A pointer to the next outgoing arc of x.
• A pointer to the next incoming arc of y.
• The arc weight (its length).
• The arc label.

The four pointers use 32 bit each as well as the weight, which is stored as an
integer. The label contains all the vertices this arc shall connect stored as a list
of ids. This leads to a bare minimum of 56 byte per arc, which is found by the
sizeof command of C++. This is aggravated by the ids contained in the label
of (x, y). The label sizes of course increase during the process of the algorithm.
Typical arc label sizes are around 200 near the end of a run of contractGraph.

5.2 Extension to Obligatory Pairs

To get the method contractGraph to handle also obligatory pairs, the rule B2

has to be altered to handle the new case of an obligatory pair. To force a path
through at least one of two contiguous vertices in a topological sorted graph, we
need to remove all arcs jumping over both a and b, see Figure 5.1. To achieve
that in a DCEL, we needed to modify our connection structure in a manner, that
not only incoming and outgoing arcs are saved at each vertex, but also jumping

1Acually, in this case, every vertex id is stored twice in the list, because the first arc label ends
with the id of y and the second label begins with it. But this can clearly be avoided by
simply removing this repeated id
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5.3 A Translation Heuristic for Traffic Flow Restrictions

a b

Figure 5.1: The two black arcs need to be deleted to enforce a feasible path to
use at least one of the two vertices of the obligatory pair (a, b).

arcs. Since this jumping is only defined using a topological sorting in contrast to
outgoing and incoming arcs, this caused problems to us. This is why we omitted
obligatory pairs in this thesis.

5.3 A Translation Heuristic for Traffic Flow Restrictions

As already mentioned in the beginning, the RAD document contains tons of rules
to be respected by passenger airplanes flying through the airway network graph.
Table 5.1 on the next page shows a little excerpt of the RAD document. There
are some columns dropped for the example and some of the arount 10.000 rows
chosen to give an example. Within this context, vertices are called waypoints and
arcs are called segments.

Waypoints in the airway network graph always have a name consisting of five
uppercase letters. Airports have possibly shorter names. Every line in the RAD
document table stands for one specific rule and every rule always has to be applied
for every single flight itself. Every rule consists of three parts, namely the scope,
the condition and an order. The first column “from – to” contains the scope, in
this case a segment. There are also other scopes. The rule dictates something
concerning this scope. The second column contains the condition and the order.
The condition makes clear, whether this rule is active for the current flight or not.
Usually, it is beginning in the second line. The first line contains the order. It tells
us, what actually holds for the scope if the condition is satisfied. For the order,
there are three types used in the document: Compulsory, not available and only
available. Compulsory rules force us to use the scope if the condition is satisfied.
Contrarily, not available rules forbid the scope in this case and in only available
rules, we are not allowed to use the scope if the condition is not fulfilled. The
scope mostly contains a single waypoint or a single segment. Sometimes, there is
a height condition given to the scope as well or a complete airway consisting of
multiple contiguous segmentss.

The difficult part is the condition. As seen in the examples, a condition is a
boolean expression containing various types of properties a trajectory can have.
Let us call these types literals for now. The literals are in general:
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5 Computational Results

From – to Restriction Id No.

RANUX – VALEK Not available for traffic
ARR EDDF/FE
Via BETEX
Above FL245

LF2935

EPOLO – DIVKO Only available and compulsory for traffic
DEP LFMN
Via MAMES/NILDU/VATIR
With RFL above FL195

LF2756

NINTU – MEBAK Only available for traffic

1. Via OLRAK
2. Via TIS

a) DEP Geneva Area
b) DEP EDDM, LFSB

With ARR Bordeaux Group
c) DEP ED**, LS**, LO**

With ARR NAT
3. ARR Clermont Ferrand Group,

Limoges Group, Poitiers Group

LF2313

Table 5.1: Some example rules taken from [11].

• Arrival or departure (DEP, ARR)
• Using a waypoint (VIA)
• Using an airspace (VIA)
• Using a waypoint starting with a certain prefix
• Using an airway containing given contiguous segments
• Using an airplane of a certain type
• Equipment properties
• Flight in a certain range of altitudes
• Flying in a certain time interval of the day

Of course, some of these types are constant once we chose an instance to
compute. This holds e.g. for arrival, departure, equipment or the airplane type.
The airplane type distincts for example between propellor maschines or jet planes.
Other types are dynamicly depending on the chosen trajectory, such as the VIA
conditions for example. The last two, namely the height or time intervals, always
point only to a certain part of the trajectory such as a waypoint or an airspace.

The literals are combined to a Boolean expression by typical operators such
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Figure 5.2: Example of a Boolean expression tree scope or condition.

as and, or and not. For the two intervals, there was a new operator invented:
sand. sand connects a height or time interval with one of the other literals and
this shall evaluate to true if the interval is respected at the specified literal.

The same operators are allowed for the scope as well. Thus, a rule consists
of two Boolean expressions scope and condition and an order. Currently, they
are implemented as a binary tree, see Figure 5.2 for an example tree. If a rule
in the RAD document consists of two orders, it can be split into two rules with
one order each. This is for example the case in the third rule in Table 5.1. This
model is the state of the art of the development at Zuse-Institute Berlin for the
optimization software for flight trajectories.

The three order types are directly related to forbidden and binding pairs. A
compulsory rule is clearly a binding pair, a not available rule is a forbidden pair.
And an only available rule can also be seen as a binding pair. If we want to
use the scope, we need to satisfy the condition. Thus, to reduce these rules to
our model of forbidden and binding pairs, the crucial point is the extraction of
concrete waypoints from a condition or scope tree.

We solved this problem just by a heuristic. Thus, we have no guarantee, that
all forbidden and binding pairs represent the rules in a good manner. It turns
out that about 75% of the rules depend on the departure or arrival. This is the
first step our heuristic checks. Then, our heuristic simply collects all waypoint
ids of via nodes or airway nodes, which are contained in the Boolean expressions.
Often, they contain multiple waypoints (e.g. the second rule in Table 5.1) and
hence, the reduction to a vertex pair constraint is abiguous. To keep the heuristic
easy, it searches for the very first pair of distinct ids from scope and condition.
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5 Computational Results

The following numbers belong to the instance Sydney to Peking, but the num-
bers differ only very slightly between the remaining instances. From 8404 re-
strictions currently loaded in the software, there are 809 binding pairs and 646
forbidden pairs parsed. 6162 restrictions depend on an origin different from Syd-
ney or on a destination different from Peking and hence are not active for this
instance. 755 rules are not concerned with explicit graph elements, but with huge
airspaces or other conditions. Hence, they can not be modelled as dynamic rules
on the graph on the level of segments and waypoints. The last 32 restrictions
are concerned with explicit waypoints, but combining it with a height condition,
e.g. “If you use waypoint x, use it above flight level 265”. These are modelled as
compulsory restrictions. Their condition only contains waypoint x, but the scope
has “x sand above flight level 265”.

This heuristic lets one point open. Of course, these restrictions have a pri-
ori none of the structure properties presented in section 2.2.3. To achieve this,
we formulated an auxiliary integer program. Once the graph is topologically
sorted, we can construct a conflict graph G, where the vertices are the vertex
pair constraints and an edge is inserted if two pairs halve each other. Consider
the following integer program:

maximize z =
∑
c∈C

xc

subject to xc1 + xc2 ≤ 1 ∀(c1, c2) halving

xc ∈ {0, 1} ∀c ∈ C

Our software solves this integer program using the integer program solver SCIP.
The solution corresponds to a maximal independent set in G, which itself is a
well-paranthesized subset of C. Now, our instance is ready to be solved as a
shortest path problem with vertex pair constraints.

5.4 Test Instances

For our test purposes, we picked eight airports worldwide and considered all 56
possible flights between them. The airports are:

1. Atlanta (ATL)
2. Paris (CDG)
3. Dubai (DXB)
4. Frankfurt (FRA)
5. Los Angeles (LAX)
6. London (LHR)
7. Peking (PEK)
8. Sydney (SYD)
We wanted to spread them over the whole world and that we have various

different distances between them. The restrictions in the RAD document are
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Figure 5.3: The running times depending on the number of inserted arcs.

mostly based in Europe. This is why we tried to have several distances including
Europe and others avoiding Europe.

5.5 Results

We started the computations on a DELL Precision 650 machine with 32 ker-
nels having 2.7 GHz each. The machine has 64 Gigabyte RAM internal mem-
ory running Ubuntu Linux 14.04. For each of the 56 instances, we started the
contractGraph tool. For comparison, we also started SCIP with the initial IP
formulation of the shortest path problem with pair constraints. The result tables
can be found in Section 7.1. Table 7.1 lists all running times as well as the size
and length of the result trajectories and the instance sizes. In all 56 instances,
the trajectories found by contractGraph and SCIP for the same problem instance
were identical.

Unfortunately, the scip computations are essentially faster than the ones of
our method contractGraph. An interesting result is the column of inserted arcs.
This value counts the number of arcs inserted by the application of rule B2.
Figure 5.3 shows the dependency of the running time to the number of inserted
arcs. The chart suggests that there is a more than linear dependency of the
running time by the number of inserted arcs. The instances are of almost equal
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Figure 5.4: Snippet of the trajectories From Paris to Dubai. The right one is
unconstrained, the left one respects C. The black boxes mark the
responsible binding pair. The picture is made using SkyVector.

size in all of the three data types vertices V , arcs A and constraints C. However,
the newly inserted arcs range from 2 millions to over 30 millions. As seen, an arc
costs at the very least 56 byte and hence we have more than a Gigabyte main
memory usage here. The final trajectories contain up to over hundred vertices
and hence all the arc labels have sizes in this scale. This justifies the exorbitant
memory usage of contractGraph of around 10 Gigabytes or more.

An interesting fact concerns the instance Atlanta to Los Angeles and its back-
wards direction. The result trajectory here uses only 4 or 5 vertices, but covers
a distance of over 3.000 kilometers. The reason for this is, that there are two
types of arcs used in the graph. The first one are the normal arcs between the
waypoints, ususally in a certain height. The second type are so-called terminal
procedures, which connect the airports to several vertices in the graph. These
arcs shall represent diffenrent landing or starting routes. Some of these arcs are
really long and in this concrete case, the found trajectory only consists of terminal
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5.5 Results

Figure 5.5: The trajectories From Peking to Frankfurt. The lower one is un-
constrained, the upper one respects C. The picture is made using
SkyVector.

procedures.
We compared the result trajectories to the unconstrained shortest path through

the airway network. Figure 5.4 shows a typical result. We see here the local nature
of the pair constraints. The snippet is taken from the result trajectories from Paris
to Dubai and shows the Persian Gulf. The right trajectory is just the shortest
path not respecting any pair constraint. The black squares mark a binding pair.
At the black square, the trajectory needs to turn left to Khark Island transforming
it into a detour. For this reason, the feasible shortest trajectory avoids the both
squares. Sometimes, the influence of the pair constraints is a bit more global, see
for example Figure 5.5. In this case, the constrained trajectory (the upper one)
takes a completely different route than the unconstrained one. Reason for this
is just one forbidden pair shortly before they meet above Leipzig. A surprising
fact is that these two trajectories differ by only 10 kilometers which is less than
0.2% of the trajectory length. The second table in Section 7.1 compares all
result trajectories with the shortest path through the airway network. For most
instances, the length difference is negligible, but sometimes, the values differ up
to over 100 kilometers for example from Atlanta to Peking.
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6 Concluding Remarks

In this thesis, we tried to approach the shortest path problem with pair con-
straints. We collected literature to the problem and found a formalism, which
allows to formulate both the problems already considered in the literature and the
concrete problem, we were concerned in our research. This includes behaviours of
the problem under particular restrictions and the connections between these re-
strictions as well as hardness results for each of them. Furthermore, we presented
and observed the combinatorial and recursive algorithms to solve the problem.
We extended one of them to our new problem.

To gain further results, we implemented this algorithm and tried to find the
advantages of this combinatorial approach against general problem solvers. Un-
fortunately, the results are not as good as expected. This has two reasons. The
first and of course main one is missing expertise in C++ especially concerning
memory management and data structures. The algorithm inserts millions of
arcs, which lets the memory needs explode. This leads to a second conclusion.
Although this algorithm is of great theoretical interest, since it shows polynomi-
ality to certain instances, its practicability is rather low in comparison to integer
program solving methods.

But this even motivates the last aspect of this thesis. We investigated the
polytope associated to the integer program formulation we chose. Here we found
several complete linear descriptions for the polytopes associated to very simply
restricted problem instances. This may even boost the solvability of the shortest
path problem with pair constraints using integer programming. Hopefully, our
results lay the foundation for new and more advanced observations and properties
of polytopes of the shortest path problem with vertex pair constraints.

Finally, we want to spend some words on possibilities for further improvement
of the presented results. Our first idea is about the transformation of the real-
world data to instances of the pair constraint problem. The current parsing of
the restrictions from the RAD document, namely just picking two numbers from
scope and condition, is a very rough approach. This can be strongly improved
by allowing alterations of the graph. For Considered Airways for example, there
could be added an artifical vertex representing the airway. This vertex is con-
nected to the beginning and ending of the airway. The arc labels then contain
the vertex ids of the airway. With forbidden or binding pairs, we are now able to
access this airway by taking the inserted vertex instead. Once this is contracted,
there is no difference between this vertex or the original airway, because the labels
would contract to the same sequence of ids.

Another point is the huge loss of constraints by choosing the well-paranthesized
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subset. This may be improved by involving the topological sorting into this
choice. Currently, we just sort the graph topologically. But since topological
sortings are highly not unique, there are maybe much better sortings, which allow
larger constraint sets to be well-paranthesized. Maybe, there is a possibility to
combine these two steps of the conversion for better constraint sets.

As seen especially in the results section, the number of arcs inserted in the
graph during the contraction seems to have no dependence to the key data of an
instance. Since this number has a large influence on our computational results,
we may be interested in getting this number low. This insertion number seems to
purely depend on the structure of the graph or the pair constraints. So perhaps
it is possible to find the causes of those high numbers.
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7 Appendix

7.1 Running Time Tables

The following table prints all calculation results. To save one column, we organ-
ised the data in a hierarchical way: The instances are grouped by there origin.
The column C++ contains the running time of our program contractGraph.
In New Arcs is counted, how many arcs were inserted by the program. The
trajectory length w(P) is given in km.

Time in s Trajectory Instance
To C++ Scip New Arcs |P| w(P) |V | |A| |C|

From: Atlanta (ATL)
CDG 92, 62 44, 15 2.301.727 23 7.138 48.097 174.166 350

DXB 116, 08 75, 31 3.399.631 80 12.366 48.074 174.065 352
FRA 65, 61 26, 99 2.160.461 32 7.531 48.080 174.042 366
LAX 939, 13 29, 49 18.034.559 5 3.126 48.040 174.562 342
LHR 92, 68 50, 34 2.377.814 22 6.873 48.119 174.092 356
PEK 331, 49 47, 07 9.152.943 62 11.917 48.156 174.182 350
SYD 444, 60 62, 41 11.678.129 42 15.151 48.128 174.073 362

From: Paris (CDG)
ATL 1753, 24 46, 93 32.291.826 31 7.158 48.081 174.908 378
DXB 1570, 04 23, 17 25.723.711 44 5.282 48.089 174.958 370
FRA 330.39 21, 18 13.789.088 12 475 48.108 175.277 346
LAX 1337.22 49, 66 31.222.097 38 9.154 48.011 175.158 380
LHR 1732, 23 19, 34 28.659.428 6 357 48.071 173.968 388
PEK 1736, 23 52, 98 28.228.764 57 8.303 48.099 175.382 372
SYD 1319.61 77, 57 26.289.263 88 17.066 48.082 174.929 380

From: Dubai (DXB)
ATL 1209, 19 53, 63 22.746.296 64 12.325 48.129 174.691 356
CDG 496, 56 22, 87 9.815.480 35 5.309 48.083 173.595 352
FRA 422, 00 17, 20 8.993.525 35 4.885 48.074 173.465 374
LAX 1292, 93 90, 00 23.457.378 89 13.625 48.142 175.013 360
LHR 509, 42 26, 50 9.545.688 35 5.540 48.099 173.616 348
PEK 1512, 01 19, 24 31.243.638 38 5.970 48.189 174.129 360

Continuation . . .

Table 7.1: Computational Results.
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. . . Continuation

Time in s Trajectory Instance
To C++ Scip New Arcs |P| w(P) |V | |A| |C|

SYD 1416, 13 49, 82 24.693.857 48 12.075 48.146 174.600 350

From: Frankfurt (FRA)
ATL 1472, 67 39, 47 30.700.840 39 7.560 48.129 174.925 366
CDG 973, 78 24, 57 21.009.877 11 459 48.117 173.487 374
DXB 1178, 60 43, 51 24.452.745 43 4.888 48.128 174.981 356
LAX 1596, 00 45, 59 29.632.553 28 9.370 48.070 175.252 366
LHR 1426, 12 18, 72 25.842.350 17 683 48.149 173.852 374
PEK 1188, 78 31, 64 26.845.858 55 7.906 48.145 175.435 360
SYD 1450, 69 132, 32 25.215.980 98 16.621 48.128 174.972 364

From: Los Angeles (LAX)
ATL 625, 02 23, 15 12.291.208 4 3.127 48.205 174.639 360
CDG 78, 75 54, 03 2.041.704 35 9.137 48.148 173.840 362
DXB 76, 44 53, 22 3.165.033 77 13.659 48.066 173.667 368
FRA 77, 90 56, 91 2.086.444 31 9.365 48.127 173.639 370
LHR 62, 18 33, 50 2.129.078 38 8.794 48.170 173.858 352
PEK 308, 66 65, 38 6.865.417 51 10.172 48.173 173.867 354
SYD 496, 50 103, 14 10.528.883 25 12.072 48.102 173.697 350

From: London (LHR)
ATL 982, 13 22, 78 29.834.410 26 6.878 48.061 174.744 328
CDG 371, 70 12, 95 8.230.523 9 354 48.158 174.665 338
DXB 1398, 40 43, 30 23.501.647 49 5.546 48.066 174.699 330
FRA 478, 55 15, 76 10.313.985 14 666 48.064 174.674 352
LAX 979, 84 28, 42 28.824.565 35 8.804 47.988 174.902 324
PEK 948, 00 38, 83 26.138.014 58 8.287 48.072 175.086 332
SYD 992, 24 77, 22 24.398.355 79 17.148 48.059 174.655 346

From: Peking (PEK)
ATL 643, 20 61, 73 18.274.964 57 11.802 48.111 174.651 388
CDG 118, 09 25, 41 3.979.062 61 8.280 48.050 173.248 366
DXB 94, 83 33, 08 4.800.026 30 5.995 48.023 174.183 376
FRA 92, 78 45, 40 3.567.470 71 7.910 48.032 173.088 346
LAX 778, 59 45, 20 22.781.757 44 10.265 48.091 174.890 342
LHR 132, 51 27, 26 4.577.116 71 8.265 48.076 173.306 336
SYD 818, 61 33, 87 20.572.401 55 9.395 48.066 174.344 346

From: Sydney (SYD)
ATL 630, 56 41, 39 16.937.011 45 15.161 48.131 174.690 370
CDG 45, 55 86, 42 2.326.094 111 17.095 48.094 173.631 354

Continuation . . .
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. . . Continuation

Time in s Trajectory Instance
To C++ Scip New Arcs |P| w(P) |V | |A| |C|

DXG 61, 82 22, 75 3.517.430 49 12.067 48.058 173.642 366
FRA 45, 84 117, 64 2.304.678 108 16.658 48.080 173.481 340
LAX 789, 43 49, 56 19.225.051 24 12.072 48.141 174.990 374
LHR 50, 33 51, 78 2.555.777 95 17.156 48.110 173.667 362
PEK 567, 02 28, 77 9.488.945 43 9.475 48.210 173.975 360

Table 7.1: Computational Results.

The next table compares two trajectories: The first one respects all pair con-
straints in C, the second one is just the shortest (unconstrained) connection be-
tween them. The length w(P) is again given in km.

C C = ∅ C C = ∅
To |P| w(P) |P| w(P) To |P| w(P) |P| w(P)

From: Atlanta (ATL) From: Los Angeles (LAX)
CDG 23 7.138 23 7.138 ATL 4 3.127 4 3.127
DXB 80 12.366 68 12.338 CDG 35 9.137 35 9.137
FRA 32 7.531 32 7.531 DXB 77 13.659 76 13.633
LAX 5 3.126 5 3.126 FRA 31 9.365 31 9.365
LHR 22 6.873 22 6.873 LHR 38 8.794 39 8.794
PEK 62 11.917 63 11.805 PEK 51 10.172 51 10.172
SYD 42 15.151 42 15.151 SYD 25 12.072 25 12.072

From: Paris (CDG) From: London (LHR)
ATL 31 7.158 33 7.147 ATL 26 6.878 26 6.878
DXB 44 5.282 40 5.268 CDG 9 354 10 354
FRA 12 475 10 461 DXB 49 5.546 42 5.526
LAX 38 9.154 37 9.149 FRA 14 666 13 660
LHR 6 357 8 353 LAX 35 8.804 35 8.804
PEK 57 8.303 57 8.303 PEK 58 8.287 58 8.287
SYD 88 17.066 115 17.058 SYD 79 17.148 99 17.147

From: Dubai (DXB) From: Peking (PEK)
ATL 64 12.325 64 12.325 ATL 57 11.802 57 11.802
CDG 35 5.309 35 5.309 CDG 61 8.280 61 8.280
FRA 35 4.885 35 4.885 DXB 30 5.995 29 5.970
LAX 89 13.625 90 13.625 FRA 71 7.910 68 7.900
LHR 35 5.540 35 5.540 LAX 44 10.265 44 10.213
PEK 38 5.970 39 5.970 LHR 71 8.265 71 8.265

Continuation . . .

Table 7.2: Comparison of the trajectories respecting C and the shortest path.
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. . . Continuation

C C = ∅ C C = ∅
To |P| w(P) |P| w(P) To |P| w(P) |P| w(P)

SYD 48 12.075 48 12.075 SYD 55 9.395 55 9.395

From: Frankfurt (FRA) From: Sydney (SYD)
ATL 39 7.560 39 7.560 ATL 45 15.161 45 15.161
CDG 11 459 11 459 CDG 111 17.095 121 17.092
DXB 43 4.888 37 4.874 DXB 49 12.067 49 12.067
LAX 28 9.370 28 9.362 FRA 108 16.658 110 16.647
LHR 17 683 17 683 LAX 24 12.072 24 12.072
PEK 55 7.906 55 7.906 LHR 95 17.156 94 17.156
SYD 98 16.621 113 16.606 PEK 43 9.475 48 9.430

Table 7.2: Comparison of the trajectories respecting C and the shortest path.
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from Kováč [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Properties of the three new paths Q1, Q2 and Q3 for Q avoiding
both ` and r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Properties of the three new paths Q1, Q2 and Q3 for Q using `
but not r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Some example rules taken from [11]. . . . . . . . . . . . . . . . . . 60

7.1 Computational Results. . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Comparison of the trajectories respecting C and the shortest path. 71

7.4 List of Algorithms

1 Procedure topSort sorts a directed acyclic graph topologically. . . 9
2 Procedure detPath finds a path respecting all forbidden pairs. [12] 15
3 Procedure splitVertex replaces a vertex by an arc. . . . . . . . . 21
4 Procedure topSortSkewSymmetric sorts a skew symmetric graph

topologically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Procedure contractGraphKP contracts a graph until only s and t
survive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

73



List of Algorithms

6 Step 2 of Tan’s contraction method. . . . . . . . . . . . . . . . . . 35
7 Procedure contractGraph reduces a graph respecting forbidden

and binding pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.5 References

[1] European Environment Agency. “EEA Briefing 3 / 2004 – Verkehr und
Umwelt in Europa”. In: Kopenhagen (2004).

[2] G. Ausiello. Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Springer-electronic-Media.
U.S. Government Printing Office, 1999. isbn: 9783540654315. url: https:
//books.google.de/books?id=Yxxw90d9AuMC.

[3] Egon Balas. “Disjunctive programming”. In: Annals of Discrete Mathemat-
ics 5 (1979), pp. 3–51.

[4] Egon Balas. “Disjunctive programming: Properties of the convex hull of
feasible points”. In: Discrete Applied Mathematics 89.1 (1998), pp. 3–44.

[5] Claude Berge. “Two theorems in graph theory”. In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 43.9 (1957),
p. 842.

[6] D. Bertsimas and R. Weismantel. Optimization Over Integers. Dynamic
Ideas, 2005. isbn: 9780975914625. url: https : / / books . google . de /

books?id=De2nQAAACAAJ.

[7] Statistisches Bundesamt. “Luftverkehr – Fachserie 8 Reihe 6 – Dezember
2014”. In: (2014).

[8] Ting Chen et al. “A dynamic programming approach to de novo peptide
sequencing via tandem mass spectrometry”. In: Journal of Computational
Biology 8.3 (2001), pp. 325–337.

[9] T.H. Cormen et al. Introduction To Algorithms. MIT Press, 2001. url:
https://books.google.de/books?id=NLngYyWFl\_YC.

[10] C. Demetrescu, A.V. Goldberg, and D.S. Johnson. The Shortest Path Prob-
lem: Ninth DIMACS Implementation Challenge. DIMACS series in discrete
mathematics and theoretical computer science. American Mathematical
Soc., 2009. isbn: 9780821885864. url: https://books.google.de/books?
id=Vz0Syt3VqAcC.

[11] Eurocontrol. Route Availability Document. Eurocontrol. url: http://www.
nm.eurocontrol.int/RAD/index.html.

[12] Harold N. Gabow, Shachindra N Maheshwari, and Leon J. Osterweil. “On
Two Problems in the Generation of Program Test Paths”. In: Software
Engineering, IEEE Transactions on 2.3 (1976), pp. 227–231. doi: http:
//doi.ieeecomputersociety.org/10.1109/TSE.1976.233819.

74



7.5 References

[13] MohammadTaghi Hajiaghayi et al. “The checkpoint problem”. In: Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques. Springer, 2010, pp. 219–231.

[14] Johan H̊astad. “Some optimal inapproximability results”. In: Journal of the
ACM (JACM) 48.4 (2001), pp. 798–859.

[15] R. W. Smith K. A. Krause and M. A. Goodwin. “Optimal Software test
planning through automated network analysis”. In: Proc. 1973 IEEE Symp.
Computer Software Reliability (1973), pp. 18–22.

[16] D.E. Knuth. The art of computer programming: Fundamental algorithms.
Vol. 1. Addison-Wesley, 2008. isbn: 9780201485417. url: https://books.
google.de/books?id=0XFitQAACAAJ.

[17] D.E. Knuth. The Art of Computer Programming: Volume 3, The: Sorting
and Searching. Pearson Education, 1998. isbn: 9780321635785. url: https:
//books.google.de/books?id=cYULBAAAQBAJ.
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