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Abstract

Uncoupling-coupling Monte Carlo (UCMC) combines uncoupling tech-
niques for finite Markov chains with Markov chain Monte Carlo method-
ology. By determining almost invariant sets of the associated Markov
operator, the Monte Carlo sampling splits by a hierarchical annealing pro-
cess into the essential regions of the state space; therefore UCMC aims at
avoiding the typical metastable behavior of Monte Carlo techniques. From
the viewpoint of Monte Carlo, a slowly converging long-time Markov chain
is replaced by a limited number of rapidly mixing short-time ones. The
correct weighting factors for the various Markov chains are obtained via
a coupling matrix, that connects the samplings from the different almost
invariant sets. The underlying mathematical structure of this approach
is given by a general examination of the uncoupling-coupling procedure.
Furthermore, the overall algorithmic scheme of UCMC is applied to the
n-pentane molecule, a well-known example from molecular dynamics.

Keywords: almost invariant sets, bridge sampling, cluster analysis,
hierarchical annealing, Markov chains, Monte Carlo, n-pentane molecule,
ratio of normalizing constants, reweighting, uncoupling-coupling.
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1 Introduction

A large class of problems can be stated as the computation of expectation
values E¢(g) = [ g(z)f(z) dz of a function or observable g w.r.t. a density f.
Most common are problems from statistical physics [8] and Bayesian inference
arising from statistical modeling [15]; in both cases f has the form of a Gibbs—
Boltzmann distribution. The widely used Markov chain Monte Carlo (MCMC)
methodology provides a flexible and general framework for approximations of
such expectation values by averaging over the realization of an appropriate
Markov chain generated by the Monte Carlo algorithm.

The main reasons of the popularity of the MCMC approach is that the con-
vergence rate of averages is independent of the high-dimensionality of the state
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space and that at no point knowledge about the normalizing constant of a given
unnormalized density f is needed. However, usually one has to tackle the trap-
ping problem, i.e., the Markov chain resides for a very long time in one part of
the state space before it moves on to another part. Such undesirable behavior
of the Markov chain is caused by metastable regions—also called modes or con-
formations—in the state space. Because rare transitions between modes result
in a very poor convergence rate of averages to the analytic expectation values,
there exists a huge literature addressing the trapping problem; either by some
sophisticated update schemes for more or less special application classes [1, 7, 8]
or by general extensions of the MCMC methodology as multigrid Monte Carlo
[16], reweighting techniques [9], simulated tempering in statistical physics [21],
reversible jump algorithms in Bayesian inference [17] or macrostate dissection
[3]-

Herein, by the uncoupling-coupling scheme, we propose another extension
of the MCMC methodology: the key idea of uncoupling-coupling Monte Carlo
(UCMC) is to regard metastable regions in the state space as almost invari-
ant sets w.r.t. some Markov operator corresponding to the Markov chain. It
was recently shown by DELLNITZ/JUNGE [5] and SCHUTTE ET AL. [27] that
these almost invariant sets are strongly connected to the spectral structure of
the Markov operator, and that it is even possible for a wide range of problem
classes to identify almost invariant sets by solving the eigenvalue problem [6].
Remarkably, by this approach we have a dynamical interpretation of metasta-
bility depending on the Markov chain and not as usual a geometric one based
solely on the density. Therefore, with the information about the almost invari-
ant sets we simultaneously possess the knowledge how to decompose the slowly
mixing Markov chain into its rapidly mixing parts.

In most cases, we can embed f in a hierarchy of densities f(vy), where f(7)
results in a smoothed density by varying the parameter 7 (e.g., increasing the
temperature if we choose 7y to be a temperature parameter). Starting with
a MCMC scheme, we recursively decompose the state space and restart an-
nealed Markov chains—which are restricted to their almost invariant set—until
all almost invariant sets w.r.t. the Markov operator corresponding to f are
resolved. Then, the coupling step consists of setting up a coupling matrix C
between the almost invariant sets in such a way that the stationary distribution
of C contains the correct weighting factors between these sets, which seemingly
got lost in the uncoupling step. It will show up that we have to use bridge
sampling densities in the uncoupling step for efficient approximations of ratio
of normalizing constants [12], which arise as components of C.

The UCMC scheme combines aspects from simulated annealing approaches
in optimization [19], aggregation-disaggregation techniques evolved from the
SIMON-ANDO theory [28] and stochastic complementation techniques investi-
gated by MEYER [23] on finite state space Markov chains. A hierarchical an-
nealing structure is also used by CHURCH ET AL. in the macrostate dissection
approach for thermodynamical integrals [3]; there the strategy is followed to
dissect the state space in a geometric oriented manner in terms of Gaussian
integration kernels.



A crucial part of the algorithm is to find a decomposition in a not a-priori
known number of almost invariant sets. Typically the number of almost invari-
ant sets is small for a wide class of problems even for high-dimensional prob-
lems, e. g., for biomolecules [1]. In that case, we can obtain a decomposition as
described in [27] and use an appropriate dynamics-based cluster algorithm as
proposed by DEUFLHARD ET AL. [6]. The decomposition is guided solely by the
spectral structure of the corresponding Markov operators: This guarantees that
the convergence rate increases substantially for subsequent simulation runs, be-
cause the second eigenvalue decreases substantially for subsequent simulation
runs.

Another feature of UCMC is that due to the different Markov chains emerg-
ing in UCMC, an implementation of it is well suited for parallel computation. In
contrast to simply multiplying the number of simulations for the Markov chain,
we herein can distribute all the various rapidly converging chains emerging from
the uncoupling steps during the annealing procedure.

This paper is organized as follows: Section 2 starts with a short overview
of MCMC. In Section 3 we investigate the relation between almost invariant
sets of a given MCMC method and the spectral structure of the corresponding
Markov operator. It is also described, how a clustering of the state space into
almost invariant sets can be performed. Then in Section 4 the structure of
the coupling matrix is given. To apply the uncoupling-coupling step effectively
in an algorithmic scheme, we embed in Section 5 the uncoupling step in a
hierarchical structure, which will led us naturally to bridge sampling techniques.
An application of UCMC to the n-pentane molecule is given in the last section.

2 Markov Chain Monte Carlo

The goal of MCMC methods is to sample from a probability measure y and
use the output of a Markov chain to compute expectation values w.r.t. that
measure. To set the notation, let (€2, B, \) be the underlying measure space and
i a probability measure on (€2, B). We suppose in the following, that X is the
Lebesgue measure on  C R% and that p possesses a density

f(z) dz = p(dz)

with f > 0 where dz denotes integration w.r.t. the Lebesgue measure .
In most cases, f is defined in terms of an unnormalized density f via

~

@
fQ f(z) dr’

where Z; = Jo f(z) dz denotes the normalizing constant of f.

/(@)

A transition kernel' K : Q x B — [0,1] defines a (homogeneous) Markov
chain X = (X;,)n>0 through the relation

P{Xpi1 € A|Xo,..., Xn} = K(X,, A)

!For an exact definition of commonly used terms as transition kernel, irreducibility or
aperiodicity, we refer to the monograph [24].




where K (z, A) denotes the probability to move in one step from the point
into the set A.
We call f an invariant density of X, if

/Af(:c) dx:/QK(ac,A)f(a:) dz (1)

holds for all A € B.
In the Metropolis-Hastings algorithm a transition kernel K which satisfies
(1) is realized by first defining an arbitrary but irreducible transition kernel

Q(z,dy) = q(z,y) dy
together with the acceptance function

(1 4w.e) fw)
a(zy)=4 0 (lm) for g(z,y) >0
1 otherwise

In « only ratios of the form f(y)/f(z) have to be computed, which is feasible
even if the normalizing constant Z 7 is unknown.
Together with Q and « we can define K by

that splits into an absolutely continuous part
q(z,y)a(z,y) fz#y
k(z,y) = _
0 otherwise

and a singular component

r(x) =1— /k(a),y) dy.

With this K one step in the realization of the Markov chain from the state
X} = x consists of proposing y distributed according to ¢(z,y), and accept this
step—that is set Xy 1 = y—with probability a(z,y); otherwise the proposal is
rejected and Xj; is set to x.

The construction of K guarantees that X is irreducible, provided that @
is irreducible. If we further assume that X is aperiodic—which is guaranteed
whenever proposals get rejected during the sampling process—we can state that
f is the unique invariant density of X, because for all z,y € Q with z # y the
detailed balance condition

f(@) k(2,y) = f(y) k(y, ) (2)
holds (for details, see e.g. [29]). Due to (2) K is called reversible w.r.t. f.

A realization {z;} of X now enables us to calculate expectation values
By(o) = [ ala)f(a) da
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w.r.t. f by using the estimator

1 N
B (9) = % D (), 3)
k=1

which converges to E¢(g) for N — oo by the strong law of large numbers for
Markov chains. Altogether, we can say that MCMC is a method that allows to
obtain samples from f without knowledge of the normalizing constant Z -

In the following we want to understand the global behavior of a Markov
chain via the spectral structure of its associated propagator (also called transfer
operator). This propagator P : L® — L* for s € {1,2} with u — Pu is defined
in terms of the transition kernel K by

mezlfmwmmmmwwmwx (4)

where L® = {u : Q = C| [, |u(x)|® dz < co}. Instead of generating a series of
states as the Markov chain X does, P describes the propagation of densities.
Two important properties of the propagator are [26, 27]:

(i) P is a Markov operator: for all u € L! we have [ |Pu(z)|dz = [ |u(z)|dz
and from u > 0 follows Pu > 0.

(ii) P is a symmetric operator in L? w.r. t. a weighted scalar product < -,- >,
due to the reversibility of K.

From (i) and (ii) follows that in L? the spectrum o(P) of P is real and
bounded by 1, so we have o(P) C [—1,1]. Similar to the well-known Frobenius—
Perron theorem for countable state spaces, the irreducibility and aperiodicity of
K implies that P has a simple eigenvalue A\; = 1, for which f is an eigenfunction,
ie. Pf=f.

To further investigate the spectral structure we define the discrete spectrum
ogiser(P) to consist of all isolated eigenvalues of P with finite multiplicity and
the essential spectrum by oess(P) = {A € 0(P)|A & 0giser(P)}; the essential
spectral radius is given by ress(P) = supyc,,(p) |Al-

If regs < 1, the Markov chain & is called uniformly ergodic [24], which is a
desirable property for the rate of convergence of the MCMC algorithm. More
precisely, let the eigenvalues of ogiscr(P) be ordered due to their modulus, i.e.,
A1 =1> |Ag| > |A3] > ... and assume, that ress < |A2|. Then X converges with
geometric rate |Az|; the more |A2| is bounded away from A\, = 1, the faster X
produces a good sampling of the density f. If the above assumption about 7egs
holds, a Markov chain X is called rapidly mizing, if Ao < 1.

3 The Uncoupling Step

Our aim in this section is to replace a slowly mixing Markov chain X by n
rapidly mixing Markov chains A7,...,&,. In this sense, the uncoupling step
refers to decomposing the state space {2 into almost invariant sets A;,..., A,
and perform restricted samplings in these sets by restarted Markov chains.



3.1 Almost Invariant Sets

A typical but undesirable behavior of a realization {zj} of a Markov chain X is
to remain for a long time in a metastable region—also mode or conformation—of
the state space, before it moves on to another one. The convergence properties
of expectation values are then mainly dependent on rare transitions between
metastable regions of the state space, whereas in these regions X is rapidly
mixing.

This behavior can be understood via the concept of almost invariant sets [5,
27]. For measurable sets A, B C ) the transition probability between A and B
is given by

1
WA BP) = i /A P(z, B)f(z) ds,

which can be interpreted as the probability to move from the set A under the
propagator P to the set B. With this definition, clearly w(2,2, P) =1, i.e.,
all probability remains in the state space 2. We will denote a set A as almost
invariant w.r.t. P, if w(A, A, P) = 1.

A computational approach to the identification of almost invariant sets by
means of a discretized eigenvalue problem was proposed by DELLNITZ/JUNGE [5]
in the context of low-dimensional dynamical systems; there the algorithm was
based on multilevel techniques for a discrete approximation of the so-called
Frobenius—Perron operator. The underlying concept was reformulated by SCHUTTE
ET AL. [27] for high-dimensional Hamiltonian systems, as they occur in molec-
ular dynamics. In this approach, an approximation of almost invariant sets is
obtained by the simulation of a hybrid Monte Carlo method and a discretization
of the corresponding propagator in essential degrees of freedom. This is exactly
the approach we follow in the UCMC algorithm to detect almost invariant sets
of propagators associated to more general Markov chains.

Crucial to these investigations is that all propagators are Markov operators
which allow to link the existence of almost invariant sets to the occurrence of
eigenvalues near the unique eigenvalue A\; = 1 in the spectra of the Markov op-
erators. Under this viewpoint we can say, that a Markov chain is slowly mixing
due to the existence of at least one almost invariant set corresponding to the
2nd eigenvalue Ao; at least this is true, as far as Ao is actually close to 1 and
not located elsewhere near the unit circle. It is also shown, that eigenvalues
anywhere near the unit circle correspond to an almost cyclic behavior [5]. We
will not pursue the existence of almost cyclic behavior further, first because our
Markov operators are symmetric and possess therefore real spectra and second
the typical spectral structure of the Markov operators arising from applica-
tions do not have eigenvalues near —1 but rather a well-separated cluster of
eigenvalues near 1.

3.2 Cluster Analysis

Suppose, that {zy} is the output of a Markov chain X corresponding to a
propagator P and that we are interested in detecting almost invariant sets



Aq,..., A, of P, where the number n of almost invariant sets is not specified
in advance.

A discrete approximation of P can be obtained by discretizing the in general
high-dimensional state space €2 in its essential coordinates; loosely speaking
these are the coordinates which mainly governs the dynamics of P. By this
coarse graining we arrive at a decomposition of Q in B = (Bj,...,Bn) boxes,
from which we can set up a stochastic transition matrix 7' € Mat y x x by simply
counting the transitions from By to B for consecutive states (zy € By, Txy1 €
By) of X (for details see [27]). Furthermore, the symmetry of the propagator P
defined in (4) can be inherited to 7', so that we end up with T as a reversible
stochastic matrix.

The existence of almost invariant sets and its relation to the spectral struc-
ture is already treated in the SIMON-ANDO theory for finite Markov chains
and investigated there under the term nearly completely decomposable sys-
tems [23, 28]. However, therein only such systems are studied for which a
suitable decomposition is known in advance. In contrast, an algorithmic ap-
proach has to determine the almost invariant sets for given eigenvalues and
corresponding eigenvectors.

This is done in an identification algorithm proposed by DEUFLHARD ET
AL. [6] for reversible stochastic matrices. Depending on a spectral gap, which
separates a cluster of eigenvalues \y = 1, Ag,..., A\, in the neighborhood of
1, the number n of almost invariant sets for the decomposition is determined.
By exploiting the sign structure in the eigenvectors corresponding to these n
eigenvalues, an appropriate assignment of boxes B € M to almost invariant sets
A; fori=1,...,n isrealized. The algorithm presented therein is justified by an
perturbation analysis, which makes use of the reversibility of 7. All in all, the
algorithm clusters the set M of boxes into almost invariant sets A; = Uger, B
fori=1,...,n.

It would be desirable that the essential spectral radius ress(P) is sufficiently
bounded away from 1; at least 7ess(P) should be less than \,, otherwise some
of the eigenvalues from the discrete spectrum ogiser(P) could get interfered
by eigenvalues in 7', which emerge as a discretization of gegs(P). Theoretical
investigations have already shown, that ress(P) is bounded away from 1 for
some special classes of problems [26]. However, whether there exists actually
an inference problem with oess(P), has yet to be investigated.

By this identification algorithm, a dynamical clustering of the state space
is performed in a way that the resulting decomposition depends on the dynam-
ics of the Markov chain and reflects therefore our goal to detect sets A; with
w(A;, A;, P) = 1. This is different from the vast majority of cluster algorithms,
where a geometric clustering of the data—in our case the states {zj}—is ob-
tained without using any transitions between these states [18].

3.3 Restricted Sampling

Ending up with the sets A1,..., A, as the output of the cluster algorithm we
now want to sample separately in each A;, for kK = 1,...,n. Therefore, for each



[ we define a restricted Markov kernel K; from K on A; by setting

Ki(z,dy) = ki(z,y)pu(dy) + ri(z)dz(dy) (5)
with
q(z,y)a(z,y) ifz#yandy € A
kl(‘Ta y) = .
0 otherwise
and

o) =1- [y

Clearly, the detailed balance condition still holds, so that Kj is again a reversible
Markov kernel. Now, let fl = 1y, f be the restricted unnormalized density on
A;, with 14 denoting the indicator function on A, i.e., 14(z) = 1ifz € A
and 14(z) = 0 otherwise. Then, under the assumption, that K; is irreducible,
fi = fl/Z i is the unique invariant density of K;. Note, that the question,
whether K inherits the irreducibility from K, depends on both, the set A;
and the Markov kernel K. Altogether, for K; being irreducible, a sampling
{zt} from the restricted Markov chain A; is obtained by starting at a point
X(l) = x € A; and performing the same update procedure as for X with the
exception that proposals y # A; are rejected.

As defined in equation (4), we denote by P, the corresponding propagator of
K;. If we assume that A; is almost invariant and that it cannot be subdivided
further into two or more almost invariant sets, then we can state the following:
First, P, is irreducible, otherwise there would exist a decomposition into two or
more invariant subsets. Second, the 2nd eigenvalue Ay of P, is substantially less
than 1, otherwise there would exist a decomposition into two or more almost
invariant subsets. Third, as a consequence, due to Ao < 1, the corresponding
Markov chain Aj is rapidly mixing.

4 The Coupling Step

In the coupling step we will show that it is possible to regain information
about a global density f = Zszl 7k fr in terms of densities fy, by setting up a
coupling matrix C' with 7 as its stationary distribution. This together with the
decomposition from the uncoupling step allows us to formulate the algorithmic
hierarchical annealing scheme in the next section.

Now suppose that arbitrary unnormalized densities f1, ey f N are given. We
denote by Ay = supp(f) the support in the state space © and by ¢;; = 14,n4;
the common support of the densities f; and f;.

To obtain information about the density f corresponding to the global un-
normalized density f = Zk 1 fr, it is sufficient to know the ratios of normal-
izing constants 7, = Z 3 /Z because then we can reconstruct f from the f;’s
by

N

; fk /
§ T fr = ka 7. =7
k=1 7 f Tk




Having in mind an algorithmic approach, we have to compute the 7;’s (or at
least approximations of them) without directly referring to Z;. This resembles
the standard MCMC method, where one avoids the normalizing constant by
evaluating ratios depending only on the unnormalized density. In the same way
we define the coupling matriz C = (c;;) € Matnxn by

i ij fi

1 Zoijks . Zyiiki . .
~ 7 min (1, =L ) for i # j and p(4; N A4;) >0
0

Cij = for i # j and u(A;NA;) =0 (6)

1-— Zszl(k#) Cik else

Obviously, C is a stochastic matrix, because for i # j we have 0 < ¢;; < 1/N,
while due to the diagonal entries the sum of each row is 1. The Markov chain
corresponding to C is also aperiodic, simply because ¢;; > 1/N for each diagonal
entry.

Furthermore, let us assume in the following that each A; is connected to any
Aj in the sense that there exists a sequence of sets A; = Ay, Ay oo Ay 10 45
Ay, such that p(Amy,NApy, ) >0forl =1,...,k—1. Then for all i and j there
exists a path from the state 7 to the state 7 in C, which makes C irreducible
(this condition will get clear in Section 5, see also Fig. 2).

The key point in the construction of C is that

1

T™=—(Z

A fl""’an)

~h

is the unique stationary distribution due to the aperiodicity and irreducibility
of C. This follows immediately from the detailed balance condition

Z, & 4, Z, Z, 3
e —;”fl min (1, Z¢”f]> =7 —;“fj min (1, —Z¢”f’> , (7)
fi bij fi fi bjif

which moreover shows that C is reversible.

Actually, this is exactly the way a transition kernel for the Metropolis-
Hastings algorithm is constructed. Of course, from an algorithmic viewpoint we
do not intend to perform a Monte Carlo sampling with C, but rather compute
directly the stationary distribution from an appropriate approximation.

There are several remarks to make concerning the setup of C': First, for an
approximation C of C, the most problematic parts are the components Cij COI-
responding to the ratio of normalizing constants Z 6ii /Z 6iif which as opposed
to the normalizing constant itself can at least in principle be approximated ef-
ficiently (see Sec. 5.2). In fact, like in the Metropolis algorithm we replace a
direct computation of Z i by the computation of ratios of normalizing constants
between the Z; ’s.

Second, we made a canonical choice of ¢;;, which is well suited for the
hierarchical annealing approach, but other choices are possible as long as the
detailed balance condition (7) holds. For example, one could incorporate P in



the components c;; of C' to reflect the dynamics of P in the sense of a coarse
graining of Q.

Third, if we suppose that we can compute expectation values for each f; and
we know the stationary distribution 7 of C, we are able to compute expectation
values w.r.t. f, which are now given by

Ey(g) = Bs_ s (0) = zkj - /A 9@l b (8)

For finite state problems, MEYER [23] investigates the concept of stochastic
complementation for a given—not necessarily reversible—irreducible stochastic
matrix P'. By aggregation of states a coupling matrix C’ is constructed in such
a way that the stationary distribution 7’ of C' contains the correct weighting
factors for the aggregates. The problematic part in the setup of a stochastic
complement ¢;;—which are the elements of C'—is, that information from P’
is needed from all components of P’. The application in mind by stochastic
complementation are the so-called aggregation-disaggregation techniques [4, 28],
which try to perform a fast computation of the stationary distribution of P’
for large finite state spaces, where a suitable decomposition of the state space
is known in advance.

In contrast, in our approach it is the restriction to reversible chains and the
use of the detailed balance condition for the setup of C, which enables us to
make use of a coupling matrix in the context of MCMC, where the identifica-
tion of the almost invariant sets are an important part of the algorithm. In
particular, an entry c;; is defined only in terms of fz and fj, no matter about
the remaining fk’s.

5 Hierarchical Annealing

It is not practical to start the simulation with a Markov chain for the density f
of interest, because the Markov chain would immediately get trapped in one of
its metastable regions. Actually, it is exactly this Markov chain, that we want
to avoid by sampling only in its almost invariant sets. A way out of this problem
is to embed f in a family of densities f(y) where f = f(7y) is the original density
for a fixed . By varying -y the densities f(vy) transforms into smoother ones with
less metastable regions. Often such a family of densities arises naturally, e. g.,
by varying the temperature parameter—physical or artificial—in the Gibbs-
Boltzmann distribution.

Starting with a MCMC scheme for a density f; with a suitably chosen -
parameter, we recursively decompose the state space and restart Markov chains
with annealed y-parameter—which are restricted to their almost invariant set—
until we have sampled all almost invariant sets w.r.t. the Markov operator
corresponding to f.

A straightforward approach to hierarchical annealing would be to decompose
the initial sampling {z}} of fi on the state space A; = § into almost invariant
sets Ag, ..., A; by clustering the data points {z}}, setting up annealed densities
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fo,-y fion Ag,..., A;, generate data points {z2},...,{z}}, and recursively

repeat the decomposition for As, ..., A; and annealing of the v parameter until
finally the original density f is sampled by the restricted densities fi1,--., fa
in the almost invariant sets A4, ..., A, of f.

Though this approach allows to detect the almost invariant sets 4; ..., A,

and sample herein, it is not useful in regard to an approximation C of the cou-
pling matrix C, for which we need to extract the correct weighting factors
Tltm, - - -, T, for the data points {x?m},,{x}g} To cope with this prob-
lem, we use bridge densities: Instead of sampling the annealed density f; on
the almost invariant set A;, a bridge density f;; between 14, f; and f; is con-
structed, which encompasses both densities. By using bridge densities f;; (see
Section 5.1) rather than f; alone for all subsequent samplings, we will be able to
get all the information we need to set up the coupling matrix (see Section 5.2).

By decreasing the parameter v during the hierarchical annealing process
we not only change the densities but simultaneously the corresponding Markov
operators and with them the almost invariant sets. The idea of this method
is, that the hierarchical decomposition comes along with a hierarchy of almost
invariant sets in terms of the almost invariance measure w(Ayg, Ag, P) for the
original propagator P. In regard to the spectral structure of P(y)—the prop-
agator corresponding to f(7y)-—, this behavior is reflected by the increase of
some eigenvalues towards 1 in dependence of . Actually, by defining restricted
Markov operators as in Section 3.3 on the almost invariant sets, these eigenval-
ues become new eigenvalues A\; = 1 for the restricted operators; one can think
of that as transforming almost invariant sets into invariant ones (see Fig. 1).

Another important aspect is the convergence rate of the Markov chains.
During the hierarchical annealing various rapidly mixing Markov chains get
computed, which have to be stopped automatically after a “reasonable” num-
ber N of iterations. Because N can vary drastically from one Markov chain
to another depending on the almost invariant set Ap and the corresponding
propagator, we use the “non-”convergence estimator from GELMAN and RU-
BIN [13, 11]. For this estimator, multiple realizations of a Markov chain X}
are generated to compute estimates depending on the variances between these
realizations. There exist other estimators using only one Markov chain (see the
discussion in [13]), but this one is especially suited for the UCMC approach,
because we can start realizations for a subsequent Markov chain X} with start-
ing points already well distributed in Ax. However, in case all realizations
get trapped in the same metastable region, like any other estimator this one
wrongly indicates a convergence of the Markov chains.

5.1 Bridge sampling

To maintain the connectivity between the Markov chains which emerge during
the annealing, samplings from a density f; must be somehow concatenated to
its parent density f; in the hierarchy. If the densities f; and f; are directly
sampled, the overlap between these densities is in general to small to extract
a statistical reliable approximation of the ratio of normalizing constants from

11



o(Py)

o(Pr)

O'(PZ) O'(P3) G'(P4

Figure 1: The splitting behavior of the spectral structure of the corresponding
Markov operators (see also [23]). Due to the reversibility of the Markov operators
all spectra o(Py) are real. Here a situation for three almost invariant sets is
shown. While the 2nd and 3rd eigenvalue of o(P;) are significantly bounded
away from A\; = 1, they move towards 1 when we anneal the y-parameter without
decomposing the state space, what is indicated by 0'(]51). The decomposition
into three almost invariant sets results in a splitting of these eigenvalues, each
of them becomes A; = 1 for the restricted Markov operators P, ..., Py.

the sampled data.

Suppose, that A; is an almost invariant set from the decomposition of the set
A; and f; is the corresponding annealed new density on A;, e.g., by decreasing
the y-parameter. Let ff = ¢;; fi be the restriction to the set A; N A; from the
density f; on A; (cf. Fig. 2); as a consequence of the decomposition A4; is a
subset of A;, therefore we have fZJ = 14, fi-

A generic choice for a bridge density on the set A; is given by

fijZUfiJr(l—U)f;" 9)

for some o € [0, 1].
By mixing both densities into f;;, we expect to satisfy in particular:

(i) The Markov chain &j; corresponding to f;; is rapidly mixing. This as-
sumption is justified, because A; is an almost invariant set w.r.t. P;.

(ii) A simulation run {.CU;] } of f;; allows a statistical reasonable reweighting
to the densities f; and f}; this presupposes that all important parts of the
densities f; and f; get sampled by &j;.

(iii) As we will see in 5.2, we can use the reweighted data from (ii) to approx-
1mate Z¢” fv, /Z¢” fz

However, a suitable choice for ¢ in (9) has to depend on a specific application

as in the numerical example in Section 6.
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a) As
A2 AS
A1 A4
As 4
Ag 7

Figure 2: a) Schematic plot of a two level hierarchical decomposition. An
initial sampling of fi decomposes the state space Q@ = A; into two subsets
A; and As, which get further subdivided into {A4, A5} and {As, A7, As}. b)
The same subdivision as in a), but now represented as a graph, where nodes
correspond to sets Ax. We denote by p(i) the index of the parent set of a node
Aj;; therefore edges (p(¢),7) represent bridge densities f,¢;);. As an example,
for the set As we have p(8) = 3. The density f§ = ¢3,sfs corresponds to the
hatched part of Asz; in UCMC neither f§ nor fs is sampled, but rather the
bridge density fs,s, which sufficiently encompasses the important parts of f§
and fs (cf. Fig. 6). Additionally, the tree structure of the graph guarantees that
the coupling matrix C defined in equation (6) is irreducible, because an edge
(p(?),4) implies the entries c,(;); and c¢;,(;y of C to be non-null. A shrinkage
of the almost invariant sets is indicated by the ellipses getting smaller during
annealing (cf. Fig. 4).

There exists also more theoretical investigations about bridge densities [12,
14, 22], yet with a slightly different point of view: bridge densities are primarily
used to connect simulation runs from two densities and compute the ratio of
normalizing constants by an a-posteriori data analysis. In contrast, for our
purpose it is necessary to determine a-prior: a bridge density f;; to perform
directly a Markov chain simulation in f;;.

5.2 Approximation of the coupling matrix

In Section 4 the general form of the coupling matrix C' was given. With the
usage of bridge densities, we are now able to compute an approximation C =

13



(i) of the non-zero entries

. 17 iifi ( Z¢jifj) . ‘ ‘
cij = min | 1, =2 for i#j and p(4;UA;)>0
N Z; Zy. .},
ij fi
of the hierarchical annealing process.

Note, that as a consequence of the hierarchical subdivision, only non-diagonal
entries ¢;; of C linking a density f; to its “child” densities or “parent” density
fo(i) are non-zero (see Fig. 2).

Let §;; = {x?|k = 1,...,N;;} be the sampled data from the density f;;
resulting from the multiple realizations of the Markov chain &;;. We define
with Wzl = {ak”|k =1,...,N;;} for I € {i,j} data sets containing weighting
factors for an unnormalized density bij fi by reweighting the data points in Sij
with the reweighting formula [9]

N ¢ij($ij) A( z.j)/fAz'j( ij)
CNG (i) fi(al) i (2

Because our sampling S;; was already restricted to A; N A;, the indicator func-

tion ¢;; is always 1—i.e. ¢;; (:c;c]) = 1 for all k—and could therefore be omitted

from formula (10). As a special case, for the initial sampling S11 = {z}|k =

1,...,N11} no reweighting is needed, so an =1/Ny; forall k=1,..., Ny;.
Now let f; be the child density of f; and fi the parent den31ty of f,, i.

p(j) = i and p(i) = I, respectively. Then the expectation value Efz.(qﬁwf,)

Z 633 /Z j, can be approximated due to

(10)

Z
¢z]fz — lim Zaz ’Ll¢” (11)

f’L 7,l—)OO

by means of the weighted data set of S;; and W;;; this ratio can be interpreted
as the probability to be in the set A; w.r.t. f;.

Similarly, we can approximate the ratio of normalizing constants solely by
the data points S;; from the bridge density f;;, and the reweighting factors W;J

and WZJ corresponding to the densities f; and f;, respectively:

Nij

Z¢jifj — lim k=1 ]Z]fg( )/f;](:v?)

Z
k
R o N; » i7
Zofi Mmoo 05 o fi(a) ) fij ()

For finite IV;; one needs a reliable sampling as described in Section 5.1 to obtain
a satisfactory approximation.

With (11) and (12) an irreducible approximation C of C is given, of which we
can directly compute its unique invariant distribution 7. In general the matrix
C will not be exactly reversible, but it converges to the reversible matrix C
for N;; — oo for all 4,j which come into question. In case 7 shows up to be
complex—a case that never occurred until now while testing—one could use
the real part of 7 and additionally verify the quality of the approximation.

. (12)
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From 7 we compute the reweighted components

T
nl:% forl:m,...,N (13)

Zk:m Tk
for the densities fm, cee AN which are a decomposition of the original density

f-
With (13) and the corresponding data sets S;; and weighting factors ij
we finally can replace the estimator given in (3) for computing E(g) by

N Nipi o o
EIfVA (9) = Z ” Z g (xzp(z)> a;cp(z) : (14)
i=m k=1

where A is the index set over all pairs (i, p(i)) of bridge densities in question.
Actually, this is a discrete counterpart of equation (8).

6 Example: The n-pentane molecule

Biomolecules are an important application class of MCMC methods in statisti-
cal physics. There exists a wide range of MCMC algorithms, which are trying
to tackle the problems and challenges of biomolecular systems [1]. Biomolecules
are well suited for the UCMC approach, because they possess in general only a
small number of conformations, i.e., the most metastable 3-dimensional struc-
tures of a molecule, which can be thought of as almost invariant sets for a
suitable Markov operator. Herein, we will test UCMC with the n-pentane
molecule, which is a well-known test system for various MCMC algorithms [20].
It is represented by a separated Hamiltonian H(p,q) = T (p) + V(q), where the
kinetic energy 7 (p) depends only on the momenta p and the potential energy
V(q) only on the coordinates q. The United-Atoms representation of RYCK-
AERT and BELLEMANS [25] is used to set up the Hamiltonian. Although the
potential V is 15-dimensional, the overall structure and dynamic of n-pentane
is mainly determined by its two torsion angles (see Fig. 3).

Our goal is to sample from the canonical density restricted to the potential
V, therefore the coordinate space {2 is the state space in the Monte Carlo setting.
We have

flg) =

ZlAexp[—ﬁV(a:)] with (= kBLT and Z; = /exp[—ﬁV(x)] dz,

where kp is Boltzmann’s constant and T the temperature of the system. An
embedding of f in a hierarchy of densities is given directly by the inverse tem-
perature parameter 3 (cf. Fig. 4).

For the MCMC sampling we use hybrid Monte Carlo (HMC) [2, 7], which
became a widely used method over the last decade for computing expectation
values (mainly thermodynamic observables) in molecular systems [1]. In HMC,
a proposal 7’ from the actual state z is obtained by generating random momenta
p proportional to the canonical distribution of 7 and integrating the system
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Figure 3: Left: United-Atom model due to [25] of the n-pentane molecule

CH; — CH; — CHy; — CH, — CH3 with its two essential degrees of freedom, the

torsion angles w1 and ws. Right: The potential part Vo of a torsion angle. Each

Vior possesses three clearly distinct energy minima.
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Figure 4: Invariant densities of n-pentane from long simulation runs at T =
200 K (left) and T = 600 K (right). Note that due to the projection on the
torsion angles, it still can be the case that the overlap between the two densities
is small. The form of the invariant densities are in good accordance with the
torsion angle potential (cf. Fig. 3); the asymmetry in the four corners of the plot
results from the influence of a Lennard-Jones term in V.
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Ty =600K | Th =400K [ T3 =200K | T, = 100K

A1 1.000 1.000 1.000 1.000
Ao 0.924 0.972 0.999 0.331
A3 0.887 0.960 0.998 0.124
A 0.878 0.957 0.997 —0.011
A5 0.854 0.938 0.996 0
X6 0.782 0.882 0.991 0
A7 0.760 0.876 0.985 0
g 0.494 0.545 0.307 0
Ao 0.310 0.502 0.151 0
HMC steps 10* 3 x 10* 8 x 10* 2 x 10°

Table 1: Eigenvalues of the HMC operator in dependence of the temperature.
The lengths of the simulation runs result in roughly the same convergence es-
timate; except at 100 K, where the simulation run suffers from critical slowing
down.

through the enhanced space—state space plus momenta space—by computing
a short term trajectory (z’,p') = (¥7)"(z,p) with a discrete flow ¥7 with time
step 7 from the canonical equations ¢ = 0H/0p, p = —0H /Jq (for details, see
[2]). Because HMC makes use of the canonical equations, i.e. the “physical”
dynamics corresponding to the Hamiltonian 7, almost invariant sets of the
HMC transfer operator are reflecting conformations of the molecule. For further
connections between these two concepts we refer the reader to the work of
SCHUTTE ET AL. [27].

For the bridge sampling method between two adjacent temperatures we
use adaptive temperature HMC (ATHMC) [10], an enhancement of HMC. In
ATHMC first a bridge density is generated and then sampled in the same man-
ner as in HMC by adapting the temperature for the proposal step according to
the actual potential energy. ATHMC allows to sample from an energy range,
which is just broad enough to encompass the two adjacent state space densities.

For comparison with the UCMC algorithm, let us first perform some stan-
dard HMC runs at different temperatures and compute the eigenvalues of the
corresponding HMC Markov transition operators by a discretization of the state
space. We choose a 6 x 6 Galerkin discretization in the two torsion angles
(see Table 1). One can clearly see, how a well-separated eigenvalue cluster is
moving towards A\; = 1 by decreasing the temperature from 600 K to 200 K;
simultaneously the sampling length increases, because the mixing rates for the
corresponding Markov chains decreases drastically. At T' = 100 K we are no
longer able to sample from the canonical density due to a critical slowing down;
the sampling even did not leave the initial almost invariant set during the sim-
ulation run.

While at 7" = 600 K the second eigenvalue Ao = 0.924 indicates that the
corresponding Markov chain is rapidly mixing, at 7" = 400 K the subsequent
eigenvalues of A\; = 1 are approaching 1, so we choose the HMC simulation run
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p = 0.96095 p = 0.95909 p = 0.96657 p = 0.96124 p = 0.96072

4 4 4 4#4

Figure 5: Initial clustering after the first simulation run in A; =  at 400 K
into 5 almost invariant sets As,..., Ag. Each torsion angle is uniformly dis-
cretized into 6 boxes. The number above each almost invariant set A indicates
the probability p = w(Ag, Ak, P1) to stay within these sets. Remember, that
for n-pentane the densities are defined on the 15-dimensional state space, and
we only visualize the almost invariant sets via projections into the two essential
degrees of freedom. Exemplarily, we take a closer look at the set A4 in Fig. 6.

0.25
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o1

energy distribution
o
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V [kd/mol]

Figure 6: Energy distributions from the simulation run in the set A4 (the
third set from Fig. 5). The energy distribution from the bridge density fia (—)
encompasses satisfactorily the two reweighted energy distributions fi (---) and
fa (- —+), respectively. We can see from this simulation run, that the reweighted
densities have a small overlap, in spite of f4 is hierarchically embedded in f; by
the annealing procedure. As to be expected, fs4 is more concentrated in lower
energy regions, which can result in a shrinkage of the almost invariant sets during
annealing on these low energy regions.
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set A2 A3 A4 A5 A6
Ao 0.968 | 0.539 | 0.972 | 0.342 | 0.849
A3 0.234 [ 0.159 | 0.749 | 0.134 | 0.196
# steps | 10* | 5000 | 10* | 5000 | 5000

Table 2: Eigenvalues A2 and A3 of the 5 bridge sampling densities fi,2,..., fi,6.
While A3, As and Ag are rapidly mixing, the 2nd eigenvalue of A and A4 indi-
cate that the corresponding Markov chains are slowly mixing; a further decom-
position of these two sets is recommendable.

p = 0.98869 p = 0.95973 p = 0.98975 p = 0.96345 p = 0.98848
pnniannkmmians K1 0
4 4 4 4 4 |
2] . N 2. 2 2 2
2 4 6 2 4 6 2 4 6 2 4 6 2 4 6

p = 0.99466 p = 0.98733
e[ [ [ T1 6L |
al ] | a
2 1 2

[ ] L]
2 4 6 2 4 6

Figure 7: The bridge sampling runs of the 2nd level between 400 K and 200 K
leads to a further subdivision of the sets A> and A4 to a total of 7 almost
invariant sets, namely A7,..., A13. To take into account the rejections from
proposals outside of the set Ay, p denotes here the probability w(Ax, Ag, P,x)r)
minus the percentage of proposals outside of Ay.

at T' =400 K from Table 1 as the initial run for UCMC. Our aim is to compute
expectation values at 7' = 100 K. From an initial clustering into 5 almost
invariant sets (see Fig. 5)—by interpreting the distance between A5 = 0.938
and )¢ = 0.882 as some spectral gap—we generate bridge densities between
400 K and 200 K in these 5 sets. The eigenvalues of these bridge sampling runs
are given in Table 2; we may interpret in the sets A3 and A4 the neglected
eigenvalues A\g = 0.882 and A7 = 0.876 from T = 400 K, which increased to
A = 0.968 and A = 0.972. Due to these eigenvalues samplings within these
two sets need the double length of 10* ATHMC steps to fulfill the convergence
criterium. In addition, the energy distributions for the bridge density and its
reweighted densities are given in Fig. 6.

At this stage, we already can make a comparison between the direct HMC
sampling at 200 K from Table 1 and an analysis of the bridge sampling densities
by setting up an coupling matrix C € Matgyg on the sets Ay, ..., Ag and
compute its stationary distribution .
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set Ay Ag Ag Aqp A A A1z
A9 0.118 0.111 0.113 0.157 0.133 | 0.306 | 0.133
# steps | 5000 5000 5000 5000 5000 5000 5000

| & ]0.0207 [3.18 x 107° | 0.0193 | 2.83 x 10~° | 0.0199 | 0.9187 | 0.0213 |

Table 3: The bridge sampling densities fz.7, f2,8, f3.9, f1,10, fa,11, f5,12 and fe 13
between 200 K and 100 K all yield rapidly mixing Markov chains in the sets
A7, ..., Ais, respectively.

Due to the high-dimensionality of €2, there are no analytical results available
to verify our results, but we can compare the probabilities to stay in symmetric
conformations. From the Hamiltonian we know that the analytic values of the
probabilities to be within each part of a 3 x 3 discretization of the torsion angles
have the following symmetric entries:

d b c
S = b a b
c b d

Reweighting the data from the UCMC output and computing approxima-
tions of S according to the estimator (14) yields

9.29 x 107% 0.0856 0.0017
SEOc = 0.0872  0.6712  0.0732 ,
0.0016 0.0794 1.02 x 107°

which is similar to a direct HMC sampling with 5 x 105 steps that results in

6.00 x 107% 0.0846 0.0024
S0 = 0.1064  0.6005 0.0941
0.0034 01105 0

Now, let us proceed the UCMC sampling with a decomposition of the sets
As and Ay, which yields a total of 7 sets (see Fig. 7). A bridge sampling between
200 K and 100 K results in a fast convergence for each of the sets Az,..., A3
(see Table 3).

Again, we can set up a coupling matrix C € Mati3x13 and compute the
stationary distribution 7 for extracting n as given in (13). At 100 K a direct
sampling suffers from critical slowing down (cf. Table 1), in contrast the symme-
try of S is still reflected from the reweighted data sets of the UCMC simulation
at 100 K:

0 0.0199 2.83 x 107
S = 0.0213  0.9187  0.0193
3.18 x 1075 0.0207 0

20



Moreover, our insight into the simple Hamiltonian of n-pentane allows us to
sample on the entire state space from a fine tuned bridge density between the
canonical density at 7' = 100 K and a modified density—where the crucial
torsion angle potential Vi, is faded out—which yields a good sampling in the
T = 100 K region. From such a Scaled Potential Monte Carlo (SPMC) simula-
tion with 2.5 x 10> HMC steps we get the corresponding reweighted probability
matrix
745 x 107 0.0241 1.93 x 107°
S0 e = 0.0253  0.9053 0.0239 :

2.19 x 1075 0.0214 1.07 x 10710

which can also be used as an estimation for the analytic values. Therefore,
S%JO(S)MC seems to reproduce the correct probabilities. Note, that in S%J%)MC the
entries s13 and s37 are exactly 0, because these parts of the state space vanished
during the hierarchical annealing due to their almost zero weights.
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