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Abstract—We propose a new Robust Optimization method
for the energy offering problem of a price-taker generating
company that wants to build offering curves for its generation
units, in order to maximize its profit while taking into account
the uncertainty of market price. Our investigations have been
motivated by a critique to another Robust Optimization method
proposed in [1], which entails the solution of a sequence of robust
optimization problems imposing full protection and defined over
a sequence of nested subintervals of market prices: this method
presents a number of issues that may severely limit its application
and computational efficiency in practice and that may expose
a company to the risk of presenting offering curves resulting
into suboptimal or even infeasible accepted offers. To tackle all
such issues, our method provides for solving one single robust
counterpart, considering an intermediate level of protection
between null and full protection, and to make energy offers at
zero price, practically eliminating the risk of non-acceptance.
Computational results on instances provided by our industrial
partners show that our new method is able to grant a great
improvement in profit.

Keywords—Energy Offering, Price-taker, Robust Optimization,
Mixed Integer Quadratic Programming.

I. INTRODUCTION

E consider the decision problem of a price-taker gener-

ating company that operates in a competitive electricity
market and wants to select energy offering strategies for its
(few) units, in order to maximize the profit while taking
into account market price uncertainty. For an introduction to
offering in competitive electricity markets, we refer the reader
to [11] and [18].

A major challenge in energy offering is represented by
tackling uncertainty of market prices: hourly prices forming in
the market are not known in advance to companies, which must
therefore take offering decisions making some assumption
about future price realizations. Considering price uncertainty in
mathematical optimization models is essential and neglecting

it may have very negative consequences and lead to bad
offering decisions and losses. Since the seminal work [10],
which analyzes the mathematical consequences of passing
from regulated to competitive markets, several approaches have
thus been developed for addressing price uncertainty. We refer
the reader to the surveys [20] and [22] for a thorough review
of related works.

Our main reference for the present work is represented by
a Robust Optimization method for energy offering introduced
by Baringo and Conejo in [1]. In the remainder of the paper,
we will denote such method by Bar-Con. Bar-Con constitutes
a recent and relevant reference in literature that builds offering
curves by solving a sequence of (robust) mixed integer linear
programming problems, defined on the basis of a sequence
of nested subintervals of market prices. The robust problems
follows the well-established I'-Robustness model introduced
by Bertsimas and Sim [5]. However, Bar-Con suffers from a
number of issues that severely limits its application in practice
and exposes a company to the risk of building curves that
may result in infeasible and suboptimal accepted offers (see
Section III for our detailed review). Though Bar-Con has been
widely cited in other works, we stress that, to the best of
our knowledge, so far no work available in literature has ever
pointed out these issues and tried to overcome them.
In this paper, our main original contributions are the following:

1) we review the Robust Optimization method proposed
by Baringo and Conejo in [1] highlighting its limits.
Specifically, we highlight that:

e since Bar-Con imposes full protection against
price deviations, the computation of robust op-
timal solutions does not require to solve robust
counterparts including additional variables and
constraints as specified by I'-Robustness [5]. We
show that the optimal robust solutions correspond-
ing with full protection can be simply obtained
by solving the original problem with modified



price coefficients in the objective function. This
simple observation allows to greatly improve the
computational efficiency of the method;

e offering curves built according to Bar-Con
may imply the acceptance of infeasible and
suboptimal offers (e.g., accepted offers may
violate ramp limits of the generation units, thus
being not implementable in practice). This is
a consequence of building offering curves by
merging robust optimal solutions obtained for
distinct assumptions about price realizations,
as we detail in Subsection III-E. Moreover, the
method concretely exposes the producer to the
risk that offers are not accepted;

2) we propose a revised method for energy offering under
price-uncertainty through Robust Optimization. Our
original approach is able to overcome the limits of
Bar-Con and is more computational efficient since
it provides for the solution of only one I'-robust
counterpart, based on hourly reference price and price
deviations derived from historical data. Our method is
more in line with the spirit of I'-robustness, reducing
the price of robustness by not dealing with extreme
conservatism, but addressing intermediate and more
rational cases. A distinctive feature of our approach is
to make all selling offers at zero price, following the
spirit of a pure price-taker that wants to minimize the
probability of non-acceptance. Indeed, in current years
the growth in zero marginal cost renewable sources has
somehow changed the price shape during the hours in
day-ahead market. This leads to the risk that in some
hours the price falls below the marginal cost of classic
fossil fueled power plants, such as Combined Cycle
Gas Turbine (CCGT). This risk is however managed
by means of the robust approach proposed;

3) we prove the effectiveness of our revised method on
realistic problem instances, considering fossil fueled
power plants and referring to price data from the Italian
day ahead energy market. Computational tests show
that our approach can greatly improve the total profit
of the price-taker by considering intermediate level of
protection (in-between null and full protection).

We developed a new method based on Robust Optimization
(RO) to exploit the advantages of RO over more traditional
optimization under uncertainty approaches, like Stochastic
Programming (see [3] and [4] for a thorough discussions).
Computational tractability is in particular a major advantage
of RO, deriving from taking into account data uncertainty
in a deterministic way, which allows to tackle the so-called
“curse of dimensionality”, typical of approaches like Stochastic
Programming. Such advantages contributed to the wide success
of RO in many application fields, including power system
optimization, over the last decade (see [22] for an overview).

Besides RO, several other approaches have been proposed
over time for tackling price uncertainty in energy offering.

Here, we recall just a few main ones, referring the reader
to [20] for a recent exhaustive survey. In [8] and [23], the
price uncertainty is considered in the guise of an objec-
tive function that combines the two conflicting objectives of
maximizing profit and minimizing risk through risk tolerance
parameters. To reduce the influence of the risk parameters,
whose setting may result tricky, [17] proposes to measure
risk through conditional value-at-risk. Other works propose
to use forecasting techniques to estimate the uncertain prices
in the objective function (e.g., [7]). Finally, another distinct
body of literature relies on defining sets of price scenarios and
following Stochastic Programming approaches (e.g., [12], [16],
[19]).

The paper is organized as follows: in Section II, we introduce
the energy offering problem and present an optimization model
for it. In Section III, we review the Bar-Con method, pointing
out its limits. In Section IV, we introduce our revised method
based on RO. Finally, in Section V, we present computational
results for realistic instances.

II. THE ENERGY OFFERING PROBLEM

We focus our attention on a generation company that wants
to maximize its profit by choosing the output of its generation
units in each hour. We assume that the company is a price-
taker, i.e. it is not able to influence the market price by
its generation decisions. An important consequence of this
assumption is that the multi-unit decision problem can be
decomposed into multiple single-unit problems, as noted in [1].
In a more formal way, we can state the single-unit decision
problem as follows:

Definition 1 (Energy Offering Problem - EOP): Given a
planning horizon including multiple time periods, the market
price in each period and a single generation unit characterized
by a set of technical constraints and a generation cost, the
Energy Offering Problem (EOP) consists in establishing the
energy to produce and offer in the market for the unit in each
period, in order to maximize the total profit over the time
horizon, while satisfying the technical constraints.

The EOP is an optimization problem that can be represented
through the following Mixed-Integer Linear Program that we
denote by EOP-MILP

max Y Aepr — i(pr)

teT
peP,

(EOP-MILP)

where:

e T'is the set of time periods - as in [1], we consider hours
in a day, so we have T = {1,2,...,24};

e p=(p1,p2,--. ,p|T|) € RL_T‘ is a non-negative decision
vector, which includes one variable p; > 0 for each
period ¢ € T to represent the energy offered in ¢;

e )\ is the realized market price in period ¢t € T';
ct(py) is the cost of generating p; in period ¢t € T,
possibly including the so called Start Up Costs (SUC);

e P is the feasible set of solutions of the problem, includ-
ing energy vectors p that satisfy the technical constraints



of the unit, namely minimum and maximum generation
output, ramp limits and minimum up and down time. We
provide a complete description of P in Appendix A.

In the next section, we discuss how to consider the uncertainty
of market price in the EOP and we detail a revised and refined
robust optimization method that overcomes the limits of the
Bar-Con.

III. A REVIEW OF THE BARINGO-CONEJO ROBUST
OFFERING APPROACH

In this section, we review the Bar-Con robust optimization-
based method and we point out how its computational effi-
ciency can be improved by reducing the size of the robust
counterpart. Furthermore, we illustrate how offering curves
built according to Bar-Con can lead to suboptimal and even
infeasible accepted offers. As first step, we review basic
concepts from Robust Optimization and I'-Robsutness.

A. A concise introduction to Robust Optimization

Until this section, we have considered a deterministic ver-
sion of the EOP where we have assumed that the market
prices Ay, Vt € T are exactly known when the problem is
solved. However, this assumption does not hold in practice: in
competitive energy markets, the hourly prices result from the
combination of demands and offers whose precise values are
not known in advance. The prices \; are thus uncertain, i.e.
their values are not deterministically known when the EOP
is solved, and the price-taker commonly possesses just an
estimate of them (e.g., an average value derived from historical
market price data, or some other form of prediction).

The presence of uncertain data in the EOP is very tricky:
the price-taker could solve the EOP-MILP referring to the
estimates of hourly prices, thus getting solutions that are
optimal with respect to such estimates; however, the estimates
will be in general (sensibly) different from the actual prices
occurring in the market, so that supposedly optimal solutions
may reveal to be heavily sub-optimal. This fact can be clarified
by a simple consideration: if we solve the EOP-MILP using
estimates of values )\; lower than the actual market prices,
then we generate less energy than it would be ideal with the
real prices, obtaining a lower profit. On the other hand, if
we overestimate the actual market prices, we could turn on
generation units and generate energy when it is not convenient
to do so, facing overproduction and losses.

More in general, the presence of data uncertainty is a source
of issues in any optimization problem and neglecting it is well
known to have very bad consequences: as we have exemplified
above, solutions supposed to be optimal may turn out to be
heavily suboptimal and, even worse, solutions supposed to be
feasible may instead reveal to violate feasibility constraints,
thus resulting in decisions that cannot be implemented in
practice. For an exhaustive introduction to the issues arising
in optimization under data uncertainty, we refer the reader to
the book [3].

In the last decade, RO has known a wide success as a
modern methodology to manage data uncertainty in opti-
mization problems, thanks especially to its accessibility and

computational tractability. We refer the reader to [3] and [4]
for an exhaustive introduction to theory and applications of
RO.

RO is essentially based on the following fundaments:

e the actual value of an uncertain coefficient of the prob-
lem is unknown. However, the decision maker is sup-
posed to possess a reasonable reference for the unknown
actual value. This reference is called nominal value and
could be, for example, the expected value of a random
variable. The actual value equals the sum of the nominal
value and of an unknown deviation;

e the decision maker defines an uncertainty set. This set
characterizes the deviations of coefficients w.r.t. their
nominal values against which the decision maker wants
to be protected;

e the decision maker derives and solves a robust coun-
terpart of its problem: this is a modified version of
the original optimization problem that only considers
robust feasible solutions, i.e. feasible solutions that are
protected against all the deviations of the uncertainty set.
An optimal robust solution is a feasible solution granting
the best objective value under the worst data deviations;

e protection against deviations comes at a cost: the so-
called price of robustness [5]. This is a deterioration in
the optimal value of a problem that the decision maker
must face in order to ensure protection. Uncertainty sets
granting higher protection entail in general a higher price
of robustness.

Over the years, many models have been proposed to represent
uncertainty sets in RO (see [4] for an overview). Among
them, one of the most successful has been the I'-Robustness
model (I'-Rob) proposed by Bertsimas and Sim [5], which
has been also adopted in Bar-Con. We thoroughly review the
adaption of I'-Rob in Bar-Con in the next subsection. Here,
we just recall the essence of this classical and widely used
robust optimization model. Given an uncertain constraint of
the problem including n uncertain coefficients of which we
know the nominal value and the maximum deviation w.r.t.
the nominal value, I'-Rob provides for an elegant theory to
define a robust counterpart for an uncertainty set imposing full
protection against at most 0 < I' < n coefficients deviating
from their nominal value. The I"-Rob counterpart has the desir-
able properties of entailing a “contained” (more formally, the
counterpart is compact) increase in the number of constraints
and variables of the problems and of maintaining the features
of the original problem (e.g., an uncertain mixed integer linear
program has a mixed integer linear I'-Rob counterpart). The
parameter I' controls the robustness: for I' = 0 no protection
is imposed and no price of robustness occurs; for increasing
I, the protection and the price of robustness increase, until
for I' = n the highest protection is reached. This informal
description is detailed in the next paragraph with reference to
the EOP.

B. The Robust Optimization approach by Baringo and Conejo

In this section, we provide a description of the main features
of the Bar-Con, which are relevant to highlight its limits and



derive our improved method. For a full description of the
method, we refer the reader to its paper [1]. The Bar-Con
assumes that in every hour ¢ € T the actual market price
A¢ lies in a known range, i.e. A\, € [AMR AM&X] and a-
priori defines an elementary market price shortfall equal to
d (e —)\?‘i“) with 0 < § < 1. Then, it proposes to compute
the hourly offering curves by solving a sequence of 1,..., K
robust counterparts of the original problem and in the generic
k-th robust counterpart:

1) the market price in each hour is supposed to lie in the
interval
a k
[)\?TIX _ dt , )\;nax]

where df = GF(ARa — \min) — (kb — 1)[§(ARax —
A s the maximum price deviation in t at iteration
k. Such deviation causes the overall deviation interval
[Amax _ gk \max] {5 become wider as the iteration k
increases. We stress that [1] just refers to the coefficient
G* and does not use its equivalent form (k — 1)§ that
we adopt here to highlight the role of the iteration
index k in the product;

2) data uncertainty in the problem is modelled through
I'-Robustness and the k-th robust counterpart has the
following form:

max Z (A" pe — cpe)] = Tz — Z gt
teT teT
z4+q zdfyt teT
z>0
q >0 teT
P < Yt teT (D
pt € Py teT.

with T set equal to the number of periods |T'|.

3) offering curves for each period are built merging the
K optimal robust solutions: the optimal robust solution
of the k-th counterpart specifies the generation output
p¥ to be offered at price \*** — dF. For each period
t € T, the merging of prices and generation volumes
for all the iterations £ € K defines a non-decreasing
offering curve.

In the next paragraphs, we review the Bar-Con approach
highlighting its limits, which severely reduce the advantages
of using it in practice. We first show by a few simple obser-
vations that the robust counterpart can be greatly simplified.
Specifically, we show that: i) the variables y;, t € T" and the
constraints (1) are not necessary in the robust counterpart; ii)
the robust counterpart can be just defined as a modified version
of the original problem EOP-MILP and the robust auxiliary
variables ¢, z are actually not necessary. Secondly, we show
that offering curves defined according to the Bar-Con method
may lead to infeasible and suboptimal accepted offers. Last
but not least, we note that this approach provides for building
stepwise offering curves with a high number of steps and
would thus result not adequate for many markets, where the

number of steps that define a curve is bounded (for example,
in the day ahead Italian Energy Market the limit is 4, see [14]).

C. Reducing the size of the robust counterpart

As first step of our review of Bar-Con, we show that the
robust counterpart does not need the auxiliary variables
and the additional constraints linking y; and p;. We show this
referring to the canonical passages used in [5] to get the I'-
robust counterpart of an optimization problem. We first rewrite
the robust version of EOP-MILP at iteration k as:

max Y [A\*p; — ci(pr)] — DEVi(T, p)
teT

pt € B teT,

where the additional term —DEV; (T, p) represent the worst
reduction that the objective function may experience. Such
term is defined for a power vector p, when at most I' hourly
prices deviate from their reference value \; at iteration k. The
value of this worst deviation corresponds to the optimal value
of the following binary program:

DEVi(T',p) = max Y _(dfp) wy

teT

Swsr

teT

’LUtG{O,].} teT.

In this problem, 1) a binary variable w; is equal to 1 if the
price in hour ¢ deviates from its nominal value assuming its
worst value and to O otherwise; 2) the single constraint imposes
an upper bound 0 < T' < |T| on the number of hours whose
prices may deviate; 3) the objective function maximizes the
deviation from the nominal value for a given output p;, t € T.

The robust version of EOP-MILP with DEV (T, p) inside
is non-linear, since it contains the product p; w; of decision
variables. However, this is not a real issue since, as proved in
[5], the non-linear robust counterpart can be actually formu-
lated as a linear and compact robust counterpart.

First, we note that for a fixed vector p;, the value
DEVy(T',p) is equal to the optimal value of its linear re-
laxation:

DEV(L,p) = maxZ(dfpt) w;  (DEV-primal)
teT
Swesr
teT
0<w <1 teT.

We can then define the dual problem of the previous linear
program, i.e.:

min 'z + Z qt (DEV-dual)
teT
z+q > dfpt teT
z>0
q >0 teT.



Since DEV-primal is feasible and bounded, by strong duality
also its dual problem DEV-dual is feasible and bounded and
their optimal values coincide. We can then substitute the term
DEV(T',p) in our original robust counterpart with the dual
problem as follows:

maxz M py — er(pr)] — Tz — Z gt (Rob-EOP)
teT teT
z+q > dipr teT (2
z>0 3)
g >0 teT 4)
p € P teT,

In contrast to the first robust counterpart including the term
DEV (T, p), which hides a maximization problem, this robust
counterpart is linear. Additionally, the increase in size due
to the presence of the additional dualization variables and
constraints (2-4) is “contained”: the formulation is indeed
compact, i.e. its size is polynomial in the size of the input.

We stress that the adopted dualization procedure is nothing
but the standard one associated with I'-Rob and proposed
in [5]. As evident, it does not need the presence of the
auxiliary variables y; and of the constraints p; < y;. The
size of the robust counterpart is thus reduced by eliminating
|T| constraints and |T| decision variables. The elimination of
these variables represents of course an advantage for solving
the problem for any commercial optimization solver.

D. Full robustness as a cost-modified nominal problem

The linear and compact robust counterpart Rob-EOP de-
pends upon the parameter I', which indicates the number of
price coefficients against the deviation of which the decision
maker wants to be protected. In the case of EOP, I' corre-
sponds with daily hours and can range from O to 24. When
I' € {1,...,23}, a robust optimal solution can be obtained
by solving Rob-EOP. When instead I' = 0 or I' = 24, we
are considering extreme cases: if I' = 0, then no hourly price
is assumed to deviate, there is no protection, and we get the
original deterministic problem; in contrast, if I' = 24, then all
the coefficients are assumed to deviate, we get full protection,
and we do not need to solve Rob-EOP. Here, we stress that it
is indeed just sufficient to consider the following problem:

maxz (A — df) — ci(pt) (Worst-EOP)
teT

pt € B teT,

that is a version of EOP that considers the worst price \;"** —
d¥ that may occur at iteration k in every hour. Since Bar-Con
imposes I' = 24 in each of the k robust counterparts (see the
algorithm flowchart of Figure 2 in [1]), then the use of the
dualization procedure of I'-Rob can be completely avoided.
The worst-case robust counterpart Worst-EOP thus eliminates
the need for the dualization variables and constraints (2-4),
reducing the size of the counterpart by |T'| + 1 variables and
|T| constraints. This has the effect of improving the efficiency
of the branch-and-cut-based solution process implemented by
commercial optimization solvers.

TABLE 1. HOURLY PRICE CONFIGURATIONS

Configuration A1 A2 A3

Cl 54 55 6l
Cc2 53 54 60
C3 53 53 59

TABLE II. ROBUST OPTIMAL OUTPUT AND PROFIT FOR EACH PRICE

CONFIGURATION

Configuration  p; P2 ps  Total profit

Cl 160 215 270 1498
C2 0 160 215 1020
C3 0 0 160 672

E. Risk of building offering curves leading to infeasible and
suboptimal offers

The offering curves built according to Bar-Con are obtained
merging K > 0 robust optimal solutions obtained for K
distinct configurations of the prices over the 24-hour horizon,
as we explained in Section III-B.

The act of merging optimal solution concretely exposes the
generating company to the risk of building offering curves that
may result into infeasible and suboptimal accepted offers. We
illustrate this fact by a simple realistic example, defined with
our industrial partners.

Example 1. We consider the status and the output of a
generation unit in a time interval made up of 3 consecutive
hours that we conventionally denote by indices ¢ = 1,2,3,
assuming that in an initial reference hour ¢ = 0 the unit is
off and the output is null (i.e., pg = 0). The generation unit
has a minimum power output of 160 MW and a capacity of
440 MW with a startup ramp limit of 160 MW/h and ramp-
up limit of 55 MW/h. The production cost is expressed by a
quadratic function of the power output that ranges from a a
value of 8768 EUR for the minimum output of 160 MW to
25848 EUR for the maximum output of 440 MW. Referring
to real prices of the Italian energy market, we assume that
the maximum price observed in the 3 hours are A"** = 54,
A% = 55, A\§'** = 61 (in EUR/MWh). These prices define
a market price configuration that we denote by C1. Following
the approach Bar-Con, from C1 we can define two other price
configurations C2 and C3, by reducing the prices of C1 by 1
and 2 EUR respectively (see Table I)

We then solve the robust counterpart Worst-EOP corre-
sponding with full protection I' = 24, obtaining the robust
optimal outputs shown in Table II. While for the maximum
price configuration C1, the optimal choice is to ramp up to the
maximum in each period, when the prices decrease it is instead
optimal to keep turned off the unit for an increasing number
of hours: for C2, the unit is kept off in hour 1, whereas for C3
it is kept off in hours 1 and 2. Following Bar-Con, the robust
optimal solution leads to the definition of the hourly offering
curves shown in Table III, where each curve is actually a 3-step
function with each step associated with a pair (price, offered
output).



TABLE 1IL. HOURLY OFFERING CURVES
t Step 1 Step 2 Step 3
1 (0, 52) (0, 53) (160, 54)
2 (0, 53) (160, 54) (215, 55)
3 (160, 59) (215, 60) (270, 61)

Since the price-taker specifies the minimum selling price for
a given quantity, it may happen that offering curves will not
be (entirely) accepted, thus leading to generation plans that
violate the ramp constraints over consecutive hours. Referring
to Table III, this happens, for example, if the actual price
occurring in the three hours are 52, 53 and 61, respectively: in
this case, in hour t=1 and t=2 the market operator “accepts”
the O quantity offers of the price-taker, while in hour t=3 it
accepts the offer equal to 270 MWh. Since the unit of the
price taker cannot ramp from O to 270 in 1 hour, the offering
is evidently infeasible in practice.

Another issue with Bar-Con is represented by the risk of
suboptimality of offering. This issue again derives from the
fact that Bar-Con provides for specifying a minimum price
that is requested to sell a specific output. To illustrate the risk
of suboptimality, we suppose that the actual prices occurring
in the three hours are 54, 53, and 59: the accepted offers of
the price-taker are in this case (160, 0, 160). This solution is
feasible w.r.t. the ramp constraints. However, it is associated
with a total profit of 544 EUR, that is sensibly lower than
the optimal profit of 672 EUR that would be obtained for
the optimal production equal to (0, 0, 160). In this case, the
suboptimality derives from turning on the unit in £ = 1, action
that would not be done in an optimal solution.

IV. A REVISED I'-ROBUSTNESS APPROACH FOR ENERGY
OFFERING

In this section, we illustrate our new method for energy
offering, which tackles the drawbacks of Bar-Con that we
have highlighted previously. Our method presents three main
advantages:

1) it properly manages the risk of defining offers that are
not accepted in the market;

2) it tackles the issue of defining offering curves that result
into infeasible and suboptimal accepted offers;

3) it is in line with the spirit of Robust Optimization and
I'-Robustness, according to which full protection (i.e.,
I' = 24 as in Bar-Con) should be avoided (see [3], [4]);
computationally, our method indicates that intermediate
protection (i.e., 0 < I" < 24) guarantees higher profits.

To achieve this, we propose three strategies unified in a new
robust optimization method that radically differs from Bar-
Con:

1) all our offers are made at zero price (i.e., we do not
require a minimum positive price for selling energy),
so that the offers will be always less or equal than
the market clearing price (under the assumption that
we operate in an energy market where negative prices
are not allowed and the lowest feasible price is O -

such as in the Italian Energy Market [14]). The risk
of non acceptance bidding at zero price thus becomes
negligible;

2) we compute a single I'-robust optimal solution referring
to one single price configuration derived from historical
data. So we avoid the infeasibility and suboptimality
issues associated with merging distinct robust optimal
solutions obtained for multiple price configurations;

3) we define the single robust optimal solution by solving
the robust counterpart with I' such that 0 < I' < 24,
so to avoid the excessive conservatism associated with
full protection.

The robust counterpart that we adopt differs from that of
Bar-Con concerning the nominal prices and the worst price
deviations used in it, which we define by using realizations
of the price occurred in the market in previous days. To this
end, we suppose that for each ¢ € T we have a number
I > 0 of observed past realizations of the price \i with

t=1,...,1. Without loss of generality, we assume that these
values are sorted in non-decreasing order, i.e. A} < )\i“ for
t = 1,...,1 — 1. The assumption of possessing past price

realizations is fully realistic, since hourly prices are typically
promptly disclosed by the market operator. Using these past
realizations, we define:
e the nominal price \N°M for each t € T as the average
value of past observations in ¢, namely:

I

1 § 7

)\It\IOM — )\?VG — T >\t
i=1

o the worst deviation d; used in each t € T as the

difference
dy = N/ T \NO

where A/ ! is the smallest price observation obtained
after excluding the 0 < J < I smallest observations
(since we have assumed that observations are sorted in
non-decreasing order, this means that we are excluding
observations ! with i = 1,...,.J and the worst “signi-
ficative” observation is then )\{ .

We note that any other predictive procedure to obtain nominal
prices and deviation can be considered in our framework as a
plug-in strategy. For instance, one could use a Machine Learn-
ing approach or a simulation model. We note that this choice
of the nominal value has been inspired by a practice that we
have observed among power systems professionals: offering
decisions are taken considering the average price for each hour
in a previous time horizon. Also, the choice of excluding a
number of the worst price realizations, commonly referred to
as trimming, is widely use in practice for the management of



outliers in distributions, and has been suggested and validated
by our industrial partners.
Our reference robust counterpart then becomes:

maXZ [)\?VGpt — ¢ (pt)} —TI'z— Z g (MOD-Rob-EOP)

teT teT

Z24q > (AT ANG) py teT
z>0

g >0 teT
pt € B teT,

which is the canonical I'-Robustness counterpart that we have
derived in Section III-B, except for the setting of the nominal
price and the worst price deviation.

Our new method provides for solving a single time the
robust counterpart MOD-Rob-EOP, by making one single
assumption about the price configuration. The obtained robust
optimal solution is then used for establishing our offering in
the market as we detail in Algorithm 1.

Algorithm 1 I'-OFFERING

Require: Past hourly price realizations ALVio=1,...,1,
vVt € T'; number J of smallest price realizations to exclude;
protection parameter I' : 0 < T' < 24

Ensure: Hourly power quantities p; to be offered at zero price

1: Compute the average hourly prices AAVC V¢ € T, using
observations \¢ with i = J +1,...,1
2: Solve the robust counterpart MOD-Rob-EOP for I" using:
e VG as nominal value V¢ € T
e the difference A/ 1 —A\AVC as worst deviation Vt € T
3: Let p* be a robust optimal output vector for MOD-Rob-
EOP, then p; is the quantity to be offered in the market
at zero pricein each period t € T’

A critical difference of our new method formalized through
the algorithm I'-Offering is that we solve one single I'-robust
counterpart defined for one single assumption on prices. This
is in contrast to Bar-Con where a large number of I'-robust
counterparts is provided to be solved (in the experimental
section of [1], the number of solved counterparts is k = 100).

As we show in the following section, the solution of the
robust counterpart can be made almost instantaneously, thus
making our new method fully suitable for being used in the
daily offering decision processe of a price-taker company.

V. COMPUTATIONAL RESULTS

We assessed the performance of our new method for robust
energy offering by considering a set of 45 instances provided
by our industrial partners. The 45 instances are based on 15
generation units of different size and features located in three
distinct price zones of Italy. The capacity of the units ranges
from about 100 to 1250 MW. The price coefficients used in
the robust counterparts are derived from real prices occurred
in the Italian day-ahead Market (Mercato del Giorno Prima
(MGP) [14]) from January 1st to December 31st 2014.

Our computational tests have one major objective: showing
that the solution of a robust counterpart imposing a (small)
intermediate level of protection can grant a dramatic improve-
ment in profit with respect to the robust counterparts imposing
null and full protection (i.e., the strategy that we have observed
among professionals and the strategy protecting against the
worst price deviation in each hour, resembling the protection
imposed by Bar-Con). We stress that in our experiments we
do not use the method Bar-Con as a benchmark, because of
its limits that we have highlighted in Section III-B and that
concretely expose a company to the risk of suboptimal and
infeasible offering.

We performed all the experiments on a 2.70 GHz machine
with 8 GB. The code was written in the C/C++ programming
language and the optimization problems were solved by IBM
ILOG CPLEX 12.5 interfaced with the code through Concert
Technology. We stress that solving MOD-Rob-EOP to optimal-
ity does not constitute at all a challenge for CPLEX: for all
instances and for all the values of I', CPLEX is able to return
an optimal solution within 1 second, making the method fully
suitable for daily energy offering.

For each generation unit and each hour ¢ € T', the average
price AAVC and the worst deviation A; ™' — AAVG are defined
considering 20 realizations of prices occurring in hour ¢ and in
the price zone of the unit, in a time window of 4 consecutive
weeks excluding Saturdays and Sundays. We consider three
percentage of exclusions of the smallest price realizations: 0,
10 and 20%. This leads to respectively exclude the smallest
J = {0,2,4} realizations. Increasing J corresponds with
considering a less risk-adverse price-taker that neglects a
higher number of extreme deviations. Such data are used as
input for defining the robust counterpart for the 4-week time
window, whose optimal robust solution is evaluated in the
week following the 4 weeks of the window (excluding again
Saturday and Sunday), as we explain in the next paragraph.
The overall (4+1)-week time window that we consider is
shifted by 1 week through the entire 2014, from the first week
of January till the last week of November. This gives raise to
24 time windows that we denote by W = {1,2,...,24}.

For each of the 15 units, we solve one robust counterpart
Mod-Rob-EOP for each value of J € {0,2,4}, value of
' € {0,1,...,24} and time window W € {1,2,...,24},
obtaining a robust optimal output p*(J,T', W) (note that here
we highlight the dependency of p* upon the values of J and I'
and the window W). The vector p*(J, ', W) specifies our zero-
price energy offering for the unit in the test week of window
W. We evaluate the performance of each p*(J,I', W) in the
test week of W as follows: in each hour ¢ € T of each day,
p; (J,T', W) is offered giving a total profit over the week that
we denote by 7(J,T", W). We then sum such profit over all the
24 time windows in 2014 getting a total yearly profit equal to
n(J,T) =3y n(J, T, W).

The complete results of our computational tests are pre-
sented in Table IV, where we denote by I'ppsr the value
of T" that grants the highest profit for a given generation unit
and value of J for a window. In the table, ID identifies the
generation unit (we note that the size of the units increases
as the ID increases) and %Ex is the percentage of price



realizations that are excluded from the input data of the
instance. The following four columns Aw, A7% for I'ggsr
wrt. Ty and Am, An% for I'gpsr w.rt. T'oy report the
absolute (in euros) and the percentage increase that the robust
optimal solution obtained for I'pggr grants with respect to
I' =0 and T" = 24, respectively.

We stress that for all instances, I'ggsr assumes a small
value between 1 and 4 and never coincides with 0 (i.e., no
protection) and 24 (i.e., full protection). This has a profound
impact when comparing the profit of I'gggr to that of I'yy
(reported in the Sth and 6th column of Table IV): setting
I' = 24 and thus imposing protection against the worst
price deviation in each hour leads to extremely conservative
solutions that dramatically decrease the profit obtainable by
I'pesr. The reduction in profit happens in all 90 but 3 cases
and ranges from about 100.000 to even more than 10 millions
of euros. The overconservatism is particularly evident when
comparing the best robust profit to that obtained for full
protection (column I'ppgr w.r.t. I'a4): in the case of instances
corresponding to units of higher capacity (i.e, Ull - UlS5),
I'pesr grants an increase in profit that in most cases is of
several millions, reaching a peak of 12 millions for instance
Ul2 and J = 0. This clearly indicates through experiments
a cardinal fact associated with the theory of I'-Robustness:
imposing full protection and thus setting I' to the highest
possible value should be absolutely avoided since it generally
entails protection against extreme unlikely cases at the cost
of an extremely high price of robustness. In contrast, as we
showed trough the computational results, small values of I" are
able to guarantee protection against price uncertainty, while
ensuring extremely satisfying level of profits.

VI. CONCLUSIONS

We have presented a new Robust Optimization method
for tackling price uncertainty in energy offering for a price-
taker generating company operating in a competitive energy
market. Our investigations have been motivated by a critique
to a Robust Optimization method based on I'-Robustness for
price-uncertain energy offering proposed in [1]: though being
an important reference in literature, this method presents a
number of issues that may severely limit its application in
practice and that concretely expose a company to the risk of
presenting offering curves resulting into suboptimal and even
infeasible accepted offers. To tackle all such issues, we have
proposed an alternative I'-Robust Optimization method that
requires to solve one single robust counterpart, considering
an intermediate level of protection between null and full
protection, and to make energy offers at zero price, practically
eliminating the risk of non-acceptance. Computational results
on a set of instances provided by our industrial partners show
that our new method is able to grant a very high increase
in the profit with respect to solutions obtained by a strategy
that we have observed among professionals and to solutions
obtained by imposing full protection against price deviations.
As a future direction of investigations, we intend to study
the adaption of alternative Robust Optimization models that
grant a better representation of price uncertainty, such as

TABLE IV. COMPUTATIONAL RESULTS
I'sesT wrt. I'g I'sesT wrt. I'as
ID %Ex | An(EUR) An% | An(EUR) A%
0 + 40400 + 5.8 + 213731 +40.5
Ul 10 + 44350 + 6.3 + 183161 + 32.5
20 + 41922 + 6.0 + 152608 +25.8
0 + 23395 + 5.0 + 333543  + 212.1
U2 10 + 46064 +9.9 + 234371 + 84.0
20 + 42072 +9.0 + 218607 + 752
0 - 1383 -0.1 + 1984511 +47.6
U3 10 + 88980 + 1.4 + 1031466 +19.8
20 + 105253 + 1.7 + 627146 + 11.1
0 + 43246 + 6.3 + 255124 + 53.5
U4 10 + 57387 + 8.3 + 181357 + 32.1
20 + 51615 + 7.5 + 148635 + 25.1
0 + 15454 + 3.6 + 340568 + 319.0
Us 10 + 45328 +10.5 + 240506 + 101.6
20 + 45331 +10.5 + 199407 +71.8
0 + 14274 +53 + 2030185 +44.9
U6 10 + 91766 + 10.6 + 1117143 +20.2
20 + 152707 + 11.8 + 675172 +11.2
0 + 307691 + 5.7 + 1312795 + 30.1
u7 10 + 268509 +5.0 + 909989 +19.3
20 + 195207 + 3.6 + 792081 + 16.6
0 + 465184 + 12.6 + 1295788 +454
U8 10 + 492569 + 134 + 1052153 + 33.7
20 + 387576  + 10.5 + 888434 +27.9
0 - 179097 -0.5 + 8606256 + 35.5
U9 10 + 249549 + 0.8 + 4586552 + 16.0
20 + 253872 + 0.8 + 3008977 +99
0 + 579613  + 11.7 + 1711145 +44.8
Ul10 10 + 662118 + 134 + 870430 +18.3
20 + 502539 + 10.1 + 594417 +12.2
0 + 612087 + 19.6 + 2471071  + 196.0
Ull 10 + 465015 + 14.9 + 1270815 + 54.9
20 + 534280 +17.1 + 788373 +27.5
0 + 23936 + 0.1 | + 12397480 + 494
Ul2 10 + 409220 + 1.1 + 4751122 + 14.3
20 + 438452 +1.2 + 3506378 +10.2
0 + 111222 + 0.3 + 8244776 + 33.6
Ul13 10 + 421917 +1.3 + 4577802 + 16.0
20 + 479953 + 1.5 + 1809060 +5.8
0 + 231532 + 6.1 + 2103904 + 111.0
Ul4 10 + 391966 + 104 + 1184917 + 39.8
20 + 485693 + 12.9 + 494986 + 13.2
0 - 76685 -0.2 | + 11622839 +49.5
Ul5 10 + 524424 +1.5 + 5459972 + 18.1
20 + 442970 +1.3 + 3175312 +9.8

Multiband Robustness, a refinement and generalization of I'-
Robustness that exploits histogram-like uncertainty sets (see
e.g., [6], [2]). A better modeling of the uncertain price data
would lead indeed to further reduction in the conservatism of
robust solutions, and thus increases in the profit, while not
reducing protection against price deviations.
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APPENDIX A
REFERENCE FORMULATION

The set of feasible power solutions II is described by the
mixed-integer linear program introduced below, using the
following set of constants and variables characterizing the
considered single generation unit.

Constants:

e )\, market price in period ¢t € T}

e a,b > 0 coefficients of the quadratic and linear term of
the quadratic function expressing generation cost;

e ¢! fixed cost of generation in one single period;

° cf U startup cost after 7 consecutive periods of turned-off
status;

e pPmin pmax minimum and maximum power output;
e R, R ramp-up and ramp-down limits;
e RSY RSP startup and shutdown ramp limits;

e U;,D; minimum up and down time.
Decision variables:

e p; > 0 - power output variable for period ¢t € T
e sucy > 0 - startup cost variable for period ¢t € T

e wu; € {0,1} - status variable for period ¢ € T'. A variable
u; is equal to 1 if the unit is on in period ¢ and O if the
unit is off);

e v € {0, 1} - startup variable for period ¢ € T'. A variable
v, is equal to 1 if the unit is furned on in period ¢ and
0 otherwise;

e w, € {0,1} - shutdown variable for period ¢ € T. A
variable w; is equal to 1 if the unit is turned off in
period ¢ and O otherwise.

We formulate the unit commitment problem as follows:

maxz {)\tpt - [a (pt)2 +bpr 4+ cFuy + suct} } (5)
teT

sucy > ch (ut — Zutk> teT (6)

k=1
PUny, <pp < PPy, teT )
pe<pir+ R u+ (RV =R v,  teT (8)

pe>peo1 — B>upy + (R = R%P)w, teT (9)
t

Z vy < Uy

T=t—U+1

te{U+1,...,|T]} (10)

t
> w,<1-w  te{D+1,...,[T]} (D)
T=t—D+1

Wy = Vg +Up_1 — Uz teT (12)
pt >0 teT (13)
sucy > 0 teT (14)
us € {0,1} teT (15)
vy € {0,1} teT (16)
wy € {0,1} teT 17)

The objective function aims at maximizing the total profit
of the unit over the time horizon, obtained as the sum of the
difference of the total revenue and the total cost in each time
period. The total cost of generation in one period is equal to
the sum of the quadratic cost function plus the startup cost.
The constraints (6) express the linking between the startup
cost variables and the status of the generation unit multiplied
by the corresponding startup constants. The constraints (7)
are variable bound constraints connecting the power output
variables to the the status variable in each time period. The
ramp-up and start-up limits and the ramp limits at startup and
shutdown are respectively imposed by the constraints (8) and
(9). The constraints (10) and (11) impose the minimum up and
down time of each unit. Finally, (13-17) declare the decision
variables of the problem.

In comparison to the formulation used in [1], our reference
formulation contains two main modeling and polyhedral re-
finements: a) we consider a quadratic cost function c¢;(p;),
which provides a refined representation of the production costs
w.r.t. the linear approximation adopted in [1]; b) we consider
a stronger formulation of the problem based on the use of the
strong valid inequalities for the minimum up and down time
of a unit introduced in [21]. We are aware that in literature
there exist further ways for strengthening other families of
unit commitment constraints (for example, the ramp constraints
- see [22] for an overview) and refined linear representation
of the quadratic cost function (e.g., by perspective cuts [13]).
However, since we can solve (5-17) practically instantaneously,
such refinements resulted not necessary and we decided to not
include them.
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