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Abstract

We present an overview of the current status of the European collaborative
project PAEON. The challenge of PAEON is to provide specialists in reproduc-
tive medicine with a computerised model of the menstrual cycle under normal
and various pathological conditions, which will allow them to get further in-
sight in fertility dynamics. This model also enables the simulation of treatment
protocols, which were used within in vitro fertilization. By the definition of
virtual patients through biologically admissible parametrizations our approach
allows not only the evaluation of a given treatment strategy in silico, but also
the design and optimization of such protocols. Once a protocol is formalized
in the virtual hospital, the success can be controlled by a treatment execution
monitor, which works then as a clinical decision support system. All these tools
will be combined in a virtual hospital environment, enabling the access to the
PAEON services through the web.
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1 Introduction

For many couples, having children is one of the major life aims. Failure is asso-
ciated with guilt, inadequacy and loss of the sense of life, bearing an increased
risk for negative psycho-social functioning, such as depression and anxiety dis-
orders [8, 9, 11]. Furthermore, changes in population demographics, greater fo-
cus on education and careers among women have resulted in great numbers
of women attempting pregnancy at older ages when they are inherently less
biologically fertile. In Europe, for example, infertility affects 10% to 15% of
couples of reproductive age, and experts assume that these figures will double
in a decade [5, 13].

Investigation and treatment of infertility is directly and indirectly (by time
consuming medical consultations, expensive medical techniques, limited success
rates leading to repetitive treatment attempts, time-off from work, etc.) asso-
ciated with high expenses for the individual as well as for the society. Indeed,
costs for individual couples in Europe are around 10% of annual household ex-
penditures [3]. Overall, infertility in Europe costs approximately 1 billion Euros
per year.

In about 50% of the cases, infertility is caused by female health problems,
more than 40% of which are related to endocrinologcal diseases. Human fertil-
ity is based on physiological events like adequate follicle maturation, ovulation,
ovum fertilisation, corpus luteum formation as well as endometrial implantation,
proceeding in a chronological order. Diseases such as endometriosis, Prolactin
(PRL) associated disorders or Polycystic Ovary Syndrome (PCOS) seriously
disturb menstrual cycle patterns, oocyte maturation and consequently fertility;
pelvic endometriosis, occurring in up to 40% of infertile women, is a hormone
dependent disease characterised by ectopic proliferation of endometrial cells,
which occurs nearly exclusively during the reproductive phase. Beside endocrine
diseases, several environmental and lifestyle factors have a negative impact on
fertility: up to 13% of female infertility may relate to smoking. Obesity, which
increases not only in European countries, is associated with menstrual dysfunc-
tion, decreased fertility, as well as increased risks of miscarriage.

Modern Assisted Reproductive Techniques (ART), like In Vitro Fertilisation
(IVF) or Intracytoplasmatic Sperm Injection (ICSI), have nowadays dramati-
cally increased the chances for successful reproduction. Nevertheless, current
success rates reach only 35% even in leading clinical centers. Many of the
pathophysiological effects of endocrine diseases and environmental/lifestyle fac-
tors on fertility as well as dynamics in fertility treatment still remain unclear.
Thus, a better understanding of the endocrinological concert orchestrating the
physiology of fertility would open new opportunities for therapeutic options for
improved natural fertility as well as success rates in ART.

We address this problem by using a systems biology approach that aims at
integrating clinical data collection with mathematical modeling of the complex
biological system. Although the relevant components and feedback mechanisms
have been identified from experiments and have been described qualitatively
for many years, dynamic (time-dependent) mathematical models that permit
medically sound quantitative predictions for the periodic changes in hormone
levels and follicular function have started to be developed only a few years ago.
In fact, even though half of the world’s population is female, the menstrual cycle
has so far received comparably little attention in systems biology.
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For these reasons, since 2013 the European Commission has been funded the
collaborative research project PAEON-“Model Driven Computation of Treat-
ments for Infertility Related Endocrinological Diseases” within the EU VPH
(Virtual Physiological Human) initative. The project consortium consists of
the Sapienza University of Rome, the Lucerne University of Applied Sciences
and Art, the Hannover Medical School, the University Hospital Zurich, and the
Zuse Institute Berlin.

The PAEON project rests on three main components, whose objectives may
be summarised as follows.

1. Define a mathematical model of the human menstrual cycle which is able
to simulate the healthy cycle as well as infertility-related endocrine disor-
ders. This model should also enable individualized, patient specific models.
Existing models of the human menstrual cycle were usually constructed for
very specific purposes, e.g. GynCycle [10] for simulating GnRH analogue
treatment, models for analysing prolactin patterns [4] or the follicular de-
velopment [2]. None of these models is able to simulate whole cycles in
which pathological hormone concentrations go along with insufficient fol-
licular development. Our goal is to enrich and combine these models with
components and mechanisms involved in endocrine disorders like PCOS
or endometriosis, also taking into account external factors (e.g. drugs) as
well as environmental factors. Furthermore, the models should allow also
the realistic simulation of individualised treatment strategies (protocols).

2. Develop a Virtual Hospital (VH) combining mathematical models of the
treatment and the individual patient.
The availability of a mathematical model of both the individual patient
and the medical treatment allows an innovative perspective based on a
system control engineering approach, if one regards the system composed
of the treatment and the patient as a feedback-loop control system, where
the physician acts as a feedback-loop controller for the patient. This view
enables us to use powerful control engineering and computer science meth-
ods for its analysis. A medical treatment protocol generally asks to take
certain measurements on the patient and, depending on their outcome,
suggests certain actions. Actions consist of, e.g., taking further measure-
ments or administering specific amounts of certain drugs. We regard a
medical treatment as a computer procedure that, observing patient mea-
surements, strives to steer them towards optimal values for the number
and size of mature follicles at the end of the treatment.

3. Perform measurements or collect data from available databases to permit
validation and refinement of currently available models.
The presently available models are based on small study samples and in-
clude only a part of the parameters relevant for the regulation of the
human menstrual cycle. Therefore they need validation with larger sam-
ples not only from normally cycling women but also hormonal secretion
patterns from patients suffering from endocrinological diseases such as en-
drometriosis, PRL-associated disorders, or PCOS. Even though this is a
tedious and expensive part of our project we will focus here only on the
first two main parts of PAEON.
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2 Models of the hormonal cycle and treatment
protocols

2.1 Models of the healthy female hormonal cycle

In order to construct a physiological model, species or components (e.g. hor-
mones, follicular properties) and mechanisms (inhibition, stimulation, chemical
reactions) that are essential for the regulation of the menstrual cycle have to be
determined. Within the hormonal cycle, the most important compartments are
the hypothalamus, the pituitary gland, and the ovaries, connected by the blood-
stream. They are generally referred to as the Hypothalamic-Pituitary-Ovarian
(HPO) axis. During the reproductive cycle, hormones of the HPO-axis fluctu-
ate periodically, leading to the formation of cycles with a period of typically 28
days, see Figure 1.

Figure 1: Schematic sketch of the female hormonal cycle

A model of the hormonal cycle has to deliver a qualitative description of
the following regulatory circuits. In the hypothalamus, the hormone GnRH
(gonadotropin-releasing hormone) is formed, which reaches the pituitary gland
through a portal system in pulses and stimulates the release of the gonadotropins
luteinising hormone (LH) and follicle stimulation hormone (FSH) into the blood-
stream. The gonadotropins regulate the multi-stage maturation process of fol-
licles in the ovaries (follicular phase). The number of follicles that mature is
dependent on the amount of FSH available to the gonad and the sensitivity of the
follicles to the gonadotropins. During that phase, the maturing follicles secrete
mainly estradiol (E2) and inhibin B. If gonadotropin stimulation is adequate,
one of the several follicle units will advance to ovulation. Any disequilibrium
in the amount and timing of involved hormones may result in reduced oocyte
quality unsuitable for fertilisation. During the following luteal phase the corpus
luteum secrets mainly progesterone but also E2 and inhibin A. Through the
blood, these hormones reach the hypothalamus and pituitary gland, where they
again influence the formation of GnRH, LH, and FSH. The cycle starts anew
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with the menstrual bleeding initiated by the decreased progesterone secretion
from the corpus luteum.

Once the medical and biological mechanisms have been formulated in a qual-
itative manner, the next step is to translate them into quantitative mathemat-
ical equations. Since we are mainly interested in the answer of a given system
(the human menstrual cycle) to disturbances (e.g. treatments), this can only
be modelled by time-dependent equations, e.g. ordinary differential equations
(ODEs) or differential-algebraic equations. To formulate the differential equa-
tions of a quantitative mathematical model, the physiological and biological
processes that occur must be known very accurately. However, the exact chem-
ical reaction mechanisms are often not understood in sufficient detail; often one
only knows whether certain hormones have a stimulating or inhibiting effect on
other hormones. In semi-quantitative modelling of such switch behaviour, Hill
functions are used. If the reaction mechanisms are known more specifically, for
example from data bases, more detailed equations can be formulated. Figure 2
illustrates this approach for the LH submodel and the corresponding ODEs. If
all processes are included, one obtains a usually ”large” system of differential
equations. The qualitative dependencies of our model are visualised in Figure
3.

Progesterone

Estradiol

LH Pituitary LH Serum

GnRH−R complex

SynLH(t) = (bSynLH
+mE2 ·H+(E2, TE2, nE2)) ·H−(P4, TP4, nP4)

RelLH(t) = (bRelLH +mGnRH-R ·H+(GnRH-R, TGnRH-R, nGnRH-R)) · LHPit(t)
d
dtLHPit(t) = SynLH(t)− RelLH(t)

d
dtLHblood(t) = 1

Vblood
RelLH(t)− kon · LHblood ·RLH − c · LHblood

Figure 2: LH model and the corresponding ODEs. H+ and H− are stimulating
and inhibitory Hill functions with thresholds T and exponents n. LH production
in the pituitary is stimulated by E2 and inhibited by Progesterone (P4). The
release of LH into the blood is stimulated by the GnRH-receptor complex, if its
concentration is higher than some threshold.

Hence, an initial value problem (IVP) can be formulated, where the change
in the species y depends both on the species themselves and on a parameter
vector p. Such autonomous (i.e. not explicitly time dependent) equations are
usually used to describe closed systems, whereas non-autonomous (i.e. explicitly
time dependent) equations will be used, for example, to model environmental
factors or drug administrations that change with time. Moreover, it is assumed
that some discrete experimental data (in form of species concentrations versus
time) are available. Usually, only a certain amount of the species concentrations
are measurable observables. The task at hand now is to quantify the unknown
parameters and initial values by comparing model values with the measured
data. A complete data set, of course, must also include statistical tolerances

4



Figure 3: Flowchart of the GynCycle model for the human menstrual cycle with
33(+8) ODEs, 114 parameters

for each measurement. This task may be computationally solved by appropriate
Newton algorithms (local search) or stochastic approaches (global search). As an
example, Figure 4 depicts the results of parameter fitting to a set of experimental
data from 12 normally cycling women for LH, FSH, P4, and E2.

2.2 Treatment modelling

Even if there exists a number of newer approaches (e.g. the antagonist protocol),
there are two methodologies which, depending on the age and other conditions,
are the most commonly used treatments. They consist of two phases, he sup-
pression of FSH and LH by GnRH (downregulation, long protocol) or by P4
(preparation, short protocol), followed by a usually two weeks long stimula-
tion phase with the combined administration of GnRH agonists, FSH, and LH.
Within the second phase one tries to stimulate follicle growth in order to in-
duce growth of a cohort between 5 and 15 follicles aiming to have as many ripe
oocytes in one cycle as possible. The actual follicle maturation is monitored
by transvaginal ultrasound and E2 blood levels. Future follicle growth can be
estimated from biological age, anti-Müllerian hormone (AMH) levels, FSH and
the antral follicle count (AFC). Hormone doses for the stimulation treatment
are based on this estimation. Too modest dosages of hormones are associated
with the risk of an insufficient number of oocytes, too aggressive treatments,
especially in patients with PCOS, are associated with a high risk of overstimu-
lation syndrome and a reduced quality of obtained oocytes. If the result with
respect to AFC and E2 levels are satisfactory, ovulation will be induced by one
additional higher dose of LH.

In many cases, the drugs administered differ considerably from their nat-
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Figure 4: Results of parameter estimation for the GynCycle model to 12 nor-
mally cyling women

ural counterpart in their chemical structure, metabolism, and activity. It is
therefore more reasonable to construct a separate differential equation for the
concentration c(t) of each administered substance,

dc (t)

dt
= Φ (t)− cLc (t) , (1)

with a time dependent source term Φ(t) and a clearance term cL. The solution
of this equation may then be used in other equations where the drug and/or its
natural counterpart has an effect.

In most cases, drug administration leads to plasma concentration profiles
with a left-skewed peak. These time courses are usually described by some
pharmacokinetic parameters. A commonly accepted approach is, e.g., to mea-
sure the peak plasma concentration cmax, the time point tmax of this maximum,
and the integral over the concentration-time curve, AUC0−∞ (area under the
curve).

Within our model of the hormonal cycle we have successfully modelled such
profiles based on the probability density function of the gamma distribution
with fixed parameter α = 2. This approach leads to the following differential
equation for the drug concentration,

dc (t)

dt
= Dβ2t exp (−βt)− cLc (t) , (2)

where the parameter D represents the amount of the drug administered. The
parameters β and cL can easily be determined numerically on the basis of mea-
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sured values cmax, tmax, and AUC0−∞. A similar approach is also possible in
terms of other pharmacokinetic parameterizations, e.g. the volume of distribu-
tion, the clearance rate or half-life times1. With this methodology, we are able
to use all different pharmacological data available in the literature [1], and to
store them in a common data base for all drugs relevant in clinical practice.
Figure 5 presents preliminary results for a simulation of the long protocol. In
addition, our model enables not only the simulation of normal healthy cycles
with and without treatments, but also the simulation of other limit cycles as
they are typical for, e.g., PCOS.

Figure 5: Results of a simulation of a whole long protocol for LH, FSH, E2, and
P4 (black) compared with the normal hormonal cycle (red). The downregulation
with the GnRH agonist Triptoreline lasts 27 days (cycle days 23 until 50), the
stimulation then lasts 14 days. The rise of E2 during stimulation indicates a
successful treatment.

2.3 Patient-specific models

Unfortunately, a fully automatic procedure that just computes values for the
model parameters that fit the (few) available measurements (parameter identi-
fication) typically leads to species behaviours that, while being mathematically
correct solutions to the ODE model, are meaningless from a biological point of
view. Moreover, we have to take into account that the parameter value space is
huge.

We overcome the above mentioned obstacles by splitting our computation
into two phases: an off-line phase that narrows our search space, and an on-line

1Since GnRH is active only in the brain, the GnRH agonists blood levels are not responsible
for the effects of the administration. We have, therefore, implemented a simple compartment
model for GnRH.
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phase that computes patient-specific predictions. The first phase produces an
almost complete set of biologically sound parameter values, whereas the second
phase selects the parameter value that minimises the mismatch between model
predictions and patient measurements.

Figure 6: Architecture of the patient-specific parameter identification procedure

The overall architecture of our approach is depicted in Figure 6. Starting
from a default parameter value λ0 that results from our accepted standard
model, the off-line procedure extracts from the parameter value space a complete
set S of biologically sound parameter values. Biological soundness asks for S to
contain only parameter values leading to biologically meaningful time evolutions
for the species in the model. Completeness asks for S to include all parameter
values leading to biologically meaningful behavior for the model. The on-line
phase selects the parameter value in S that best fits with patient measurements,
searching in the set of biologically sound parameters computed in the off-line
phase.

Intuitively, we search for parameter values λ that lead to trajectories x(λ, t, u),
with u an external time-dependent input function, e.g. a treatment, that are
both quantitatively and qualitatively similar to the trajectory x(λ0, t, u). We
capture the fact that two trajectories are similar (i.e. they differ because
of a “shift” and/or a “stretch”) by introducing three measures of similarity.
The cross-correlation ρλ0,λ,i measures qualitative aspects of the trajectories
xi(λ0, t, u) and xi(λ, t, u) (for example, if they have the same peaks) whereas the
average normalised differences µλ0,λ,i and the normalised differences of autocor-
relations χλ0,λ,i are two measures of the average distance between xi(λ0, t, u)
and xi(λ, t, u). Biological soundness of the parameter λ with respect to λ0 re-
quires that differences between xi(λ0, t, u) and xi(λ, t, u) in terms of these three
measures are below given thresholds. Our goal is to identify a set of biologically
sound model parameter values that describes as many biologically meaningful
behaviours as possible but, at the same time, is not too large in order to speed
up our on-line computation. The first phase of our procedure finds (with high
confidence) the set S of all biologically sound parameter values with respect to
a default parameter λ0. The set S is computed by checking parameter values
in a finite subset Λ̂ of Λ (discretised parameter space).

Since the number of parameters to be identified is quite large (75 in our case
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study) the discretised parameter space is huge (1075 if we consider 10 possible
values for each parameter), thus making an exhaustive search in the discretised
parameter space Λ̂ unfeasible. To overcome such an obstruction, we followed
an approach inspired by statistical model checking [6, 7]. At the end, the set
S contains only and (with arbitrarily high confidence) all biologically sound
values for the patient-specific parameters. Note that such an algorithm does not
depend on patient-specific data. Thus it must be run off-line once and for all,
and its output (the set S) can be stored for further processing. The computation
of an appropriately large set of biologically admissible (BA) parameters may
need several days even on a cluster with many CPUs. Details of the approach
can be found elsewhere [12]. The biologically admissible parametrizations may
be interpreted also as virtual patients.

Figure 7: Architecture of off-line computation of biologically sound parameters

The architecture of our algorithm is shown in Figure 7. A model checker
randomly generates parameter values λ in the discretised parameter space Λ̂
(point 1 in the picture). The simulator is called for a simulation of x(λ, t, u)
and returns a file containing a set of points of the trajectory x(λ, t, u) (point
2). At this point, this trajectory is compared with the trajectory x(λ0, t, u)
obtained by considering the default parameter λ0 (point 3). If x(λ, t, u) passes
the biological soundness test, λ is added to the set S of biologically sound
parameters, otherwise it is discarded (point 4).

The algorithm stops when N attemps fail to find a biologically sound pa-
rameter. Given two positive real numbers δ and ε, N is chosen in such a way
that with confidence 1−δ the probability of finding other biologically sound pa-
rameter values not in S is less than ε. The results in Figure 8 demonstrate the
variability of the individual time courses. In this computation, the algorithm
has found more than 7000 different BA parametrizations.

3 PAEON Virtual Hospital (VH)

One of the main goals of the PAEON project is to provide effective computa-
tional tools as Web-based services through a Web portal named Virtual Hospital
(VH), in order to aid medical researchers and doctors in their everyday work.
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Figure 8: Results of the off-line computation of all biologically parametrizations
for LH, FSH, E2, and P4 compared with 12 normal hormonal cycles.

The PAEON VH Web-application will enable researchers, within and outside the
PAEON project, to exploit results by providing services to: 1) upload/download
models and results from clinical trials or from computations, 2) use the com-
putational tools developed in the project. Furthermore, VH will support the
iterative refinement approach of our project by acting as a coordination tool
between the modelling activities, the computational tool development and the
clinical trials.

VH will provide access and data security services compliant with clinical
data and security policies along with a graphical user interface to seamlessly
fit into hospital environments and thus clinicians needs. This in turn will al-
low the hospitals in our consortium to insert (anonymised) experimental data
that, via the VH, are immediately available to the research partners working
on modelling or model analysis tools. This guarantees constant alignment be-
tween the modelling/computation activities and the clinical trial activities. The
VH Data Repository will provide a knowledge base for storing (generic) mod-
els, patient-specific models (digital patients), treatment protocol models (digital
physicians), anonymised experimental results from the clinical trials, and exper-
imental results from running PAEON computational tools on given clinical data.
The overall PAEON VH software architecture is sketched in Figure 9.

Here, we will describe only some of the computational services, namely the
Treatment Execution Monitor (TEM), the Model-Based Verification of Treat-
ment Protocols (MBV-TP), and the Model-Based Design of Individualised Treat-
ment Protocols (MBD-ITP).

3.1 Treatment Execution Monitor

Within TEM, protocol models keep track of the status of a treatment protocol for
each patient under treatment, and suggest actions to clinicians. In a treatment
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Figure 9: PAEON VH Software Architecture

protocol, typical actions are: when to administer a drug, the dose, and when
to take next measurements. A clinical treatment protocol is a description of
a complex activity that involves decisions during the treatment execution. In
Figure 10 the overall structure of a treatment protocol is sketched.

Figure 10: General structure of a treatment protocol

The TEM is a tool designed to support clinicians during treatment protocols.
It behaves as a Clinical Decision Support System (CDSS) that, on the basis of
the modelled treatment protocol and the recorded treatment data (patient data,
patient measurements), suggests actions (e.g., timing and amount of drug to be
administered) to clinicians. TEM takes as input a formalised treatment model
and provides as output what the protocol prescribes in a given situation.
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Figure 11: Part of a treatment protocol currently in use at UZH

Trans
s’= if (dayStim==0 & (e2Input > 250 | p4Input > 6)) then FAIL

else if (dayStim == 5 & p4Input >= 40) then FAIL
else if (dayStim > 8 & follicleCount(fpCurrent)<3) then FAIL
else if (day == 0) then DOWNREGULATION
else if (day == downLength) then STIMULATION
else s;

day’= day+1;
dayStim’= if (day >= downLength) then (dayStim + 1) else dayStim;
e2’= if (dayStim == 0 | dayStim == 5 | dayStim == 8)

then e2Input else e2;
p4’= if (needP4 & (dayStim == 0 | dayStim == 5 | dayStim == 8))

then p4Input else p4;
needP4’= if (dayStim == 5 & p4Input < 4) then false;
doseStim’= if (dayStim == 0)

then computeDoseStim(age,amh,afc)
else if (dayStim == 5)

then changeDoseStim(age,amh,afc,e2Input,doseStim)
else doseStim;

fpLast’= if (dayStim == 8 | dayStim == 11 | dayStim == 13)
then fpCurrent
else fpLast;

fpCurrent’= if (dayStim == 8 | dayStim == 11 | dayStim == 13)
then FollicleProfile

.fs9 = fs9Input, .fs10 11 = fs10 11Input,

.fs12 13 = fs12 13Input, .fs14 15 = fs14 15Input,

.fs16 17 = fs16 17Input, .fs18 19 = fs18 19Input,

.fs20 = fs20Input
else fpCurrent;

Figure 12: Part of the protocol strategy used at UZH in formalized description
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Physicians can follow the suggestions of TEM or override them. In any case,
all decisions are recorded by TEM and possibly used during future treatments.

In order to model fertility treatments currently in use, we have designed
and implemented the Vanilla Automata Language (VAL) language. After a
careful analysis, carried out by computer scientists together with clinicians,
the protocols currently in use at the University Hospital Zurich (UZH) were
implemented in VAL. Instead of explaining the details of VAL, Figures 11 and
12 show a small section of the protocol as used at the UZH and the formalized
counterpart.

The TEM GUI we have designed can already be used for training or edu-
cational purposes in reproductive medicine departments. Furthermore, other
clinics could compare their own protocols with those of the UZH, one of the
leading clinics in reproductive medicine in Europe. We are planning also to
include the administration strategies of other European reproductive medicine
centers with high success rates into TEM.

3.2 Model-Based Verification of Treatment Protocols (MBV-
TP)

The MBV-TP computational service aims at evaluating, in silico, the effective-
ness of a treatment protocol by executing treatment simulations. Simulations
will be performed on a model that consists of a VPH model and a treatment
model for (subsets of) all biologically admissible (BA) parameters.

Since treatment protocols are designed to work on all patients (or at least
a class of patients), they adapt dosages and duration of drug administration to
patient measurements. In this scenario, it is reasonable to address the problem
of verifying that a given treatment protocol reaches its goal for each possible
patient, or, more realistically, evaluating its success rate. In our model based
approach this means that, since treatment models adapt their behaviour to the
biological model behaviour, treatment protocol verification consists of checking
if the treatment reaches its goals for a large number of BA parameter values.

Treatment goals have been generalised using the notion of Key Performance
Indicators (KPIs). A KPI provides a measure of the effectiveness of a treat-
ment. This allows to evaluate treatments from different points of view, each of
which is formalised as a KPI. In the context of fertility treatments considered
in the PAEON project, the treatment model is an executable description of a
fertility treatment currently in use in clinical practice. The biological model is
a model of the menstrual cycle together with a pharmacokinetic model for drug
administration, and the KPIs are related to, e.g. E2 levels, number and size of
follicles, and the total amount of administered drugs.

MBV-TP takes the following inputs:

• a parametrised treatment protocol

• values for all treatment parameters, so that one obtains a specific treat-
ment

• the set of BA parameters on which the treatment will be verified

• a set of KPIs associated to the treatment

13



and yields the following output:

• values for all the KPIs given as input, for each given BA VPH model
parameter.

Figure 13: MBV-TP inputs and outputs

In Figure 13 the overall structure of MBV-TP is sektched. As an example,
we can evaluate if the treatment under consideration ensures safety conditions
(in our context they are evaluated mainly by checking E2 levels, to check the
risk of overstimulation), and the percentage of BA parameter values for which
the treatment is successful.

Figure 14: VPH model evolutions computed by MBV-TP, showing treatment
successes

In Figure 14. the right column shows the VPH model evolution under a
sample BA model parameter (virtual patient) for which the treatment succeeds,
achieving a full success condition (FSC). It can be observed that the E2 and P4
levels are always below their safety thresholds, and that the follicles gradually
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Figure 15: VPH model evolutions computed by MBV-TP, showing treatment
failures

grow during stimulation (letting the treatment achieve FSC). The left column
of Figure 14 shows another treatment success case, but in this case only a
minimum success condition (MSC) is achieved (and, in fact, only three follicles
reach maturation stage).

To see an example where the treatment fails, consider the right column
in Figure 15, showing the VPH model evolution under a sample BA model
parameter (virtual patient) for which the treatment does not achieve MSC. It
can be seen that follicles do not grow satisfactorily, and that the treatment
correctly reacts to such a slow follicle growth by increasing the daily dose of
the stimulation drug (from 300 IU to 450 IU), as safety thresholds for E2 and
P4 are far from being reached. Notwithstanding treatment adaptations, only
two follicles reach maturation. The first two columns show two interrupted
treatments due to unsuccessful down-regulation (left) and P4 safety threshold
reached during stimulation (centre). In the first case, the follicle profile is not
shown at all (as stimulation is not started), while in the second, stimulation is
interrupted due to an too early P4 peak.

3.3 Model-Based Design of Individualised Treatment Pro-
tocols (MBD-ITP)

MBD-ITP aims at supporting medical doctors and researchers in the design of
individualised treatments in a clinical setting, by automatically evaluating the
effectiveness of a treatment protocol over a set of possible values for the treat-
ment parameters. Compared to the verification task, the individualised treat-
ment design activity deals with more complex treatments. The main ingredient
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of our treatment synthesis approach is the definition of parametrised treatment
models. Instead of synthesising a treatment from scratch, we take a template
treatment with parameters and find suitable values for these parameters.

Parametrised treatments have essentially the same structure of treatments
currently in use in clinical practice, but their execution depends on some pa-
rameters. Having the same structure of the template treatment, they are more
likely to be accepted in the clinical practice. Example of treatment parame-
ters are thresholds that influence treatment decisions, or doses of administered
drugs. Moreover, as in the treatment verification task (MBV-TP), we consider
a set of KPIs to evaluate treatment effectiveness.

Therefore, our approach to the treatment synthesis problem consists of solv-
ing a search problem over the set of possible treatment parameter values, looking
for the treatment parameter values that optimise the KPIs. Since the optimi-
sation of a set of KPIs is a multi-objective optimisation problem, we select all
those treatment parameter values that lead to a tuple of KPIs values that are
not Pareto dominated by other treatment parameter values.

Figure 16: MBD-ITP inputs and outputs

The input for MBD-ITP ist the same for MBV-TP except that it needs
additionally a parameterized treatment. The output is correspondingly a set of
parameter vectors, each treatment parameter vector defines an individualised
treatment which is considered optimal with respect to the set of given KPIs and
for the set of BA VPH models, see Figure 16.

This approach is computationally demanding. We ran MDB-ITP on 15
Xenon-based machines with an overall number of 121 cores. To present an
example, we changed in the reference protocol of UZH the age classification
with a parameter δage ∈ [−4, 4], similarly also the classification with respect
to the AMH levels and AFC, and, as a treatment parameter, the administered
doses of the stimulation drug.

Figure 17 shows the outcome of an execition of the MBD-ITP service, where
14 Pareto-optimal treatments were returned. Obviously, the reference treatment
from UZH (dark blue) balances quite well its performance over all KPIs.

Also the other candidate treatments show interesting properties. For exam-
ple, one treatment at the same time minimises the overall amount of drug used
(saving, on average, 34.7% of stimulation drug with respect to the reference
treatment) and maximises the number of cases in which it succeeds (34.1%,
vs. 28% of the reference treatment), at the cost of allowing the retrieval of (on
average) fewer mature oocytes (4.617 vs. 5.571 of the reference treatment) and
to approach FSC less frequently (38.5% on average vs. 48.5% for the reference
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Figure 17: Pareto-optimal treatments computed by MBD-ITP. The reference
treatment is in dark blue.

treatment).
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