
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

GREGOR HENDEL

Exploiting Solving Phases for
Mixed-Integer Programs

ZIB Report 15-64 (December 2015)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Exploiting Solving Phases for Mixed-Integer
Programs

Gregor Hendel
hendel@zib.de

December 21, 2015

Abstract

Modern MIP solving software incorporates dozens of auxiliary algorith-
mic components for supporting the branch-and-bound search in finding
and improving solutions and in strengthening the relaxation. Intuitively,
a dynamic solving strategy with an appropriate emphasis on different solv-
ing components and strategies is desirable during the search process. We
propose an adaptive solver behavior that dynamically reacts on transi-
tions between the three typical phases of a MIP solving process: The first
phase objective is to find a feasible solution. During the second phase,
a sequence of incumbent solutions gets constructed until the incumbent
is eventually optimal. Proving optimality is the central objective of the
remaining third phase. Based on the MIP-solver SCIP, we demonstrate
the usefulness of the phase concept both with an exact recognition of the
optimality of a solution, and provide heuristic alternatives to make use of
the concept in practice.

1 Introduction
The availability of sophisticated solving software technology based on
the branch-and-bound approach [8] has made Mixed integer program-
ming (MIP) the modeling tool of choice for many practical optimization
problems. One of its main advantages is that after termination, branch-
and-bound provides a proof of optimality for the best found solution. In
many situations, however, practical limits on the run time and memory
consumption prevent the search from completing the proof, although the
solution found at termination might already be optimal. During the search
process, we typically observe three phases: The first phase until a feasible
solution is found, a second phase during which a sequence of improving
solutions gets constructed, and a third phase during which the remaining
search tree must be fully explored to prove optimality. In [6] we empiri-
cally demonstrated that the MIP solver Scip [1] spends more than 40 %
of its average solving time during the third phase.

Since every phase emphasizes a different goal of the solving process,
it seems natural to pursue these goals with different search strategies to
achieve the phase objective as fast as possible. Research on adaptive
solver behavior that reacts on solving phases naturally poses the question
how the solver should guess that the current incumbent is optimal prior
to termination.

1

There has been little work on such heuristic criteria for deciding whether
a solution can be assumed to be optimal. Such criteria cannot be expected
to be exact because the decision problem of proving whether a given solu-
tion is optimal is still NP-complete in general, hence the term "heuristic".

A bipartion of the solving process has already been suggested in the
literature, see [9] for an overview and further references, where the pro-
posed strategies solely involve the node selection in use. Our suggested
three-phase approach gives a more refined control of the solver behaviour.

The remainder of the paper is organized as follows: We formally in-
troduce Mixed-Integer Programs and and the concept of solving phases
in Section 2. The main novelty of this paper are heuristic transitions for
deciding when the solver should stop searching for better solutions and
concentrate on proving optimality. We present two heuristic transitions
that take into account global information of the list of open subproblems
in Section 3. We conclude with a computational study of the proposed
adaptive solvers in Section 4.

2 Solving Phases in Mixed Integer Pro-
gramming
Let A ∈ Rm×n a real matrix, b ∈ Rm, c ∈ Rn, let l, u ∈ Rn

∞ and
I ⊆ {1, . . . , n}, where n,m ∈ N. A mixed-integer program (MIP) is a
minimization problem P of the form

copt := inf{ctx : x ∈ Rn, Ax ≤ b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I}.

A vector y ∈ Rn is called a solution for P , if it satisfies all linear con-
straints, bound requirements, and integrality restrictions of P . We call I
the set of integer variables of P . A solution yopt that satisfies ctyopt = copt

is called optimal. The LP-relaxation of P is defined by dropping the inte-
grality restrictions. By solving the LP-relaxation to optimality, we obtain
a lower bound δ (also called dual bound) on the optimal objective of P . All
commercial and noncommercial general purpose MIP solvers are based on
the branch-and-bound procedure [8], which they extend by various auxil-
iary components such as primal heuristics [5], cutting plane routines, and
node presolving techniques for improving the primal or dual convergence
of the method.

Whenever there is an incumbent solution ŷ, we measure the relative
distance between ŷ and the optimal objective value copt in terms of the
primal gap

γ :=


0, if copt = ctŷ,
100 ∗ ctŷ−copt

max{|ctŷ|,|copt|} , if sig(copt) = sig(ctŷ),

100, otherwise.

A primal gap of 0% means that the incumbent is an optimal solution,
although this might not be proven so far because the dual bound for P is
less than the optimal objective. Similarly, we use a dual gap γ∗ to measure
the relative distance between copt and the proven dual bound δ.

In the context of solving phases, elapsed time since the solving process
was started plays an important role. All definitions such as the incumbent
solution ŷ and its objective (the primal bound) ctŷ or its dual counter parts
δ and the corresponding gaps γ and γ∗ can be translated into functions

2

of the elapsed time. Let t∗1 > 0 denote the point in time when the first
solution is found or the first phase transition. The primal gap function
γ : [t∗1,∞] 7→ [0, 100] measures the primal gap at every point in time t ≥ t∗1
during solving by calculating the primal gap for the best incumbent ŷ(t)
found until t.

For the solving time T > 0 for P , we partition the solving time interval
[0, T] into three disjoint solving phases:

P1 := [0, t∗1[, the Feasibility phase,
P2 := {t ≥ t∗1 : γ(t) > 0}, the Improvement phase,

P3 := {t ≥ t∗1 : γ(t) = 0, γ∗(t) > 0}, the Proof phase.

Every solving phase is named after its main primal objective of find-
ing a first and optimal solution in P1 and P2, respectively, and proving
optimality during P3. We presented promising strategies for each phase
in [6]; During the Feasibility phase, we search for feasible solutions with
a two-stage node selection strategy combining a uct [10] and depth-first
strategy with restarts together with an inference branching rule. The
Improvement phase is conducted with the default search strategy of Scip
except for the use of uct inside Large Neighborhood Search heuristics. For
the Proof phase, we deactivate primal heuristics, and apply cutting planes
periodically during a depth-first search traversal of the remaining search
tree. Note that a phase-based solver that uses different settings after a
heuristic phase transition remains exact; the use of different settings based
on the heuristic phase transition might only influence the performance of
the solver to finish the solving process.

The desired moment in time when a phase-based solver should switch
from an improvement strategy to a proof strategy is given by the second
phase transition

t∗2 := supP1 ∪ P2.

Because of the practical impossibility to detect t∗2 exactly before the
solving process finishes, we dedicate the next section to introduce heuristic
phase transitions for our phase-based solver.

3 Heuristic Phase Transitions
We propose to use properties of the frontier of open subproblems during
the solving process as heuristic phase transitions. Let Q denote the set
of open subproblems. We call Q ∈ Q an active node and denote by dQ
the depth of Q in the search tree. If the solving process has not found an
optimal solution yet, there exists an active node Q ∈ Q that contains it.
We use the best-estimate [3] to circumvent the absence of true knowledge
about best solutions in the unexplored subtrees. After solving the LP-
relaxation of a node P with solution ỹP , the best-estimate defined as
ĉP = ctỹP +

∑
j:(ỹP)j /∈Z

min{Ψ−j · ((ỹP)j − b(ỹP)jc) ,Ψ+
j · (d(ỹP)je − (ỹP)j)}

is an estimate of the best solution objective attainable from P by adding
the minimum pseudo-costs [3] to make all variables j ∈ I with fractional
LP-solution values (ỹP)j /∈ Z integral, where we use average unit gains
Ψ−j ,Ψ

+
j over all previous branching decisions. For active nodes Q ∈ Q,

an initial estimate can be calculated from the parent estimate and the
branching decision to create Q.

3

Definition 1 (active-estimate transition) We define the active-estimate
transition as the first moment in time testim2 when the incumbent objective
is smaller than the minimum best-estimate amongst all active nodes, i.e.

testim2 := min
{
t ≥ t∗1 : cT ŷ(t) ≤ inf{ĉQ : Q ∈ Q(t)}

}
. (1)

In practice, the best-estimate may be very inaccurate and over- or
underestimate the true objective value obtainable from a node, which
may lead to an undesirably early or late active-estimate transition. In
order to drop the use of the actual incumbent objective, we introduce
another transition that compares all active and already processed nodes
only at their individual depths. Let the rank-1 nodes be defined as

Qrank-1(t) := {Q ∈ Q(t) : ĉQ ≤ inf{ĉQ′ : Q′ processed before t.dQ′ = dQ}}.

Qrank-1(t) contains all active nodes with very small lower bounds or near-
integral solutions with small pseudo-cost contributions compared to al-
ready processed nodes at the same depth.

Definition 2 (rank-1 transition) The rank-1 transition is the moment
in time when Qrank-1(t) becomes empty for the first time:

trank-1
2 := min{t ≥ t∗1 : Qrank-1(t) = ∅}. (2)

The main difference between the rank-1 and the active-estimate tran-
sitions is that the former does not compare an incumbent objective with
the node estimates. Note that the rank-1 criterion Qrank-1 = ∅ is never
satisfied as long as there exist active nodes which are deeper in the tree
than any previously explored node. The name of this transition is in-
spired by a node rank definition that requires full knowledge about the
entire search tree at completion, see [6] for details.

4 Computational results
We conducted a computational study to investigate the performance ben-
efits of a phase-based solver that reacts on phase transitions with a change
of its search strategy. Apart from the default settings of Scip we tested
an oracle that detects the second phase transition exactly, estim uses
the active-estimate transition (1), and rank-1 the rank-1 transition (2).
For the latter two, we also required that at least 50 branch-and-bound
nodes were explored. At the time a criterion is met, we assume that the
current incumbent is optimal and let the solver react on this assumption
by switching to settings for the Proof phase. We tested with a time limit
of 2h on the 168 instances from three publicly available Miplib libraries
[2, 4, 7]. We excluded four instances for which no optimal solution value
was known by the time of this writing.

In Table 1, we present the shifted geometric means of the measured
running times of the different settings with a shift of 10 sec. We also show
the percentage time compared to default, the number of solved instances
for every setting, and p-values obtained from a two-sided Wilcoxon signed
rank test that takes into account logarithmic shifted quotients, see [6]
for details. The oracle setting could solve three instances more than
the default setting. Over the entire test set, we observe improvements
in the shifted geometric mean solving time for every new setting, where
the highest improvement of 5.6% was obtained with the oracle-setting.
With the rank-1 setting, we obtain a similar speed-up of 5.4%. Both are

4

Table 1: Shifted geometric mean results for t (sec) and number of solved in-
stances.

all instances easy (max t ≤ 200) hard (max t > 200)
solv. t (sec) % p t (sec) % p t (sec) % p

default 127 257.0 100.0 11.7 100.0 1992.8 100.0
estim 129 245.0 95.3 0.905 11.7 100.7 0.521 1827.1 91.7 0.488
oracle 130 242.7 94.4 0.013 12.2 104.9 0.410 1766.3 88.6 0.000
rank-1 128 243.1 94.6 0.008 11.3 97.0 0.226 1832.9 92.0 0.026

accompanied by small p-values of 0.013 and 0.008. The table also shows
the results for two instance groups based on the performance of the slowest
of the four tested algorithms. On the 73 easy instances, oracle is slower
than default by almost 5%, whereas rank-1 is the fastest amongst the
tested settings. The computational overhead of the reactivated separation
during the Proof phase seems to outweigh its benefits on this easy group.
The p-values, however do not reveal any of the settings to be significantly
different from default.

The results on the hard instances show more pronounced improve-
ments with all new settings by up to 11.4% obtained with the oracle
setting. The setting estim improves the time by 8.2% but the correspond-
ing p-value of 0.488 does not identify this improvement as significant. A
smaller time improvement of 8% with the rank-1 setting is indicated as
significant by a p-value of less than 5%. This result indicates a more
consistent improvement over the entire test set for rank-1, whereas the
active-estimate transition could rather improve the performance on a few
outliers.

5 Conclusions
In our experiment, the use of a phase-specific solver adaptation could
significantly improve the running time, especially on harder instances.
Furthermore, we introduced two heuristic phase transitions that yielded
performance improvements similar to what can be obtained in principle if
we could determine the phase transitions exactly, which is an important
first step to make use of such adaptive solver behavior in practice. We
attribute the significant improvements with the exact and rank-1 tran-
sitions in particular to the judicious reactivation of cutting plane sepa-
ration locally in the tree at the cost of deactivating primal heuristics.
Future work on solving phases could comprise experiments with different
heuristic phase transitions, or base the work distribution between primal
heuristics and separation on more local properties that are specific to the
subtree.

References
[1] Tobias Achterberg. Constraint Integer Programming. PhD thesis,

Technische Universität Berlin, 2007.

[2] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB
2003. Operations Research Letters, 34(4):1–12, 2006.

5

[3] Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hent-
ges, Gerard Ribière, and O. Vincent. Experiments in mixed-integer
programming. Mathematical Programming, 1:76–94, 1971.

[4] Robert E. Bixby, Sebastiàn Ceria, Cassandra M. McZeal, and Mar-
tin W.P. Savelsbergh. An updated mixed integer programming li-
brary: MIPLIB 3.0. Optima, 58:12–15, 1998.

[5] Matteo Fischetti and Andrea Lodi. Heuristics in mixed integer pro-
gramming. In James J. Cochran, Louis A. Cox, Pinar Keskinocak,
Jeffrey P. Kharoufeh, and J. Cole Smith, editors, Wiley Encyclope-
dia of Operations Research and Management Science. John Wiley &
Sons, Inc., 2010. Online publication.

[6] Gregor Hendel. Empirical analysis of solving phases in mixed integer
programming. Master thesis, Technische Universität Berlin, 2014.

[7] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert,
Timo Berthold, Robert E. Bixby, Emilie Danna, Gerald Gamrath,
Ambros M. Gleixner, Stefan Heinz, Andrea Lodi, Hans Mittelmann,
Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy, and Kati Wolter.
MIPLIB 2010. Mathematical Programming Computation, 3(2):103–
163, 2011.

[8] A. H. Land and A. G Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, 1960.

[9] Jeff T. Linderoth and Martin W. P. Savelsbergh. A computational
study of search strategies for mixed integer programming. INFORMS
Journal on Computing, 11(2):173–187, 1999.

[10] Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guid-
ing combinatorial optimization with UCT. In Nicolas Beldiceanu,
Narendra Jussien, and Eric Pinson, editors, CPAIOR, volume 7298
of Lecture Notes in Computer Science, pages 356–361. Springer, 2012.

6

