
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Zuse Institute Berlin

CHRISTIAN TOBIAS WILLENBOCKEL1 AND
CHRISTOF SCHÜTTE1,2
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Abstract

Real World networks often exhibit a significant number of vertices which
are sparsely and irregularly connected to other vertices in the network. For
clustering theses networks with a model based algorithm, we propose the
Stochastic Block Model with Irrelevant Vertices (SBMIV) for weighted net-
works. We propose an original Variational Bayesian Expectation Maximiza-
tion inference algorithm for the SBMIV which is an advanced version of
our Blockloading algorithm for the Stochastic Block Model. We introduce a
model selection criterion for the number of clusters of the SBMIV which is
based on the lower variational bound of the model likelihood. We propose
a fully Bayesian inference process, based on plausible informative priors,
which is independent of other algorithms for preprocessing start values for
the cluster assignment of vertices. Our inference methods allow for a multi
level identification of irrelevant vertices which are hard to cluster reliably ac-
cording to the SBM. We demonstrate that our methods improve on the normal
Stochastic Block model by applying it to to Earthquake Networks which are
an example of networks with a large number of sparsely and irregularly con-
nected vertices.
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1 Introduction

Networks arise in different scientific areas like Protein–Protein interaction net-
works in Biology [1] or actor based networks in Sociology [2, 3]. The clustering of
networks with a model based approach gives insight in the topology and formation
process of the network and allows the prediction of edges or links. The Stochas-
tic Block Model (SBM), introduced in [4], is a well established and widely used
model for the clustering of networks. In the SBM, the vertices of the network are
grouped in clusters (or blocks) based on the edge connection profile of the vertices.
The results of the SBM are easily interpretable and link prediction is easy [2, 3].
Often real world networks are given without a known ground truth of the cluster
assignment of vertices. In this situation, the task is to infer the optimal hidden
cluster assignment of vertices together with the optimal number of clusters and the
optimal parameters of the model.
The analysis of the statistics of many real world networks shows, that most of the
vertices are sparsely and irregularly connected to other vertices of the network. If
the network is weighted, e.g. the edges of the network have different weights, there
can also be a huge variance of possible weights. Networks which exhibit such a
connection behaviour usually have a heavy tails distribution of vertex degrees. If
these edge connection properties are present in a network for many vertices, the
process of inferring a SBM for the network is difficult to impossible because the
huge component of irregularly and sparsely connected vertices cannot be clustered
with clear results according to a SBM. In the literature , these vertices are called
irrelevant or noisy vertices [5, 6]. Moreover, the irrelevant vertices can disturb the
inference process of the relevant vertices which can be clustered according to a
SBM [7]. So, we would prefer to identify these irregular vertices before or during
the inference process to avoid biased results.
The normal SBM offers no dedicated mechanism to model the irrelevant vertices.
The best we can hope for is to group these vertices in one cluster and keep them in
this cluster during the optimisation. This requires an inference mechanism which
locks these vertices in one cluster. An inference algorithm which has this property
for the SBM was proposed in [7, 8] with the Blockloading algorithm. Neverthe-
less, the irrelevant vertices are not modelled explicitly by the SBM and the danger
of over–or under fitting the number of clusters remains, which can lead to inferior
results.
We propose the Weighted Stochastic Block Model with Irrelevant Vertices (SB-
MIV) to address these limitations of the SBM. The SBMIV builds on the Subset
Infinite Relationals Model (SIRM) introduced by [6]. The SIRM an extension of
the Infinite Relational Model (IRM) introduced by [9] as a variant of the SBM with
an unlimited number of clusters. The SIRM builds on work presented in [10], [11]
and [5], [6]. Vertices with irregular and sparse edge connections, which are hard
to cluster according to the IRM, are considered as irrelevant in the SIRM, whereas
vertices which could be clustered according to the IRM are considered as relevant.
A hidden variable Ri is introduced for each vertex, with Ri = 1 if the vertex is
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relevant and Ri = 0 if it is irrelevant. The edge connections of the irrelevant ver-
tices with all other vertices of the network are generated with the same parameter
which is distributed according to a Beta prior distribution. The SIRM is a model
for networks with simple and unweighted edges. Contrary to the SBM, a Chinese
Restaurant (CRP) Prior [12] is set for the proportions of the number of vertices in
the clusters in the IRM. It was noted in [6], that the use of the CRP prior for the
proportions of clusters sizes in the IRM favours the emergence of minute clusters
and also can lead to biased results of the cluster assignment when irrelevant ver-
tices are present in the network. On the other hand, non–informative priors are set
on the size proportions in the Bayesian variant of the SBM [13, 7].
For inference of the SIRM, a Gibbs Sampling algorithm was proposed by [6],
which samples the cluster and relevance assignment of vertices together.
We adopt an extension of our Blockloading algorithm for inference of the SBMIV
which we call Relevance Blockloading. The Blockloading algorithm builds on an
adopted Variational Bayesian Expectation Maximization (VBEM) algorithm and it
was shown in [7] that it outperforms Spectral Clustering of [14], collapsed Gibbs
Sampling of [15] and greedy algorithms [16].
We propose an algorithmic framework which allows the use of the Integrated Like-
lihood Varitational Bayes (ILVB) criterion of [17, 13] (see eqn. 108 in appendix
B.1 as a model selection criterion for the number of clusters of the SBMIV. Our
Relevance Blockloading algorithm offers a fully Bayesian inference process based
on the use of informative prior parameters, which is independent of other algo-
rithms for finding a start cluster assignment of the vertices. We propose an original
way for the choice of informative priors on the relevance of the vertices, which al-
lows us to calculate the relevance of vertices in the first iteration of the algorithm.
This procedure for finding the relevant vertices as a first step is only dependent
on the choice of the informative prior parameters and will yield the same result
when initialised with the same informative priors. So, for this filtering of vertices
restarts with different initial relevance assignments are unnecessary. An approach
for the selection of relevant features with informative priors in Variational Bayesian
framework was also proposed in [5].
In the literature it is differentiated between three main algorithmic frameworks for
determining the relevant vertices [5]: There is the filtering approach where the in-
ference of relevant vertices where the inference of the relevance of the vertices is
calculated in a separate step from the assignment of relevant vertices to the clus-
ters. Second there are embedded algorithms where the relevance classification and
the cluster assignment are combined in one step, the subset clustering methods of
[11, 5, 6] are examples of the embedded method. Lastly, there are wrapper meth-
ods which are feature selection algorithms which ’wrap feature search around the
learning algorithms that will ultimately be applied’ [5].
We will propose both a filtering and an embedded variant of the Relevance Block-
loading algorithm and compare them in numerical tests. Both of our algorithmic
variants allow for a step by step expansion of the number of relevant vertices in a
network partition which is growing during the inference process. This algorithmic
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procedures makes the Relevance Blockloading algorithm more efficient than pre-
vious variational methods.
We developed the SBMIV and its Relevance Blockloading inference framework
with special regard to the model based clustering of Earthquake Networks.
Earthquake Networks, which were introduced in [18], are an example of the afore-
mentioned real world networks with no known ground truth but a large number
of sparsely and irregular connected vertices which renders the reliable inference
with a model based clustering approach difficult. We will show, that our Relevance
Blockloading algorithm of the SBMIV outperforms the best existing variational
inference method for the clustering of networks, the Blockloading algorithm of
[7].

2 Model

2.1 Stochastic Block Model

We shortly review the Stochastic Block Model (SBM) for graphs with discrete pos-
itive edge weights. The SBM was introduced in [4]. Following [2, 3] a Variational
Bayesian algorithm to solve this model was proposed by [13]. A variant of the
SBM with positive and discrete edge weights together with a Variational Expec-
tation Maximization algorithm was proposed in [19]. This variant of the SBM
was introduced in [19] and discussed from a Bayesian perspective in [7]. A graph
G = (V,E) consists of a set V of N vertices or vertices and a set of (directed) edges
E connecting the vertices. The edges connecting the vertices are given by an ad-
jacency matrix AAA. If there is an edge from vertex i to vertex j it is Ai j = w, where
w 2 (0,1,2, . . .) is a discrete valued weight. If there is no edge from vertex i to
vertex j, it is Ai j = 0. In this paper we well consider directed and weighted graphs
unless otherwise stated.
The following Stochastic Block Model (SBM) was introduced in [19] as an algo-
rithm for generating graphs and builds on the simple edge version of the SBM of
[2]. We assume that AAA was generated by the SBM. The SBM assigns the vertices
V of the graph depending on their connection probability patterns to clusters. The
SBM consists of K clusters. To each vertex i, the SBM assigns a unique cluster
membership. A vertex belongs to cluster k with probability pk with ÂK

k=1 pk = 1.
The cluster membership is given by the random variable ZZZi 2 R1⇥K , with Zik = 1 if
i is an element of cluster k and Zik = 0 otherwise. ZZZ is the N ⇥K cluster indicator
matrix with matrix rows ZZZi for i 2 {1, . . . ,N}. An edge exists within each cluster
k with a weight according to the rate lkk and between cluster k and l with the rate
lkl . So, the weighted Poisson SBM is generated in the following way ([17, 7]):
(i) Roll a k – sided dice with p(i 2 k|Zik = 1) = pk for side k for each vertex i, to
determine the unique cluster membership of the vertex.
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(ii) Draw a realization from

f (·;lkl) =
l Ai j

kl
Ai j!

exp(�lkl) , (1)

for the edge Ai j from vertex i to vertex j, with i 2 k and j 2 l. Then, the joint
probability for directed graphs is:

p(AAA,ZZZ,ppp,lll ,K) =
N

’
i6= j

K

’
k,l

f (Ai j;lkl)
ZikZ jl

N

’
i=1

K

’
k=1

pZik
k . (2)

The results of the clustering are easily interpretable. The prediction of new edges
with this model follows naturally from the estimated parameters. Variants of the
SBM for simple graphs exist [4, 2]. For example it is possible to replace the Poisson
distribution in (2) with a Bernoulli distribution [2, 1]. Using the Poisson distribu-
tion also works for unweigthed graphs. In the following, we call this SBM the
Poisson SBM contrary to the Bernoulli SBM of [2].

2.2 The Stochastic Block Model with Irrelevant Vertices

We propose the weighted Stochastic Block Model with irrelevant vertices (WSB-
MIV). We build on the Subset Infinite Relational Model (SIRM) proposed in [6]
for networks with simple edges and following [19] we use the Poisson distribution
to generate weighted edges in the SBM. We consider a network with N vertices.
Following [6], each vertex i is considered relevant with the probability of fi 2 [0,1].
Thus, the relevance, RRR, of the vertices is generated according to

p(Ri|fi) =
N

’
i=1

f Ri
i (1�fi)

(1�Ri). (3)

If Ri = 1, the cluster membership Zi of vertex i is determined acceding to

p(ZZZ|p,RRR) =
N

’
i=1

 
K

’
k=1

pRiZik
k

!
. (4)

Otherwise the vertex is not considered as cluster able and there is no cluster as-
signment for that vertex. The cluster membership is a ZZZi 2 RK⇥1 vector. For all
pairs of vertices (i, j) 2 {1, . . . ,N}2, where Ri = 1 and R j = 1 holds, we generate
the edges between those vertices dependant on their cluster assignments, ZZZi and
ZZZ j, according to

p(AAA|ZZZ,RRR,lll ) =
N

’
i, j
i 6= j

K

’
k,l

 
l Ai j

kl
Ai j!

exp(�lkl)

!ZikZ jlRiR j

. (5)
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If one vertex is or both vertices of the vertex pair (i, j) are irrelevant, the edges
connecting this pair of vertices are generated with the same rate g , so

p(AAA|RRR,g) =
N

’
i, j
i 6= j

✓
gAi j

Ai j!
exp(�g)

◆(1�RiR j)
. (6)

These considerations lead to the complete likelihood of the WSBMIV, for better
readability we define J = (lll ,ppp):

p(AAA|ZZZ,RRR,JJJ ,fff ,g) =
N

’
i, j
i6= j

K

’
k,l=1

0
@
 

l Ai j
kl

Ai j!

!RiZikR jZ jl

exp
�
�RiR jZikZ jllkl

�
1
A

N

’
i=1

 
K

’
k=1

pRiZik
k

!

N

’
i 6= j

 ✓
gAi j

Ai j!

◆(1�RiR j)

exp(�(1�RiR j)g)

!
N

’
i=1

⇣
f Ri

i (1�fi)
(1�Ri)

⌘
.

(7)

In the case of an undirected network, the product over all i, j is replaced with the
product over i < j . We generate a network according to the WSBMIV in the fol-
lowing way (cf. [17]):

Generation of Weighted SBM with irrelevant vertices (i) Flip a biased coin
for each vertex i 2 {1, . . . ,N}. With the probability fi the vertex is considered
relevant, Ri = 1, and otherwise irrelevant, Ri = 0.
(ii) Roll a K–sided dice with p(i2 k|Zik = 1,Ri = 1) = pk for side k for each vertex
i to determine the exclusive cluster assignment of the vertex.
(iii) Draw a realisation from f (·,lkl) for the edge Ai j from vertex i to vertex j for
all relevant vertices (Ri = 1 and R j = 1) and cluster memberships i 2 k, j 2 l.
(iv) For all vertices i, j with Ri = R j = 0, Ri = 1 and R j = 0 or Ri = 0 and R j =
1, draw realisation from g(·|g) for the edge Ai j. The increased flexibility of the
SBM concerning the proportions of the cluster sizes compared to the IRM also
applies to (W)SBMIV. In the next section, we will address the Bayesian view of
the WSBMIV.

2.3 Bayesian View of the SBMIV

To prepare the inference with Variational Bayesian EM methods, we state the
Bayesian view of the SBMIV. The idea of the Bayesian treatment of the SBM is to
set prior distributions for unknown parameters of the WSBMIV, QQQ = (lll ,ppp,fff ,g).
So, the parameters are treated as random variables. For the simple edge Bernoulli
SBM, this idea was used in [2, 13] with conjugate prior distributions. The SIRM
is also a Bayesian model [6] which allows the use of conjugate priors. Like in the
SIRM, we place a Beta(fi; z 0

i ,h0
i ) prior distribution on the parameters fi which are
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conjugate to the Bernoulli distribution and a Gamma(g; a0
g ,b 0

g ) prior distribution
on rate of the irrelevant edges, g , which is conjugate to the Poisson distribution.
Following [2, 17, 13], a Dirichlet Dir(ppp; ddd 0) prior distribution, which is conjugate
to the Multinomial distribution of the cluster assignments, is place on the parame-
ter ppp . Finally, we place a Gamma(lkl; a0

kl,b
0
kl) prior distribution on the parameters

lkl [7]. We sum up the Bayesian treatment of the WSBMIV as:

fi ⇠ Beta(fi; z 0
i ,h0

i ) ⌘ p(fi), (8)

ppp ⇠ Dir(ppp; ddd 0) ⌘ p(ppp), (9)

g ⇠ Gamma(g; a0
g ,b 0

g ) ⌘ p(g), (10)

lkl ⇠ Gamma(lkl; a0
kl,b

0
kl) ⌘ p(lkl). (11)

The model generation of the Bayesian SBMIV is the same as in section 2.2, except
that the model parameters have to be drawn from their respective prior distributions
first, before generating the relevance assignment in (i), the cluster assignment in (ii)
and the edges in steps (iii) and (iv).

3 Inference of the SBMIV

3.1 Variational Bayesian EM Inference

In the previous sections (2.2, 2.3), we explained the generation of a network ac-
cording to the Poisson SBMIV. Now, we treat the inverse problem of clustering
a given network according to the SBMIV. For a network given given by the ad-
jacency matrix AAA, we want to infer the latent variables ZZZ and RRR and the unknown
parameters QQQ = (lll ,ppp,g,fff) of the SBMIV. We use a Variational Bayesian Expecta-
tion Maximization (VBEM) framework ([20, 21, 22, 17, 13]) to optimise the latent
variables and unknown parameters of the negative log-likelihood of the SBMIV,
� ln p(AAA|K). The aim of the VBEM algorithm is to approximate the intractable
negative log-marginal-likelihood,

� ln p(AAA|K) = Â
ZZZ,RRR

Z
p(AAA,QQQ,ZZZ,RRR)dQQQ, (12)

with a tractable distribution q(·). Then, an upper variational bound of � ln p(AAA|K),
also called Free Energy [23, 17], dependent on the variational distribution q(ZZZ,RRR,QQQ)
is derived with Jensen’s inequality [23, 24, 17] .
To achieve a tractable variational distribution q(·) for the solution of log–likelihood
of the SBMIV, we use the mean–field assumption of [17, 13] in the following
way: q(ZZZ,RRR,QQQ) = q(g)q(ppp)’N

i=1 q(fi)’K
k,l q(lkl)’N

i=1 q(ZZZi)’N
i=1 q(RRRi). We do

not have to assume a functional form for the variational distributions q(·) but can
infer the functional form of each distribution q(·) from the optimisation of the lower
bound [24]. We calculate the variational bound of the negative log–likelihood,
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where we omit K for the sake of brevity, in the following way:

� ln p(AAA|K) = � ln Â
ZZZ,RRR

Z
p(AAA,ZZZ,RRR,lll ,ppp,fff ,g)dQQQ (13)

= � ln Â
ZZZ,RRR

Z p(AAA,ZZZ,RRR,QQQ)

q(ZZZ)q(RRR)q(QQQ)
q(ZZZ)q(RRR)q(QQQ)dQQQ (14)

�Â
ZZZ,RRR

Z
ln
✓

p(AAA,ZZZ,RRR,QQQ)

q(ZZZ,RRR,QQQ)

◆
q(ZZZ,RRR,QQQ)dQQQ (15)

⌘ F (q(ZZZ,RRR,QQQ)) . (16)

We provide the Free Energy of the SBMIV in Proposition 7. Now, we optimise
the Free Energy (variational bound) dependent on the variational distributions q(·).
The VBEM algorithm has an EM–like structure for the optimisation of the vari-
ational bound F with respect to the variational distribution q(·). The VBEM al-
gorithm consists of two main steps: In the Expectation Step (E–step), the latent
variables are optimised. In the Maximization Step (M–step), the parameters QQQ are
updated.
In the case of the SBMIV, we want to infer two different types of latent variables
RRR and ZZZ. Each variable ZZZi depends on the variable Ri in the SBMIV. The same sit-
uation applies to the SIRM of [6], where a Gibbs sampling approach was proposed
in which the variables Ri and ZZZi are sampled together ([6]).
We propose an original algorithm to solve the SBMIV with the VBEM framework.
We start with the M–step and calculate the optimal update of q(QQQ) = q(lll ,ppp,fff ,g)
at step t where we keep q(t)(ZZZ) and q(t)(RRR) fixed:

{q(t+1)(QQQ)} = arg min
{q(QQQ)}

F
⇣

q(t)(ZZZ),q(t)(RRR),q(t)(QQQ)
⌘

. (17)

We provide the update equations for the variational distributions of the parameters
q(t+1)(QQQ) in the following propositions.

Proposition 1. The optimisation of the variational bound F [q(ZZZ,RRR,QQQ)] with re-
spect to q(fi) shows, that q(fi) has the functional form of a Beta(fi;zi,hi) distribu-
tion. It has the same functional form as the prior distribution p(fi) = Beta(fi;z 0

i ,h0
i ).

The hyperparameters zzz and hhh for the partition vector of relevant vertices rrr are:

zi =ri +z 0
i (18)

hi =(1�ri)+h0
i . (19)

Proof. See appendix A.

Proposition 2. The optimisation of the variational bound F [q(ZZZ,RRR,QQQ)] with re-
spect to q(ppp) shows, that q(ppp) has the functional form of a Dirichlet Dir(ppp;ddd )
distribution. It has the same functional form as the prior distribution p(ppp) =
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Dir(ppp;ddd 0). The hyper parameters dk;k 2 {1, . . . ,K} for the relevance partition
vector rrr and the cluster partition matrix QQQ are:

dk =
N

Â
i=1

riQik +d 0
k . (20)

Proof. See appendix A.

Proposition 3. The optimisation of the Free Energy (lower variational bound)
F [q(ZZZ,RRR,QQQ)] with respect to q(g) shows, that q(g) has the functional form of a
G(g;ag ,bg) distribution. It has the same functional form as the prior distribution
p(g) = G(g;a0

g ,b 0
g ). The hyperparameters ag and bg for the partition matrix QQQ

are:

ag =
N

Â
i, j

i 6= j

(1�rir j)Ai j +a0
g , (21)

bg =
N

Â
i, j

i 6= j

(1�rir j)+b 0
g . (22)

Proof. See appendix A.

Proposition 4. The optimisation of the Free Energy (lower variational bound)
F [q(ZZZ,RRR,QQQ)] with respect to q(lkl) for all (k, l) = {1, . . . ,K}2 shows, that q(lkl)
has the functional form of a G(lkl;akl,bkl) distribution. It has the same functional
form as the prior distribution p(lkl) = G(lkl;a0

kl,b
0
kl). The hyperparameters akl

and bkl , 8(k, l) = {1, . . . ,K}2, for the partition matrix QQQ are:

akl =
N

Â
i 6= j

rir jQikQ jlAi j +a0
kl, (23)

bkl =
N

Â
i 6= j

rir jQikQ jl +b 0
kl. (24)

Proof. See appendix A.

These propositions show, that the variational distributions q(·) have the same
functional form as the prior distributions p(·) of section 2.3 .
We continue the optimization of the Free Energy with respect to the latent variables
in the E–step. The optimization of the Free Energy with respect to q(ZZZ) in Propos-
tion 5 shows, that q(ZZZ) has the functional form of a Multinomial distributions.

Proposition 5. The optimisation of the Free Energy (lower variational bound) with
respect to q(ZZZi);8 i = 1, . . . ,N, {q?(ZZZi)} = arg min

{q(ZZZi)}
F (q(ZZZ),q(RRR),q(QQQ)), shows

that q(ZZZi) has the functional form of a multinomial distribution:

q(ZZZi) = M (Zi;1,QQQi = {Qi1, . . . ,QiK}) . (25)
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The update equation for E(Zik) = Qik, 8(i,k)2 {1, . . . ,N}⇥{1, . . . ,K} is given by:

Qav µexp
⇣ N

Â
i=1
i6=a

K

Â
q,l

riraQiqAaiE(lnlvq)+
N

Â
i=1
i6=a

K

Â
q,l

riraQiqAiaE(lnlqv)

�
N

Â
i=1
i 6=a

K

Â
q=1

rariQiq
�
E(lvq)+E(lqv)

�
+raE(lnpv)

⌘
, (26)

where E(lnlql) = y(aql)� ln(bql), E(Ra) = ra, E(lql) =
aql
bql

, E(lnpq) = y(dq)�
y
�

Â
�
ÂK

l=1 dl
��

and y(·) is the Digamma function.

Proof. See appendix A.

The cluster assignment is a fuzzy–update in eqn. 26, where a probability Qak 2
[0,1] is given for the cluster membership of vertex a in cluster k. We show in the
next Proposition that the variational distribution q(Ri) has the functional form of a
Bernoulli Ber(Ri;ri) distribution.

Proposition 6. The optimisation of the Free Energy (lower variational bound) with
respect to q(Ri);8 i = 1, . . . ,N, {q?(Ri)} = arg min

{q(Ri)}
F (q(ZZZ),q(RRR),q(QQQ)), shows

that q(Ri) has the functional form of a Bernoulli distribution:

q(Ri) = Ber(Ri;ri). (27)

The update equation for E(Ri) = ri,8i 2 {1, . . . ,N} is given by:

r?
a =

1
1+ exp(�Ua)

, (28)

with

Ua ⌘
N

Â
i=1
i 6=a

K

Â
q,l

riQiqQalAiaE(lnlql)+
N

Â
i=1
i6=a

K

Â
q,l

riQilQaqAaiE(lnlql)

�
N

Â
i=1
i6=a

K

Â
q,l

riQiqQalE(lql)�
N

Â
i=1
i6=a

K

Â
q,l

riQilQaqE(llq)�E(lng)
N

Â
i 6=a
i=1

ri(Aia +Aai)

+2E(g)
N

Â
i=1
i 6=a

ri +E(lnfa)�E(ln(1�fa))+
K

Â
q=1

QaqE(lnpq), (29)

where E(loglvk) = y(avk)� log(bvk), E(lvk) = avk
bvk

, E(lng) = y(ag)� ln(bg),
E(Zik) = Qik, E(pq) = y(dq)�y

�
Â
�
ÂK

l=1 dl
��

= Gq, E(lnfa) = y(za)�y(za +
ha), E(ln(1�fa)) = y(ha)�y(za +ha) and y(·) is the Digamma function.

Proof. See appendix A.
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The update of the relevance assignment of vertex a, ra in eqn. 28, is also a
fuzzy–update like the update of the cluster assignment, Qak;8k2 {1, . . . ,K}, above,
which gives us the expected value of the relevance of vertex i, ri. The fuzziness
of rrr poses a problem for the update equation of the cluster assignment (eqn. 26),
because it can lead to a bias.
We introduce the following rule to get a hard assignment of the relevance of vertex
i dependent on r?

i : If ri � 0.5 we set ri = 1 and otherwise we set ri = 0. This rule
is inspired by the Classification EM algorithm (CEM algorithm) of [25], where
such a hard clustering is also used.
If we want to optimise the relevance, Ri, and cluster assignment, ZZZi, of vertex i, we
have to deal with two cases: The first case is, that i is relevant and therefore ri = 1
holds. In the case of ri = 1, the update of QQQi is the same as for the normal Poisson
SBM (see [7]) or appendix B.1 and we can use the update equation for the cluster
assignment of relevant vertices eqn. 26 in a straightforward way.
If on the other hand ri = 0 holds, we have to be careful with the update of QQQi. In
this case, it follows that Qik = 1

K , 8k 2 {1, . . . ,K} which also gives biased results
for the update of QQQa with 8a 6= i. It also affects the update of ri, which is given
in eqn. 28 and 29 of Proposition 6. Moreover, from a perspective of the model
(section 2.2) there is no cluster assignment for irrelevant vertices which leads to
the conclusion that we should set Qik ⌘ 0, 8k 2 {1, . . . ,K}.
If we set the cluster partition matrix entries of the irrelevant vertices to zero, we
can see that the update of ri only depends on the last for terms of eqn. 29. Thus the
update is dominated by the term E(g)ÂN

i6=a ri(Aia +Aai). We found, that this leads
automatically to the update ri = 1, which is obviously wrong. So, we propose
to calculate a cluster assignment Qil;8l 2 {1, . . . ,K} for the purpose of finding
an unbiased relevance update first. There are different possibilities to assign the
vertex i to a cluster in the case of ri = 0. We could set ri = 1 and calculate the
updates of Qil;8l 2 {1, . . . ,K} according to eqn. 26 in Proposition 5, but with this
approach, we would merge the irrelevant vertex i with a vertices in a cluster which
were separated in previous iterations of the algorithm. Nevertheless this approach
worked for all tests. We found that a better way is to limit the optimisation of the
cluster assignment to the assignment to irrelevant status or to a newly introduced
extra cluster. We provide the details in section 3.3.3. We found that this approach
to fit the aim of the SBMIV model and it returned the best results.
So, in all cases, we calculate or set a preliminary cluster assignment of the vertex
which is currently optimised to get a relevance assignment. Now, we can update
ri without the bias of missing terms because of Qil = 0;8l 2 {1, . . . ,K} or biased
cluster assignments because of Qil = 1

K ;8l 2 {1, . . . ,K}. If the update yields r?
i =

1, we keep the updated cluster assignment Q?
il , on the other hand, if r?

i = 0 holds,
we set Q?

il = 0;8l 2 {1, . . . ,K}.
We conclude that we have to begin with the update of the cluster assignment QQQa,
with ra set to one in all cases, and then we can proceed with the update of ra

dependent on the outcome of the update of QQQa. After these two updates, we adjust
QQQa: If r?

a = 1 holds we keep the update of QQQ?
a, if otherwise r?

a = 0 we set Q?
al =
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0;8l 2 {1, . . . ,K}. This way, the update of ra is unbiased by missing terms of QQQa
in the case of ra = 0.
With these preparations we can state the E–step of the SBMIV, which consists of
two parts, with the optimisation with respect to the cluster assignment of vertex i

{q(t+1)(ZZZi)} = arg min
{q(ZZZi)}

F
⇣

q(t)(ZZZ),q(t)(RRR),q(t+1)(QQQ)
⌘

, (30)

and the relevance assignment of vertex i, given by

{q(t+1)(RRRi)} = arg min
{q(RRRi)}

F
⇣

q(t+1)(ZZZ),q(t)(RRR),q(t+1)(QQQ)
⌘

. (31)

Our VBEM algorithm now consists of the iterations of the update equations ?? in
the E– and M–step until the maximum number of iterations is reach or the Free
Energy has converged,

F [q(t)(ZZZ),q(t)(RRR),q(t)(QQQ)]�F [q(t+1)(ZZZ),q(t+1)(RRR),q(t+1)(JJJ)] < T, (32)

where T is a predefined threshold. We sum up the algorithm in B in the appendix.
This inference algorithm is an embedded algorithm, because the inference of the
relevance and cluster assignment of each vertex is calculated together in the E–
step ([5]). Our VBEM framework also allows us to calculate the relevant vertices
in a separate filtering step where we skip the calculation of the cluster assignment.
Then we continue the inference of the cluster assignment for the relevant vertices
and skip the inference for the irrelevant vertices. This is a filtering algorithm where
the inference of relevance and cluster assignment of the vertices are separated [5].
We will describe both inference schemes in detail below.
To start the inference process of the VBEM in the M–step (or alternatively in the
E–step), we need a hard assignment of the relevance, ri, for each vertex i and a
fuzzy or hard cluster assignment, Qi, for each relevant vertex i. We can also use
randomly initialised assignments for both latent variables. In this case, we need
appropriate informative prior parameters for the prior distributions. The quality
of the results is highly dependent on a good choice of these start values. We will
address this issue in detail in the section 3.3.2.
We also need a model selection criterion for the number of clusters. There exist
three well established model selection criteria for the normal SBM: The asymptotic
Integrated-completed-likelihood (ICL) of [26, 1, 19], the variational Integrated
Likelihood variational Bayes (ILvb) criterion of [17, 13] and the non–asymptotic
exact ICL of [16].
The ILvb is the value of the Free Energy of the SBM with non-informative pri-
ors after convergence [13]. Then the optimal number of clusters is chosen for the
result with the optimal value (highest or lowest) of the Free Energy after conver-
gence. We also tried this approach with the Free Energy of the SBMIV. We found
that this approach gives biased results and leads to results where all vertices are
considered irrelevant. We found an original way to use the ILvb as a model selec-
tion criterion where we use our Blockloading algorithm [7]. We will present this
algorithm in detail in section 3.2.
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3.2 Review of the Blockloading algorithm for the SBMIV

It can now be considered state of the art for the inference procedure of the SBM
and related models, to choose subsets of the set of vertices of the network and to
optimise these subsets with the cluster assignment of the other vertices kept fixed
[27, 28, 7, 8]. A special place take variational algorithms which are able to optimise
the number of clusters after [28] or during [7, 8] the inference process of the SBM.
We will propose an inference algorithm based on our Blockloading algorithm [7]
for the SBMIV in the next sections, which we call Relevance Blockloading.
We shortly review the Blockloading algorithm and its terminology (for a detailed
discussion see [7, 8]). Then we propose an adaption of the Blockloading algorithm
to the SBMIV.
We start with a cluster partition where all vertices are in one cluster and calculate
the reference Free Energy, F(re f ), of this cluster. We expand the cluster partition
matrix to two clusters by applying the VBEM algorithm for the Poisson SBM of
[7] to two clusters. If the Free Energy of the resulting partition, F(trial), is lower
than F(re f ), e.g. improves F(re f ), we update the reference cluster partition matrix
and the parameters with the new results for two clusters.
After the Initialisation of the algorithm, we choose an active cluster of the reference
partition. The choice of the active cluster can severely affect the outcome of the cal-
culation for networks with sparsely connected vertices [7]. We introduced the max-
imum probability strategy (max–prob–strategy) in [7], which lets us select the
cluster max

l
ÂK

l=1 E(lla) + ÂK
l=1
l 6=a

E(lal) = ÂK
l=1

aal
bal

+ ÂK
l=1
l 6=a

ala
bla

, 8l 2 {1, . . . ,K} ⌘ la
as the active cluster. For other ways to select the active clusters see [7]. When
we employ the max–prob–strategy, sparsely connected vertices are grouped in one
cluster for the first iterations of the Blockloading algorithm [7]. The result is that
sparsely connected vertices with low edge weights are kept in one extra cluster of
the SBM. This property of the Blockloading algorithm leads easily to an adaption
of the Blockloading inference scheme to the SBMIV, where this extra cluster of
sparsely connected vertices is modelled explicitly.
In the Refinement Step, we check if vertices of the active cluster can be assigned
to other cluster of the existing reference partition to improve the Free Energy. A
detailed description of the Refinement Step can be found in [7].
After the Refinement Step, we determine the active cluster again. We then try to
expand the active cluster into two new clusters to lower the reference Free Energy,
like in the initialisation of the algorithm. If no improvement in either Expansion
or Refinement Step was reached for all clusters of the existing partition, the Block-
loading algorithm has converged. We sum up the Blockloading in the following
overview:

Blockloading algorithm:
Input.–Adjacency matrix AAA.
Result–Cluster partition matrix QQQ(re f ), number of clusters K(re f ) and parameters
J (re f ).
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(i) Blockloading Initialization.
Main Loop.
(ii) Refinement Step.
(iii) Expansion Step.
(iv) Check for Convergence of all clusters.

One of the advantages of Blockloading compared to other variational methods is,
that the existing optimal partition for lower number of clusters beginning with one
cluster is reused as start value partition in the following iterations of expansion and
refinement. Therefore local optima are inferred one by one by the algorithm. An
additional reason for the greatly improved performance is the max–prob–strategy
for the choice of the active cluster mentioned above.

3.3 Relevance Blockloading Algorithm

To expand our Blockloading algorithm to the SBMIV we need a model selection
criterion to evaluate the outcome of the calculation of the Initialization, Expansion
and Refinement Step. A model selection for the SBMIV has to take into account,
that vertices can enter or leave the relevant part of the cluster partition during the
inference process. This fluctuation of vertices between relevant and irrelevant state
also affects the calculation of the variational bound of the SBMIV and renders it
inconsistent as a model selection criterion for the SBMIV. We discuss and propose
a model selection criterion in section 3.3.1. We also need an algorithm to initialise
the cluster of irrelevant vertices. This initialisation should be done early in the
inference process to save computational time. We present the Initialisation of the
Relevance Blockloading algorithm in section 3.3.2.
After the convergence of the Blockloading algorithm for the clusters of relevant
vertices in the SBMIV, we check if the set of relevant vertices can be increased
by changing the status of irrelevant vertices to relevant. We propose the relevance
Expansion Step in section 3.3.2 for the Relevance Blockloading algorithm where
we check if the the cluster or irrelevant vertices can be divided into an additional
relevant cluster and an irrelevant cluster with a diminished number of vertices.

3.3.1 Model Selection for the SBMIV

We described in section 3.3 that we can not use the Free Energy of the SBMIV be-
cause the optimal value of this Free Energy is achieved through a partition where
all vertices are considered as irrelevant. We found an original way to use the ILvb
of [17, 13] for the vertex partitions returned by the VBEM inference with Block-
loading. We consider the set of irrelevant vertices, ri = 0; 8i2 {1, . . . ,N} as special
cluster and build the combined cluster partition matrix with the cluster assign-
ments of the relevant vertices and a vector R which indicates the irrelevant ver-
tices with Ri = 1�ri; 8i 2 {1, . . . ,N}. This combined cluster partition matrix is a
QQQ(c) 2 RN⇥K(re f )+1 matrix.
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Then we calculate the Poisson ILvb [7], which is repeated for convenience in the
BlockVB algorithm in appendix B.1, for the combined cluster partition matrix QQQ(c).
This Free Energy is the Reference Free Energy, F(re f ). The Blockloading frame-
work is now used to check for the possibility of Refinement and Expansion of
the combined cluster partition QQQ(c) measured by the Free Energy of the combined
cluster partition. This is also true if we do the Expansion Step of the cluster of
the irrelevant vertices (see section 3.3.2). Before we do the expansion step for the
cluster of irrelevant vertices, we calculate the Free Energy of the current combined
partition, QQQ(c), then expand the cluster of the irrelevant vertices if possible with the
help of the embedded BlockVB algorithm. We remark that the irrelevant vertices
influence the model selection criterion.

3.3.2 Initialisation and Start Values for Relevance Blockloading

We need start values for the expected relevance of the vertices, rrr , and a start cluster
assignment of the relevant vertices QQQ(start). In [7], we demonstrated that the optimi-
sation starting with the clusters with the overall highest density connections leads
to the best results for network with a high variance of edge connection probabili-
ties. We want to transfer this approach to the inference of the SBMIV and therefore
exclude irrelevant vertices at the beginning of the inference process, preferably in
the first iteration of the inference algorithm.
We start the Blockloading algorithm with all vertices in one cluster and all vertices
are set relevant, e.g. ri = 1; 8i 2 {1, . . . ,N}. We calculate the reference Free En-
ergy, F(re f ), of this partition, which for this case is the Poisson ILvb repeated for
convenience in appendix B.1 (see also [7]).
We recall that we aim to identify sparsely connected vertices with an uniform con-
nection to the relevant part of the network. These irrelevant vertices are modelled
by a SBM where the irrelevant vertices are connected with the same rate to all
other vertices of the network (see section 2.2). We want to set special prior param-
eters for the Gamma(g;a0

g ,b 0
g ) prior distribution to model this edge connection

profile of irrelevant vertices. We note that informative priors to set the variance of
a Beta distribution for identifying relevant local and global features in a Variational
Bayesian framework was used in [5] for their feature selection algorithm. We have
to consider, that in most real world networks like the Earthquake Network we will
present in section 4, we found that the vertices with sparse connection behaviour
to have of course some variance of the probabilities for edge existence. Therefore
we set the prior parameter a0

g = 1. A Gamma(g;1,b 0
g )–distribution has the form

of an exponential distribution [24], which covers a wide possibility of possible val-
ues for the parameter g . To link this Gamma prior distribution to the constant rate
parameter of the irrelevant part of the SBMIV Graph, we calculate the parameter
b 0

g so that the expectation value of g , E[g], is equal to the expected value of the
same parameter for an SBM with all vertices in one cluster. So, we calculate the
SBM with all vertices in one cluster which yields the parameters of the edge rate,
aER and bER, which we calculate according to proposition 9. The Poisson SBM
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with all vertices in one cluster is a special case of the Erdös–Rényi–Graph (ER–
Graph) [29], so we gave the parameters the suffix ER. With the help of these two
parameters we see that

1
b 0

g
=

aER

bER
) b 0

g =
bER

aER
. (33)

Thus, we have a g ⇠ Gamma(g;1, bER
aER

)–prior–distribution which has the form of

an exponential distribution and E[g] = bER
aER

.
Now that we have calculated the prior distributions for the irrelevant vertices, we
can run our Relevance BlockVB algorithm for the SBMIV (see appendix B) for all
vertices set to relevant and and all vertices in one cluster with the Relevance-priors�
1,b 0

g
�

calculated above.
We note that because all vertices are in one cluster we do not need to calculate a
cluster assignment. Our Relevance–prior parameters play the role of start values.
The Relevance Initialisation returns the relevant vertices, which are grouped to-
gether in one cluster and the irrelevant vertices.
Now, we calculate the Free Energy, F(trial), of the combined cluster partition ma-
trix, QQQ(c) 2 RN⇥2, which is set up according to section 3.3.1. If F(trial) < F(re f )

holds, we apply the Blockloading algorithm to the relevant vertices returned by
our Relevance BlockVB algorithm.
Another algorithmic approach is to apply the normal BlockVB algorithm for the
Poisson SBM of [7] (see also appendix B.1 to the active clusters of the relevant
vertices. This algorithmic variant leads to the Filtering Relevance Blockloading
algorithm.
We emphasise that we do not need repeated initialisations for different start values
with this inference. We remark that this is a tremendous advantage compared to all
other variational algorithms we are aware of, which all need repeated initialisations
to some extent. This is especially important for large networks. We sum up our
initialisation in algorithm:

Relevance Initialisation
Input.–Adjacency matrix AAA. Cluster partition matrix with all vertices in one cluster.
Result–Initialisation of relevant and irrelevant vertices.
(i) Calculate the ER parameters for all vertices in one cluster.
(ii) Calculate the Relevance Priors.
(iii) Apply the Relevance BlockVB algorithm of appendix B with the Relevance
priors.

We always calculate the reference Free Energy, F(re f ), and the trial Free Energy,
F(trial), of the combined partition matrix, QQQ(c) 2RN⇥K(re f )+1. When the Blockload-
ing algorithm for the relevant vertices has converged, we can check if the set of
relevant vertices can be expanded. To do this we use our newly introduced Rele-
vance Expansion Step in section 3.3.3.
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3.3.3 Relevance Expansion Step and Convergence

After the convergence of all active clusters with relevant vertices we proceed by
setting the irrelevant vertices to active. For the expansion of the set of relevant
vertices, we use the same framework as in the Relevance Initialisation Step with
some adaptions. The main idea stays the same of setting back all vertices back
to relevant status and grouping them in a new cluster.Therefore we build the com-
bined partition matrix, QQQ(c), and set all vertices to relevant. Then we use the current
reference parameters of the irrelevant cluster,

⇣
a(re f )

g ,b (re f )
g

⌘
, returned by the last

iteration of the Blockloading inference for the relevant vertices, to determine the
Relevance–prior parameters following eqn. 33.
We set all vertices in the irrelevant clusters to active and start the inference with
the Relevance BlockVB algorithm for the combined partition matrix, QQQ(c) and the
Relevance priors.
We only set irrelevant vertices to the added irrelevant cluster of the combined clus-
ter partition matrix, QQQ(c), in the E – step and don’t do a full optimisation of the
cluster partition matrix in the E–Step. We found that this procedure has better sep-
aration properties which means that less vertices are re–labeled from relevant to
irrelevant, than doing a full optimisation.
A full E–step where all vertices in the active cluster could be assigned to any of the
relevant clusters can lead to the merging of clusters which were separated before.
This clustering is not optimal but due to the limited number of clusters compared
to the expansion/influx by/of the new relevant vertices. Of course a full E–Step or
other procedures are possible.
Like in the initialisation step, we calculate the trial Free Energy, F(trial), for the re-
turned combined trial cluster partition matrix, QQQ(c)

(trial). If the reference Free Energy

was improved, e.g. if F(trial) < F(re f ) holds, we update all parameters and hidden
variables,

⇣
rrr(re f ),QQQ(re f ),QQQ(re f )

⌘
. Then we restart the Relevance Blockloading al-

gorithm for the now updated set of relevant vertices. We remark, that a relevant
vertex may be found as irrelevant during the optimization of relevant clusters, fol-
lowing the embedded E–Step of section 3.1, but a vertex can only enter the set of
relevant vertices from irrelevant status during the relevance Expansion Step where
the set of irrelevant vertices is active.
If otherwise F(trial) � F(re f ) holds, the Relevance Blockloading algorithm has con-
verged. We sum up the whole algorithm:

Embedded Relevance Blockloading algorithm
Input.–Adjacency matrix AAA.
Result–Cluster partition matrix, QQQ(re f ), number of clusters, K(re f ), parameters, Q(re f )

and the relevance assignment of vertices, rrr .
(i) Relevance Initialization Step.
Main Loop.
(ii) Embedded Refinement Step.
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(iii) Embedded Expansion Step.
(iv) Check for Convergence of relevant clusters.
(v) Relevance Expansion Step.
(vi) Check for Convergence of the irrelevant cluster.

For the Embedded Relevance Blockloading algorithm we use the Relevance BlockVB
algorithm presented in appendix B in all cases. The irrelevant vertices do not in-
fluence the inference process of the cluster assignment of the relevant vertices at
all. This feature of Embedded Relevance Blockloading is comparable to the Gibbs
sampling procedure in [6]. So we say that the ERB is an algorithm without noise
influence.
For the Filtering variant of the Relevance Blockloading algorithm, we replace steps
(ii) and (iii) with the BlockVB Refinement and Expansion Step proposed in [7].
The BlockVB algorithm is repeated in appendix B.1. We sum up the Filtering Rel-
evance Blockloading (FRB) algorithm:

Filtering Relevance Blockloading algorithm
Input.–Adjacency matrix AAA.
Result–Cluster partition matrix, QQQ(re f ), number of clusters, K(re f ), parameters, Q(re f )

and the relevance assignment of vertices, rrr .
(i) Relevance Initialization Step with Relevance BlockVB.
Main Loop.
(ii) Refinement Step with BlockVB.
(iii) Expansion Step with BlockVB.
(iv) Check for Convergence of relevant clusters.
(v) Relevance Expansion Step with Relevance BlockVB.
(vi) Check for Convergence of the irrelevant cluster.

The Refinement and Expansion Step for the relevant vertices of the FRB algo-
rithm are applied to the combined cluster partition matrix QQQ(c). The difference to
the Blockloading algorithm of [7] is, that the cluster of irrelevant vertices is only
active in the Relevance Expansion Step (RE–Step).
We remark, that in the Refinement Step, vertices can leave the set of relevant ver-
tices and become irrelevant but a vertex can only become relevant in the RE–Step.
The presence of the irrelevant vertices in a separate cluster influences the inference
process for the relevant vertices. This is separates our FRB algorithm from the al-
gorithm proposed in [6]. Therefore the FRB is an algorithm with noise influence.
We will compare both the Filtering and the Embedded Relevance Blockloading
algorithm with numerical tests in section 4.

3.3.4 Successive Filtering

The relevance Expansion Step can be applied to a given adjacency matrix repeat-
edly without inference of the relevant part of the model. We propose the following
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Filtering procedure to cluster a network independently of different start values. We
call this algorithm the Successive Filtering algorithm. It allows us to divide the
cluster partition matrix into different macro–clusters consisting of several clusters
which then can be further refined expanded in parallel.
For a given adjacency matrix, we start with the relevance Initialisation Step of sec-
tion 3.3.2 where we start with a cluster partition of all vertices in one cluster and
set to relevant. We proceed by calculating the reference Free Energy,F(re f ), and
the Relevance priors. The relevance Expansion Step (RE–Step) yields a cluster or
relevant vertices and the cluster of irrelevant vertices. We calculate the trial Free
Energy of the combined matrix.
As described in section 3.3.2, we check if the trial Free Energy is lower than the
reference Free Energy. If the F(re f ) could be improved, we apply the relevance Ex-
pansion Step to the new cluster of irrelevant vertices. We continue this procedure
as long as F(re f ) can be improved.
This algorithm does not need several re–initialisation with different vertices and
converges very fast. It provides us with separated parts of the network. With the
help of this algorithm we can extract subnetworks which consist of clusters with
homogeneous connection profiles compared with the rest of the network. On each
of the returned subnetwork we perform the Relevance Expansion Step (RE–Step).

4 Numerical Experiments

4.1 Earthquake Network

The Earthquake Network which was introduced in [18], maps the spatial and tem-
poral succession of earthquakes of a chosen region to a network. For convenience,
we repeat our short exposition of the construction of the Earthquake Network (EN)
and some important facts about the dataset presented in [7]. Important statistical
properties of earthquake catalogue data are inherited by the EN [18, 30, 31].
One of the important findings presented in [30, 31] is, that the degree distribution
of the Earthquake Networks under survey follows a heavy tails power law distribu-
tion. The consequence is, that the majority of vertices is sparsely and irregularly
connected to other vertices of networks and there are vertices which have In [7] we
clustered an example network of the Southern California Area (details presented
below) with the Blockloading algorithm according to the SBM.
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Table 1: Results of the Fully Bayesian Filtering Relevance Blockloading algorithm
with noise influence for the Poisson SBMIV for the weighted Earthquake Network.
Normalized Mutual Information (NMI) calculated in comparison to the best result
of all tests for the combined matrix QQQc and for the irrelevant vertices (IV). Re-
sults were ordered according to the difference to the reference Free Energy DFre f .
Number of clusters K.

DFre f 0 61 88 92 133 172 210 302 406 480
NMI QQQc 1 0.94 0.93 0.93 0.89 0.92 0.93 0.91 0.93 0.94
NMI IV 1 0.94 0.92 0.95 0.93 0.89 0.92 0.91 0.95 0.89
K 52 50 51 52 50 51 51 50 51 50
no. of IV 1051 1049 1053 1053 1103 1059 1068 1064 1051 1063

Table 2: Results of the Filtering Relevance Blockloading algorithm with noise in-
fluence for the Poisson SBMIV for the weighted Earthquake Network. Normalized
Mutual Information (NMI) calculated in comparison to the best result of all tests
for the combined matrix QQQc and for the irrelevant vertices (IV). Results were or-
dered according to the difference to the reference Free Energy DFre f . Number of
clusters K.

DFre f 0 130 272 299 301 333 523 537 617 635
DFbest

re f 36 166 308 335 337 369 559 573 654 672
NMI QQQc 1 0.94 0.95 0.93 0.93 0.96 0.95 0.96 0.94 0.95
NMI IV 1 0.93 0.93 0.94 0.93 0.96 0.95 0.96 0.94 0.95
NMI best QQQc 0.95 0.94 0.93 0.94 0.92 0.93 0.92 0.93 0.93 0.92
NMI best IV 0.91 0.94 0.94 0.95 0.95 0.9 0.92 0.95 0.93 0.89
K 49 47 47 46 45 48 45 45 46 45
no. of IV 1020 1039 1034 1038 1040 1016 1024 1037 1030 1010

Table 3: Results of the Embedded Relevance Blockloading algorithm without noise
influence for the Poisson SBMIV for the weighted Earthquake Network. Normal-
ized Mutual Information (NMI) calculated in comparison to the best result of all
tests for the combined matrix QQQc and for the irrelevant vertices (IV). Results were
ordered according to the difference to the reference Free Energy DFre f . Number of
clusters K.

DFre f 0 134 175 242 382 412 438 687 875 1026
DFbest

re f 287 422 462 529 670 699 726 974 1162 1313
NMI QQQc 1 0.83 0.81 0.82 0.77 0.82 0.95 0.8 0.77 0.93
NMI IV 1 0.66 0.4 0.7 0.4 0.66 0.95 0.65 0.4 0.95
NMI best QQQc 0.82 0.85 0.79 0.85 0.8 0.83 0.82 0.84 0.78 0.81
NMI best IV 0.63 0.76 0.56 0.73 0.56 0.77 0.64 0.77 0.56 0.63
K 50 48 49 47 47 47 47 47 46 46
no. of IV 837 1023 1350 997 1348 1025 841 1034 1345 834
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Table 4: Results of the Blockloading algorithm with non–informative priors for the
Poisson SBM applied to the weighted Earthquake Network. Normalized Mutual
Information (NMI) calculated in comparison to the best result of all tests for the
combined matrix QQQc and for the proxy cluster of irrelevant vertices (proxy IV). Re-
sults were ordered according to the difference to the reference Free Energy DFre f .
Number of clusters K. Comparison with the relevance matrix, DFre f and the com-
bined matrix of the best result of all tests measured by the Free Energy.

DFre f 0 20 132 163 198 228 276 304 346 517
DFbest

re f 322 342 454 486 520 550 598 626 668 839
NMI QQQc 1 0.95 0.91 0.9 0.91 0.92 0.92 0.81 0.92 0.92
NMI proxy IV 1 0.96 0.97 0.95 0.91 0.94 0.99 0.63 0.98 0.98
NMI best QQQc 0.85 0.86 0.84 0.85 0.86 0.86 0.85 0.87 0.84 0.85
NMI best IV 0.76 0.78 0.78 0.78 0.81 0.79 0.77 0.75 0.76 0.76
K 46 46 46 48 48 48 48 45 44 46
no. of IV 1157 1144 1149 1146 1120 1140 1156 931 1161 1163

The EN is constructed for a chosen geographical area and time span. A square
grid is put on the area of interest [32]. The EN unfolds in the following way:
(i) Place a vertex in the first square where seismic activity occurs at the start of the
observation interval.
(ii) Place a second vertex where the next time seismic activity occurs and place
a (directed) edge between the last two vertices of seismic activity pointing to the
latest vertex of activity.
(iii) Continue until the end of observation.

We constructed the Earthquake Network of the Southern California area (32s,
37n; 122w, 114w) for the time interval from January 1, 1984 to December 31, 2013.
We chose a square length of 10km for the grid and did not include depth informa-
tion of the earthquake catalog contrary to [18]. This results in 4256 squares. We
used the earthquake catalogue data from the Southern California Earthquake Data
center (SCDEC) [33].
Earthquake catalogues have a minimum magnitude of completeness (see e.g. [34]).
The earthquake catalogue is expected to list every earthquake with magnitude
equal or higher than the magnitude of completeness. It was shown in [34] that
the SCDEC catalogue is complete for a magnitude of M � 1.8 on the Richter Scale
from January 1, 1984 onwards. We used only earthquakes with magnitude M � 1.8
for the construction of the EN.
We set the entries on the diagonal of the adjacency matrix of the EN to zero. These
entries represent aftershocks in the EN. The resulting adjacency matrix of the EN
has N = 2324 vertices and 58718 edges. The highest edge weight of the EN was
240 and the lowest 1 (and 0 if there is no edge between the two vertices).
We evaluate and compare the numerical tests with the same principles as in [7],
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so to compare the values of the Free Energy F in the following tests, we take
the best of all values of the Free Energy F , Fre f , and calculate the difference
DFre f = F �Fre f � 0.
To compare different cluster partitions QQQ and QQQ0 we use the Normalized Mutual
Information (NMI) ([35]). A NMI(QQQ0,QQQ) of 1 means that both partitions QQQ and QQQ0
are identical. The NMI is zero when no information about QQQ0 can be deduced from
QQQ.
We tested the three versions of our Relevance Blockloading algorithm for the SB-
MIV presented in section 3, namely the Filtering Relevance Blockloading algo-
rithm with noise influence and non–informative priors for the relevant vertices, the
fully Bayesian Filtering Relevance Blockloading algorithm with noise influence
and the Embedded Relevance Blockloading algorithm without noise influence and
non–informative priors for the relevant vertices.
All algorithms were initialised for ten times with different start values. We used the
Relevance priors in all algorithms for the Initialisation and the Relevance Expan-
sion Step presented in section 3.3.2. The best result, measured by the Free Energy,
was returned by the fully Bayesian version of the Filtering Relevance Blockload-
ing algorithm without noise influence with a Free Energy of Fbest

re f = 133414 and
Kre f = 52 clusters. The fully Bayesian Blockloading algorithm is explained in [8].
The results of the tests for this algorithm are presented in table 1.
We compare the combined cluster partition matrices QQQc by calculating the NMI of
each combined cluster partition matrix with the combined cluster partition matrix
of the best result measured by the Free Energy. This measure shows how reliably
an algorithm finds the same combined cluster partition for different start values.
To calculate the reliability of the inference of the relevant and irrelevant vertices we
build a partition matrix where all relevant vertices are assigned to one column of
the matrix and the irrelevant vertices to the other column. Then we compare these
relevance partition matrix with the relevance partition matrix of the best result by
calculating the NMI of theses matrices.
We repeat these calculations of the NMI with respective to the overall best result,
measured by the Free Energy, of all tested algorithms. A close second best re-
sult was returned by the Filtering Relevance Blockloading algorithm without noise
influence and non-informative priors for the relevant part of the model (mixed ap-
proach, see also [8]), with a Free Energy of Fre f = 133449 (DFre f = 36) and K = 49
clusters. The variance of the Free Energy for the mixed approach Filtering Block-
loading algorithm was higher where the result with the highest Free Energy had
DFre f = 672 and K = 45 clusters. In tables 1 and 2 we can see that the difference
of the Free Energy DFre f differs less for the full Bayesian version of the Filtering
Relevance algorithm (table 1), but that in general all results have a high degree of
similarity and for both algorithms. The mixed approach version seems to be bit
more reliable whereas the full Bayesian version returns the best results of all tests
measured by the Free Energy with non-informative priors. Both algorithms iden-
tify mostly the same vertices as irrelevant.
The results of the Embedded Relevance Blockloading algorithm without noise in-
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fluence are less reliable than the those of the Filtering Blockloading algorithms
measured by the similarity of the combined cluster partition matrices, relevance
partition matrices and DFre f . The best Free Energy of the Embedded Relevance
algorithm was DFre f = 287 with K = clusters and the worst DFre f = 672 with K =
clusters. We also see in table 3 that the Embedded Relevance algorithm returns
vastly differing numbers of irrelevant vertices and the relevance matrices have a
sub par NMI with respect to reliability and the overall best result of all algorithms.
These results show, that for the Variational Bayesian Blockloading algorithm the
Filtering approach works better contrary to the findings for the Gibbs Sampling
inference applied to the closely related SIRM in [6], where the joint sampling of
the cluster and relevance assignment were proposed as the best inference method
for such a model with irrelevant vertices.
For reference we give the results for the normal Blockloading algorithm with the
mixed approach for the Poisson SBM in table 4. We remark that these results differ
to those presented in [7] because we repeated the tests with an updated version of
our code and we found a minor bug in our code for the calculation of the NMI. The
Blockloading algorithm for the SBM does not explicitly model irrelevant vertices.
We take the cluster with the lowest summed expected edge existence rates (cf. sec-
tion 3.2) as a proxy for the irrelevant vertices. In all tests, this proxy irrelevant
clusters also was the cluster with highest number of vertices.
This observation and the built–in noise suppression with the max-prob-strategy for
the choice of the active cluster presented in section 3.2 justify the choice of these
clusters as a proxy for the cluster of irrelevant vertices.
The best result of the Blockloading algorithm for the SBM was DFre f = 322 and
K = 46 clusters and the worst result was DFre f = 839. The Blockloading algorithm
for the SBM is reliable but less than the Filtering Blockloading algorithm with
non–informative clusters. We show in table 4 that the proxy relevance cluster has
a similarity of less than NMI = 0.8 compared to the relevance cluster of Filtering
Blockloading.
We conclude that the best choice for an inference algorithm for the SBMIV of all
tested algorithms is the full Bayesian Filtering Relevance Blockloading algorithm
with noise influence which also improves on the results of the Blockloading al-
gorithm of [7] (repeated and extended in table 4) for the the normal SBM. The
Filtering Relevance Blockloading algorithm with non-informative priors for the
relevant priors is also a viable choice and takes a close second place in the quality
of the best results and a first in general reliability. Both, the fully Bayesian and the
non–informative Bayesian Filtering Relevance Blockloading algorithms clearly re-
turn better results than the Blockloading algorithm for the normal SBM of [7].
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5 Conclusion

We introduced the Stochastic Block Model with Irrelevant Vertices (SBMIV) for
weighted networks. We proposed the Relevance Blockloading algorithm for the
inference of the SBMIV. We showed that the Relevance Blockloading algorithm
can be employed as a filtering algorithm, where the determination of the relevance
of vertices is separated from the cluster assignment and as an embedded algorithm
where the relevance and the cluster assignment of vertices are done in the same
Expectation Step. We introduced a new model selection criterion for the SBMIV,
based on the Integrated Likelihood Variational Bayes (ILVB) criterion and the al-
gorithmic framework of the (Relevance) Blockloading algorithm. We showed that
the algorithmic framework of the Blockloading algorithm facilitates the identifica-
tion of irrelevant vertices at the beginning and during the inference process of the
model. Our new relevance informative priors for the identification of the cluster of
the irrelevant vertices make the inference of relevant vertices independent of other
algorithms for the initialisation of start values. We demonstrated that our filtering
Relevance Blockloading algorithm together with the SBMIV improves the results
for earthquake networks when compared to existing variational inference methods
with the same model criterion.
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A Proofs and Propositions

Proof of Proposition 1 in section 3.1:

Proof. The terms of the lower bound F dependent on q(fi) are:

F [q(fi)] =�ERRR,fff [ln p(RRR|fff)]�Efff (ln p(fff))+Efff (lnq(fff))+ const.. (34)

=�
N

Â
i=1

�
riEf (lnfi)+(1�ri)Ef (ln(1�fi))

�

�Efff (ln p(fff))+Efff (lnq(fff))+ const.. (35)

We use Variational Bayesian optimisation of F with respect to q(fi) which yields:

dF [q(·)]
dq(fi)

=� (z 0
i �1) ln(fi)� (h0

i �1) ln(1�fi)+1+ lnq(fi)

�ri lnfi � (1�ri) ln(1�fi)+ const.. (36)

It follows that

q(fi) µexp
��

ri +z 0
i �1

�
lnfi +

�
(1�ri)+h0

i �1
��

. (37)
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Equation 37 shows that q(fi) has the functional form of a
Beta(ri + z 0

i ,(1�ri)+ h0
i ) Beta distribution, so after normalisation it holds that

q(fi) = Beta(fi;zi,hi), where

zi = ri +z 0
i , (38)

hi = (1�ri)+h0
i . (39)

for 8i 2 {1, . . . ,N}.

Proof of Proposition 2 in section 3.1:

Proof. The terms of the Free Energy F which depend on q(ppp) are:

F [q(ppp)] = �EZZZ,RRR,ppp [ln p(ZZZ|ppp,RRR)]�Eppp [ln p(ppp)]+Eppp [lnq(ppp)]+ const. (40)

= �
K

Â
q=1

N

Â
i=1

riQiqEppp [lnpq]�Eppp [ln p(ppp)]+Eppp [lnq(ppp)]+ const.. (41)

Variational Bayesian optimisation of the Free Energy F yields:

dF [q(ppp)]

dq(ppp)
= �

K

Â
q=1

N

Â
i=1

riQiq lnpq �
K

Â
q=1

(d 0
q �1) lnpq + lnq(ppp)+ const. (42)

) q(ppp) µ exp

 
K

Â
q=1

N

Â
i=1

�
riQiq +d 0

q �1
�

lnpq

!
. (43)

Normalisation of eqn. (43) shows that q(ppp) has the functional form of a Dir(ppp;ddd )
Dirichlet distribution with the update equations

dk =
N

Â
i=1

riQik +d 0
k ; 8k 2 {1, . . . ,K}, (44)

for the parameters.

Proof of Proposition 3 in section 3.1:

Proof. The terms of the lower bound F dependent on q(g) are:

F [q(g)] =
N

Â
i, j

i 6= j

⇣
� (1�rir jAi j)Eg(lng)+(1�rir j)Eg(g)

⌘

�Eg(ln p(g))+Eg(lnq(g))+ const.. (45)

We use Variational Bayesian for the optimisation of F with respect to q(g) which
yields:

dF [q(·)]
dq(g)

=
N

Â
i, j
i 6= j

⇣
� (1�rir j)Ai j ln(g)+(1�rir j)g

� (a0
g �1) ln(g)+b 0

g g +1+ lnq(g)
⌘

+ const.. (46)
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It follows that

q(g) µ exp

0
@
0
@
0
@

N

Â
i, j

i 6= j

(1�rir j)Ai j

1
A+a0

g �1

1
A ln(g)�

0
@

N

Â
i, j

i 6= j

(1�rir j)+b 0
g

1
Ag

1
A .

(47)

Equation 47 shows that q(lql) has the functional form of a
G(ÂN

i, j
i 6= j

(1�rir j)Ai j +a0
g ,ÂN

i, j
i 6= j

(1�rir j)+b 0
g ) Gamma distribution.

Proof of Proposition 4 in section 3.1:

Proof. The terms of the lower bound F dependent on lll are:

F [q(lll )] =�EZZZ,RRR,lll ,g [ln p(AAA|ZZZ,RRR,lll ,g)]+Elll [lnq(lll )]

�Elll [ln p(lll )]+ const. (48)

=
K

Â
q,l

N

Â
i, j
i 6= j

�
�riQiqr jQ jlAi jElll

⇥
lnlql

⇤
+rir jQiqQ jlElll

⇥
lql
⇤�

�Elll [ln p(lll )]+Elll [lnq(lll )]+ const.. (49)

Variational Bayesian optimisation of F with respect to q(lql) yields:

dF [q(·)]
dq(lql)

=
N

Â
i, j

i 6= j

�
�rir jQiqQ jlAi j lnlql +rir jQiqQ jllql

�
+ lnq(lql)

�
�
a0

ql ln(b 0
ql)� lnG(a0

ql)+(a0
ql �1) lnlql �b 0

qllql
�
+ const.. (50)

It follows that

q(lql) µ exp
⇣� N

Â
i, j
i 6= j

rir jQiqQ jlAi j +a0
ql �1

�
lnlql �

� N

Â
i, j
i 6= j

rir jQiqQ jl +b 0
ql
�
lql

⌘
.

(51)

Equation (51) shows that q(lql) has the functional form of a
G(ÂN

i6= j rir jQikQ jlAi j +a0
kl,Â

N
i6= j rir jQikQ jl +b 0

kl) Gamma distribution.

Proof of Proposition 5 in section 3.1:
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Proof. We collect the terms of the Free Energy F which depend on q(ZZZ):

F [q(ZZZ)] =�EZZZ,RRR,QQQ[ln p(AAA,ZZZ,RRR,lll ,g,ppp,fff)]+EZZZ[lnq(ZZZ)]+ const. (52)

=�EZZZ,RRR,lll ,g [ln p(AAA|ZZZ,RRR,lll ,g)]�ERRR,f [ln p(RRR|fff)]�EZZZ,RRR,ppp [ln p(ZZZ|ppp,RRR)]

+EZZZ[lnq(ZZZ)]+ const. (53)

=EZZZ

⇣
�

N

Â
i, j

i 6= j

K

Â
q,l

rir jZiqZ jlAi jE(lnlql)+
N

Â
i, j
i 6= j

K

Â
q,l

rir jZikZ jlE(lql)

�
N

Â
i=1

K

Â
q=1

riZiqE(lnpq)
⌘

+EZZZ

⇣ N

Â
i=1

q(ZZZi) lnq(ZZZi)
⌘

+ const.. (54)

Variational Bayesian Optimization of F with respect to q(ZZZa) yields:

lnq(ZZZa) µ
K

Â
v=1

Zav

⇣ N

Â
i=1
i 6=a

K

Â
q=1

rariQiqAaiE(lnlvq)+
N

Â
i=1
i 6=a

K

Â
q=1

rariQiqAiaE(lnlqv)

�
N

Â
i=1
i 6=a

K

Â
q=1

rariQiq (E(lvq)+E(lqv))+raE(lnpv)
⌘
. (55)

Taking the exponential of eqn. 55 leads to:

q(ZZZa) µexp
⇣ K

Â
v=1

Zav

⇣ N

Â
i=1
i 6=a

K

Â
q=1

rariQiqAai

⇣
y(avq)� ln(bvq)

⌘
+

N

Â
i=1
i6=a

K

Â
q=1

rariQiqAia

⇣
y(aqv)� ln(bqv)

⌘

�
N

Â
i=1
i 6=a

K

Â
q=1

rariQiq

✓
avq

bvq
+

aqv

bqv

◆
+ra

⇣
y(dq)�y

�
Â
 

K

Â
l=1

dl

!
�⌘⌘⌘

,

(56)

where y(·) is the Digamma function. After normalisation of eqn. 56, we see that
q(Za) has the functional form of a M (ZZZa;1,QQQa = {Qa1, . . . ,QaK}) Multinomial
distribution.

Proof of Proposition 6 in section 3.1:
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Proof. The terms of the lower bound F dependent on q(RRR) are:

F [q(RRR)] = �EZZZ,RRR,QQQ[ln p(AAA,ZZZ,RRR,lll ,g,ppp,fff)]+ERRR[lnq(RRR)]+ const. (57)

= �EZZZ,RRR,lll ,g [ln p(AAA|ZZZ,RRR,lll ,g)]�ERRR,f [ln p(RRR|fff)]�EZZZ,RRR,ppp [ln p(ZZZ|ppp,RRR)]

+ERRR[lnq(RRR)]+ const. (58)

= ERRR

h K

Â
q,l

N

Â
i, j

i 6= j

�
�RiR jQiqQ jlAi jE[lnlql]+RiR jQiqQ jlE[lql]

�

�

0
@

N

Â
i, j
i6= j

(1�RiR j)Ai jE[lng]� (1�RiR j)E[g]

1
A

+
N

Â
i=1

�RiE[lnfi]� (1�Ri)E[ln(1�fi)]

�
K

Â
q=1

N

Â
i=1

RiQiqE[lnpq]
i
+ERRR

⇣ N

Â
i=1

q(Ri) lnq(Ri)
⌘

+ const.. (59)

Variational optimisation of F with respect to q(Ra) leads to:

lnq(Ra) =Ra

h
0
@

N

Â
i=1
i 6=a

K

Â
q,l

riQiqQalAiaE(lnlql)�riQiqQalE(lql)

1
A

+

0
@

N

Â
i=1
i6=a

K

Â
q,l

riQilQaqAaiE(lnlql)�riQilQaqE(lql)

1
A

�
N

Â
i=1
i 6=a

ri(Aia +Aai)E(lng)+2E(g)
N

Â
i=1
i6=a

ri +E(lnfa)

�E[ln(1�fa)]+
K

Â
q=1

QaqE(lnpq)
i
+ const.. (60)

To see that, by eqn.(60), q(Ra) has the functional form of the logarithm of a
Bernoulli Ber(Ra;ra) distribution, we use the following observation [36]:

lnBer(Ra;ra) = Ra lnra +(1�Ra) ln(1�ra) = Ra ln
✓

ra

1�ra

◆
+ const., (61)

now we set Ua = ln
⇣

ra
1�ra

⌘
which leads to

ra = exp(Ua)(1�ra) ) ra =
1

1+ exp(�Ua)
. (62)
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So, we set

Ua ⌘

0
@

N

Â
i=1
i 6=a

K

Â
q,l

riQiqQalAiaE(lnlql)�riQiqQalE(lql)

1
A

+

0
@

N

Â
i=1
i 6=a

K

Â
q,l

riQilQaqAaiE(lnlql)�riQilQaqE(lql)

1
A

�
N

Â
i=1
i 6=a

ri(Aia +Aai)E(lng)+2E(g)
N

Â
i=1
i 6=a

ri +E(lnfa)

�E[ln(1�fa)]+
K

Â
q=1

QaqE(lnpq) (63)

which gives us together with eqn. (62) the optimal update, r?
a .

Proposition 7. The Free Energy after convergence (Integrated Likelihood varia-
tional bound) for the Poisson Stochastic Block Model with irrelevant vertices for K
clusters, is given by

F [q(Z,R,QQQ)] =
N

Â
i=1

✓
ln
✓

G(zi +hi)

G(zi)+G(hi)

◆
� ln

✓
G(z 0

i +h0
i )

G(z 0
i )+G(h0

i )

◆◆

�a0
g ln(b 0

g )+ lnG(a0
g )+ag ln(bg)� lnG(ag)

�
K

Â
q,l

a0
q,l ln(b 0

ql)+ lnG(a0
ql)+

K

Â
q,l

aql ln(bql)� lnG(aql)

� ln

 
G

 
K

Â
q=1

d 0
q

!!
+

K

Â
q=1

ln(G(d 0
q ))+ ln

 
G

 
K

Â
q=1

dq

!!
�

K

Â
q=1

ln(G(dq))

+
K

Â
q=1

N

Â
i=1

Qiq lnQiq. (64)

where QQQ is the cluster partition matrix, AAA the adjacency matrix, RRR the relevant
vertices, QQQ = (lll ,ppp,g,fff) the model parameters and JJJ = (aaa,bbb ,ddd ,aaag ,bbb g ,zi,hi)
the hyper parameters.
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Proof.

F [q(ZZZ,RRR,QQQ)] =�Â
ZZZ,RRR

Z
ln
✓

p(AAA,ZZZ,RRR,QQQ)

q(ZZZ,RRR,QQQ)

◆
q(ZZZ,RRR,QQQ)dQQQ (65)

=�EZZZ,RRR,QQQ[ln p(AAA|ZZZ,RRR,QQQ)]�EZZZ,RRR,fff [ln p(ZZZ|ppp,RRR)]�Elll [ln p(lll )]

�Eg [ln p(g)]�Eppp [ln p(ppp)]�ERRR,fff [ln p(RRR|fff)]�Efff [ln p(fff)]

+
N

Â
i=1

EZ[lnq(Zi)]+Eppp [lnq(ppp)]+Efff [lnq(fff)]

+Elll [lnq(lll )]+Eg [lnq(g)] (66)

=
K

Â
q,l

N

Â
i, j
i6= j

✓
�rir jQiqQ jlAi j

�
y(aql)� ln(bql)

�
+rir jQiqQ jl

✓
aql

bql

◆◆

+
K

Â
q,l

�(a0
ql �1)(y(aql)� ln(bql))+ ln

�
G(a0

ql)
�

+
K

Â
q,l

b 0
ql

✓
aql

bql

◆
�a0

ql ln(b 0
ql)+aql ln(bql)� ln

�
G(aql)

�

+
K

Â
q,l

(aql �1)
�
y(aql)� ln(bql)

�
�bql

✓
aql

bql

◆

�

0
@

N

Â
i, j
i6= j

(1�rir j)Ai j
�
y(ag)� ln(bg)

�
� (1�rir j)

ag

bg

1
A

�a0
g ln(b 0

g )+ lnG(a0
g )� (a0

g �1)
�
y(ag)� ln(bg)

�
�bg

ag

bg

+
N

Â
i=1

⇣
�ri (y(zi)�y(zi +hi))� (1�ri)(y(hi)�y(zi +hi))

⌘

�
 

N

Â
i=1

(z 0
i �1)(y(zi)�y(zi +hi))+(h0

i �1)(y(hi)�y(zi +hi))

!

�
 

N

Â
i=1

(zi �1)(y(zi)�y(zi +hi))+(hi �1)(y(hi)�y(zi +hi))

!

�
N

Â
i=1

�
ln(G(z 0

i +h0
i ))� ln(G(z 0

i ))� ln(G(h0
i ))
�

�
N

Â
i=1

(ln(G(zi +hi))� ln(G(zi))� ln(G(hi)))
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�
K

Â
q=1

N

Â
i=1

riQiq
�
y(dq)�y

 
K

Â
l=1

dq

!
�
� ln

 
G

 
K

Â
l=1

d 0
l

!!

+
K

Â
q=1

ln
�
G(d 0

q )
�
�

K

Â
q=1

(d 0
q �1)

 
y(dq)�y

 
K

Â
l=1

dl

!!

+ ln

 
G

 
K

Â
q=1

dq

!!
�

K

Â
q=1

ln(G(dq))

+
K

Â
q=1

(dq �1)

 
y(dq)�y

 
K

Â
l=1

dl

!!
+

N

Â
i=1

K

Â
k=1

Qik lnQik. (67)

We insert the update equations for the hyper parameters JJJ = (aaa,bbb ,ddd ,aaag ,bbb g ,zi,hi)
of Propositions 1, 2, 3 and 4 into eqn. (67). This yields eqn. (64).
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B Relevance Poisson BlockVB algorithm

Input: Combined Cluster Partition matrix Q(c), adjacency matrix AAA, vector of rel-
evant vertices rrr , relevance prior hyperparameters aER and bER, indices of active
vertices I.
Initialisation: Set non informative [37] priors for the Gamma(lkl;akl,bkl) distri-
butions: a0

kl = 1
3 ; b 0

kl = 1
1000 8k, l 2 {1, . . . ,K} . Set non informative priors of the

Dirichlet prior distribution of cluster assignments: d 0
k = 1, 8k 2 {1, . . . ,K} [38, 13].

Set the informative relevance priors for the Gamma(g;ag ,bg) distributions of the
irrelevant cluster:

a0
g = 1; (68)

b 0
g =

1⇣
aER
bER

⌘ . (69)

Set the non informative prior hyperparameters [38] for the distribution of relevant
and irrelevant vertices:

z 0
i =

1
2
8i 2 {1, . . . ,N}, (70)

h0
i =

1
2
8i 2 {1, . . . ,N}. (71)

Prepare M–Step: Calculate

Sakl =
N

Â
i 6= j

rir jQ jlQikAi j, (72)

Sbkl =
N

Â
i 6= j

rir jQikQ jl, (73)

Sdk =
N

Â
i=1

riQik, (74)

and

akl = Sakl +a0
kl, (75)

bkl = Sbkl +b 0
kl, (76)

dk = Sdk +d 0
k . (77)
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Initialise parameters for the relevance assigment:

Sag =
N

Â
i, j

i 6= j

(1�rir j)Ai j (78)

ag = Sag +a0
g ; (79)

Sbg =
N

Â
i, j

i 6= j

(1�rir j) (80)

bg = Sbg +b 0
g . (81)

Initialise parameters for the Beta(fi;zi,hi) distribution of relevant and irrelevant
vertices:

zi = ri +a0
i , (82)

hi = 1�ri +b 0
i . (83)

Main Loop: Until convergence of F .
Repeat: Update active vertices a 2 I.
E–Step for QQQ:
Embedded E-Step:
Set active vertex a to relevant (ra = 1) and calculate cluster assignment of a for all
v = {1, . . . ,K}:

Q?
av µexp

⇣ N

Â
i=1
i 6=a

K

Â
q,l

riraQiqAaiE(lnlvq)+
N

Â
i=1
i6=a

K

Â
q,l

riraQiqAiaE(lnlqv)

�
N

Â
i=1
i 6=a

K

Â
q=1

rariQiq
�
E(lvq)+E(lqv)

�
+raE(lnpv)

⌘
. (84)

Normalise all updated matrix rows.
Filtering E-Step:
(Alternative to Embedded E-step.) Set matrix entry of expansion cluster of QQQc to 1.

E–Step for rrr: Calculate relevance assignment of vertex a:

Ua =
N

Â
i=1
i 6=a

K

Â
q,l

riQiqQalAiaE(lnlql)+
N

Â
i=1
i6=a

K

Â
q,l

riQilQaqAaiE(lnlql)

�
N

Â
i=1
i6=a

K

Â
q,l

riQiqQalE(lql)�
N

Â
i=1
i6=a

K

Â
q,l

riQilQaqE(llq)�E(lng)
N

Â
i 6=a
i=1

ri(Aia +Aai)

+2E(g)
N

Â
i=1
i 6=a

ri +E(lnqa)�E(ln(1�qa))+
K

Â
q=1

QaqE[lnpq] (85)
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it follows that

r?
a =

1
1+ exp(�Ua)

. (86)

Round ra. Set

r?
a =

(
1, if r?

a � 0.5
0, else

. (87)

Update the relevant entries of the partition matrix Q: Set matrix row a to zero if
r?

a = 0.

M–Step: Update the parameters of the distributions of the SBM.

Sakl =
N

Â
i, j
i6= j

rir jQikQ jlAi j, (88)

Sbkl =
N

Â
i, j
i6= j

rir jQikQ jl, (89)

Sdk = Â
i2I

riQik, (90)

and the parameters of the irrelevant vertices:

ag =
N

Â
i, j

i 6= j

(1�rir j)Ai j +a0
g , (91)

bg =
N

Â
i, j

i 6= j

(1�rir j)+b 0
g , (92)

zi = ri +z 0
i , 8i = {1, . . . ,N}, (93)

hi = 1�ri +h0
i , 8i = {1, . . . ,N}. (94)
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Convergence: Check the convergence of the variational lower bound, F [q(ZZZ,RRR,QQQ)]:

F [q(ZZZ,RRR,QQQ)] =
N

Â
i=1

ln
✓

G(zi +hi)

G(zi)+G(hi)

◆
� ln

✓
G(z 0

i +h0
i )

G(z 0
i )+G(h0

i )

◆

�a0
g ln(b 0

g )+ lnG(a0
g )+ag ln(bg)� lnG(ag)

�
K

Â
q,l

a0
q,l ln(b 0

ql)+ lnG(a0
ql)+

K

Â
q,l

aql ln(bql)� lnG(aql)

� ln

 
G

 
K

Â
q=1

d 0
q

!!
+

K

Â
q=1

ln(G(d 0
q ))+ ln

 
G

 
K

Â
q=1

dq

!!
�

K

Â
q=1

ln(G(dq))

+
K

Â
q=1

N

Â
i=1

Qiq lnQiq. (95)

Repeat until convergence or for the chosen number of iterations.

B.1 Poisson Block VB algorithm [7]

Input: partition matrix Q(start), active Cluster c and adjacency matrix A.
Initialization: Find indices I of vertices in the active cluster, i 2 c.
Set non informative prior parameters for the Gamma prior distribution: a0

kl = 1
3 and

b 0
kl = 1/1000 for all k, l [37], and for the Dirichlet distributions d 0

k = 18k [13, 38].
Initialize update formulas for the M-Step:

Sakl =
N

Â
i 6= j

QikQ jlAi j, (96)

Sbkl =
N

Â
i 6= j

QikQ jl, (97)

Sdk =
N

Â
i=1

Qik. (98)

Prepare the M–Step with:

SI
akl

=
N

Â
i=1
i 6= j

Â
j2I
i6= j

QikQ jlAi j +Â
i2I
i6= j

N

Â
j/2I
j=1

QikQ jlAi j, (99)

SI
bkl

=
N

Â
i=1
i 6= j

Â
j2I
i 6= j

QikQ jl +Â
i2I
i 6= j

N

Â
j/2I
j=1

QikQ jl, (100)

SI
dk

= Â
i2I

Qik. (101)
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Calculate the parameters (aaa,bbb ,ddd ) 8k, l 2 {1, . . . ,K} according to Proposition 9
and 10:

akl = Sakl +a0
kl, (102)

bkl = Sbkl +b 0
kl, (103)

dk = Sdk +d 0
k . (104)

Main Loop: Until convergence of F .
Expectation Step: Until convergence of the matrix entries Qik, 8i2 I, k = {1, . . . ,K}.
Calculate updates of all matrix entries Qik i2 I and k = 1, . . . ,K according to Propo-
sition 8.
Calculate the norm Q?

ik = Qik/
�
ÂK

k=1 Qik
�

of the updates Qik.
Check for convergence of the matrix entries Qik, 8i 2 I, k = 1, . . . ,K.
Maximization Step: Update the parameters aaa , bbb of the Gamma prior distributions
and the parameters ddd of the Dirichlet prior distributions. Set Sold

akl
= SI

akl
, Sold

bkl
= SI

bkl

and Sold
dk

= SI
dk

. Calculate SI
akl

, SI
bkl

and SI
dk

. Calculate M–Step Updates:

akl = Sakl �Sold
akl

+SI
akl

+a0
kl, (105)

bkl = Sbkl �Sold
bkl

+SI
bkl

+b 0
kl, (106)

dk = Sdk �Sold
dk

+SI
dk

+d 0
k . (107)

Calculate F(QQQ,JJJ) according to

F [q(·)] =
K

Â
k,l

ln

0
@ b akl

kl G(a0
kl)

b 0a0
kl

kl G(akl)

1
A+

N

Â
i=1

K

Â
k=1

Qik lnQik

+ ln

 
G
�
ÂK

x=1 dx
�

’K
x=1 G(d 0

x )

G
�
ÂK

x=1 d 0
x
�

’K
x=1 G(dx)

!
. (108)

Check for convergence of F .

Proposition 8 ([7]). The optimal estimate of the expectation of the latent variable
Zik, E[zik] = Qik for all i 2V,q = 1, . . . ,N, Q?

iv = arg min
Qiv

F(QQQ,JJJ), is given by:

Qiv µ exp
⇣ N

Â
i=1
i6= j

K

Â
k=1

AaiQikCvk +
N

Â
i=1
i 6= j

K

Â
k=1

AiaQikCkv (109)

�
N

Â
i=1
i 6= j

K

Â
k=1

QikDvk +Gv

⌘
, (110)

where Elll [loglvk] = y(avk)� log(bvk) =Cvk, Elll [lvk]+Elll [lkv] =
avk
bvk

+ akv
bkv

= Dvk,
Eddd [ddd q] = y(dq)�y

�
Â
�
ÂK

l=1 dl
��

= Gq and y(·) is the Digamma function.
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The parameters (aaa,bbb ,ddd ) of the conjugate prior distributions are updated in the
Maximization Step (M-Step), according to:

Proposition 9 ([7]). The optimisation of the lower variational bound (Free En-
ergy) for q(lkl) for all k, l = 1, . . . ,K shows, that q(lkl) has the functional form
of a G(lkl;akl,bkl) distribution. It has the same functional form as the prior
distribution p(l 0

kl) = G(lkl;a0
kl,b

0
kl). The hyperparameters akl and bkl for all

k, l = 1, . . . ,K for the partition matrix QQQ are:

akl =
N

Â
i 6= j

QikQ jlAi j +a0
kl, (111)

bkl =
N

Â
i 6= j

QikQ jl +b 0
kl. (112)

Proposition 10 ([13]). The optimization of the lower bound (Free Energy) with
respect to q(ppp) produces a distribution with the same functional form as the prior
p(ppp)

q(ppp) = Dir(ppp;ddd ) (113)

where

dk =
K

Â
i=1

Qik +d 0
k . (114)
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