
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

THOMAS DIERKES

Construction of ODE systems from time series data
by a highly flexible modelling approach

ZIB Report 15-59 (Dezember 2015)

Herausgegeben vom

Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustraße 7

D-14195 Berlin-Dahlem

Telefon: 030-84185-0

Telefax: 030-84185-125

e-mail: bibliothek@zib.de

URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064

ZIB-Report (Internet) ISSN 2192-7782

Construction of ODE systems from time series data

by a highly flexible modelling approach

T Dierkes

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Takustraße 7, 14195 Berlin-Dahlem, Germany

E-mail: dierkes@zib.de

Abstract. In this paper, a down-to-earth approach to purely data-based modelling

of unknown dynamical systems is presented. Starting from a classical, explicit ODE

formulation y′ = f(t, y) of a dynamical system, a method determining the unknown

right-hand side f(t, y) from some trajectory data yk(tj), possibly very sparse, is given.

As illustrative examples, a semi-standard predator-prey model is reconstructed from a

data set describing the population numbers of hares and lynxes over a period of twenty

years [1], and a simple damped pendulum system with a highly non-linear right-hand

side is recovered from some artificial but very sparse data [2].

AMS classification scheme numbers: 65L09, 37M10, 92C42, 92D25

1. Introduction

Modelling of dynamical systems is one of the key topics not only in systems biology, but

also in other disciplines [3, 4]. Most often, a desired behaviour of a dynamical system or,

at least, parts of it, has already been anticipated. In this paper we will present a down-

to-earth approach to determine a completely unknown dynamical system from given,

possibly very sparse, data sets; yet open enough for easy incorporation of additional

knowledge about the dynamical system to be considered. Previous work related to ours

include [2, 5] and [6], describing a software package called Data2Dynamics. In the former

two papers, a trajectory method is presented that first replaces the right-hand side of

the ODE by a linear combination of a family of known functions, and tries then to find

the coefficients of the linear combination by fitting the trajectory solutions to the given

data. The title of the third paper, “Data2Dynamics : a modeling environment ...”, is a

classical misnomer: The complete dynamical model has already to be known in terms of

an ODE system, only a possible control function for the ODE appears in their method

as variable and unknown and could, in principle, be estimated, simultaneously with

the classical fit approach, from the given data. In contrast to all three cited papers,

our approach is slightly different, yet quite robust and fast and, therefore, extremely

versatile, as will be explained in this paper.

Construction of ODE systems 2

The dynamical system is supposed to be given as an explicit ODE,

y′ = f(t, y)

where the dash ′ represents the derivative w.r.t. the time variable t ∈ R of the

solution trajectory, y = y(t), y ∈ Rn. The right-hand side, f : R × Rn −→ Rn,

presumably smooth enough, has to be determined from data sampled of trajectory

solutions, yk(tk,j), to this ODE, for k ∈ {1, . . . , n} and for some discrete time points

tk,1 < tk,2 < tk,3 < . . . < tk,m. Note that the sample time points can totally be

asynchronous.

Since any non-autonomous system is readily transformed to an equivalent

autonomous system, w.l.o.g. we can assume f to be independent of the time variable t,

f(t, y) = f(y) .

If a trajectory component, yk, has no sample points, we have to stipulate some

values for that component describing a desired behaviour of the dynamical system in

this component. The general idea we have in mind here, is that only a subsystem of a

known, but apart from that, parametrised dynamical system,

y′ = f(y ; p)

with a fixed parameter vector p ∈ Rq is unknown, i.e. only some of the solution trajectory

components are given by sampled measurement points, or else by values describing a

new, desired evolution of the dynamical system under investigation.

2. Modelling Approach

Having m ∈ N sample points of each solution trajectory component yk,j := yk(tk,j),

i.e. nm data values, of the unknown ODE system

y′ = f(y) (2.1)

the basic idea of our approach to find f from the given data is to first construct a

suitable approximation y∗(t) to the data points yk,j for that the derivative can readily

be computed as well. Then, we can construct a (discrete) mapping

F : y∗ 7→ (y∗)′

with arbitrary many samples over the interval [tmin, tmax], determined by the range of

the sample time points of the given data.

From this, by making use of a set of ansatz functions {ϕ` , ` = 0, 1, . . .} over Rn

(or [a, b]n, if bounds of the components yk are available), it is possible to reconstruct

the unknown function f : Rn −→ Rn by linear, or even non-linear, combinations of the

ϕ`: For as many tj ∈ [tmin, tmax] as necessary, in a linear case, we eventually obtain

(y∗k)′(tj) =
L∑

`=0

ck` ϕ` (y∗(tj)) , k = 1, . . . , n (2.2)

Construction of ODE systems 3

where, for each k ∈ {1, . . . , n}, the ck` , ` = 0, . . . , L, are coefficients to be determined

in the least-squares sense. Note that the right-hand side depends on all n trajectory

components whereas the left-hand side includes only the k-th component.

The solution of (2.2) finally yields the description of the unknown f in terms of the

(deliberately chosen) ansatz functions ϕ`(·).

2.1. Best Polynomial Approximation

Considering the set

PN = { polynomials on [−1, 1] of degree at most N }

it is well-known that for a function g(t), Lipschitz continuous on [−1, 1], it is very

difficult to find its corresponding minimax polynomial, i.e. the polynomial p∗[g](t) that

has the smallest maximum deviation from g(t), see [7],

‖g − p∗[g]‖∞ = min
p∈PN

‖g − p‖∞ .

As it turns out, most remarkably, the corresponding Chebyshev series to g, which is

absolutely and uniformly convergent,

g(t) =
∞∑
k=0

ak Tk(t)

yields very nearly the same polynomial of degree N as the minimax polynomial p∗[g]

when truncated at the N -th term,

p∗[g](t) ≈
N∑
k=0

ak Tk(t) .

Here, Tk(t) denotes the k-th Chebyshev polynomial, defined as real part of the complex

function zk on the unit circle (see, e.g., [8]),

Tk(t) = Re zk =
1

2
(zk + z k) = cos(kθ), t = cos θ, and |z| = 1,

and the coefficients ak are given for k ≥ 1 by the formula

ak =
2

π

1∫
−1

g(t)Tk(t)√
1− t2

dt (2.3)

and for k = 0 by the very same formula with 2/π changed to 1/π.

The discrete analogue to (2.3), when g(t) is only given at the M + 1 Chebyshev

nodes

tj = cos θj , θj =
π(j + 1/2)

M + 1
, j = 0, . . . ,M ,

Construction of ODE systems 4

reads [9, 7]

ãk =
2

M + 1

M∑
j=0

g(tj)Tk(tj) (2.4)

=
2

M + 1

M∑
j=0

g

(
cos

π(j + 1/2)

M + 1

)
cos

πk(j + 1/2)

M + 1
. (2.5)

In the very likely case that the sample time points tj of the given data do not

coincide with the Chebyshev nodes cos θj, we can use a simple linear interpolation

scheme to transform the given data values to the required Chebyshev nodes. An even

more simple table lookup procedure would in some cases do equally well. In the case of

very rough data, alternatively, we could think of an additional smoothing step by making

use of a suitable spline interpolation where the data points are the control points of the

spline interpolation scheme, for example [10]. Having such a smooth interpolation of the

given data at hand, values at the desired Chebyshev nodes are then readily available.

Thus, as building block for the first step, we arrive at the discrete Chebyshev

approximation to g of order M ,

g(t) ≈ 1

2
ã0 +

M∑
k=1

ãk Tk(t) , (2.6)

evidently a polynomial of degree M . Moreover, the derivative of g(t) can readily be

approximated in turn,

g′(t) ≈ 1

2
ã′0 +

M∑
k=1

ã′k Tk(t) , (2.7)

where the new coefficients ã′k are given by the simple backwards recurrence formula

ã′M+1 = ã′M = 0 ,

ã′k−1 = ã′k+1 + 2 k ãk , k = M,M − 1, . . . , 1 .

Now, making use of (2.6) and (2.7), we can readily set up the discrete mapping

F : y∗ 7→ (y∗)′ from the data yk,j by generating one separate Chebyshev approximation

for each component yk. Depending on the smoothness of the given data, the maximal

degree M of these approximations can be adjusted accordingly that, as an intriguing

side effect, comes in handy as a cheap filtering device in this step.

2.2. Least-squares Solution: Linear and Non-linear Case

For each k ∈ {1, . . . , n}, equation (2.2) can be rewritten as

b(k) = Ac(k) (2.8)

where the m-vector b(k) and the
(
m × (L + 1)

)
-matrix A (sometimes known as Gram

matrix) are given respectively by

b
(k)
j := (y∗k)′(tj) , j = 1, . . . ,m

Aj,` := ϕ`

(
y∗1(tj), . . . , y

∗
n(tj)

)
, ` = 0, . . . , L .

Construction of ODE systems 5

Here, as explained in the previous section, the approximations y∗k(·) and its derivatives

are evaluated in terms of their truncated Chebyshev series of order M ,

y∗k(t) =

[
M∑
j=0

ỹk,j Tj(t)

]
− 1

2
ỹk,0

with the discrete Chebyshev coefficients ỹk,j computed by (2.4) with the given (n×m)-

data matrix (yk,j) .

The solution
(
c(k)
)∗

, in a least-squares sense, to the linear system (2.8) is readily

obtained by making use of the QR-decomposition A = QRP T with pivoting, P being a

permutation matrix,(
c(k)
)∗

= P R̃−1 Q̃T b(k) , R =

[
R̃

0

]
, Q =

[
Q̃ >

]
,

R̃ ∈ R(L+1)×(L+1) , Q̃ ∈ Rm×(L+1) ,

provided the Gram matrix A has full rank, and m ≥ L + 1. If one or both of these

conditions are violated, there are adequate formulae available as well, see [11].

In the not so unlikely case, some (or all) of the unknown coefficients ck enter non-

linearly the ansatz function family {ϕ` }, we have to resort to an iterative scheme, such

as Gauss-Newton, in order to get a decent estimate of
(
ck
)∗

. For the details we refer to

[12].

2.3. Verification

Up to now, we have not touched any of the dynamical properties of the underlying,

but unknown ODE system (2.1), with the only exception of (2.7) in determining the

left-hand side b(k) in (2.8). Consequently, we can take advantage of this fact in the

following manner if we want to verify the resulting solution of the previous section.

With the least-squares solutions (c(k))∗, k = 1, . . . , n, at hand, it is possible to

compute numerically the solution y[(t) to the initial value problem of the approximated

ODE,

y′ =
L∑

`=0

c` ϕ`(y) , y(t0) = (y1,1, . . . , yn,1)T , (2.9)

c` =
(
c
(1)
` , . . . , c

(n)
`

)T
(2.10)

provided all sample time points tk,j start exact synchronously. For this numerical task

any suitable integration scheme can be applied, i.e., in most cases, a decent one-step

Runge-Kutta scheme or, alternatively, a linearly implicit scheme (e.g. LIMEX [13, 14])

will do.

If the discrepancy between the approximated solution y[(·) and the given data

yk(tk,j) is satisfactory we could say the unknown model has successfully been verified.

Construction of ODE systems 6

Or else, if the discrepancy is too high, we could invoke yet another parameter

identification run: This time with the recovered ODE system (2.9), and the unknown

coefficients c` as parameters with an obvious starting guess.

If all else fails, another ansatz function family has to be chosen, or the filtering

parameters have to be adjusted differently, or the problem at hand needs just more

(measurement) data.

3. Numerical Results and Discussion

In this section, we will study a predator-prey model and a damped pendulum model.

For the ansatz function family we choose in both cases multi-variate polynomials,

ϕ`(x) := ϕ(`1,...,`n)(x1, . . . , xn) := x`11 · x`22 · . . . · x`nn (3.1)

where ` = (`1, . . . , `n) denotes a multi-index with the usual meaning, as indicated.

Consequently, for a polynomial of maximal degree d, i.e. |`| = `1 + . . . + `n ≤ d, there

are (
n+ d

d

)
=

(
n+ d

n

)
different monomial terms ϕ`(·) with the determining coefficients c` ∈ R, specifying

uniquely the Gram matrix A in (2.8).

The runtime protocols for each component of the example computations, that will

be given below, have the following structure. In the first and second column, two

different representations of the multi-index are listed (of which the one in the second

column is the more familiar notation). In the third column the percentage taken with

respect to the absolute maximum of the coefficients c` found is given, and finally, in the

last column, the actual value of each coefficient is printed. Additionally, the resulting

equation for the investigated component is recorded in which only monomial terms

are included according to the indicated percentage threshold. Last but not least, the

weighted `2-norm of the residual of the least-squares equation (2.8) is displayed.

3.1. Hare and Lynx

Commonly, the dynamics of a predator-prey system is modelled by Lotka-Volterra-type

equations [1],

y′prey = yprey (α− β ypred) , (3.2)

y′pred = −ypred (γ − δ yprey) (3.3)

where yprey and ypred denote the population number of the prey and the predator,

respectively. Here, the coupling constants α, β, γ, δ ∈ R≥0 describe the influence of

the species on each other. We want to recover such a system from some historical

data of numbers of lynxes (predator) and hares (prey), collected by the Hudson Bay

Construction of ODE systems 7

Company in Canada during the years 1900–1920. This data set can be seen, more or

less, as representative for the total population number of both species [1].

For basic biological reasons a constant term is missing in both components of the

anticipated predator-prey model (3.2)–(3.3). Hence, we exclude the constant monomial

term in both reconstruction runs as well. The maximal degree of the multi-variate

polynomials is set to 3.

(a) (b)

Figure 1. Tn(x) approximations (blue) and its derivative (magenta) to (a) hare data,

and (b) lynx data (n=80, evaluation of the approximations with n=11 each).

Runtime protocol for y0 = yprey component.

#total = 16 (max. deg. 3)

[0 2] --> [0, 1] 100.00 % c_k = 8.999962e-01

[0 3] --> [0, 2] 3.79 % c_k = -3.408105e-02

[0 4] --> [0, 3] 0.00 % c_k = 1.703492e-04

[1 2] --> [1, 0] 19.66 % c_k = -1.769268e-01

[1 3] --> [1, 1] 3.44 % c_k = -3.092972e-02

[1 4] --> [1, 2] 0.00 % c_k = 3.976574e-04

[2 3] --> [2, 0] 2.65 % c_k = 2.384418e-02

[2 4] --> [2, 1] 0.00 % c_k = -4.353977e-05

[3 4] --> [3, 0] 0.00 % c_k = -2.065367e-04

m = 9 monomial(s) 0.10 % threshold

f(y0,y1) = + (9.0e-01) y1^1 + (-3.4e-02) y1^2 + (-1.8e-01) y0^1

+ (-3.1e-02) y0^1 y1^1 + (2.4e-02) y0^2

LSQ: ||residual/sqrt(n)||_2 = 3.095545072754599

The yprey is found to be described by the equation

y′0 = + y0 ((a y0 − b)− c y1) + d y1 − e y21 (3.4)

with a = 0.024, b = 0.18, c = 0.031, d = 0.9, and e = 0.034 .

Construction of ODE systems 8

(a) (b)

Figure 2. Least-squares solution (blue) with (c(k))∗, k = 1, 2, and degree = 3 to the

unknown F : y∗ 7→ (y∗)′ for (a) hare data, and (b) lynx data (magenta each, and

evaluation with 150 equidistant time point each).

Runtime protocol for y1 = ypred component.

#total = 16 (max. deg. 3)

[0 2] --> [0, 1] 100.00 % c_k = -1.590145e+00

[0 3] --> [0, 2] 1.35 % c_k = 2.146557e-02

[0 4] --> [0, 3] 0.00 % c_k = 1.283903e-04

[1 2] --> [1, 0] 45.70 % c_k = 7.266958e-01

[1 3] --> [1, 1] 0.87 % c_k = 1.379691e-02

[1 4] --> [1, 2] 0.00 % c_k = -4.190196e-04

[2 3] --> [2, 0] 1.35 % c_k = -2.140643e-02

[2 4] --> [2, 1] 0.00 % c_k = 2.619544e-04

[3 4] --> [3, 0] 0.00 % c_k = 1.834174e-04

m = 9 monomial(s) 0.10 % threshold

f(y0,y1) = + (-1.6e+00) y1^1 + (2.1e-02) y1^2 + (7.3e-01) y0^1

+ (1.4e-02) y0^1 y1^1 + (-2.1e-02) y0^2

LSQ: ||residual/sqrt(n)||_2 = 3.1046555639780498

Here, the ypred component is found to be given by the equation

y′1 = −y1 (a− b y0) + c y21 + d y0 − e y20 (3.5)

with a = 1.6, b = 0.014, c = 0.021, d = 0.73, and e = 0.021 .

Construction of ODE systems 9

It would be interesting to see if an additional, iterative Gauss-Newton fit would

improve the identified parameters further and, possibly, establish some link to the

standard predator-prey model (3.2)–(3.3). Unfortunately, for the case with multi-variate

polynomials of maximal degree 3, as presented here, such an additional verification

has not been successful at all. Instead, the Gauss-Newton iteration stops after a few

steps with the ODE system being not integrable any more, i.e. the Newton path of the

coefficient sets during the iteration inexplicably leads to an ODE system that can not

be solved numerically. A systematic and comprehensive investigation of this unexpected

behaviour would certainly go beyond the scope of this article and hence, must be left

open for now.

However, a repeated computation, completely analogous to the one presented

here, only with the maximal polynomial degree restricted to 2, nicely demonstrates

a relationship to the standard predator-prey model, as we have previously gathered,

see Table 1. In particular, there is an intriguing match between the coefficients of the

second component, i.e. the ODE equation of the lynx. The incompatibility factor in the

last row of Table 1 is determined by the ratio of the norms of successive updates during

the Gauss-Newton iteration and thus, can be seen as an estimate of the convergence

speed, especially at the end of the iteration. This factor, if strictly below 1.0, can be

thought to measure how compatible a model to given data is (see [12, sec. 4.3.2] for the

mathematical background). The values in the last column of Table 1 can be found in

[1]. All the computational details are given in the Appendix.

Table 1. Identified coefficients of the standard model [1] and our data-based approach.

Component Multi-index Data-based Standard

[0, 1] 1.848730e-01

[0, 2] 3.675366e-03

y′0 = fprey(y0, y1) [1, 0] 2.531473e-01 5.475337e-01 (= α)

[1, 1] -3.789005e-02 -2.811932e-02 (= −β)

[2, 0] 7.856857e-03

[0, 1] -9.587181e-01 -8.431750e-01 (= −γ)

[0, 2] 6.845210e-04

y′1 = fpred(y0, y1) [1, 0] 5.296776e-02

[1, 1] 2.408610e-02 2.655759e-02 (= δ)

[2, 0] -1.113486e-04

Scaled residual (Normf) 3.0712e-00 4.2362e-00

κ (incomp. factor, see [12]) 1.0274e-01 2.9798e-02

To sum up the hare and lynx case, the reconstructed components y0 and y1 seem

to follow only partly the standard predator-prey model. Instead, our findings here show

that the data might be more involved than previously assumed. Our conclusion is also

supported by the verification result, as can be seen in Figure 3.

Construction of ODE systems 10

Figure 3. Comparison between given data (red, green) and solution (blue, magenta)

to the approximated ODE with multi-variate polynomials of maximal degree 3, as

shown in Fig. 2 (by using the adaptive time stepping integrator LIMEX).

3.2. Damped Pendulum

Here, we consider the initial value problem

θ′1 = θ2 , (3.6)

θ′2 = −u θ2 −
g

l
sin θ1 (3.7)

with the initial condition (θ1, θ2)(0) = (1, 0), and the constants u = 0.25, l = 2.0,

and g = 9.81 (the gravitational acceleration on earth) are used [2]. Very sparse data

has been generated by solving numerically (3.6)–(3.7) in the time interval [0, 10], and

subsequently taking 49 equidistant samples of the solution trajectories in this interval.

In order to be able to catch a glimpse of the non-linearity on the right-hand side in

(3.7), for the reconstruction trial the maximal degree of the multi-variate polynomials

is set to 4.

As seen in the following runtime protocol for the θ1 component, the equation

y′0 = a y1 (3.8)

with a = 1.0 is found.

Construction of ODE systems 11

(a) (b)

Figure 4. Tn(x) approximations (blue) and its derivative (magenta) to (a) θ1 data,

and (b) θ2 data (n=80, evaluation of the approximations with n=62 each).

Runtime protocol for y0 = θ1 component.

#total = 25 (max. deg. 4)

[0 1] --> [0, 0] 0.00 % c_k = 2.001792e-03

[0 2] --> [0, 1] 100.00 % c_k = 9.982190e-01

[0 3] --> [0, 2] 0.00 % c_k = -6.094577e-03

[0 4] --> [0, 3] 0.00 % c_k = -2.859434e-04

[0 5] --> [0, 4] 0.00 % c_k = 1.027003e-03

[1 2] --> [1, 0] 0.00 % c_k = 1.384047e-03

[1 3] --> [1, 1] 0.00 % c_k = 2.514082e-02

[1 4] --> [1, 2] 0.00 % c_k = 4.947748e-03

[1 5] --> [1, 3] 0.00 % c_k = -5.810996e-03

[2 3] --> [2, 0] 0.00 % c_k = -2.636188e-02

[2 4] --> [2, 1] 0.00 % c_k = 3.051582e-02

[2 5] --> [2, 2] 0.00 % c_k = 2.399808e-02

[3 4] --> [3, 0] 0.00 % c_k = -2.561132e-03

[3 5] --> [3, 1] 0.00 % c_k = -1.691789e-02

[4 5] --> [4, 0] 0.00 % c_k = 3.776657e-02

m = 15 monomial(s) 5.00 % threshold

f(y0,y1) = + (1.0e+00) y1^1

LSQ: ||residual/sqrt(n)||_2 = 0.035592552825152

Construction of ODE systems 12

(a) (b)

Figure 5. Least-squares solution (blue) with (c(k))∗, k = 1, 2, and degree = 4 to

the unknown F : y∗ 7→ (y∗)′ for (a) θ1 data, and (b) θ2 data (magenta each, and

evaluation with 250 equidistant time point each).

Runtime protocol for y1 = θ2 component.

#total = 25 (max. deg. 4)

[0 1] --> [0, 0] 0.00 % c_k = 5.555385e-03

[0 2] --> [0, 1] 5.13 % c_k = -2.535032e-01

[0 3] --> [0, 2] 0.00 % c_k = -1.796957e-02

[0 4] --> [0, 3] 0.00 % c_k = -6.444822e-03

[0 5] --> [0, 4] 0.00 % c_k = -3.850649e-04

[1 2] --> [1, 0] 100.00 % c_k = -4.942789e+00

[1 3] --> [1, 1] 0.00 % c_k = -1.564249e-01

[1 4] --> [1, 2] 0.00 % c_k = 2.928157e-02

[1 5] --> [1, 3] 0.00 % c_k = 1.852611e-02

[2 3] --> [2, 0] 0.00 % c_k = -9.883681e-02

[2 4] --> [2, 1] 0.00 % c_k = 1.441293e-01

[2 5] --> [2, 2] 0.00 % c_k = 1.787311e-01

[3 4] --> [3, 0] 19.50 % c_k = 9.639487e-01

[3 5] --> [3, 1] 9.90 % c_k = 4.893068e-01

[4 5] --> [4, 0] 0.00 % c_k = 2.128485e-01

m = 15 monomial(s) 5.00 % threshold

f(y0,y1) = + (-2.5e-01) y1^1 + (-4.9e+00) y0^1 + (9.6e-01) y0^3

+ (4.9e-01) y0^3 y1^1

LSQ: ||residual/sqrt(n)||_2 = 0.04531770760243261

Construction of ODE systems 13

In this case, for the θ2 component, we obtain

y′1 = −a y1 − b y0 + c y30 + d y30 y1 (3.9)

with a = 0.25, b = 4.9, c = 0.96, and d = 0.49 .

Summarising these findings, the recovered equations in this non-linear case agree

convincingly well with the pendulum model that has been used to generated the given

sparse data set. Especially for the second component y1 = θ2, the reconstructed

coefficients b = 4.943 ∼ g/l = 4.905 and c = 0.9639 ∼ −g/6l = 0.8175 match the

Taylor coefficients of the sine in the right-hand side of the original damped pendulum

model. The discrepancy in c is compensated by the additional coefficient d, indicating

that the approximated model is still not complete. Nevertheless, the verification result,

as can be seen clearly in Figure 6, is already almost perfect.

Figure 6. Comparison between given data (red, green) and solution (blue, magenta)

to the approximated ODE with multi-variate polynomials of maximal degree 4, as

shown in Fig. 5 (by using the adaptive time stepping integrator LIMEX).

4. Conclusion

In the present paper, a highly flexible method for the reconstruction of an unknown

dynamical system, to be described in terms of an explicit ODE system, is presented.

The reconstruction method is based on sampled, possibly sparse, trajectory solution

points as given data.

In principle, any kind of relationship between the available information is tried to

be recovered automatically, if different components of the unknown system are given.

Yet, because of the extreme simple structure of the presented method, and the fact that

Construction of ODE systems 14

the ODE itself is not being solved during the reconstruction, it is possible to readily

adapt the approach to any anticipated behaviour of the unknown dynamical system.

Moreover, the approach is fast and, most importantly, highly reliable.

Additionally, the results of our fast reconstruction method could be used as a

very good starting guess, for example, of more sophisticated iterative identification

procedures such as well-established Gauss-Newton codes [12].

Acknowledgments

The author would like to thank Sebastian Götschel for his invaluable comments and

clarifications. Additionally, the author also wishes to thank the CSB group at ZIB for

many fruitful and lively discussions.

Construction of ODE systems 15

Appendix

Here, we repeat the computations of section 3.1 for the predator-prey case, only the

maximal degree of the multi-variate polynomials is set to 2. This results in the following

two runtime protocols.

Runtime protocol for y0 = yprey component.

#total = 9 (max. deg. 2)

[0 2] --> [0, 1] 7.72 % c_k = -3.591668e-02

[0 3] --> [0, 2] 0.93 % c_k = -4.319190e-03

[1 2] --> [1, 0] 100.00 % c_k = 4.653563e-01

[1 3] --> [1, 1] 3.58 % c_k = -1.665442e-02

[2 3] --> [2, 0] 0.00 % c_k = -9.424325e-05

m = 5 monomial(s) 0.10 % threshold

f(y0,y1) = + (-3.6e-02) y1^1 + (-4.3e-03) y1^2 + (4.7e-01) y0^1

+ (-1.7e-02) y0^1 y1^1

LSQ: ||residual/sqrt(n)||_2 = 3.7658055884421944

Runtime protocol for y1 = ypred component.

#total = 9 (max. deg. 2)

[0 2] --> [0, 1] 100.00 % c_k = -9.800874e-01

[0 3] --> [0, 2] 0.68 % c_k = 6.673957e-03

[1 2] --> [1, 0] 7.26 % c_k = 7.117392e-02

[1 3] --> [1, 1] 1.52 % c_k = 1.487619e-02

[2 3] --> [2, 0] 0.16 % c_k = 1.545017e-03

m = 5 monomial(s) 0.10 % threshold

f(y0,y1) = + (-9.8e-01) y1^1 + (6.7e-03) y1^2 + (7.1e-02) y0^1

+ (1.5e-02) y0^1 y1^1 + (1.5e-03) y0^2

LSQ: ||residual/sqrt(n)||_2 = 3.666500740586521

Taking these coefficients cprey` and cpred` , |`| ≤ 2, as starting values for an non-linear

least squares method, in order to identify parameters of the ODE model build by these

two polynomials

y′0 =
∑
|`|≤2

cprey` y` , (A.1)

y′1 =
∑
|`|≤2

cpred` y` (A.2)

with initial conditions y0(1900) = 30 and y1(1900) = 4 kept fixed, will result in a

runtime protocol as follows, trying to match the given measurement data best in the

Construction of ODE systems 16

least squares sense by successively varying these 10 coefficients. Here, we choose an error-

oriented Gauss-Newton scheme with adaptive trust region and rank strategy, NLSCON,

as fitting routine. Solutions to the IVP of (A.1)–(A.2) are computed by the linearly-

implicit extrapolation integrator LIMEX [13, 14] during the Gauss-Newton iteration, with

RTOL = 1.0E − 9 and ATOL = 1.0E − 9. All other relevant settings are included in

the resulting runtime protocol of the parameter identification task for the data-based

model (A.1)–(A.2).

Runtime protocol for an error-oriented Gauss-Newton scheme (NLSCON).

N L S C O N ***** V e r s i o n 2 . 3 . 3 ***

Gauss-Newton-Method for the solution of nonlinear least squares

problems

Real Workspace declared as 1742 is used up to 1578 (90.6 percent)

Integer Workspace declared as 62 is used up to 50 (80.6 percent)

Number of parameters to be estimated (N) : 10

Number of data to fitted, e.g. observations (MFIT) : 42

Number of equality constraints (MCON) : 0

Prescribed relative precision (PTOL) : 0.10D-02

The Jacobian is supplied by numerical differentiation

(feedback strategy included)

Automatic row scaling of the Jacobian is allowed

Rank-1 updates are inhibited

Problem is specified as being highly nonlinear

Bounded damping strategy is off

Maximum permitted number of iteration steps : 40

Internal parameters:

Starting value for damping factor FCSTART = 0.10D-01

Minimum allowed damping factor FCMIN = 0.10D-01

Rank-1 updates decision parameter SIGMA = 0.10D+04

Initial Jacobian pseudo-rank IRANK = 10

Construction of ODE systems 17

Maximum permitted subcondition COND = 0.45D+16

It Normf Normx Damp.Fct. New Rank

0 0.8345461D+01 0.251D+00 0 10

1 0.8277889D+01 * 0.248D+00 0.010

1

1 0.8277889D+01 0.241D+00 0 10

2 0.5289067D+01 * 0.916D-01 0.375

2

2 0.5289067D+01 0.991D-01 0 10

2 0.9455332D+01 * 0.133D+00 0.819

3 0.4570706D+01 * 0.755D-01 0.232

3

3 0.4570706D+01 0.827D-01 0 10

4 0.6342464D+01 * 0.732D-01 1.000

4

4 0.6342464D+01 0.229D-01 0 10

5 0.3444394D+01 * 0.723D-02 1.000

5

5 0.3444394D+01 0.171D-01 0 10

6 0.3083738D+01 * 0.315D-02 0.955

6

6 0.3083738D+01 0.652D-02 0 10

7 0.3071453D+01 * 0.120D-03 1.000

7

7 0.3071453D+01 0.176D-02 0 10

8 0.3071223D+01 * 0.252D-05 1.000

8

8 0.3071223D+01 0.180D-03 0 10

9 0.3071220D+01 * 0.957D-07 1.000

Solution of nonlinear least squares problem obtained

within 9 iteration steps

Incompatibility factor kappa 0.103D+00

Achieved relative accuracy 0.207D-04

Construction of ODE systems 18

Additional statistical analysis of the result of the identification task.

Standard deviation of parameters

No. Estimate sigma(X)

1 0.185D+00 +/- 0.174D+00 = 94.25 %

2 0.368D-02 +/- 0.463D-02 = 125.87 %

3 0.253D+00 +/- 0.107D+00 = 42.40 %

4 -0.379D-01 +/- 0.646D-02 = 17.04 %

5 0.786D-02 +/- 0.271D-02 = 34.46 %

6 -0.959D+00 +/- 0.198D+00 = 20.67 %

7 0.685D-03 +/- 0.491D-02 = 716.79 %

8 0.530D-01 +/- 0.725D-01 = 136.89 %

9 0.241D-01 +/- 0.465D-02 = 19.29 %

10 -0.111D-03 +/- 0.124D-02 = 1109.90 %

Independent confidence intervals

(on 95%-probability level using F-distribution F(alfa,1,m-n)= 4.15)

1 (-0.170D+00 , 0.540D+00)

2 (-0.575D-02 , 0.131D-01)

3 (0.345D-01 , 0.472D+00)

4 (-0.510D-01 , -0.247D-01)

5 (0.234D-02 , 0.134D-01)

6 (-0.136D+01 , -0.555D+00)

7 (-0.931D-02 , 0.107D-01)

8 (-0.947D-01 , 0.201D+00)

9 (0.146D-01 , 0.336D-01)

10 (-0.263D-02 , 0.241D-02)

****** Statistics * NLSCON *******

*** Gauss-Newton iter.: 9 ***

*** Corrector steps : 1 ***

*** Rejected rk-1 st. : 0 ***

*** Jacobian eval. : 10 ***

*** Function eval. : 12 ***

*** ... for Jacobian : 100 ***

Construction of ODE systems 19

In order to have a visual inspection of these findings, the resulting population curves

are plotted in Figure A1. In particular it seems that the curves of our approximated

model match more the given data in the time period 1905 – 1915.

Note that, although the Gauss-Newton iteration converges nicely, and with full rank

of the Jacobians, the overall estimated standard deviation of the identified coefficients is

relatively high. This means that the linearisation at the minimum point found is nearly

flat and hence, the corresponding confidence intervals are comparatively wide.

(a)

(b)

Figure A1. Fitted population curves (a) of the data-based model (with maximal

polynomial degree = 2) and (b) of the standard model [1].

The implementation of the presented approach that, written in Ruby, has been

applied to perform all example computations in this paper is available upon request.

REFERENCES 20

References

[1] Deuflhard P and Röblitz S 2015 A Guide to Numerical Modelling in Systems Biology

(Texts in Computational Science and Engineering no 12) (Springer-Verlag)

[2] Perona P, Porporato A and Ridolfi L 2000 Nonlinear Dynamics 23 13–33

[3] Walter E and Pronzato L 1997 Identification of Parametric Models from

Experimental Data (Springer)

[4] Deuflhard P and Bornemann F 2002 Scientific Computing with Ordinary

Differential Equations 1st ed (Texts in Applied Mathematics no 42) (Springer-

Verlag)

[5] Eisenhammer T, Hübler A, Packard N and Kelso J 1991 Biological Cybernetics 65

107–112

[6] Raue A, Steiert B, Schelker M, Kreutz C, Maiwald T, Hass H, Vanlier J, Tönsing

C, Adlung L, Engesser R, Mader W, Heinemann T, Hasenauer J, Schilling M, Höfer

T, Klipp E, Theis F, Klingmüller U, Schöberl B and Timmer J 2015 Bioinformatics

31 3558–3560

[7] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2002 Numerical

Recipes in C++ : The Art of Scientific Computing 2nd ed (Cambridge University

Press)

[8] Trefethen L 2013 Approximation Theory and Approximation Practice (Philadel-

phia, PA: Society for Industrial and Applied Mathematics (SIAM)) URL http:

//www2.maths.ox.ac.uk/chebfun/ATAP/

[9] Quarteroni A, Sacco R and Saleri F 2007 Numerical Mathematics 2nd ed (Texts in

Applied Mathematics no 37) (Springer-Verlag)

[10] De Boor C 1978 A Practical Guide to Splines (New York: Springer-Verlag)

[11] Deuflhard P and Hohmann A 2003 Numerical analysis in Modern Scientific

Computing – An Introduction 2nd ed (Texts in Applied Mathematics no 43)

(Springer-Verlag)

[12] Deuflhard P 2004 Newton Methods for Nonlinear Problems – Affine Invariance

and Adaptive Algorithms (Springer Series in Computational Mathematics no 35)

(Springer)

[13] Ehrig R, Nowak U, Oeverdieck L and Deuflhard P 1999 Lecture Notes in

Computational Science and Engineering 8 233–244

[14] Deuflhard P and Nowak U 1987 Extrapolation integrators for quasilinear implicit

ODEs Large Scale Scientific Computing ed Deuflhard P and Engquist B

(Birkhäuser) pp 37–50

