
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin
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Passenger Routing for Periodic Timetable

Optimization§

Ralf Borndörfer∗ Heide Hoppmann∗ Marika Karbstein∗

Abstract

The task of periodic timetabling is to schedule the trips in a public
transport system by determining arrival and departure times at every
station such that travel and transfer times are minimized. To date, the
optimization literature generally assumes that passengers do not respond
to changes in the timetable, i.e., the passenger routes are fixed. This
is unrealistic and ignores potentially valuable degrees of freedom. We
investigate in this paper periodic timetabling models with integrated
passenger routing. We show that different routing models have a huge
influence on the quality of the entire system: Whatever metric is applied,
the performance ratios of timetables w.r.t. to different routing models
can be arbitrarily large. Computations on a real-world instance for the
city of Wuppertal substantiate the theoretical findings. These results
indicate the existence of untapped optimization potentials that can be
used to improve the efficiency of public transport systems.

1 Introduction

Public transit passengers choose their routes not only to minimize travel time.
They also take additional (dis)utilities like transfers, fares, and robust connec-
tions into account. Planning an attractive public transport system therefore
requires a consideration of human behavior, as well as an assessment of line
plans and timetables.

The integration of passenger behavior into network design, line planning,
and timetabling models is a major challenge in public transit optimization.
First approaches have been developed in the area of line planning: Integrated
line planning and passenger routing models have been proposed by Schöbel and
Scholl (2006), Borndörfer et al (2007), and Borndörfer and Karbstein (2012),
the last reference reports also on successful computations.

Timetable optimization has mostly been studied with respect to fixed pas-
senger routings based on path lengths in the network, see, e. g., Liebchen
(2006), Lindner (2000), and Nachtigall (1998). Passengers, however, usually
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choose their routes depending on the timetable. While this has always been
a prominent topic in the public transit routing literature (see, e.g., the sur-
vey article of Fu et al (2012)), the optimization community has taken it up
only recently. Schmidt (2012) studies the complexity of integrating passenger
routings in aperiodic timetabling. She develops an exact solution approach for
the case where the first and last train of each passenger path are fixed, see
also Schmidt and Schöbel (2014). The only approaches to integrated passenger
routing and periodic timetabling that we are aware of are the Master theses
of Kinder (2008), Lübbe (2009), and Siebert (2011). Kinder investigates a
heuristic approach that is based on a time-expanded event-activity network.
Iteratively computing timetables and re-routing the passengers, the method
converges towards a local optimum. Lübbe proposes an integrated quadratic
model and linearizes it to obtain an integer linear programming model. His
computations indicate a potential for travel time improvements but he could
only deal with very small instances. Siebert provides worst case error analy-
ses and compares an integrated integer programming model with an iterated
approach.

As a first step towards the development of integrated timetabling and pas-
senger routing methods this paper investigates the impact of routing decisions
on the timetable. We focus on travel time, transfer time, and capacities as fac-
tors determining the passenger routes. In this context, the following questions
arise: Do different assumptions on passenger behavior matter at all? How does
routing influence the optimal timetable? How can we measure differences in
terms of the performance of the timetable? How important is the choice of
the objective function w.r.t. the performance of the timetable?

To shed some light on these questions, we propose a family of integrated
periodic timetabling and passenger routing models that differ in their routing
approach. More precisely, we consider a fixed passenger routing, a routing on
shortest paths w.r.t. the timetable, and two routings that take line capacities
into account. We evaluate them in terms of the total and the maximum travel
time system optimum. Comparing these objectives gives an indication of the
significance of different routing schemes. Evaluating optimal solutions using
a different routing model gives an indication of the robustness of a timetable
w.r.t. different routing schemes. It will turn out that the worst case ratio in
all these performance comparisons is infinite, in some cases even regardless
of the timetable, in others depending on parameters such as the number of
origin-destination pairs or the number of nodes in the network. A computa-
tional test of our model on a real-world instance for the city of Wuppertal
shows that such effects indeed play a role in practice. These results question
the appropriateness of fixed passenger routing models and pinpoint a need
for the development of methods that can take human behavior better into
account. They also suggest the existence of untapped optimization potentials
for possibly substantial improvements of the quality of public transit systems.

The paper is structured as follows. Section 2 proposes an integer pro-
gramming model for integrated timetabling and passenger routing that can
be used with different routing schemes and objectives. Section 3 analyzes
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the ratios between optimal solutions for different routings, Section 4 evaluates
optimal solutions using alternative routings, and Section 5 investigates the
ratios between different objectives from a theoretical point. Section 6 gives a
computational study with data for the city of Wuppertal. Section 7 concludes.

2 Notation

Most models in the literature about periodic timetabling are based on the
periodic event scheduling problem (PESP) developed by Serafini and Ukovich
(1989). We consider the following extension w.r.t. passenger routings. We are
given a directed graph N = (V,A), the event-activity network. The nodes V
are called events and represent arrivals and departures of lines at their stations,
i.e., V = Varr ∪ Vdep. The arcs A ⊆ V × V are called activities and model
driving between stations, waiting at stations, and possible transfers between
lines at stations, i.e., A = Adrive ∪Adwell ∪Atrans. Further, we are given lower
and upper time bounds `a, ua ∈ Q≥0, respectively, for the duration of activity
a ∈ A. Passengers can start and end their trips in Vdep and Varr, respectively.
The passenger demand is given in terms of an origin-destination matrix (OD

matrix) (dst) ∈ QVdep×Varr

≥0 specifying for each pair of arrival and departure
nodes (s, t) ∈ Vdep × Varr the number of passengers that want to travel from s
to t. Let D = {(s, t) ∈ Vdep×Varr : dst > 0} be the set of all OD pairs. For an
OD pair (s, t), let Pst be the set of (s, t)-paths in N and let P :=

⋃
(s,t)∈D Pst

be the set of all passenger paths.
A periodic timetable π : V → R determines arrival and departure times

at all arrival and departure nodes, respectively, that are assumed to repeat
periodically w.r.t. to a period time T ∈ R≥0. Given x ∈ R, we define the
modulo operator by [x]T := min{x + zT : x + zT ≥ 0, z ∈ Z}. We call a
timetable feasible if the periodic interval constraints

[πw − πv − `a]T ∈ [0, ua − `a] ∀ a = (v, w) ∈ A

are satisfied. We assume w.l.o.g. that `a < T and ua − `a < T for all a ∈ A.
For a feasible timetable π, the time duration of activity a ∈ A is given by
xa := `a+ [πw−πv− `a]T , and the time duration or travel time of a passenger
path p ∈ P is xp :=

∑
a∈p xa.

A passenger routing model M restricts the passenger paths to subsets
PMst ⊆ Pst, (s, t) ∈ D, PM :=

⋃
(s,t)∈D PMst , and limits the number of pas-

sengers traveling on activity a ∈ A by a capacity κMa ≥ 0. We introduce
timetable variables πv for the timing of event v ∈ V , duration variables xa
for the length of activity a ∈ A, and passenger variables yp for the number of
passengers that travel on path p ∈ PM . The domain of the passenger routing
variables yp is denoted by QM . Let finally f(x, y)→ Q be an objective func-
tion depending on the passenger routing variables and the duration variables.
Then we can state the following mixed-integer non-linear program with con-
gruence relations for the generic integrated passenger routing and timetabling
problem:
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(
Mf

)
min f(x, y)

s.t. [πw − πv − `a]T ≤ ua − `a ∀ a = (v, w) ∈ A (1)

[πw − πv − `a]T + `a = xa ∀ a = (v, w) ∈ A (2)∑
p∈PM

st

yp = 1 ∀ (s, t) ∈ D (3)

∑
(s,t)∈D

∑
p∈PM

st :a∈p

dst yp ≤ κMa ∀ a ∈ A (4)

πv ≤ T − 1 ∀ v ∈ V (5)

πv ≥ 0 ∀ v ∈ V (6)

yp ∈ QM ∀ p ∈ PM . (7)

The model
(
Mf

)
minimizes f among all feasible timetables using the passenger

routing model M . Constraints (1) and (2) guarantee a feasible timetable.
Constraints (3) and (4) enforce a passenger flow that does not exceed the
capacity.

We remark that conditions (1) and (2) can be formulated in terms of linear
constraints, using additional integer periodic offset variables for each activity,
see, e.g., Liebchen (2006). An alternative linearization, which we use for our
computations in Section 6, is obtained by transforming the event-activity net-
work into a time-expanded event-activity network, see, e.g., Kinder (2008).

Objectives. We consider two objectives that account in different ways for
the travel time of the passengers induced by a timetable. Let (x, y) be a
feasible solution of (1)–(7) for some routing model M .

• Our first objective is to minimize the total weighted travel time of all
passengers:

f sum(x, y) :=
∑

(s,t)∈D

∑
p∈PM

st

∑
a∈p

dst xa yp.

• The second objective is to minimize the maximum weighted travel time
among all passengers, i.e.,

fmax(x, y) := max
(s,t)∈D

∑
p∈PM

st

∑
a∈p

dst xa yp.

The objective fmax can be linearized with an auxiliary variable zmax ∈ R,
representing the maximum weighted travel time among all OD pairs via the
constraints ∑

p∈PM
st

∑
a∈p

dst xa yp ≤ zmax ∀ (s, t) ∈ D

and setting fmax(x, y) := zmax.
In the remainder of the paper, it will be convenient to abbreviate models

(Mfmax

) and (Mfsum

) as (Mmax) and (M sum), respectively.
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Routing Models. We define four passenger routing models by specifying
the set of passenger paths and the capacity constraints. The first two, the
lower-bound routing model (LBR) and the shortest path routing model (SPR),
are uncapacitated, such that demands can be routed independently of each
other, the other two, the capacitated multi-path routing model (κ-MPR) and
the capacitated unsplittable path routing model (κ-UPR), involve bounds on
the maximum passenger flow on an activity.

• The lower-bound routing model (LBR) arises from the assumption that
passengers choose their travel paths according to lower bounds on the
travel time. For our objectives, this results in a routing that is indepen-
dent of the timetable. The detailed settings are:

◦ PMst = arg min
{∑

a∈p `a : p ∈ Pst
}

for all (s, t) ∈ D, i.e., for each

OD pair only the shortest path w.r.t. the lower bounds on the ac-
tivities is considered.

◦ κMa =∞ for all a ∈ A, i.e., the routing model is uncapacitated

◦ QM = Q≥0, i.e., the passenger flow is non-negative.

• The shortest path routing model (SPR) arises from the assumption that
passengers choose shortest travel paths according to the travel times
induced by the timetable. Like in the (LBR), the routing also ignores
capacity restrictions. It includes the following detailed settings:

◦ PM = P, i.e., all paths are allowed,

◦ κMa =∞ for all a ∈ A, i.e., the routing model is uncapacitated,

◦ QM = Q≥0, i.e., the passenger flow is non-negative.

• The capacitated multi-path routing model (κ-MPR) extends the shortest
path routing model by capacity constraints. The detailed settings are:

◦ PM = P, i.e., all paths are allowed,

◦ κM ≤ ∞, i.e., activity capacities may be bounded,

◦ QM = Q≥0, i.e., the passenger flow is non-negative.

• The capacitated unsplittable path routing model (κ-UPR) extends the
shortest path routing model by capacity constraints and the assumption
that all passengers of one OD pair (s, t) ∈ D travel on the same (s, t)-
path. The detailed settings are:

◦ PM = P, i.e., all paths are allowed,

◦ κM ≤ ∞, i.e., activity capacities may be bounded,

◦ QM = {0, 1}, i.e., for each OD pair exactly one path is chosen.

For the lower-bound routing model (LBR), PMst contains exactly one path
for each OD pair if all shortest paths are unique, which we will (w.l.o.g.)
assume in the sequel. Then this routing model is a fixed path routing model.
All other routing models interact with the timetable.
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Comparing Routings and Objectives. For a problem
(
Mf

)
and an in-

stance I denote by feas(Mf ; I) and opt(Mf ; I) the set of values of time du-
ration variables x and passenger variables y that give rise to feasible and
optimal solutions, respectively. From now on, we assume w.l.o.g. that

(
Mf

)
is always feasible for I. Let v(Mf ; I) be the optimal objective value, i.e.,
v(Mf ; I) = f(x∗, y∗) for all (x∗, y∗) ∈ opt(Mf ; I). To evaluate optimal solu-
tions w.r.t. to different objectives, we denote by

v(Mf ; I)|max := sup
{
fmax(x∗, y∗) : (x∗, y∗) ∈ opt(Mf ; I)

}
the (worst) maximum weighted travel time among all OD pairs for any optimal
solution of instance I of model Mf , and by

v(Mf ; I)|sum := sup
{
f sum(x∗, y∗) : (x∗, y∗) ∈ opt(Mf ; I)

}
the (worst) total weighted travel time for any optimal solution of instance I
of model Mf . Let M1 and M2 be two routing models, then we denote for an
instance I by

v(M sum
1 ; I)|M2

:= max
{

min
{
f sum(x∗, y) : (x∗, y) ∈ feas(M sum

2 ; I)
}

: (x∗, .) ∈ opt(M sum
1 ; I)

}
the (worst) minimum total weighted travel time achieved by an M2-routing
for a timetable that was optimized w.r.t. an M1-routing. Note that these
definitions imply

v(Mmax; I) = v(Mmax; I)|max ≤ v(M sum; I)|max (8)

v(M sum; I) = v(M sum; I)|sum ≤ v(Mmax; I)|sum

for any instance I of any routing model M . Furthermore, the definitions of
the routing models yield

v(SPRsum; I) ≤ v(LBRsum; I) (9)

v(SPRmax; I) ≤ v(LBRmax; I) (10)

v(κ-MPRsum; I) ≤ v(κ-UPRsum; I) (11)

v(κ-MPRmax; I) ≤ v(κ-UPRmax; I) (12)

v(SPRsum; I) = v(SPRsum; I)|SPR ≤ v(LBRsum; I)|SPR (13)

v(κ-MPRsum; I) = v(κ-MPRsum; I)|κ-MPR ≤ v(κ-UPRsum; I)|κ-MPR. (14)

We will show in the following sections that there are instances such that
the inequalities (8) and (9)–(14) are strict. For a more precise quantification,
we will study the following performance gaps

sup
I

v(Mf1
1 ; I)|sum

v(Mf2
2 ; I)|sum

, sup
I

v(Mf1
1 ; I)|max

v(Mf2
2 ; I)|max

, and sup
I

v(M sum
1 ; I)|M2

v(M sum
2 ; I)

(15)
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T T T

· · · · · ·
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ε := T−1

2k+1

Figure 1: Instance for Theorem 1.

of models Mf1
1 and Mf2

2 , where the supremum is taken over all instances I.
We will show that there are instances such that the gaps (15) can be

arbitrarily large. To this purpose, we construct timetabling instances based
on a directed graph in the following fashion: We associate the nodes with
stations and the arcs with driving activities of lines. For all transfer activities,
the lower time bound is zero and the upper time bound is T ∈ N. The lower
and the upper time bound of all line dwell activities at each station is zero.
For each line driving activity the lower time bound equals the upper time
bound. Hence, the timetable problem reduces to determining for each line the
departure time at its first station.

3 Comparing Routing Models: Integrated Optimization

We study in this section the impact of the routing model on the value of the
optimal solution.
Theorem 1.

sup
I

v(LBRsum; I)

v(SPRsum; I)
=∞.

Proof. Consider the directed graph D in Figure 1. D has 2k + 2 nodes and
2k + 1 + k + 1 = 3k + 2 arcs, k ∈ N; arcs corresponding to transfer and dwell
activities are omitted. Based on D we construct a timetabling instance I as
described in Section 2.

We associate k + 2 lines with the arcs of D. There is one line from s to t
(dotted arc) with a driving time of T and no intermediate stations. There is a
second line (solid arcs) from s to t with 2k intermediate stations. The driving
time between the stops of this line is alternatingly ε := T−1

2k+1 and T . Between
every two stations, for which the driving time of the second line is T , there
is another line with a driving time of only ε (dashed arcs). There is only one
passenger that wants to travel from s to t.

First consider model (LBRsum). In any solution of (LBRsum), the passenger
is routed along the unique shortest (s, t)-path with respect to the driving time
and transfer times of zero. This path uses all upper arcs with a driving time
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Figure 2: Instance for Theorem 3. All bold arcs in this graph have a capacity
of κ, the thinner arcs have a capacity of 1.

of ε and would have a total length of (2k + 1)ε = T − 1, if the transfer times
at all stations would be zero. However, there is no feasible timetable for this
instance such that the transfer time at every station in this path is zero. In
fact, in any solution of (LBRsum), the transfer times at stations 2 and 3 sum
up to

T − ε

as for every following pair of stations along this path. Hence, the travel time
for this path is in total T − 1 + k(T − ε) and v(LBRsum; I) = T − 1 + k(T − ε).
In an optimal solution to (SPRsum) the passenger travels on the bottom line
with a travel time of T for any timetable and, hence, v(SPRsum; I) = T . We
can conclude that

v(LBRsum; I)

v(SPRsum; I)
=
T − 1 + k(T − ε)

T
= k +

(T − 1)(1− k
2k+1 )

T
−→
k→∞

∞,

which proves the claim.

Theorem 2.

sup
I

v(LBRmax; I)

v(SPRmax; I)
=∞.

Proof. The theorem directly follows from the proof of Theorem 1, because the
example instance contains only a single OD pair. In this case the maximum
weighted travel time is equal to the total travel time.

Theorem 3.

sup
I

v(κ-UPRsum; I)

v(κ-MPRsum; I)
=∞.
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Proof. Consider the directed graph D in Figure 2. The graph D has 6n + 5
nodes, where n ≥ 3 is an odd number; arcs corresponding to transfer and
dwell activities are omitted. Based on D we construct a timetabling instance
I as defined in Section 2. We set the passenger demand to dst = d̄, where
1 < d̄ ≤ n; all other demands are set to zero. The instance contains 2n+4 lines.
2n + 2 lines are represented by the dotted arcs (s, u1) and (u2n+1, t), which
have a capacity of d̄ ≤ κ ≤ n, and by the arcs {(s, ui) : 2 ≤ i ≤ 2n, i is even}
and {(ui, t) : 2 ≤ i ≤ 2n, i is even}, with a capacity of only 1. Then there is
one line (dashed arcs) starting in u1 and ending in v2n+1 and the last line (solid
arcs) is from v1 to w2n+1. The dashed and the solid line also have a capacity
of κ. All transfer and dwell activities have infinite capacity. The duration
of all driving activities of the dotted lines and the activities corresponding to
(ui, vi) and (vi, wi), 1 ≤ i ≤ 2n + 1, is ε > 0. The duration of the remaining
driving activities are as follows:

◦ (vi, ui+1), i = 1 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of 2ε+ T ,

◦ (wi, vi+1), i = 4 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of 2ε+ 5,

◦ (vi, ui+1), i = 2 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of ε+ T ,

◦ (wi, vi+1), i = 3 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of ε+ T ,

◦ (vi, ui+1), i = 3 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of 2ε,

◦ (wi, vi+1), i = 2 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of 2ε,

◦ (vi, ui+1), i = 4 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of ε,

◦ (wi, vi+1), i = 1 + 4 j, j ≥ 0, i < 2n+ 1 have a duration of ε.

First consider problem (κ-UPRsum). Since the passengers have to travel
on a single path, the passengers that want to go from s to t can only take
lines with a capacity of at least d̄. Hence, they need to travel along a path
from u1 to w2n+1 using the dashed and the solid line. If the transfer times are
zero, then a shortest (u1, w2n+1)-path has a travel time of 5nε + 2ε and uses
only driving activities with a duration of ε or 2ε. These values can indeed be
achieved by setting the departure time of the dashed line at node u1 to 0 and
the departure time of the solid line at node v1 to ε. The departure times of
lines (s, u1) and (w2n+1, t) can be set accordingly to get also 0 transfer times
in u1 and w2n+1. The minimum total weighted travel time (achieved for this
timetable) is then

v(κ-UPRsum; I) = d̄(5nε+ 2ε+ 2ε) = d̄(5nε+ 4ε).

In an optimal solution to (κ-MPRsum), the passengers from s to t can split
and travel along

⌈
d̄
⌉

paths via (s, ui, vi, wi, t), 2 ≤ i ≤ 2n and i is even. The
transfer time in an optimal timetable for these passenger paths at vi is zero
for all even i, 2 ≤ i ≤ 2n, e.g., if the dashed line departs at u1 at time 0 and
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the solid line departs at v1 at time 2ε. The minimum total weighted travel
time is therefore

v(κ-MPRsum; I) = d̄(4ε) = 4d̄ε.

We can conclude that

v(κ-UPRsum; I)

v(κ-MPRsum; I)
=
d̄(5nε+ 4ε)

4d̄ε
=

5n+ 4

4
−→
n→∞

∞.

This finishes the proof.

Theorem 4.

sup
I

v(κ-UPRmax; I)

v(κ-MPRmax; I)
=∞.

Proof. The theorem directly follows from the proof of Theorem 3, because the
example instance contains only a single OD pair. In this case the maximum
weighted travel time is equal to the total travel time.

4 Comparing Routing Models: Evaluating Timetables

We proved in Section 3 that the gap between the optimal solution values
between the models SPR and LBR and, in the capacitated case, between
the models κ-MPR and κ-UPR can be arbitrarily large. We now want to
investigate the impact of the routing decisions further by evaluating the quality
of timetables that are optimal for LBR and κ-UPR. The idea is to fix these
timetables and route the passengers again using the models SPR and κ-MPR.
We compare the resulting total weighted travel times with optimal solutions
for SPR and κ-MPR, respectively. The resulting change in the objective value
is an indication of the robustness of an optimal timetable against modifications
of the routing model.
Theorem 5.

sup
I

v(LBRsum; I)|SPR

v(SPRsum; I)
=∞.

Proof. Consider the directed graph D in Figure 3. D has 2m nodes and 3m−1
arcs, m ∈ N; arcs corresponding to transfer and dwell activities are omitted.
Based on D we construct a timetabling instance I as described in Section 2.

We associate m+ 1 lines with the arcs of D. There are m− 1 lines visiting
the nodes (si, ti−1, si−2, si−1) for each 2 ≤ i ≤ m, with sm = t0 and one line
from sm−1 to tm. The driving time between the stops of these lines is always
ε = T

m . The last line is from s0 to tm and has a driving time of T + 1. We set
the passenger demand to dsiti = 1 for all 0 ≤ i ≤ m − 1; all other demands
are set to zero.

First consider model (LBRsum). For a passenger that wants to travel from
si to ti for i > 0 there is only a single si, ti-path containing a transfer at
station si+1. The passenger from s0 to t0 is routed along the shortest s0, t0
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Figure 3: Instance for Theorem 5.

path (w.r.t. zero transfer time), which is along the stations {s1, . . . , sm−1}.
The lines visiting station si, 2 ≤ i ≤ 0 are constructed in such a way that
for any timetable the transfer times for the (s0, t0)-passenger and (si−1, ti−1)-
passenger sum up to T −4ε. Hence, the total transfer time for all passengers is
(m−1)(T −4ε) in any timetable. Hence, if we synchronize the lines along this
path for the passenger traveling from s0 to t0, we obtain an optimal timetable
for model (LBRsum). Given this timetable, the optimal travel time with SPR
for the (s0, t0)-passenger is mε = T and for each (si, ti)-passenger, i > 0, it is
2ε+ T − 4ε = T − 2ε. We can conclude that

v(LBRsum; I)|SPR ≥ T + (m− 1)(T − 2ε) = mT − 2mε+ 2ε.

If the timetable synchronizes the lines for the (si, ti)-passengers, i > 0, we
obtain for each of these passengers a travel time of 2ε and the passenger from
s0 to t0 can uses the alternative route with a travel of T + 1. Hence,

v(SPRsum; I) ≤ T + 1 + (m− 1)2ε = T + 1 + 2mε− 2ε.

And we can conclude

v(LBRsum; I)|SPR

v(SPRsum; I)
≥ mT − 2mε+ 2ε

T + 1 + 2mε− 2ε

=
mT − 2T + 2 Tm

3T + 1− 2 Tm
−→
m→∞

∞,

which proves the claim.

Theorem 6.

sup
I

v(κ-UPRsum; I)|κ-MPR

v(κ-MPRsum; I)
=∞.

Proof. Consider the directed graph D in Figure 4; arcs corresponding to trans-
fer and dwell activities are omitted. Based on D we construct a timetabling
instance I as described in Section 2. This instance contains 2d̄+2 lines, d̄ > 0:
2d̄ lines are represented by the dotted arcs {(s0, si)}1≤i≤d̄ and {(wi, t)}1≤i≤d̄.
Then there is one line (dashed arcs) starting in s1 and ending in wd̄ and the
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last line (solid arcs) is from v1 to vd̄. The duration of all driving activities
is ε > 0 except for the activity corresponding to the arc (vd̄−1, vd̄) that has
a duration of 2ε. All transfer and dwell activities have infinite capacity. All
driving activities have a capacity of κ = d̄. We set the passenger demand to
dsit = 1 for each 1 ≤ i ≤ d̄− 1, and we set ds0t = d̄; all other demands are set
to zero.

First consider problem (κ-UPRsum). For any timetable, the passenger that
wants to go from si to t, 1 ≤ i ≤ d̄ − 1, travels along paths that must start
with the arc (si, vi). Hence, each of these arcs has only d̄ − 1 capacity left
and cannot be used any more by the d̄ passengers that want to go from s0

to t. These passengers have to travel via the path (s0, sd̄, vd̄, wd̄, t) since it
is the only (s0, t)-path with sufficient capacity that is left. These passengers
block the arc (vd̄, wd̄), such that all passengers that want to go from si to t,
1 ≤ i ≤ d̄ − 1, must transfer at some node vi, 1 ≤ i ≤ d̄ − 1 (different from
vd̄). The dashed and the solid line are constructed in such a way that the sum
of the transfer times at nodes vd̄−1 and vd̄ is at least T − ε. Moreover, the
transfer times at nodes vi, 1 ≤ i ≤ d̄ − 1, are all identical. Hence, there is a
minimum total transfer time of all passengers of at least (d̄− 1)(T − ε), while
the minimum total driving time is at least (d̄− 1)3ε+ d̄ · 4ε. If the passengers
from si to t travel along the paths (si, vi, wi, t), these values can indeed be
achieved by synchronizing the solid and the dashed line at node vd̄, namely,
the solid line can depart at v1 at time 0 and the dashed line can depart at
s1 also at 0. Hence, the minimum total travel time with κ-UPR (achieved for
this timetable) is

v(κ-UPRsum; I) = (d̄− 1)(T − ε) + (d̄− 1)3ε+ d̄ · 4ε
= 6d̄ε− 2ε+ d̄T − T.

Given this timetable, the passengers traveling from s0 to t cannot improve
their traveling time by splitting up and therefore

v(κ-UPRsum; I)|κ-MPR ≥ v(κ-UPRsum; I).

In an optimal solution to (κ-MPRsum), the passengers from s0 to t can
split and travel along d̄ − 1 paths via vi, 1 ≤ i ≤ d̄ − 1. The transfer time in
an optimal timetable for these passenger paths at vi is zero for all 1 ≤ i ≤ d̄
if the solid line departs at v1 at time ε and the dashed line departs at s1 at
time 0. The total travel time for the optimal κ-MPR-timetable is therefore

v(κ-MPRsum; I) = (d̄− 1)3ε+ d̄ · 4ε = 7d̄ε− 3ε.

12



v1 v2 v3 vd̄−1 vd̄

s1 s2 s3 sd̄−1 sd̄

s0

t

w1 w2 w3 wd̄−1 wd̄

ε
ε

ε
ε

ε ε

2ε

εε
ε

ε
ε

ε ε
ε

ε

ε ε ε
ε ε

ε ε ε
ε ε

· · ·

· · ·

· · ·

· · ·

Figure 4: Instance for Theorem 6. All arcs in this graph have a capacity of k.

We set ε := 1
d̄

and can conclude that

v(κ-UPRsum; I)|κ-MPR

v(κ-MPRsum; I)
≥ v(κ-UPRsum; I)

v(κ-MPRsum; I)

=
6d̄ε− 2ε+ d̄T − T

7d̄ε− 3ε

=
6− 2

d̄
+ d̄T − T

7− 3
d̄

−→
d̄→∞

∞.

This finishes the proof.

5 Comparing Objectives

In this section we compare the impact of the objective function.
Theorem 7. Let M ∈ {SPR,LBR, κ-MPR, κ-UPR} be a routing model, then

sup
I

v(M sum; I)|max

v(Mmax; I)
=∞.

Proof. Consider the directed graph D in Figure 5. D has 3m nodes and 4m−2
arcs, m ∈ N; arcs corresponding to transfer and dwell activities are omitted.
Based on D we construct a timetabling instance I as described in Section 2.
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ε = T+1
m

v1 v2 v3 vm−1 vm

s1 s2 s3 sm−1 sm

t1 t2 t3 tm−1 tm

ε
ε

ε
ε

ε ε
ε

ε

ε
ε

ε
ε

ε ε
T

ε· · ·

· · ·

Figure 5: Instance for Theorem 7.

All activities have infinite capacity. We associate two lines with the arcs of D.
There is one line (dashed arcs) from s1 to vm with a driving time of ε = T+1

m ,
T ∈ N, on each driving activity. The second line (solid arcs) starts in v1 and
ends in tm. The duration for each driving activity of this line equals ε except
for the second last arc from tm−1 to vm that has a driving time of T . We set
the passenger demand for each OD pair (si, ti), 1 ≤ i ≤ m, to one; all other
demands are set to zero.

For each OD pair (si, ti) ∈ D, 1 ≤ i ≤ m, there exists only a single
path from si to ti via the node vi. Hence, the passenger routes are fixed and
independent of the routing model M ; the driving time for each OD pair is 2ε
for any feasible timetable. The dashed and the solid line are constructed in
such a way that the transfer times at nodes vi, 1 ≤ i ≤ m−1, are all identical.
Moreover, if the two lines are synchronized at node vm, then the transfer times
at nodes vi, 1 ≤ i ≤ m−1, are all equal to ε. This would yield a total transfer
time of (m − 1)ε = T − T+1

m + 1. If a timetable synchronizes the lines at the
nodes vi, 1 ≤ i ≤ m − 1, on the other hand, the transfer time at node vm is
T − ε = T − T+1

m .
First consider problem (M sum). In an optimal solution, the departure time

of the dashed line in s1 is 0 and the solid line departs in v1 at ε, such that
the two lines are synchronized at the nodes vi, 1 ≤ i ≤ m − 1. The resulting
transfer time for the pair (sm, tm) at vm equals T − ε. Hence, this OD pair
yields the maximum travel time of T+ε among all OD pairs for this timetable.

In an optimal solution to problem (Mmax), the lines are synchronized at
node vm by setting the departure time of the dashed line at s1 to 0 and the
departure time of the solid line at v1 to 2 ε. The resulting transfer time for
each OD pair (si, ti) at vi with 1 ≤ i ≤ m − 1 is ε and for the pair (sm, tm)
the transfer time at vm is zero. The travel time for all OD pairs (si, ti) with
1 ≤ i ≤ m− 1 is 3 ε, which gives the maximum travel time. We can conclude
that

v(M sum; I)|max

v(Mmax; I)
=
T + ε

3ε
=
T + T+1

m

3T+1
m

=
(m+ 1)T + 1

3T
−→
m→∞

∞,
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Figure 6: Instance for Theorem 8.

which proves the claim.

Theorem 8. Let M ∈ {SPR,LBR, κ-MPR, κ-UPR} be a routing model, then

sup
I

v(Mmax; I)|sum

v(M sum; I)
=∞.

Proof. Consider the directed graph D in Figure 6. D has 3m nodes and 4m−2
arcs, m ∈ N; arcs corresponding to transfer and dwell activities are omitted.
Based on D we construct a timetabling instance I as described in Section 2.
All activities have infinite capacity.

We associate 2 lines with the arcs of D. There is one line (dashed arcs)
from s1 to tm with a driving time of ε = 1

m on each driving activity except the
second last driving activity with a driving time of 2ε. The second line (solid
arcs) starts in v1 and ends in vm. The driving time for each driving activity
of this line equals ε. We set the passenger demand for each OD pair (si, ti),
1 ≤ i ≤ m, to one and zero otherwise.

For each OD pair (si, ti) ∈ D, there exists only a single path from si to ti
via the node vi. Hence, the passenger routes are fixed and independent of the
routing model M . Again, both lines are constructed in such a way that the
transfer times at nodes vi, 1 ≤ i ≤ m − 1, are all identical. And the transfer
times at the nodes vm−1 and vm sum up to at least T − ε.

First consider problem (Mmax). In an optimal solution, the dashed line
departs at s1 at 0 and the solid line departs at v1 at T+ε

2 . The resulting

transfer time for each OD pair (si, ti) at vi is T−ε
2 . Hence, the total travel

time for this timetable is 2mε+mT−ε
2 = 1

2 (3mε+mT ).
In an optimal solution to (M sum), the departure time of the dashed line

at s1 is 0 and the solid line departs at v1 at ε. The resulting transfer time for
each OD pair (si, ti), 1 ≤ i ≤ m− 1, at vi is zero and the transfer time at vm
equals T − ε for the pair (sm, tm). The total travel time for all passenger is
therefore 2mε+ T − ε.
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We can conclude that

v(Mmax; I)|sum

v(M sum; I)
=

3mε+mT

2(2mε+ T − ε)
=

3 +mT

4 + 2T − 2
m

−→
m→∞

∞.

This finishes the proof.

We finally give a Lemma that shows that there exists no instance such
that the maximum weighted total travel time gap and the maximum weighted
travel time gap can be both arbitrarily large since they bound each other.
Furthermore, the lemma implies that both gaps are bounded by the number
of OD pairs.
Lemma 9. Let m := |D| = |{(s, t) ∈ Vdep × Varr : dst > 0}| be the number
of OD pairs, then we have for every instance I and every routing model M ∈
{SPR,LBR, κ-MPR, κ-UPR}

v(Mmax; I)|sum

v(M sum; I)
≤ m v(Mmax; I)

v(M sum; I)|max
≤ m

and
v(M sum; I)|max

v(Mmax; I)
≤ m v(M sum; I)

v(Mmax; I)|sum
≤ m.

Proof. Let (x∗, y∗) ∈ arg max v(Mmax; I)|sum be an optimal solution of in-
stance I for problem Mmax yielding the maximum total weighted travel time
among all optimal solutions, i.e., by definition there is an OD pair (s′, t′) ∈ D
s.t.

v(Mmax; I) =
∑

p∈Ps′t′

∑
a∈p

ds′t′ x
∗
a y
∗
p.

Hence, we get

v(Mmax; I)|sum =
∑

(s,t)∈D

∑
p∈Pst

∑
a∈p

dst x
∗
a y
∗
p

≤
∑

(s,t)∈D

∑
p∈Ps′t′

∑
a∈p

ds′t′ x
∗
a y
∗
p

= m
∑

p∈Ps′t′

∑
a∈p

ds′t′ x
∗
a y
∗
p

= mv(Mmax; I).

It is easy to see that v(M sum; I) ≥ v(M sum; I)|max. This implies

v(Mmax; I)|sum

v(M sum; I)
≤ mv(Mmax; I)

v(M sum; I)
≤ m v(Mmax; I)

v(M sum; I)|max
.
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6 Computations

The aim of this section is to also give some computational evidence that rout-
ing decisions do indeed have a significant impact on timetabling. To this
purpose, we compare the solution of an integrated timetabling and shortest
path routing model (SPR) with a fixed passenger routing resulting from a
real-world reference timetable.

We consider a scenario from a cooperation with the public transit com-
pany of Wuppertal, the Wuppertaler Stadtwerke (WSW), which is operating
the famous cableway line “Schwebebahn”. The data represents the periodic
timetable of the core network of the public transport system of Wuppertal for
the year 2013. The network has 158 station nodes, 229 OD nodes, and 460
directed arcs. There are 71 lines: 67 bus lines, three city train lines, and the
cableway line. The lines are operated at different frequencies; their period
times are 10, 15, 20, 30, or 60 minutes. The data also contains the connec-
tions to the regional railway system, such that we can take these important
transfers into account. After some preprocessing, the data contains 45 254 OD
pairs with a positive demand (we remove all OD pairs for which the shortest
connection for any timetable does not contain a transfer). Furthermore, we
assume that each transfer has a lower time bound of 2 minutes.

For the computations, we used our integer programming model (SPRsum)
that integrates a passenger routing. The passengers are represented by a path-
flow in an event-activity network, in which they can travel freely. In the fixed
routing case the demand of each OD pair is sent along some shortest path w.r.t.
a given reference timetable, namely, the WSW timetable of 2013 (WSW2013).
The objective is to minimize the total weighted travel time. The core network
of Wuppertal gives rise to a time-expanded event-activity network with 86 386
events and 431 604 activities. There are 3 990 binary line variables modeling
the timetable. The passenger path-flow variables are dynamically added with
a column generation algorithm, solving shortest path pricing problems. Our
code is based on the constraint integer programming framework SCIP version
3.1.0 using Cplex 12.6 as an LP-solver. All computations were done on an
Intel(R) Xeon(R) CPU E3-1245, 3.4 GHz computer (in 64 bit mode) with 8
MB cache, running Linux and 32 GB of memory. We set the time limit to 12
hours.

The WSW2013 reference timetable results in a total weighted travel time
of 2 630 211.97 minutes and a total weighted transfer waiting time of 171 985.41
minutes. Fixing this routing and optimizing a classical PESP model, we could
not find a timetable that improves the total weighted travel time. With the
integrated timetabling and passenger routing model (SPR), however, we found
a timetable that yields a total weighted travel time of 2 597 571.95 minutes
and a total weighted transfer waiting time of only 131 456.07 minutes. This
corresponds to an improvement of 1.24% in travel time and 23.57% in transfer
waiting time. While the first improvement is marginal, the latter is substantial,
in particular, since transfer waiting time is known to be perceived beyond
proportion by passengers. The solution still has an optimality gap of 12%.
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Figure 7: Heat maps comparing differences in travel times between timetables
computed with different passenger routing models. The axes of both diagrams
correspond to the OD nodes. The color of a point represents the difference
in the travel time for the corresponding OD pair between the best passen-
ger routing for WSW2013 reference timetable and the result of an integrated
timetable and passenger routing optimization. Left: The redder a dot the bet-
ter is the travel time for the timetable computed with the fixed routing. Left:
The greener a dot the better is the travel time for the timetable computed
with the shortest path routing.

Figure 6 illustrates the worsening and the improvement of the travel time for
each OD pair when comparing the passenger routings arising from the reference
timetable and an integrated timetable and passenger routing optimization.
The figure shows that for the integrated solution the number of OD pairs
where the travel time decreases is much larger than the number of OD pairs
where the travel time increases compared to the reference solution.

7 Summary

In this paper we investigated the influence of different passenger routing mod-
els on timetable optimization. The results are summarized in Table 7. We
showed that the best timetable for a fixed or lower bound routing can yield
total travel times that are arbitrarily larger than those of an optimal timetable,
i.e., a timetable optimized w.r.t. an integrated passenger routing. If we do not
consider capacity constraints then all passengers can be assumed to use the
same shortest path. If line capacities have to be fulfilled we showed that the
total travel time can be arbitrarily reduced if the passengers of one OD pair
are allowed to split their travel routes.

Addressing the importance of the choice of the routing approach in the
optimization model, we get the following result. The routing model used
in the optimization is substantial: If we take a timetable that is optimized
for a fixed routing and reroute the passengers again along the shortest paths
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Table 1: Summary of the theoretical results. Denote by d̄ := max(s,t)∈D dst
the maximum demand, by n := |V | the number of events, by m := |D| the
number of OD pairs, and by k := |Atrans| the number of transfer activities.
The first column lists the gaps derived in this paper. The second to fifth
column lists the routing models and the corresponding performance gaps.

LBR (M1) SPR (M2) κ-UPR (M1) κ-MPR (M2)

sup
I

v(M sum
1 ; I)

v(M sum
2 ; I)

∞ (k → ∞) ∞ (n→ ∞)

sup
I

v(Mmax
1 ; I)

v(Mmax
2 ; I)

∞ (k → ∞) ∞ (n→ ∞)

sup
I

v(M sum
1 ; I)|M2

v(M sum
2 ; I)

∞ (m→ ∞) ∞ (d̄→ ∞)

sup
I

v(Mmax; I)|sum

v(M sum; I)
∞ (m→ ∞)

sup
I

v(M sum; I)|max

v(Mmax; I)
∞ (m→ ∞)

according to this timetable, we can obtain a total travel time that is arbitrarily
larger than the travel time for an optimal timetable with integrated shortest
path routing. The same holds when we evaluate an optimal timetable for an
unsplittable routing with a rerouting using multiple passenger paths.

Finally, we showed that the maximum travel time of a timetable minimizing
the total travel time is bounded by the number of OD pairs times the maximum
total travel time of a timetable that minimizes the maximum total travel time.

These results show that, no matter what comparison is done, choosing the
wrong routing model can lead to arbitrarily bad results. Fixed and, especially,
lower bound routings are questionable. Admittedly, the characteristics of the
examples used in our proofs may usually not appear in real world instances,
and it would be an interesting research direction to identify (realistic) assump-
tions on the problem structure under which the gaps are substantially smaller.
But even then, the gaps call for an improved understanding and treatment
of passenger behavior. This can, on the positive side, release hitherto un-
tapped optimization potentials. Our computational results indeed show that
integrating passenger routing and timetabling yields significant improvements:
computations with data from the city of Wuppertal indicates that the total
transfer waiting time can be substantially reduced by around 24% in compar-
ison to a real-world reference solution.
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