
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

YUJI SHINANO, TOBIAS ACHTERBERG, TIMO BERTHOLD, STEFAN HEINZ,
THORSTEN KOCH, MICHAEL WINKLER

Solving Open MIP Instances with ParaSCIP on
Supercomputers using up to 80,000 Cores

The work for this article has been conducted within the Research Campus Modal funded by the German Federal Ministry of Education and Research (fund number
05M14ZAM).

ZIB Report 15-53 (October 2015, revised version February 2016)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Solving Open MIP Instances with ParaSCIP on
Supercomputers using up to 80,000 Cores

Yuji Shinano∗, Tobias Achterberg†, Timo Berthold‡, Stefan Heinz‡,
Thorsten Koch∗, Michael Winkler†

*Zuse Institute Berlin, †Gurobi GmbH, ‡Fair Issac Europe Ltd

Takustr. 7, 14195 Berlin, Germany

*{shinano,koch}@zib.de, †{achterberg,winkler}@gurobi.com,

‡{timoberthold,stefanheinz}@fico.com

February 12, 2016

Abstract

This paper describes how we solved 12 previously unsolved mixed-integer program-
ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we
used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP
computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper
we describe the basic parallelization mechanism of ParaSCIP, improvements of the
dynamic load balancing and novel techniques to exploit the power of parallelization
for MIP solving. We give a detailed overview of computing times and statistics for
solving open MIPLIB instances.

1 Introduction

Supercomputers with more than 10,000 cores first appeared on the Top500 supercomputer
list1 in November 2004. As of June 2015, this list contains only five entries that have less
than 10,000 cores. When utilizing such a huge amount of computing resources, we expect
to obtain valuable and tangible results from the computations on them.

This paper deals with solving Mixed Integer Programming (MIP) problems in parallel.
Throughout this paper we assume, without loss of generality, that a MIP is given in the
following general form:

min{c>x : Ax ≤ b,

l ≤ x ≤ u, xj ∈ Z, for all j ∈ I},
(1)

with matrix A ∈ Rm×n, vectors b ∈ Rm and c, l, u ∈ Rn, and a subset I ⊆ {1, . . . , n}.
1http://www.top500.org

1

Many optimization problems arising in practice can be modeled as MIP, see, e.g., [1].
Due to well-established data format standards it was possible to collect a variety of real-world
problem instances and make them publicly available in problem libraries, such as MIPLIB.
The first version of MIPLIB was created in 1992 [2]. Its latest iteration is MIPLIB2010[3].
The availability of such libraries are key to the evolution of the MIP research field, since
they allow the evaluation of new ideas and algorithms on data sets that are similar to those
that really matter in practice. Moreover, researchers can directly compare their results to
previous studies, and unsolved models from these libraries provide research challenges to
advance the field.

State-of-the-art MIP solvers are based on the branch-and-cut paradigm, which is a
mathematically supercharged mixture of a branch-and-bound tree search combined with
a cutting plane approach, employing a large number of sophisticated algorithms to keep
the enumeration effort small. This includes a large number of heuristic methods to devise
primal feasible solutions, and many cutting plane separation algorithms to increase the
lower bound value obtained by the Linear Programming (LP) relaxation, see, e.g., [1].

Tree search is generally considered easy to parallelize. However, to the best of our
knowledge, there have been only two implementations of a large scale parallelized MIP solver
that succeeded in solving open benchmarking instances. One is GAMS/CPLEX/Condor
by Bussieck et al. [4] who solved three instances from MIPLIB2003 by a GRID computing
approach. The other is ParaSCIP [5], extensions of which are presented in this paper. Both
solvers used a state-of-the-art MIP solver as a black box to exploit the latest MIP solving
technology; the tree search based solving process was parallelized externally.

In this paper we first briefly introduce ParaSCIP and explain its parallelization features.
Next, we describe the novel techniques of merging search nodes and exploring history
information for branching prior to search. Finally, we highlight some results from recent
computational experiments on up to 80,000 cores.

2 ParaSCIP – A Distributed Memory MIP Solver

ParaSCIP has been developed using the Ubiquity Generator (UG) framework [6]. Figure 1
shows the design structure of UG. UG is written in C++. It consists of a set of base classes
to instantiate parallel branch-and-bound based solvers. The solver and the parallelization
library used for communications are abstract classes. The branch-and-bound based solver
is treated as a black box, i.e., UG can be used with different state-of-the-art MIP solvers.
As a consequence, improvements of the basic solver technology can immediately be utilized
in the parallel case. Also, the parallelization library can be exchanged, which makes the
parallel solver more portable. ParaSCIP is the instantiated parallel solver where SCIP is used
as the black box MIP solver and MPI is used as the parallelization library.

In this section we briefly explain how ParaSCIP works, more details can be found in [5]
and [6]. As shown in Figure 2, two types of processes exist when running ParaSCIP on a
supercomputer. There is a single LoadCoordinator (abbreviated to LC throughout of
this paper), which makes all decisions concerning the dynamic load balancing and distributes

2

Figure 1: Design structure of Ubiquity Generator Framework.

Solver statuses

Node pool BestDualBoud

GlobalDualBound

LoadCoordinator(Rank:0)

SCIP env.

Solver(R.1)

SCIP env.

Solver(R.2)

SCIP env.

Incumbent value Incumbent soluDon

Incumbent value Incumbent value Incumbent value

Solver(R.n)

Solving Nodes

SCIP env.

Figure 2: Process composition and data arrangement of ParaSCIP.

subproblems of MIP instances to be solved (so-called sub-MIPs). All other processes are
Solvers that solve the distributed sub-MIPs.

2.1 Initialization

The LC reads the instance data of the MIP to solve. We refer to the resulting instance as
the original instance. This instance is presolved directly inside the LC, see, e.g., [7] or [8]
for an overview on MIP presolving techniques. We call the resulting instance the presolved
instance. The presolved instance is broadcasted to all available Solver processes only once,
and is embedded into the (local) SCIP environment of each Solver. Later, only differences
between a sub-MIP and the presolved instance will be communicated.

After the initialization step, the LC creates the root node of the branch-and-bound

3

tree. Each node transferred through the system—called a ParaNode—acts as the root of
a subtree. The information sent to a ParaNode only consists of variable bound changes.
The Solver that receives a new branch-and-bound node instantiates the corresponding
sub-MIP using the presolved instance, which was distributed in the initialization step, and
the received bound changes. Therefore, ParaNode is considered as a representation of a
sub-MIP in ParaSCIP.

2.2 Ramp-up

Ramp-up is the phase that lasts until all solvers have become busy. ParaSCIP provides two
ramp-up mechanisms.

Normal ramp-up Solvers that are already solving a sub-MIP transfer every second
child node back to the LC. The LC maintains a node pool from which it assigns nodes to
idle Solvers. If no idle Solver exists, the LC keeps collecting nodes from Solvers until
it has p “heavy” (promising to have a large subtree underneath) unassigned nodes in its
node pool. Here, p is a run-time parameter, which is set to a value between 10 and 2,000
in our experiments. As soon as the LC’s node pool has accumulated p “heavy” nodes, it
sends a message to all Solvers to stop sending nodes.

Racing ramp-up In this mechanism the LC sends the root branch-and-bound node to
all Solvers simultaneously and each Solver starts solving the root node of the presolved
instance immediately. In order to generate different search trees, even though they work
on the same problem, each Solver uses different parameter settings and permutations
of variables and constraints. As shown in [3], the latter can have a considerable impact
on the performance of a solver due to imperfect tie breaking. Due to these variations, we
expect that the Solvers will generate different search trees. After a specified amount of
time, one Solver is chosen as the “winner” of this racing stage. The winning criterion
is a combination of the lower bound and the number of open nodes of the sub-MIP. All
open nodes of the “winner” are then collected by the LC and a termination message is
sent to all other Solvers. The search trees of the other Solvers are discarded. Only the
feasible solutions found during their solving process are kept. The collected nodes are then
redistributed to the now idle Solvers. Once a “winner” is selected, if it provides less nodes
than the number of available Solvers, ParaSCIP performs normal ramp-up.

Now, all commercial MIP solvers like CPLEX, Gurobi, or Xpress are concurrently
solving the same problem that performs only racing stage in ParaSCIP and ParaSCIP can do
it by setting a termination criteria of the racing stage as a run-time parameter.

2.3 Dynamic load balancing

Periodically, each Solver notifies the LC about the number of unexplored nodes in its
SCIP environment and the lower bound of its subtree; we call this information the solver

4

status. If a Solver becomes idle, the LC sends one of the nodes from the pool to the
idle Solver. In order to keep all Solvers busy, the LC aims to always have a sufficient
number of unprocessed nodes left in its node pool. Further, the LC aims to keep at least p
“heavy” nodes in the node pool by employing a collecting mode, similar to the one introduced
in [9]. We call a node heavy, if the lower bound value of its subtree (NodeBound) is
sufficiently close to the lower bound value of the complete search tree (GlobalBound).
This is evaluated by the expression

NodeBound− GlobalBound

max{|GlobalBound|, 1.0}
< Threshold. (2)

If a Solver receives the message to switch into the collecting mode, it changes the
search strategy to “best bound order” (see [8]). Similar to normal ramp-up, the Solver
alternates between solving nodes and transferring them to the LC.

Solvers switch to collecting mode in ascending order of the minimum lower bound of
their open nodes. The collecting mode is stopped as soon as the number of heavy nodes in
the pool is larger than 1.5 · p.

2.4 Termination

The termination phase starts when the node pool is empty and all Solvers are idle. In this
phase, the LC collects statistical information from all Solvers and outputs the optimal
solution and statistics.

2.5 Checkpointing and restarting

ParaSCIP implements a checkpointing mechanism to write out an intermediate search state
in order to restart the parallel search procedure from that state. Therefore, ParaSCIP

saves only primitive nodes, which are nodes that have no ancestor nodes in the LC. This
strategy requires much less effort for the I/O system than to save all open nodes to a
disk, in particular in large scale parallel computing environments, but potentially creates a
computational overhead after the restart. However, the effort to regenerate the search tree
is often outweighed by the benefits of re-applying a global presolving procedure during the
restart (see [10]).

The restart involves ParaSCIP reading the nodes saved in the checkpoint file and restoring
them into the node pool of the LC. The LC subsequently distributes these nodes to the
Solvers in an order determined by their lower bounds.

3 Improving the Dynamic Load Balancing

ParaSCIP realizes a parallelization of MIP solvers for a distributed memory computing
environment without a centralized global search tree data structure. Due to the latter, the
dynamic load balancing among Solvers is extremely important to improve scalability.

5

3.1 Dynamic tuning of parameters and bulk sending of ParaN-
odes

The frequency in which a Solver sends ParaNodes to the LC depends not only on the
computing environment but also on the instance to be solved. The processing of a node
involves the execution of different algorithms such as node preprocessing or LP solving
may have significant runtimes. The time spent for an individual node can range between a
fraction of a second and several minutes, even within the same MIP instance. This time is
difficult to estimate in advance. Therefore, the number of Solvers that can be in collecting
mode at a certain point needs to be adjusted dynamically to reduce the idle time ratio.

Sending ParaNodes, i. e., sub-MIPs, from a subtree to the other Solvers means that
part of the subtree is explored more aggressively by using the other Solvers. It is beneficial
to keep the number of Solvers in collecting mode small at any point in time, since this will
focus the tree exploration on the hard part of the search tree, compare [4]. On the other
hand, it is necessary that enough Solvers are in collecting mode in order to collect enough
ParaNodes to keep all Solvers busy. Therefore, the number of Solvers that can be in
collecting mode at a point of time is restricted to one at the beginning of the computation
and is increased by one whenever the node pool in the LC has stayed empty for a period of
time as specified by a run-time parameter (the default setting is 10 seconds). The value
p is also changed dynamically. It is not only increased, but also decreased depending on
how fast the LC switches into collecting mode. In the default setting, if the interval time
between collecting modes is less than 10 seconds, the p value is doubled. This helps to keep
the number of collecting mode Solvers small without increasing the idle times.

The synchronization protocol between a Solver and the LC renders sending individual
ParaNodes comparatively slow. To avoid this, we implemented a fast bulk sending
mechanism. The message that requests a Solver to switch into collecting mode additionally
includes the number of ParaNodes that is expected to be sent from the Solver. That is,
when the LC switches into collecting mode it determines how many ParaNodes are to be
collected from which Solvers by using information from the Solver’s status messages. If
a Solver has sufficiently many open nodes, it sends exactly the number of ParaNodes
specified by the LC without synchronization in between. If a Solver does not have enough
open nodes, it sends as many as possible by bulk. Afterwards, it switches to the normal
ParaNode sending mechanism.

3.2 Improving the ramp-down

The ramp-down phase is reached at the end of the computation when it becomes difficult to
keep all Solvers busy. Typically, at the end of the computation only a few Solvers have
a significant search tree remaining. At the same time, most of the ParaNodes will be
solved extremely fast and the Solvers send their completion messages to the LC. In the
worst case, this can lead to a congestion in the communication network and it may even
prevent the LC from collecting ParaNodes. When the LC recognizes such a strongly
imbalanced situation, it changes the ParaNode sending mechanism such that

6

1. it solely collects ParaNodes without redistributing them until a sufficient number
had been collected,

2. afterwards, the collected ParaNodes are redistributed to idle Solvers.

This change is triggered when for a period of time as specified by a run-time parameter
(10 seconds is specified in our experiments) less than 90% of the solvers are active and the
number of open nodes within the Solvers exceeds the number of Solvers by more than
a factor of one hundred.

3.3 Restarting the collecting mode

ParaSCIP can control how frequently the Solver statuses are updated by using the notifica-
tion interval time parameter. This parameter indicates the interval of time between status
messages from a Solver. Each message contains very little data, but all Solvers send
these messages periodically. When supercomputers with huge amounts of parallel cores are
used, this communication eventually becomes a bottleneck and a longer updating interval
is required. As a consequence, the LC schedule is based on slightly outdated information.
If this leads to the node pool running empty, the collecting mode is restarted immediately.
When the number of collecting mode Solvers reaches its limit (normally this situation
occurs in the ramp-down phase), restarting the collecting mode is the only way to accelerate
the collection of ParaNodes. In ramp-down, it occurs frequently that the collecting mode
is restarted several times in a row.

3.4 Branch node selection in the collecting mode Solver

In SCIP it is possible to customize the node selection strategy by adding a node selector
plugin. We implemented a node selector that is designed to select nodes that are expected
to have a large search tree underneath. This special node selector is used while a Solver
is in collecting mode. In the node selector for the collecting mode, a node is selected by the
best (i.e., lowest) lower bound as aforementioned, with a lower number of variable bound
changes as a tie breaker. The number of bound changes is a rough estimate of the volume
of the feasible region for a sub-MIP. The ParaNode with the largest feasible region is
transferred.

4 Additional Techniques Applied Externally From SCIP

This section introduces novel techniques for parallel MIP search that helped us tackle
unsolved instances and improve the solving time on hard instances.

4.1 Merging ParaNodes at restart

The choice of the branching variables has a big impact on MIP search, see [11]. This holds
in particular for branchings that are performed early in the branch-and-bound process.

7

In MIP, branching decisions are typically based on statistical information derived from
previous branchings, so-called pseudo-costs. These pseudo-cost statistics are often weak at
the beginning of the search. Therefore, it seems beneficial to try to correct “bad” branching
decisions later-on. On supercomputers, usually a hard time limit for every computation
is imposed and we often need to restart the whole solution process multiple times from a
checkpoint file when solving very challenging MIP instances. The restart is a natural point
to re-organize the branch-and-bound tree by using the branching statistics stored in the
checkpoint file. In this subsection, we present an algorithm to merge ParaNodes (from a
checkpoint file) at a restart to re-arrange the search tree.

Let

sub-MIPi := min{c>x : Ax ≤ b,

li ≤ x ≤ ui, xj ∈ Z for all j ∈ I}

be the sub-MIP with local bounds li and ui corresponding to ParaNode i. Let O be the
set of such sub-MIPs that corresponds to the set of open ParaNodes, and let M ⊆ O be
some subset of these nodes. For a given j ∈ I and v ∈ Z let Sv

j (M) := {i ∈M : lij = ui
j = v}

be the set of sub-MIPs in M that share the same fixing of variable xj to value v. For a

given set of sub-MIPs M̆ ⊂M we define a merged sub-MIP as:

sub-MIPM̆ := min{c>x : Ax ≤ b,

lM̆ ≤ x ≤ uM̆ , xj ∈ Z for all j ∈ I}

with bounds lM̆j := mini∈M̆{lij} and uM̆
j := maxi∈M̆{ui

j} for all j ∈ {1, . . . , n}. Merging
ParaNodes is performed by Algorithm 1 and Algorithm 2.

For the merging of nodes, similar considerations hold as for checkpointing by storing
primitive nodes. It potentially loses information because it relaxes already fixed variables.
Also, merging is likely to worsen the lower bound of the corresponding sub-MIPs. However,
since a merged ParaNode will be solved like a stand-alone problem, namely from scratch
by use of the full power of presolving and cutting planes, the lower bound can even improve.
This is taken into account during the merging procedure: merging will not be performed if
the lower bound decreases too much, see Algorithm 1.

Our empirically observations indicate that the main advantage of merging is a more
balanced rearranged tree. Also, in our experiments we noticed that merged nodes increase
the chance of finding better solutions earlier in the search.

The current ParaSCIP version also provides a feature to perform the merge procedure
off-line (i.e., on a desktop machine in between two supercomputer runs) and to update
the checkpoint file accordingly. We are currently investigating under which conditions
automatically enforcing such restart might be overall beneficial to the solution process.

4.2 Deep probing

In SCIP, for each variable several statistics are stored that have been collected during
the solution process. In particular, branching statistics are used to select a branching

8

Algorithm 1 Solve all open sub-MIPs with merging
Input: O
Output: Solve all sub-MIPs in O
M ← O
C ← Algorithm 2(M)
T ← C
while T 6= ∅ do

// This loop can be performed in parallel
Select P̂i ∈ T
T ← T \ {P̂i}
if P̂i is a merged-node then

//
...
Pi := P̂i

// Pi := original sub-MIP of
...
P i

Perform root node procedure for
...
Pi

if lower bound of
...
Pi <

(lower bound of Pi) · (1− δ) then
// δ is a parameter: 0(current default)

Recover a set of sub-MIPs M from
...
Pi

M ←M \ {Pi}
C ← Algorithm 2(M)
T ← T ∪ {Pi} ∪ C

else
Keep solving

...
Pi(*)

end if
else // Pi := P̂i

Solve Pi(*)
end if

end while

9

Algorithm 2 Generate merge-nodes candidate set
Input: M ⊂ O
Output: C // C is merge-nodes candidate set
C ← ∅
while M 6= ∅ do

Select P ∈M s.t. P is a sub-MIP having the best lower bound in M
M̆ ←M
J̆ ← ∅
n← 0
while maxj∈I\J̆,v∈Z,P∈Sv

j (M̆) |Sv
j (M̆)| ≥ 2 do

// At least two nodes can be merged
(ĵ, v̂) = arg max

j∈I\J̆,v∈Z,P∈Sv
j (M̆)

|Sv
j (M̆)|

M̆ ← Sv̂
ĵ
(M̆) // Note: P ∈ M̆

J̆ ← J̆ ∪ {ĵ}
n← n+ 1

end while
if n

|{j|lj=uj in sub-MIPP}| > τ then

// τ is a parameter: 0.9 (current default)
Create a merged sub-MIP PM̆ from M̆
C ← C ∪ {PM̆}
M ←M \ M̆

else
C ← C ∪ {P}
M ←M \ {P}

end if
end while

10

variable. The racing stage of racing ramp-up is a good opportunity to tentatively collect
these variable statistics for different possible search trees for the MIP instance at hand.
This means the LC collects all branching statistics not only from the racing winner, but
also from all Solvers that participated in racing. This information is then aggregated and
used to initialize the branching statistics of all Solvers after racing, compare [12]. We
refer to this strategy as deep probing since it resembles the ideas of probing and strong
branching, with the difference that instead of single nodes whole subtrees are explored
tentatively. We expect that initializing branching statistics will help to improve branching
decisions and decrease the likelihood of “bad” initial branchings, see the previous section.
The effect of deep probing is not yet fully investigated, but our experiments so far have been
promising. In order to use deep probing, all ParaNodes need to store (and communicate)
this information. Hence, the ParaNode data size increases. Therefore, this technique is
best suited for medium scale computing environments and for MIP instances that contain
relatively few integer variables.

5 Computational results

Our computational experiments are split into three parts. First, we demonstrate the
improvements of the ramp-down process. Second, we summarize computational results for
challenging MIP instances from the MIPLIB collection that have been solved for the first
time using ParaSCIP. Third, we report on the largest (up to our knowledge) MIP solver
run that has ever been conducted, which took place in our attempt to solve the rmine10

instance.

5.1 Improvements of load balancing process

For the computational results presented in this subsection, we used ParaSCIP based on
SCIP 3.0.1 with Cplex 12.5 as underlying linear programming solver. The experiments
were run on Titan2: Cray XK7, Opteron 6274 16C 2.2GHz, Cray Gemini interconnect,
NVIDIA K20x with 10,000 cores. There is a genuine advantage that racing ramp-up has
over normal ramp-up, namely that all solvers can start right away instead of waiting until
enough nodes have been created. Also, in the beginning of computation, it does not need
to take care of dynamic load balancing, for which the LC needs to collect open nodes
and distribute them trying to keep all solvers busy. For this experiment we used normal
ramp-up, since our interest was to improve the dynamic load balancing. The effect of load
balancing can be best seen during (normal) ramp-up and during ramp-down. As our show
case test instance we used timtab2. This decision has two reasons: first, for this instance
both, finding the optimal solution and proving its optimality is really hard and second, the
instance is solvable on a supercomputer within a reasonable amount of time.

Figures 3 and 4 show how upper and lower bounds evolve and how the number of open
nodes and the number of active Solvers change during the computation in our first trial

2http://www.olcf.ornl.gov/titan/

11

Table 1: Open instances from MIPLIB2010 solved by ParaSCIP

Date Name Rows Cols Int Bin Con SCIPCPLEXComputerRuns CoresTime(h.) Optimal value

March2011 rmatr200-p20 2940629605 20029405 2.0.1 12.2 Alibaba 1 160 2 837
March2011 50v-10 233 20131831464 366 2.0.1 12.2 HLRN II 1 1024 5 3313.18
March2011 probportfolio 302 320 300 20 2.0.1 12.2 HLRN II 1 1024 12 16.7342

HLRN II 2 2048 36
March2011 reblock354 19906 3540 3540 2.0.1 12.2 HLRN II 2 1024 24 -39280521.2281657

HLRN II 3 2048 209
Jun2012 dg012142 6310 2080 640 1440 2.1.1 12.4 ISM 1 256 42 2300867
July2012 dc1c 164910039 8380 1659 2.1.1 12.4 ISM 8 256 400 1767903.6501

ISM 7 512 700
August2012 germany50-DBM 2526 8189 88 8101 2.1.1 12.4 ISM 15 256 590 473840
March2013 dolom1* 180311612 9720 1892 3.0.1 12.5 HLRN III 212288 16 6609253

January2015 set3-10 3747 4019 1424 2595 3.1.1 12.6 HLRN III 3 6144 33 185179.043049708
HLRN III 2 3072 24

January2015 set3-20 3747 4019 1424 2595 3.1.1 12.6 HLRN III 1 6144 12 159462.572721458
HLRN III 3 3072 36

run. One can observe that when a good feasible solution is found, huge parts of the search
tree are pruned and the workload among Solvers becomes imbalanced. The original
dynamic load balancing did not recover well in this situation: the number of active Solvers
decreased to about 280, even though there were enough open nodes overall. About 90% of
the computing time was spent for the ramp-down process, using only 3% of the computing
resources.

Figures 5 and 6 show the same information as in the previous two figures for the improved
load balancing described in Section 3. When comparing the course of the graphs until the
optimal solution is found, we see that it is almost the same as for the original load balancing.
Figure 6 demonstrates that the dynamic load balancing works in two different ways. In the
first part, the adaptive parameter tuning tried to balance the workload among Solvers.
The number of Solvers operating in collecting mode at the same time is restricted to 100
and the collecting mode is restarted after it reaches the limit. After 4,322 seconds, this
is the point in time where the big green area is interrupted by a small white space, the
restarted collecting mode detects a huge imbalance and it switches to the bulk sending
mode. The ParaSCIP version that uses improved load balancing is about four times faster
than the original version. We used moderate values for the collecting mode parameters, but
the values were not tuned well enough. Careful tuning could achieve better performance in
the new load balancing.

5.2 Open instances solved by ParaSCIP

In 2009, six problem instances of MIPLIB2003 were still unsolved. In April 2010, ds and
stp3d were solved by ParaSCIP, see [5, 10]; the remaining four instances are still open. In
the meantime, MIPLIB2010 [3] has been published, the original paper listed 134 unsolved
instances. In the following, we present details of our ParaSCIP runs that solved ten of these
formerly unsolved instances to proven optimality for the first time.

Table 1 gives a short overview on how the instances were solved. In the Table, “Rows”

12

0.0e+0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

1.6e+6

 0 5000 10000 15000 20000 25000

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

Computing Time (sec.)

Incumbents
Optimal

Global LBs
Ramp-up

Ramp-down

Figure 3: Lower and upper bounds evolution (timtab2, Original)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

 0 5000 10000 15000 20000 25000
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

N
u
m

b
e
r

o
f
N

o
d
e
s

N
u
m

b
e
r

o
f
A

c
ti
v
e
 S

o
lv

e
rs

 +
 1

Computing Time (sec.)

nodes left
active solvers + 1

Ramp-up
Ramp-down

Figure 4: Active solvers and the number of nodes (timtab2, Original)

13

0.0e+0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

 0 5000 10000 15000 20000 25000

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

Computing Time (sec.)

Incumbents
Optimal

Global LBs
Ramp-up

Ramp-down

Figure 5: Lower and upper bounds evolution (timtab2, improved)

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

 0 5000 10000 15000 20000 25000
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

N
u
m

b
e
r

o
f
N

o
d
e
s

N
u
m

b
e
r

o
f
A

c
ti
v
e
 S

o
lv

e
rs

 +
 1

Computing Time (sec.)

nodes left
active solvers + 1

Ramp-up
Ramp-down

Figure 6: Active solvers and the number of nodes left (timtab2, improved)

14

and “Cols” show m and n of the matrix A in (1), and “Int”, “Bin” and “Con” show the
number of general integer, binary, and continuous variables, respectively. For each instance,
the date of solving, the SCIP and the Cplex version (the latter was used as an LP solver in
SCIP), the supercomputer(s) that we used, and the optimal solution value are presented.
The number of runs performed to prove optimality indicates if and how often we restarted
the computation from a checkpoint file, with 1 meaning that the initial run without restart
was already able to solve the problem instance. In the table, “Alibaba” is a PC cluster
with 40 PowerEdgeTM 2950 computers connected by Infiniband, each equipped with two
Quad-Core Xeon E5420 CPUs at 2.5 GHz and 16 GB RAM, “HLRN II” is an SGI Altix ICE
8200EX (Xeon QC E5472 3.0 GHz/X5570 2.93 GHz), “HLRN III” is a Cray XC30 (Intel
Xeon E5-2695v2 12C 2.400GHz, Aries interconnect), and “ISM” is the ISM supercomputer
Fujitsu PRIMERGY RX200S5. The computing time shows an accumulated approximate
computing time for the number of runs executed with the same number of cores.

The results for solving the four instances rmatr200-p20, 50v-10, probportfolio and
reblock354 can already be found in the MIPLIB2010 paper [3]. For these experiments,
we initialized the search with the best known solutions. All other instances were solved
from scratch. All instances that are solved using more than one run are restarted from the
checkpoint file of its previous run, except dolom1. For dolom1, the second run was solved
without a checkpoint file, while we used the incumbent solution of the first run as an initial
solution.

5.3 The biggest and the longest computation

Currently, we aim at solving the open instance rmine10 using the supercomputers HLRN
III and Titan. Figure 7 shows the computing time and the number of Solvers used for
each run. The Solvers are categorized by two types: i) the solvers that kept solving only
one single sub-MIP during a run and ii) the solvers that solved more than one sub-MIP.
This illustrates the ratio between solvers that are working on a single hard sub-MIP and
those that get assigned easier sub-MIPs. We see that by now, this ratio converged to
roughly fifty-fifty.

For all runs on HLRN III, the number of Solvers used is exactly the number of cores
minus 1, that is one for the LC. For the Titan run, we used one computing node dedicated
to the LC process and the number of Solvers was 79,984. Figure 8 shows the number
of nodes solved and the number that remained at the end of the computation, together
with the idle time ratio. The idle time ratio is calculated by using a log file which contains
Solver statistics of solved sub-MIPs. These statistics are only obtained when at least one
sub-MIP was solved, the data for the Solvers that kept solving one sub-MIP until the
end of computation is missing. Figure 8 shows that the idle time ratio was extremely low
in general (less than 2% in many cases) while the biggest one was 27.5%. The latter was
reached in a run that was aborted due to a hardware error and terminated after 4.4 hours
out of the planned 12 hours.

In Figures 9, 10 and 11, the results of all 41 runs are arranged by accumulating computing
times of the previous runs. Figure 9 shows how the upper and lower bounds evolved. At the

15

end of the first run, the relative gap was already 0.15%, still it is really hard to solve the
remaining part to optimality. At the end of the 41st run, it is less than 0.03%. As described
above, important performance measures for parallel MIP solving, such as the ratio of
Solvers that solve hard/easy problems, and the idle time ratio, have been almost constant
over the last 20 runs. At the same time, the lower bound of the MIP grew steadily. It seems
likely that the solution process can be finished with a reasonable number of additional runs.

Figure 10 shows how the number of open nodes and the number of active Solvers
evolved together with the number of ParaNodes in the checkpoint file. Also it is clear
from the idle time ratio that all Solvers are active most of the time. Again, the number of
ParaNodes in the checkpoint file is very stable at around 10,000. Figure 11 shows how the
limit of the collecting mode Solvers parameter value is changed during the computation
and the ratio in duration of collecting mode in the computing time. Once the lower bound
converges closer to optimality, we see more solvers going into collecting mode for a longer
duration, which indicates that the search is getting closer to termination.

Figures 12, 13 and 14 give detailed results for three particular runs. The very first
run, the last run so far (run 41), and the only run that has been conducted on Titan
(run 21). The diagrams show how the number of open nodes and the number of active
Solvers evolved together with how many ParaNodes the LC received from and sent to
the Solvers per second. A big number for nodes received per second, i.e., a blue bar in
the diagram, indicates that ParaSCIP switched to collecting mode.

The first run, Figure 12, initially performed racing ramp-up. During this run, we hardly
switched to collecting mode. The maximum number of nodes saved in the checkpoint file
was 774 in 15 sec. In the Titan run, shown in Figure 13, the interval time between collecting
modes increases. This indicates that the branch-and-bound tree becomes balanced as more
Solvers receive reasonably hard sub-MIPs. In the 41st run, shown in Figure 14, most of
the computing time is spent in collecting mode and the number of remaining nodes starts
decreasing at the very beginning of the computation. In this run, often Solvers become
idle, but they also recover quite well, recall also the small solver idle ratio. The high ratio
of collecting mode times also indicates that we are getting closer to the ramp-down phase.
The maximum number of nodes saved in the checkpoint file was 16,764 in 51 sec.

Altogether, the results show that ParaSCIP is able to handle up to 80,000 Solvers
with a single LC. This makes it a new record for the largest number of cores involved in a
parallel MIP search.

6 Concluding remarks

In this paper we have shown that running ParaSCIP on some of the largest supercomputers
can be utilized to solve difficult, previously unsolved MIP instances. ParaSCIP can stably
handle over 40,000 cores, even in situations where a huge amount of branch-and-bound
nodes is constantly distributed. The biggest scale computational experiments conducted use
80,000 cores on Titan. This gives rise to the expectation that ParaSCIP will be capable of
handling even larger scale computing environments. Our first design approach of ParaSCIP

16

0	
20000	
40000	
60000	
80000	
100000	
120000	
140000	
160000	
180000	
200000	

0	
10000	
20000	
30000	
40000	
50000	
60000	
70000	
80000	
90000	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	

Co
m
pu

&n
g	
Ti
m
e	
(s
ec
.)	

N
um

be
r	 o

f	 s
ol
ve
rs
	

Runs	

kept	 solving	 only	 one	 subproblem	
solved	 more	 than	 one	 subproblems	
Comp.	 Time	 (sec)	

Figure 7: # of Solvers and computing times (rmine10).

0	

5	

10	

15	

20	

25	

30	

1	
10	
100	
1000	
10000	

100000	
1000000	
10000000	

100000000	
1E+09	
1E+10	
1E+11	
1E+12	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	 37	 39	 41	

Id
le
	 T
im

e	
Ra

+o
	 (%

)	

N
um

be
r	 o

f	 n
od

es
	

Runs	

#	 of	 nodes	 solved	
#	 of	 nodes	 remained	
idle	 9me	 ra9o	

Figure 8: # of nodes and lower bounds of idle time ratios (rmine10).

17

-1916

-1915.5

-1915

-1914.5

-1914

-1913.5

-1913

-1912.5

-1912

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

Computing Time (sec.)

Incumbents
Global LBs

Figure 9: Lower and upper bounds evolution (rmine10).

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

N
u

m
b

e
r

o
f

N
o

d
e

s
 /

 L
im

it
 #

 c
o

lle
c
ti
n

g

N
u

m
b

e
r

o
f

A
c
ti
v
e

 S
o

lv
e

rs
 +

 1

Computing Time (sec.)

nodes left
active solvers

nodes in check-point file

Figure 10: Active solvers and # of nodes left (rmine10).

 0

 20

 40

 60

 80

 100

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

L
im

it
 o

f
c
o
lle

c
ti
n
g
 m

o
d
e
 S

o
lv

e
rs

R
a
ti
o
 i
n
 d

u
ra

ti
o
n
 o

f
c
o
lle

c
ti
n
g
 m

o
d
e
(%

)

Computing Time (sec.)

Limit of collecting mode solvers
Ratio in duration of collecting mode

Figure 11: Runtime behavior of collecting mode (rmine10).

18

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 5000 10000 15000 20000 25000 30000
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

N
u
m

b
e
r

o
f
N

o
d
e
s

N
u
m

b
e
r

o
f
A

c
ti
v
e
 S

o
lv

e
rs

 +
 1

Computing Time (sec.)

nodes left
active solvers + 1

nodes received/sec
nodes sent/sec

nodes in check-point file

Figure 12: Active solvers and # of nodes left (Run 1: 6,144 cores).

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

N
u
m

b
e
r

o
f
N

o
d
e
s

N
u
m

b
e
r

o
f
A

c
ti
v
e
 S

o
lv

e
rs

 +
 1

Computing Time (sec.)

nodes left
active solvers + 1

nodes received/sec
nodes sent/sec

nodes in check-point file

Figure 13: Active solvers and # of nodes left (Run 21: 80,000 cores).

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000
 0

 10000

 20000

 30000

 40000

 50000

 60000

N
u
m

b
e
r

o
f
N

o
d
e
s

N
u
m

b
e
r

o
f
A

c
ti
v
e
 S

o
lv

e
rs

 +
 1

Computing Time (sec.)

nodes left
active solvers + 1

nodes received/sec
nodes sent/sec

nodes in check-point file

Figure 14: Active solvers and # of nodes left (Run 41: 43,344 cores).

19

had a two-layered LC of ParaSCIP. However, the presented results do not indicate the need
for a two-layered LC. To utilize an even higher number of cores, it seems more beneficial to
design a combined system that additionally uses the internal shared-memory parallelization
of the MIP solver.

ParaSCIP can be used by researchers to conduct their own experiments, it is available in
source code and distributed as a part of the SCIP Optimization Suite3. One of the biggest
advantages of SCIP is that it can be extended to build a customized solver by adding user
plugins. The latest distribution of ParaSCIP has a feature to parallelize customized SCIP

solvers by implementing a small interface. A successful example of such an expansion is
the parallel Steiner Tree Problems solver introduced in [13]. It participated at the 11th
DIMACS Implementation Challenge in Collaboration with ICERM4. In this competition,
ParaSCIP was the only solver that was capable of running on distributed memory computing
environments.

Given that major MIP software vendors such as IBM Cplex, Gurobi and FICO Xpress
have recently started to integrate distributed computing capabilities, the topic will become
even more significant in the future. Important questions are the balancing of ramp-down
and ramp-up phases and a proper handling of subproblems—subtrees and individual nodes—
that show very different runtime behaviors. We believe that the present paper gives some
first clues on how to address these challenges.

Acknowledgment

We are grateful to the HLRN III supercomputer staff, especially Matthias Läuter and Guido
Laubender and to the ISM supercomputer staff in Tokyo, especially Tomonori Hiruta. This
research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-00OR22725. The work for this article
has been conducted within the Research Campus Modal funded by the German Federal Ministry
of Education and Research (fund number 05M14ZAM). The work has been supported by a Goggle
Faculty Research award.

References

[1] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. Wiley, 1988.

[2] R. E. Bixby, E. A. Boyd, and R. R. Indovina, “MIPLIB: A test set of mixed integer
programming problems,” SIAM News, vol. 25, p. 16, 1992.

[3] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D. Steffy, and K. Wolter, “MIPLIB 2010,” Mathematical Programming Computation, vol. 3,
pp. 103–163, 2011.

3http://scip.zib.de/#scipoptsuite
4http://dimacs11.cs.princeton.edu/

20

[4] M. R. Bussieck, M. C. Ferris, and A. Meeraus, “Grid-enabled optimization with GAMS,”
IJoC, vol. 21, no. 3, pp. 349–362, Jul. 2009.

[5] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch, “ParaSCIP – a parallel
extension of SCIP,” in Competence in High Performance Computing 2010, C. Bischof, H.-G.
Hegering, W. E. Nagel, and G. Wittum, Eds. Springer, 2012, pp. 135–148.

[6] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler, “FiberSCIP – a shared memory paral-
lelization of SCIP,” Zuse Institute Berlin, Tech. Rep. ZR 13-55, 2013.

[7] M. W. P. Savelsbergh, “Preprocessing and probing techniques for mixed integer programming
problems,” ORSA Journal on Computing, vol. 6, pp. 445–454, 1994.

[8] T. Achterberg, “Constraint integer programming,” Ph.D. dissertation, Technische Universität
Berlin, 2007.

[9] Y. Shinano, T. Achterberg, and T. Fujie, “A dynamic load balancing mechanism for new
ParaLEX,” in In: Proceedings of ICPADS 2008, 2008, pp. 455–462.

[10] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Winkler, “Solving
hard MIPLIB2003 problems with ParaSCIP on supercomputers: An update,” in Parallel
Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE International, May
2014, pp. 1552–1561.

[11] T. Achterberg, T. Koch, and A. Martin, “Branching rules revisited,” Operations Research
Letters, vol. 33, no. 1, pp. 42–54, 2005.

[12] T. Berthold, T. Feydy, and P. J. Stuckey, “Rapid learning for binary programs,” in Proc. of
CPAIOR 2010, ser. LNCS, A. Lodi, M. Milano, and P. Toth, Eds., vol. 6140. Springer, June
2010, pp. 51–55.

[13] G. Gamrath, T. Koch, S. Maher, D. Rehfeldt, and Y. Shinano, “SCIP-Jack - a solver for
STP and variants with parallelization extensions,” ZIB, Takustr.7, 14195 Berlin, Tech. Rep.
15-27, 2015.

21

	Introduction
	ParaSCIP – A Distributed Memory MIP Solver
	Initialization
	Ramp-up
	Dynamic load balancing
	Termination
	Checkpointing and restarting

	Improving the Dynamic Load Balancing
	Dynamic tuning of parameters and bulk sending of ParaNodes
	Improving the ramp-down
	Restarting the collecting mode
	Branch node selection in the collecting mode Solver

	Additional Techniques Applied Externally From SCIP
	Merging ParaNodes at restart
	Deep probing

	Computational results
	Improvements of load balancing process
	Open instances solved by ParaSCIP
	The biggest and the longest computation

	Concluding remarks

