
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

JULIÁN LAMAS-RODRÍGUEZ, MORITZ EHLKE,
RENÉ HOFFMANN, STEFAN ZACHOW

GPU-accelerated denoising
of large tomographic data sets

with low SNR

Application for non-invasive analysis
of paleontological data

ZIB-Report 15-14 (December 2015)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

GPU-accelerated denoising

of large tomographic data sets

with low SNR

Application for non-invasive analysis
of paleontological data

Julián Lamas-Rodŕıguez1, Moritz Ehlke1, René Hoffmann2, and
Stefan Zachow1

1Zuse Institute Berlin (ZIB), Department of Visual Data Analysis
2Ruhr-Universität Bochum, Institute of Geology, Mineralogy, and

Geophysics

December 4, 2015

Contents

1 Motivation 3

2 Foundation of this work 6

3 Materials and methods 8
3.1 Evaluation of different denoising methods 8

3.1.1 Denoising an artificial dataset 8
3.1.2 Denoising a paleontological dataset 14

4 GPU implementation of an improved AM-NLM 18
4.1 Filter implementation details . 18
4.2 Memory optimization . 20
4.3 Performance optimization . 22

5 AM-NLM-based denoising in ZIBAmira 23

6 Conclusions and future work 31

A Notation used in this document 32

B Mathematical formulation of denoising filters 32
B.1 Gaussian smoothing . 32
B.2 Median filter . 33
B.3 Anisotropic diffusion . 33
B.4 Bilateral filtering . 33
B.5 Non-local means . 34

C Signal-processing approaches to bilateral filtering 34
C.1 Linearization of the bilateral filter 34
C.2 Bilateral grid . 36
C.3 Gaussian kd-tree . 37
C.4 Adaptive manifolds . 39

D Evaluation results 41
D.1 Gaussian smoothing . 41
D.2 2D NLM . 44
D.3 3D NLM . 50

E Gaussian kd-tree NLM 54
E.1 AM-NLM . 58
E.2 k-means clustering . 61

2

Abstract

Enhancements in tomographic imaging techniques facilitate non-des-
tructive methods for visualizing fossil structures. However, to penetrate
dense materials such as sediments or pyrites, image acquisition is typically
performed with high beam energy and very sensitive image intensifiers,
leading to artifacts and noise in the acquired data. The analysis of del-
icate fossil structures requires the images to be captured in maximum
resolution, resulting in large data sets of several giga bytes (GB) in size.
Since the structural information of interest is often almost in the same
spatial range as artifacts and noise, image processing and segmentation
algorithms have to cope with a very low signal-to-noise ratio (SNR).

Within this report we present a study on the performance of a collec-
tion of denoising algorithms applied to a very noisy fossil dataset. The
study shows that a non-local means (NLM) filter, in case it is properly
configured, is able to remove a considerable amount of noise while preserv-
ing most of the structural information of interest. Based on the results of
this study, we developed a software tool within ZIBAmira that denoises
large tomographic datasets using an adaptive, GPU-accelerated NLM fil-
ter. With the help of our implementation a user can interactively configure
the filter’s parameters and thus its effectiveness with respect to the data
of interest, while the filtering response is instantly visualized for a pres-
elected region of interest (ROI). Our implementation efficiently denoises
even large fossil datasets in a reasonable amount of time.

1 Motivation

The non-invasive analysis of fossil structures, either fully or partially preserved
within sedimentary rocks, requires imaging methods that are primarily used in
non-destructive material testing. Current state-of-the-art tomographic imag-
ing techniques such as high resolution computed tomography (CT) or micro
CT (µCT), enable a view inside of solid objects with astonishing spatial res-
olution [9, 20]. The geometric reconstruction of relevant structures from such
tomographic measurements typically involves the task of image segmentation.
This includes the classification and delineation of structures within the image
data. Segmentation works best if structures of interest have a distinct and
unique intensity range, and are homogeneous and considerably larger than the
image resolution itself (Fig. 1).

However, delineation of structures is often limited by imaging artifacts and
sensor noise. Artifacts might, for instance, result from total beam blockage
due to extremely dense (i.e., radio-opaque) embedding rock material or sedi-
ment filling of fossils. To cope with beam-blockage, the image intensifiers of the
tomography scanner are typically operated in a highly sensitive mode [4, 17].
While this allows to capture delicate structures with thickness close to the size
of sensor elements (pixels), it also induces additional noise in the images. The
tomographic data, thus, often exhibits a very low signal-to-noise ratio (SNR),
hampering the segmentation and visualization of small fossil structures for fur-
ther analysis (cf. Fig. 2).

3

The aim of this work is to denoise tomographic images for non-invasive anal-
ysis of palaeontological data without degrading relevant image information. We
are particularly interested in the shape and dimension of complexly folded sep-
tal surfaces and delicate shell ornamentation of fossil cephalopods. Respective
µCT datasets are large in size (35 up to 100 GB) and exhibit a low SNR. Since
existing filters did not meet our requirements, appropriate tools and algorithms
have been developed (i) to cope with the size of the data sets, (ii) to enable
a user to interactively determine suitable filtering parameters, and (iii) to effi-
ciently process the 3D image data in a reasonable amount of time. Development
and data analysis have been performed within the software platform ZIBAmira
in its current version [21].

Structure of this document

The remainder of this manuscript is structured as follows: First, the general
advantages and shortcomings of available filters are briefly discussed based on
related literature. We then evaluate existing filters w.r.t. to our application in
Chapter 3. In Chapter 4, a GPU-based implementation of a Non-Local-Means
(NLM) filter is presented, that denoises the given datasets while preserving
structures of interest. In order to ensure an adequate filtering response, the
filter is configured prior to each denoising pass using a set of filter parameters.
We shortly describe an interactive ZIBAmira tool that has been developed for
this purpose in Chapter 5 and conclude our findings in Chapter 6. Mathematical
details of the investigated filtering algorithms and additional figures are given
in the Appendices.

4

Figure 1: Micro-CT dataset of the Jurassic ammonite Quenstedtoceras sp.
(3650 × 3350 × 2400 voxels, 55 GB). Left: Multiplanar visualization showing
an ammonite shell preserved in the rare hollow condition and surrounding rock
material. Right: Planar image of the same specimen depicting the fragile, inter-
nal septa subdividing the shell into discrete chambers which are nicely visible
due to the unique preservation.

Figure 2: Micro-CT dataset of the Lower Jurassic ammonite Eleganticeras sp.
(3000 × 2700 × 2400 voxels, 36 GB). Left: Multiplanar visualization showing
the ammonite shell filled completely with former sediment that was turned into
sedimentary rock over the last 110 million years. Right: Planar image of the
same specimen depicting the low SNR due to sedimentary infill of the ammonite
shell with calcareous rocky material that share similar absorption properties like
the fragile septa subdividing the shell into separate chambers.

5

2 Foundation of this work

In this section we provide an overview of commonly applied image filters and
shortly review their concepts, strengths and weaknesses. For a mathematical
description of each of these filters, we refer the reader to Appendix B.

Gaussian smoothing This is one of the most basic forms of noise reduction.
A Gaussian filter is fast and easy to implement; it replaces each pixel by
a weighted average of all pixels in its local neighborhood. The Gaussian
smoothing is effective in removing high-frequency components of an image.
Unfortunately this means that the filter removes not only noise but also
relevant information which is often present in areas with a high image
gradients, i.e., edges of objects.

Median filter The median filter replaces the color/intensity of each pixel by
the median color/intensity of all pixels in a local neighborhood [13]. Such
a filter is also fast and easy to implement. A median filter has the advan-
tage of not introducing values that are not present in the original image,
however, it is not efficient in preserving edges in very noisy images.

Anisotropic diffusion An iterative algorithm that generates a succession of
more and more blurred images based on a diffusion process [15]. The
rate of diffusion determines the degree of smoothing or blurring across
edges. Anisotropic diffusion is preserving edges (provided an appropriate
rate of diffusion is used), but as other local filters, it performs poorly on
homogeneously textured regions [2].

Bilateral filter A generalization of the Gaussian smoothing that operates both
in the spatial and in the range domain of an image [19]. Each pixel is also
replaced by a weighted average of surrounding pixels, but in this case
the weights not only depend on the Euclidean distance of pixels, but also
on the radiometric differences (color, intensity, etc). The bilateral filter
preserves sharps edges, but at the same time introduces staircase effects
and false edges [2].

Non-local means By introducing the concept of neighborhoods, an NLM filter
results in a generalization of the bilateral filter in a higher dimensional
space. Instead of the radiometric differences, the weight values depend
on the similarity between the areas of the image that surround the pixels,
also known as neighborhoods (Fig. 3). NLM exploits the redundancy that
is present in natural images, and it is able to preserve image features even
in the case of high frequencies.

The performance of the NLM filter has been subject of thorough studies [1, 3,
7, 10, 12, 18]. Among other developments, the application of a signal-processing

6

Figure 3: Denoising of pixel p in a 2D image using the NLM filter. Pixels q1 and
q2 have a larger weight w because they are closer to p and their neighborhoods
(represented as squares on the image) are similar. Pixel q3, however, has a
smaller weight. Reprinted from Ref. [2].

paradigm to the bilateral filter [14] has proven to be key in the improvement of
the efficiency of this filtering scheme and resulted in new filtering approaches
based on the bilateral grid [5]. Subjects of our investigation were Gaussian kd-
trees and adaptive-manifolds variants of NLM, which we briefly describe below.
For a more in-depth review of the bilateral grid and related filters, we refer the
reader to Appendix C.

Gaussian kd-tree Approximation of the bilateral grid that aims to reduce
the number of computations by using a Monte-Carlo approach. The basic
operations to perform the filtering are the same as with the bilateral grid.
However, the general approach uses a kd-tree that sparsely represents the
high-dimensional space containing all possible neighborhoods in the image
as values stored in its nodes, thus, restricting the operations to the points
of the image in the vicinity of those nodes.

Adaptive manifolds A similar approach to the bilateral grid that samples
the high-dimensional space in a collection of manifolds, where the basic
bilateral-grid operations are performed. This is the first high-dimensional
filter with linear cost both in the number of pixels and in the dimension
of the space in which the filter operates.

In this report we explore the parameter spaces of the aforementioned filters
within the context of denoising tomographic images of fossil structures in order
to become familiar with the effects these parameters do exert on the respective
filtering result.

7

Figure 4: Test case: Three oblique intersecting (thin) planes.

3 Materials and methods

3.1 Evaluation of different denoising methods

In the following section, we present a comparative study of the performance
of different denoising filters. Our goal is to analyze (i) how the filters behave
under different levels of noise, e.g. how well the filters remove noise, (ii) how
much of the structural information is lost during denoising, and (iii) how fast
the filtering is performed. The filters are tested using an artificial dataset as
well as a detail from a real, noisy tomographic image dataset. We designed the
artificial data to emulate the thin septal interfaces found in typical fossil data
of the application in question.

3.1.1 Denoising an artificial dataset

For our experiments, an artificial image volume, i.e., a regular voxel grid, of size
643 was employed. Three oblique intersecting planes (Fig. 4) were sampled into
that three-dimensional scalar field in such a way that voxels being intersected
by any of the planes receive a value of 1, and all unaffected voxels a value of 0.
That way, the voxel grid contains a binarized representation of the three planes
sampled onto a regular voxel grid (cf. Fig. 5, center).

Gaussian white noise was added to the artificial dataset, with different values
of variance σ2 = {0.01, 0.1, 1.0} (Fig. 5). When the level of noise is small, the
disturbance of the data is barely visually noticeable. For a fairly moderate
noise level, noise will be noticed in the empty regions of the data volume and
the histogram will change in a noticeable way. For a high amount of noise, the
planes cannot be visually recognized. The visual effect of the different levels of
noise is corroborated by the decreasing values of the peak signal-to-noise ratio
(PSNR).

With these artificially degraded datasets, three different denoising algo-

8

rithms were tested: (i) a Gaussian smoothing, (ii) an implementation of a non-
local means (NLM) filter, and (iii) an implementation of the adaptive manifolds,
non-local means (AM-NLM) filter. For these three filters, results are demon-
strated for efficient filter configurations.

For a low level of noise, all algorithms manage to restore the original data,
but the Gaussian smoothing introduces an important variation that results in
a blurring of the planes (Fig. 6). As a result, the PSNR is even lower than that
of the noisy volume dataset. On the other hand, the family of NLM algorithms
are able to restore original structures with nearly pixel-perfect accuracy.

When filtering a fairly noisy dataset, the Gaussian smoothing removes almost
all noise but introduces even more blurriness (Fig. 7). The filtered data has a
PSNR similar to that of the noisy data. The NLM algorithms reduce the noise
without severely degrading the structural information, leading to acceptable
values of PSNR.

Finally, for the noisiest datasets, none of the algorithms manage to obtain an
acceptable result, as most of the noise is still present (Fig. 8). NLM algorithms
are at least able to restore the intersections between planes, as shown in the
respective visualization of the reconstructed surfaces. Notice also how the AM-
NLM interprets most of the noise in empty areas as structural information
intended to be preserved.

9

Original volume

σ2 = 0.01, PSNR = 22.999

σ2 = 0.1, PSNR = 12.998

σ2 = 1.0, PSNR = 5.890

Figure 5: An artificial data volume of 643 voxels representing three interesecting
planes. In each row, the left image shows a 2D slice of the data, the center image
shows a rendering of an iso-surface for a threshold value of 0.4, and the right
image contains the respective histogram of the volumetric data. The top row
corresponds to the original dataset, prior to adding noise. Each row below shows
the same volume with additive Gaussian noise of increasing variance (σ2). The
peak signal-to-noise ratio (PSNR) measured on the noisy volumes provides a
quantitative measure of the degradation of the quality of each dataset.

10

Noisy version (σ2 = 0.01)
PSNR = 22.999

Gaussian smoothing (kernel size = 53, σ = 0.4)
PSNR = 16.026

NLM (searchwindow size = 213, neighborhood size = 53, similarity = 1.0)
PSNR = 26.855

AM-NLM (σs = 5.0, σr = 0.3)
PSNR = 31.846

Figure 6: Denoised artificial dataset with Gaussian noise level of σ2 = 0.01.
The first row shows the noisy version of the dataset that was used as input for
the different filters. The rows below show the results of filtering with Gaussian
smoothing, NLM, and AM-NLM. The parameters used for each filter are denoted
below each image.

11

Noisy version (σ2 = 0.1)
PSNR = 12.998

Gaussian smoothing (kernel size = 83, σ = 0.4)
PSNR = 13.028

NLM (searchwindow size = 213, neighborhood size = 53, similarity = 3.0)
PSNR = 16.469

AM-NLM (σs = 6.0, σr = 0.5)
PSNR = 19.244

Figure 7: Denoised artificial dataset with Gaussian noise level of σ2 = 0.1.
The first row shows the noisy version of the dataset that was used as input for
the different filters. The rows below show the results of filtering with Gaussian
smoothing, NLM, and AM-NLM. The parameters used for each filter are denoted
below each image.

12

Noisy version (σ2 = 1.0)
PSNR = 5.890

Gaussian smoothing (kernel size = 53, σ = 0.4)
PSNR = 7.423

NLM (searchwindow size = 213, neighborhood size = 73, similarity = 5.0)
PSNR = 7.138

AM-NLM (σs = 8.0, σr = 0.8)
PSNR = 7.570

Figure 8: Denoised artificial dataset with Gaussian noise level of σ2 = 1.0.
The first row shows the noisy version of the dataset that was used as input for
the different filters. The rows below show the results of filtering with Gaussian
smoothing, NLM, and AM-NLM. The parameters used for each filter are denoted
below each image.

13

3.1.2 Denoising a paleontological dataset

In a second series of experiments the results of different filters on a paleonto-
logical dataset are assessed. The dataset was obtained from a µCT-scan of a
Eogaudryceras umbilicostriatus specimen of about 112 million years old (Creta-
ceous, Lower Albian). The specimen was filled with calcareous mud containing
glauconite mineral. Due to the low PSNR of the µCT-scan, the ammonite
shell (consisting also of calcium carbonate) is barely distinguishable from the
surrounding sediments.

The dataset has a total size of 1880 × 1880 × 1700 voxels, consuming ap-
proximately 12 GB of memory. A subvolume of size 141× 152× 180 voxels was
selected (Fig. 9) to explore the effects of different filter configuration parameters
(Tab. 1). For a more detailed view of the results of this exploration, we refer
the reader to Appendix D.

Figure 9: Slices in different orientations through the selected subvolume of the
µCT dataset Eogaudryceras sp.

Gaussian smoothing The size of the filter kernel and the standard deviation
need to be quite high in order to effectively removing the noise of the
dataset. Unfortunately, the filter also removes structural information of
the image, which becomes blurrier after its application.

Non-local means ZIBAmira provides an implementation of NLM that can be
applied to volumetric data either layer-by-layer (2D) or in 3D. The 2D
implementation introduces noticeable artifacts that are only visible when
the data volume is explored in directions different to the one the filter was
applied to. The results of the 3D implementation did not introduce such
artifacts. Applying the filter in several successive iterations considerably
reduces noise in the image. Unfortunately, the filter processing can take up
to several minutes, even for the small subvolume that was used, depending
on the chosen configuration.

Gaussian kd-tree NLM This approximation of the NLM filter yields similar
results in a substantially less amount of time. The effect of applying the

14

same filter in consecutive iterations can be partially replicated by applying
it once with appropriately selected filter parameters.

Adaptive Manifolds NLM This filter follows a similar approach as the Gaus-
sian kd-tree NLM, but it is noticeable faster. The good results in terms of
performance and quality motivated us to design our own implementation
of this filter in ZIBAmira (Sect. 4).

k-means clustering One of the results from denoising the dataset with the
AM-NLM filter was selected. The contrast was equalized using a CLAHE
filter before a k − means clustering filter was applied. We were able to
identify one of the resulting clusters as a partial segmentation of the septa,
however, some portions were unrecoverable (Fig. 10).

15

Table 1: Results of processing a paleontological dataset. The parameters used
for each filter are denoted in the middle column. The same set of slices in
different orientations facilitates a visual inspection of the results. The 3D vari-
ant of NLM yields the best results after applying the same filtering in three
consecutive iterations. However, the low performance of this filter prevents an
application to the full dataset. Approaches like Gaussian kd-tree or adaptive
manifolds achieve similar results. A k-means clustering can be used to segment
the septa in the denoised volumes.

Filter Parameters Result

Gaussian
smoothing

σ = 0.8
kernel size = 83

2D NLM
search win. = 212

nghbor. = 52

similarity = 0.8

3D NLM

search win. = 213

nghbor. = 53

similarity = 1.0
iterations = 3

Gaussian
kd-tree
NLM

nghbor. = 73

pca = 7
sp. std. = 5.0
rg. std. = 0.3

Adaptive
manifolds
NLM

nghbor. = 53

pca = 5
sp. std. = 9.0
rg. std. = 0.3

k-means
clustering

clusters = 83
patch = 5
iterations = 20

16

Figure 10: Different views of the segmented septa. The original data was ini-
tially denoised with a AM-NLM filter. Afterwards, a CLAHE filter was used to
equalize the contrast in the whole volume. Finally, the segmentation was per-
formed via a clustering filter with 20 iterations, 8 clusters, and a patch size of
53. By filling some of the holes manually with ZIBAmira’s segmentation editor,
the shape of the septum could be partially restored. The portion traversed by
the siphuncle, however, seems to be unrecoverable.

17

4 GPU implementation of an improved AM-NLM

We implemented all previously described algorithms to compute the AM-NLM
denoising in CUDA. Our implementation was designed with respect to an ap-
plication of the filter for large datasets that do not fit into the available memory
of the graphical processing unit (GPU). The entire image volume is thus split
into partitions of fixed size, enabling the algorithm to perform the denoising
process on each of the partitions independently. The size of the partitions is
configured depending on the available memory of the GPU. A second objective
was to provide immediate visual feedback while a user modifies the parameters
of the denoising filter in order to allow for a preview of how the filter settings
affect the quality of the denoised image data.

4.1 Filter implementation details

Our implementation operates in two steps. First, a preprocessing step performs
a principal-component analysis (PCA) to generate the eigenvectors that allow
for an identification of the most important components of all local neighborhoods
within the image volume. The second step is the filtering step, where either one
or all partitions of the volume are processed to generate the denoised result. The
following sections provide a more detailed description of the implementation of
both steps.

The objective of the preprocessing step is to reduce the dimensionality of
the neighborhood space (i.e., the set of all possible neighborhoods that can be
generated from the volume). A PCA is used to identify the most important
eigenvectors (i.e., dimensions in the data) in this space. The vectors containing
all the pixel values of a neighborhood are projected onto these selected eigen-
vectors to generate new vectors of reduced dimensionality. For instance, let
the size of a neighborhood be 53 = 125 voxels—each possible neighborhood in
the volume is a vector of 125 dimensions. Let the number of output dimen-
sions for the PCA be 3—we select the three most important eigenvectors of
the neighborhood space. During the filtering, each neighborhood vector will be
projected onto these eigenvectors to generate a low-dimensional patch of just
3 dimensions (components). By selecting the most relevant eigenvectors, these
components are the most representative ones of the pixel data in the neighbor-
hood. The PCA computation is performed at the beginning, or when the size of
the neighborhood or the number of output dimensions of the PCA is changed.

The computation of the eigenvectors starts by selecting a random sample of
patches from the whole dataset. To this end, we use a uniformly distributed
random sampling process. With a confidence level of α and an error margin of
ε, the sample size is computed as in [16]:

n =
N z21−α2

r (1− r)
(N − 1) ε2 + z21−α2

r (1− r)
, (1)

where N is the size of the the number of possible neighborhoods, z1−α2 is the

18

value that leaves an area of α to the right under the curve of the probability
distribution function of a N(0, 1), and r is the response distribution. In our
implementation, we used a confidence level of α = 0.95, an error margin of
ε = 0.05, and a distribution function r = 0.5.

The computation of the eigenvectors from the random sample of neighbor-
hoods is an iterative process that has been implemented on the GPU. The
process starts by computing a covariance matrix of size dR × dR, where dR is
the number of voxels in each neighborhood. The matrix is computed by consid-
ering each of the components of a neighborhood as a random variable Xi, where
i = 1, . . . , dR. The value in each cell (i, j) of the matrix is obtained as:

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj). (2)

Finally, the preprocessing step ends by computing the eigenvectors using the
covariance matrix as a starting point. The eigenvectors are approximated using
an iterative approach based on the Gram-Schmidt process [6].

The second step of our implementation, i.e., the filtering process itself, starts
by extracting a partition from the dataset, moving the data to the GPU mem-
ory, projecting the neighborhoods of the partition into a low-dimensional space,
filtering the partition, and copying the denoised partition back to CPU memory.
These steps are performed until all partitions are processed. The generation of a
set of neighborhoods vectors from the current partition and the subsequent pro-
jection are combined into a single operation. Our implementation only stores
the set of vectors of reduced dimensionality in memory to keep the memory
footprint of this step as little as possible and to increase the computational
performance.

The filtering algorithm recursively explores the set of manifolds, which is
structured as a tree and built at the same time the data is filtered. Starting
from the root node, corresponding to the first manifold, the reduced vectors are
projected into the manifold and downsampled. An RF filter [11] is applied to the
downsampled data that are upsampled afterwards again to restore the original
scale. The blurred results are accumulated into previously blurred manifolds.
New manifolds are generated until the tree reaches its maximum height. When
the last manifold is processed, the denoised volume is computed.

The aforementioned RF filter approximates the computation of the Gaus-
sian smoothing as a recursive filter. The filter operates in three steps: First
processing the rows, second the columns, and finally the slices of the 3D data.
Each step requires to traverse the data twice, forwards and backwards. Our
GPU implementation processes a single row of data per thread in the X, Y, and
Z direction.

The root manifold of the tree is computed as a low-pass filtering of input
volume, and has also been implemented by means of the RF filter. As for all
remaining manifolds, their construction requires additional steps [10], which are
all executed on the GPU.

19

4.2 Memory optimization

The filtering step of our implementation requires the higher usage of GPU mem-
ory of the two steps. For an analysis of a potential optimization, every occur-
rence of memory allocation and deallocation on the GPU was logged. The
implementation uses two kind of different buffers: (i) those allocated through
the Thrust API, and (ii) those directly allocated through the CUDA API. The
majority of allocations are performed through the CUDA API and, in our de-
sign, they are all done at a single point of the implemented code, i.e., a class
constructor. In addition, deallocations through the CUDA API are performed
within the respective class destructor. To log the memory allocations and deal-
locations during the execution of the filter, a header with logging code was
used [8].

The memory usage in GB during the filtering step varies quite abruptly
during the filtering step, and for a specific dataset of 1453 it reaches peaks close
to 1.2 GB (Fig. 11a). The memory footprint was first reduced by reorganizing
the code, which allowed to deallocate intermediate buffers immediately after the
computation of the manifold has finished. This resulted in a drastic reduction
in memory consumption (Fig. 11b).

A close-up of the memory consumption while processing a single manifold re-
veals some peak allocations that still have the potential for reduction (Fig. 11c).
The first peaks correspond to the blurring of the manifold by means of the RF
filter. This filter was re-implemented to reduce the number of intermediate
buffers and reusing some of the already allocated buffers to compute the filter-
ing in vertical direction and in depth. As a result, the corresponding peak was
slightly reduced from approx. 0.45 GB to 0.40 GB (Fig. 11d).

The next two most prominent peaks in memory usage correspond to the
computation of the next two manifolds in the tree hierarchy (denoted as η−
and η+). Initially, both buffers were computed together, but a reordering of the
operations showed that it was possible to obtain η+ from the values of η−. This
allowed us to implement some additional deallocations of buffers, reducing the
memory usage for these computations in approx. 0.20 GB and requiring fewer
steps to complete the processing of a manifold (Fig. 11e).

The aforementioned optimizations managed to reduce the memory footprint
of the whole filtering from 1.2 GB to 0.5 GB (Fig. 11f).

20

steps

1.2

1.0

0.8

0.6

0.4

0.2

0.0
200 400 600 800 1000 1200

GB

(a) Original

steps

1.2

1.0

0.8

0.6

0.4

0.2

0.0
200 400 600 800 1000 1200

GB

(b) Optimized buffer usage

steps

0.6

0.4

0.2

20 40 60 80 100 120

GB

(c) Close-up

steps

0.6

0.4

0.2

20 40 60 80 100 120

GB

(d) Optimized RF filter

steps

0.6

0.4

0.2

20 40 60 80 100 120

GB

(e) Optimized computation of η

steps

1.2

1.0

0.8

0.6

0.4

0.2

0.0
200 400 600 800 1000 1200

GB

(f) Final result

Figure 11: GPU memory usage in GB for filtering a single partition of 1453

elements (753 voxels in the kernel of the partition, and a border with a width of
35 voxels) with neigborhood size 53, PCA output dimensions 3, spatial standard
deviation 5.0, and range standard deviation 0.5.

21

4.3 Performance optimization

Many operations performed during the filtering were implemented using the
CUDA Thrust library and the CUBLAS library. An analysis of the performance
of the application using the CUDA profiler showed that more than 40% of the
time was devoted to a single operation gemv from the CUBLAS API. This
operation was called during the computation of the eigenvector that is used to
compute the two new manifolds η− from η+. It multiplies a transposed matrix
of size k×N by a vector of size N , resulting in a new vector of size k, where N
is the total number of patches in a partition and k is the number of elements in
each patch (notice also that N � k).

We concluded that the reduction step required during the computation is
not efficient for such a small k (in our tests, we were using k = 3, whereas N =
1453), we reimplemented this operation using a custom kernel that executed
the multiplication and we used the Thrust API to perform the reduction. The
operation, which took more than 150 ms. on an Nvidia GTX Titan graphics
adapter, decreased to less than 1 ms.

We achieved another important boost in performance by reimplementing the
most expensive operation (RF filter) using multi-channeled CUDA surfaces. As
the number of elements in each patch is usually between 2 and 4, storing each
patch as a float2 or float4 data structure stored in the surface memory of
the GPU was perfectly plausible. When the size of the patches is not within
this range, we default to the previous implementation of this filter, that works
exclusively in global memory.

22

5 AM-NLM-based denoising in ZIBAmira

We have implemented a module CUDAAdaptiveManifoldsNLM in ZIBAmira that
performs a GPU-accelerated AM-NLM filtering based on the specification of
Gastal and Oliveira [10]. To provide a filtering tool where a user can interactively
assess the influence of the filtering parameters for large datasets, a preview
approach has been implemented where a user can apply the filter to his or her
data for a previously defined subvolume, i.e., a region of interest (ROI). The
processing of small regions nearly occurs in real-time, thus a user can change
the parameters while their influence on the filtered image data is immediately
visualized. Once the user is satisfied with the result of the preview, the filter
can be applied with the respective parameter settings to the entire dataset. In
the remainder of this section we describe how to use the new filtering tool.

Figure 12: Screenshot of ZIBAmira with data, viewer, and AM-NLM filter
module loaded into the object pool.

The user first loads the dataset that is to be processed by the filter into
ZIBAmira and then selects our denoising module from the list of available
modules. A red module icon entitled CUDAAdaptiveManifoldsNLM appears in
ZIBAmira’s object pool. After attaching this module to the input dataset, a
new output dataset is generated. Initially, this dataset is a copy of the input
dataset. When the input dataset is filtered, the output dataset is modified
with the filtered data. An additional Orthoslice module can be connected

23

Figure 13: Close-up view of ZIBAmira’s object pool.

to the output dataset (Fig. 12). Within the viewer of ZIBAmira the content
of the currently selected slice of the image data via the Orthoslice module is
visualized.

By selecting the AM-NLM module icon in the pool (Fig. 13), a control panel
is shown, where the user can configure the different options (Fig. 14). Via the
CUDA device port a GPU device can be selected where the filtering is to be
executed. If there are several GPU cards available in the system, the user can
select the one that is to be used. The port also shows the available GPU memory
of the respective graphics adapter.

The Spatial std dev and Intensity std dev ports enable the user to
configure the values of σs and sigmar, respectively. The minimum and max-
imum values for these two parameters have been chosen to support the most
common use cases. For instance, the intensity standard deviation can take val-
ues from the range [0.1, 1.0]. As the intensity values of the dataset are converted
to the interval [0, 1] during the filtering process; using values of σr outside of
this range is not encouraged. Notwithstanding, these limits can be changed by
a user via the port’s properties.

Intuitively, the spatial standard deviation σs allows the user to control the
blurriness of the filter response. The higher this value, the blurrier the result
will be. If this value is too low, the effect of the filtering will be poor, i.e.,
very little noise will be removed. The intensity standard deviation σr acts as a
fine tuning control of the blurriness. This parameter allows to slightly increase
or decrease the blurriness of the result. In some cases, there is a threshold
from where on this parameter no longer increases the blurriness of the output,
because all neighboring voxels are already contributing to the final intensity of

24

Figure 14: Control panel GUI of the AM-NLM filtering module.

the output voxel, regardless of their intensity values. The effect is then similar
to applying a Gaussian smoothing on the input. Moreover, if the value of the
spatial standard deviation σs is too high, any change of the value of the intensity
standard deviation σr usually has only a minimal effect.

The ROI toggle allows for an automatic attachment of a SelectROI to the
module, so the user can apply the filter to a small subregion of the dataset. In
case this toggle is activated, a ROI frame appears in the viewer whose boundaries
can be interactively dragged to change its position and size (Fig. 15).

Initially the ROI has the same size as a partition. The user can select
which partition is to be filtered by dragging the ROI in the viewer. If the Snap

toggle is active, the user can also click on the Orthoslice and the ROI will be
automatically positioned at the respective partition. Once the user has selected
a partition to denoise, pressing the Apply button will initiate the filtering process
which is visualized within the ROI (Fig. 16).

Using the parameters of the connected OrthoSlice module, the user can
adjust the dynamic range for the visualization of the image data (Fig. 17).

The user can continue changing the values of the parameters by pressing
the Apply button to denoise the same partition, or reposition the ROI to apply
the filter to a different region of the image data. A user can also toggle the
auto-refresh option. Hence, after every change in the parameters the filter is
immediately applied without the need to press Apply. After appropriate values
for the filter parameters have been found, the whole dataset can be processed
using these parameters (Fig. 18–19).

The Advanced options are split in three tabs. The first tab, Partitions,
allows the user to configure the size of the partitions and the radius of the

25

Figure 15: ROI selection of the AM-NLM filtering module.

Figure 16: Result of the AM-NLM filtering applied to the given ROI/partition.

26

Figure 17: Result of the AM-NLM filtering applied to the given ROI/partition
with adjusted dynamic range.

Figure 18: Slice of the initial dataset (left), result of the AM-NLM filtered data
(right).

27

Figure 19: Close-up view.

Figure 20: User interface of the AM-NLM module with Advanced options for
partitioning activated.

28

Figure 21: User interface of the AM-NLM module with Advanced options for
PCA activated.

border surrounding each partition. Each partition has a border that overlaps
to the contents of adjacent partitions. The size of the partition and the width
of the border have an important impact on the performance of the algorithm,
especially when previewing the result of filtering a single partition. The user
can reduce these values in order to get faster results. Reducing the size of the
border might result in undesired artifacts at the boundaries of each partition.
The default values provide a good compromise between performance and quality
(Fig. 20).

Via the PCA tab of Advanced options a user can configure the radius of the
local neighborhood. For a 3D dataset, the size of the local neighborhood is
(2r + 1)3, where r is the radius. In the Num. dims. port a user can set the
number of output dimensions for the PCA (the default value, 4, provides a
good result, in terms of quality and performance). With Max. iters the user
can set the maximum number of iterations for the PCA. This number might be
increased in those cases where the default value, 100, is not sufficient to compute
the eigenvectors (Fig. 21).

Via the Misc tab of Advanced options a user can configure the number
of random samples that is used to perform the PCA. The default number is
computed from the size of the volume with a confidence of 95%. The Eigenvec

iters port is for a configuration of the number of iterations needed to compute
a single eigenvector (Fig. 22). This eigenvector is used during the construction
of each manifold. Increasing this value might increase the quality of the results.
At the same time, it might also have a negative impact on the performance.

29

Figure 22: User interface of the AM-NLM module with miscellaneous Advanced
options activated.

30

6 Conclusions and future work

In this report we tackled the problem of denoising very large and noisy datasets,
in particular, datasets obtained from tomographic images of fossil structures
embedded in sedimentary rocks.

Among the different filtering approaches tested in this work, the classical
Gaussian smoothing filter, while being an excellent and fast noise-removal tool,
presented the undesirable characteristic of blurring the structural information
that we wanted to preserve. On the other hand, the state-of-art non-local means
(NLM) filter provided excellent results, but at the expense of large computation
times. This made its application unfeasible in the context of very large datasets.

Approaches to the NLM such as the Gaussian kd-tree and the adaptive man-
ifolds (AM-NLM) were able to provide acceptable results by carefully choosing
the correct parameter values. We implemented a solution based on the latter
within ZIBAmira. This solution splits large volumetric datasets into smaller
partitions, and performs the filtering within the GPU exploiting its parallel
hardware. Our solution is able to offer a preview of the filtering result in just a
few seconds for a small region of large volumetric datasets. A user can configure
the filter interactively with the help of a visual feedback.

In future work, we would like to improve our current GPU implementation of
the AM-NLM by introducing a more stable computation of the eigenvectors that
does not depend on the Gram-Schmidt process. More generally, we believe that
there are still opportunities to improve the performance and reduce the memory
footprint—for example, by reducing the size of the manifolds. Furthermore,
other variants of the NLM filter could be explored, such as random-sampling [3]
or shape-adaptive neighborhoods [7].

Last, but not least, denoising is only a preprocessing stage for a subsequent
image segmentation. In this report we present some initial results using the
k-means clustering. Although these results look promising, some of the struc-
tures were unrecoverable with the information extracted from the filter. Further
research towards restoring as much as possible from the fossil’s septa will re-
quire an additional study of the denoising filters and improved segmentation
algorithms.

Acknowledgements

This work was funded by the German Research Foundation (DFG), grant no.
ZA 592/2-1; HO 4674/2-1. The authors would like to thank Hendrik Wesendonk
(TPW Prüfzentrum, Neuss, Germany) for scanning the two ammonite speci-
mens (Quenstedtoceras and Eogaudryceras), Robert E. Lemanis for testing our
implementation and proofreading this manuscript. In addition we also thank
David Günther (Saarland University and Max-Planck Institute for Informat-
ics, Saarbrücken) for his valuable comments on his own implementation of a
GPU-assisted NLM algorithm in ZIBAmira.

31

Appendices

A Notation used in this document

Let S ⊂ R3 be a spatial domain (similarity in position), and let R ⊂ R be a
range domain (similarity in intensity). A signal f : S → R associates values
from the spatial domain S into the range domain R.

Let {p1, . . . , pN} be a collection of samples of S arranged in a uniform grid.
We call each pi a voxel and denote fi = f(pi) the intensity of the voxel pi. In
short, an image volume is a collection of sampled intensity values in 3D space,
each one representing an averaged intensity value per voxel with an associated
coordinate.

We denote by {Ni}i∈V a neighborhood in S, where each Ni ⊂ S verifies
that:

∀pi ∈ S, pi ∈ Ni,
∀pi, pj ∈ S, pj ∈ Ni ⇔ pi ∈ Nj .

The restriction of f to a neighborhood Ni is computed as:

fNi = {fj = f(pj)}pj∈Ni .

Finally, we denote by p̂i = (pi, fi) ∈ S ×R a point in a 4-dimensional space
resulting from the concatenation of the spatial coordinates pi ∈ S and the scalar
value fi ∈ R.

B Mathematical formulation of denoising filters

The following sections heavily rely on the notation described in Appendix A.

B.1 Gaussian smoothing

The estimated value gi from the filtered signal g is computed as a convolution
of all the voxels in the input signal f with a Gaussian kernel of variance σ2:

gi = g(pi) =
∑
pj∈S

φσ(pi − pj) fj (3)

The Gaussian smoothing function φσ has the following shape:

φσ(pi − pj) = exp

(
−|pi − pj |

2

2σ2

)
. (4)

Quite often, a normalization factor is included in order to ensure that the
sum of all the contributions from nearby voxels add to one:

gi =
1

Wi

∑
pj∈S

φσ(pi − pj) fj , (5)

32

with Wi as a normalization factor for voxel pi:

Wi =
∑
pj∈S

φσ(pi − pj). (6)

B.2 Median filter

The median filter substitutes each pixel fi by the median of the pixel itself and
all pixels that belong to its neighboring window:

gi = f̃Ni . (7)

B.3 Anisotropic diffusion

Anisotropic diffusion is an iterative algorithm that modifies the image by means
of the following partial differential equation:

∂f

∂t
= div(c∇f) = ∇c · ∇f ∗ c∆f, (8)

where div denotes the divergence operator, ∇ denotes the gradient, ∆ denotes
the Laplacian, and c controls the rate of diffusion.

In ZIBAmira’s implementation of this filter, the value of function c is com-
puted as:

c(|∇f |) = 1− exp

− 3.315(
|∇f |
K

)4
 , (9)

where K controls the diffusivity.

B.4 Bilateral filtering

The Gaussian smoothing filter uses distances that are measured in the spatial
domain. One could define a similar filter as Gaussian smoothing using distances
or similarities that are measured in the range (intensity) domain:

gi =
∑
pj∈S

φσ(fi − fj) fj . (10)

Bilateral filters [19] operate in both, the spatial and the range domain of an
image. Therefore, Eq. (3) of Gaussian smoothing is combined with a filter that
operates in the range domain:

gi =
1

W b
i

∑
pj∈S

φσs(pi − pj)φσr (fi − fj) fj . (11)

The term σs denotes the standard deviation of the signal within the spatial
domain (spatial standard deviation), and the term σr denotes the standard

33

deviation of the signal within the intensity domain (range standard deviation).
The normalization factor is computed as:

W b
i =

∑
pj∈S

φσs(pi − pj)φσr (fi − fj) (12)

B.5 Non-local means

Non-local means (NLM) [2] is a generalization of the bilateral filter that works
on local neighborhoods instead of individual pixel or voxel values:

gi =
1

Wn
i

∑
pj∈S

φσs(pi − pj)φσr (fNi − fNj) fj , (13)

where the normalization factor is computed as:

Wn
i =

∑
pj∈S

φσs(pi − pj)φσr (fNi − fNj). (14)

C Signal-processing approaches to bilateral fil-
tering

C.1 Linearization of the bilateral filter

The application of the signal processing paradigm converts the bilateral filter
into a linear filter [14]. Eqs. (11) and (12) of the bilateral filter can be combined
into one equation:(

W b
i gi
W b
i

)
=
∑
pj∈S

φσs(pi − pj)φσr (fi − fj)
(
fi
1

)
. (15)

Eq. (11) of the bilateral filter was multiplied by W b
i , hence effectively remov-

ing the division from the right-hand side. The new equation and the equation
to compute the normalization factor were put together using vector notation.

Let us assume that, ∀pj ∈ S, Wj = 1. We can write:(
W b
i gi
W b
i

)
=
∑
pj∈S

φσs(pi − pj)φσr (fi − fj)
(
Wjfi
Wj

)
. (16)

Eq. (16) expresses every couple

(
W b
i gi
W b
i

)
as a linear combination of neigh-

boring couples

(
Wjfi
Wj

)
. Each of these tuples, or two-dimensional vectors, are

called homogeneous intensities. The computation of gi is nonlinear, as it re-
quires dividing the first coordinate of each homogeneous intensity by the second
one, but this operation can be postponed to the very end of the process.

34

The product of the functions φσs and φσr in Eq. (16) defines a high dimen-
sional product space S ×R. However, the sum is in a lower dimensional space,
S, and hence, it is not a convolution. A higher dimensional space given by
the tuples (x, y, I(x, y)), where (x, y) ∈ S and I(x, y) ∈ R, can be considered
instead. Thus, the image becomes a manifold of this higher dimensional space,
and Eq. (16) can be rewritten as:(

W b
i gi
W b
i

)
=

∑
(pj ,fk)∈S×R

φσs(pi − pj)φσr (fi − fj) δ(fk − fj)
(
Wjfi
Wj

)
, (17)

where δ is the Kronecker delta, defined as:

δ(x) =

{
1 if x = 0,

0 otherwise.
(18)

Notice that δ(ζ − fj) = 0 when ζ 6= fj . This equation is basically the same as
the previous linear one, but now the sum is computed on the space given by
S ×R.

Furthermore, the product φσsφσr defines a separable Gaussian kernel φσsσr :

φσsσr : S ×R→ R (19)

(pi − pj , fi − fj) 7→ φσs(pi − pj)φσr (fi − fj). (20)

Let us define the functions ı:

ı : S ×R→ R, (21)

(pj , fk) 7→ fj , (22)

and w:

w : S ×R→ R, (23)

(pj , fk) 7→ δ(fk − fj)Wj , (24)

where Wj = 1, as stated earlier.
With these functions one can write equation (17) as:(
W b
i gi
W b
i

)
=

∑
(pj ,fk)∈S×R

φσsσr (pi − pj , fi − fj)
(
w(pj , fk) ı(pj , fk)

w(pj , fk)

)
, (25)

which computes the value at point p̂i = (pi, fi) of the following convolution:(
W bg
W b

)
= φσsσr ∗

(
W f
W

)
. (26)

35

C.2 Bilateral grid

The bilateral grid [5] is an efficient implementation of a bilateral filter. The
bilateral grid provides a data structure that enables the application of the bi-
lateral filter using the aforementioned signal processing approach. The bilateral
grid is actually a 3D array where the first two dimensions correspond to 2D po-
sitions in the image plane and form the spatial domain, and the third dimension
corresponds to the range domain (in this case, the intensity values of each pixel
in the image). The grid is regularly sampled in each dimension, where ss is the
sample rate of the spatial axes, and sr is the sample rate of the range axis. The
bilateral grid stores homogeneous intensities, given by the tuples (wI,w).

splatting

blurring

slicing

Figure 23: Steps of the bilateral grid approach (Reprinted from [14]).

The bilateral grid approach comprises three steps (Fig. 23):

36

1. Splatting: Given an image f in the range [0, 1], the bilateral grid Γ is
first initialized to zero:

∀(i, j, k, l), Γ(i, j, k, l) := (0, 0). (27)

Then, each cell in the grid is filled with data from its closest pixels:

∀(x, y, z) ∈ S, Γ([x/ss], [y/ss], [z/ss], [f(x, y, z)/sr]) += (f(x, y, z), 1).
(28)

This operation is denoted as:

Γ = c(f). (29)

2. Blurring: Let φ be a function that performs a Gaussian convolution on
a 4D space. One can obtain a new grid just by convolution:

Γ̃ = φσrσs ∗ Γ (30)

3. Slicing: A 3D map is obtained by accessing the values stored in the
grid at positions (x/ss, y/ss, z/ss, f(x, y, z)/sr) using interpolation. This
operation is denoted as:

g = sf (Γ). (31)

Hence, the bilateral filtering can be expressed in terms of a bilateral grid:

g = sf (φσsσr ∗ c(f)). (32)

C.3 Gaussian kd-tree

The Gaussian kd-tree is an approximation to the bilateral grid that aims to
reduce the number of computations by using a Monte-Carlo approach [1]. The
basic operations of the filtering process are the same as of the bilateral grid
(splatting, blurring, and slicing). However, the algorithmic approach uses a kd-
tree that sparsely represents the high-dimensional space by values stored in its
nodes, thus, restricting the operations to the points of the image close to those
nodes (Fig. 24).

The high-dimensional space containing the values p̂i is divided into hyper-
rectangles or cells. A tree is constructed, where each node represents such a
hyperrectangle. The root node is associated to the cell that covers the entire
space. The leaf nodes are associated to those elementary cells that are not
further divided. The splatting operation samples the input signal f into the
centroids of the elementary cells. The blurring operation is performed for each
cell, based on the values stored at their centroids. Finally, the slicing operation
derives the value for each p̂i from the centroids of the adjacent cells (Fig. 25).

The filtering operations are implemented as queries to the tree. Each query is
a tuple that contains a position in the grid, a number of samples, and a standard

37

Figure 24: Schematic comparison between the bilateral grid and the Gaussian
kd-tree (Reprinted from [14]).

Figure 25: Illustration of the filtering operations in three adjacent nodes of a
Gaussian kd-tree (Reprinted from [14]).

38

deviation. The query is solved using a Monte-Carlo approach. Samples are
randomly computed surrounding the query position, and then they are assigned
to the leaf nodes whose centroids are closest to the query position. For each of
these leaf nodes, the Gaussian distance between the centroid p and the query q
is computed as w = exp(−|p− q|2/2σ2), and the result is then multiplied by the
number of samples weighted by the accumulated probability of the leaf node
being selected.

The blurring operation computes a Gaussian smoothing on the splatted val-
ues stored in the centroids of each leaf node. Instead of querying about the
positions in the grid, the queries are now about the centroids of the leaf nodes.
A query returns, for each leaf node, a blurred value obtained from the leaf val-
ues of close neighboring leaf nodes. These new values are also stored in the
centroids, in order to prepare for the next step.

Finally, the slicing operation uses another query that resolves in the same
way as for the blurring operation, but in this case the queried positions are the
reference ones, also used during the splatting step. The whole process finishes
by dividing each obtained value by its corresponding weight.

C.4 Adaptive manifolds

Adaptive manifolds (AM) [10] is another approximation of the bilateral grid. In
this approach, a set of non-linear manifolds is constructed considering the stan-
dard deviations of the filter and the shape of the signal in the high-dimensional
space. The filter response is computed in the positions of the manifolds.

Figure 26: Operations of the AM filtering approach (Reprinted from [10]).

As in the bilateral grid, the filtering process involves three operations (Fig. 26):

1. Splatting: During the splatting operation, a Gaussian weighted-distance
projection of the intensity values of the input signal f onto each manifold
ηk is performed.

ψsplat(η̂Nik) = φσR(ηNik − fNi)fi, (33)

where φσR is a Gaussian-weighted function:

φσR = exp

(
−|ηNik − fNi |

2

2σ2
R

)
. (34)

39

2. Blurring: The blurring operation performs a Gaussian smoothing of ele-
ments of ψsplat(η̂Nik) for the current manifold ηNik, resulting in new values
ψblur(η̂Nik).

3. Slicing: The slicing operation computes the filter response by interpo-
lating the blurred values of the manifolds. Let K be the total number of
manifolds, then:

gi =

∑K
k=1 wik ψblur(η̂Nik)∑K
k=1 wik ψ

0
blur(η̂Nik)

, (35)

with wik = φσR(ηNik − fNi). The values ψ0
blur(η̂Nik) correspond to a

blurred version of ψ0
splat(η̂Nik), which is calculated as:

ψ0
splat(η̂Nik) = φσR(ηNik − fNi). (36)

The set of manifolds is structured in a full binary tree. The amount of work
needed to process the manifolds is given by the height of the so-called manifold
tree, which is computed as:

H = 2 + max(2, dHsLre), (37)

whereHs is the height computed from the spatial standard deviation of the filter,
and Lr is a linear correlation computed from the range standard deviation:

Hs = blog2(σsmax)c − 1, (38)

Lr = 1− σrmin . (39)

The standard deviations σsmax and σrmin are given by:

σsmax =
√

max(Σs), (40)

σrmin =
√

min(Σr), (41)

where Σs and Σr are the diagonal covariance matrices that control the decay of
the Gaussian kernel that is used during filtering the spatial and range dimen-
sions, respectively.

In practice, it is common to use conventional isotropic kernels when filtering
in space and range, with standard deviations σs and σr, respectively. Covariance
matrices are then obtained as:

Σs = σ2
sIds , (42)

Σr = σ2
rIdr , (43)

where Id is a tridimensional identity matrix of size d× d× d. σs is measured in
pixels, and σr is measured in normalized units (with values between 0 and 1).

Fig. 27 shows a plot of the tree height function for values of σs in the
range [1, 128] and values of σr within the range [0, 1]. As derived from pre-
vious equations, the tree height has a lower bound of 4, which means that at
least 24 − 1 = 15 manifolds will be generated. The tree height slowly increases
for low values of σs and high values of σr. For the usual range of values, the
tree height remains between 4 and 8.

40

Figure 27: Values of the tree height for different σs and σr.

D Evaluation results

The following section presents a more comprehensive view of the different results
obtained during the evaluation of the parameter space of a collection of denoising
filters and their responses to a representative subregion of a paleontological
dataset of size 141× 151× 180 pixels.

D.1 Gaussian smoothing

We tested the Gaussian smoothing filter with different parameter values (Tab. 2).
During the first test a fixed value of the standard deviation was selected, and
the filter was applied to the same dataset with different kernel sizes (Fig. 28).
The second test opted for the complementary approach, i.e., fixing the kernel
size while trying different values for the standard deviation (Fig. 29).

Table 2: Parameter values of the Gaussian smoothing filter used in our tests.

Parameter Value

Filter Gaussian smoothing
Direction 3D
Sigma (standard deviation) {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Kernel size {33, 43, 53, 63, 73, 83, 93, 103}

41

As the images show, the values of the parameters kernel size and standard
deviation σ need to be rather large in order to remove the noise in the dataset.
However, this blurring effect also removes the structural information in the
image.

Figure 28: Selected slices in different orientations of the paleontological dataset.
Gaussian smoothing was applied with a standard deviation σ = 0.4 and different
kernel sizes in the range [33, 103]. The effect of the kernel size is quite strong—
the images with the largest kernel sizes show a distinct blurring effect. The level
of noise is considerably reduced when the kernel size is large enough, however,
having the undesirable effect of blurring septal structures as well.

42

Figure 29: Results of applying Gaussian smoothing with a fixed kernel size
of 83 and different values of the standard deviation σ within the range [3, 10].
Increasing the value of σ contributes to an increase of the blurriness of the result
as well as the removal of noise. However, for increasingly large values of σ there
is barely any additional impact on the visual result.

43

D.2 2D NLM

To assess NLM filtering with respect to our paleontological dataset we started
using the NLM filter already available in ZIBAmira, which is a GPU-based
implementation of NLM as described in [2]. ZIBAmira provides a 2D and a 3D
variant of this algorithm. The 2D variant processes volumetric datasets in a
two-dimensional fashion on a layer-by-layer basis. In this section the results of
the 2D NLM filter with varying parameter settings (see Tab. 3) are presented.

We concucted our analysis in a similar fashion as we did in our investiga-
tions before. In each of our experiments, fixed values were chosen for two of
the three possible parameters offered by ZIBAmira’s NLM implementation as,
for instance, the size of the search window, the size of the neighborhood, and a
similarity value. The results of each possible combination of two fixed param-
eters while changing the value of the third one are presented in Figs. 30–32.
Notice how, for this kind of datasets, the similarity parameter has the biggest
impact on the result. The figures show only the results of denoising in XY
direction—similar results were obtained for the XZ and YZ directions, too.

We also tested the effect of applying the 2D NLM filter with the same pa-
rameter values on the same volume in consecutive steps. From the previous
experiments, the parameter values that provided the best results were selected,
and the filter was consecutively applied up to three times (Fig. 33).

The performance of a single iteration of this filter was also measured (Tab. 4).
The quality of the results of a 2D filtering approach, however, were deemed
insufficient for our purposes.

Table 3: Parameter values of the 2D NLM filter used in our tests.

Parameter Value

Filter Non-local means
Direction XY
Seach window {112, 212, 1012, 2012}
Neirborhood {52, 72, 112}
Similarity {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Adaptativity True

44

Figure 30: Results of applying ZIBAmira’s 2D NLM filter with a neighborhood
size of 52, a search window size of 212, and different similarity values in the
range [0.5, 1.2]. The changes evoced by the similarity value are subtle, but one
can see that high similarity values result in blurrier images.

45

Figure 31: Results of applying ZIBAmira’s 2D NLM filter with different values
of neighborhood sizes from the set {52, 72, 112}, a search window size of 212,
and a similarity value of 0.8. Larger neighborhoods lead to crisper but noisier
results. When the size of the neighborhood increases too much, it becomes
difficult to find similarities among them, which in the end degrades the effect of
the filter again.

46

Figure 32: Results of applying ZIBAmira’s 2D NLM filter with a neighborhood
size of 52, different search window sizes from the set {112, 212, 312, 512, 1012},
and a similarity value of 0.8. Little to no difference can be seen between the
different datasets after visual examination—the result using a window search
size of 112 seems blurrier than the others.

47

Figure 33: Results of applying ZIBAmira’s 2D NLM filter with a neighborhood
size of 52, a search window size of 212, and a similarity value of 0.8. From
top to bottom, each image set shows the result after applying the filter once,
twice, and three times in the same image. In the final iteration, a quite smooth
dataset is obtained, with nearly all the noise completely removed. However,
some artifacts derived from the direction of filtering (XY plane) are now more
noticeable in the planes XZ and YZ. The septum exhibits severe discontinuities
that cannot be associated to a natural development, but were introduced by the
filter. These discontinuities are even present after the first iteration of the filter.

48

Table 4: Time consumed by a single iteration of ZIBAmira’s 2D NLM filter
using an Nvidia GTX TITAN graphics adapter.

Search window Neighborhood Time
size size

112 52 42s
112 72 44s
112 112 44s

212 52 44s
212 72 45s
212 112 49s

1012 52 1m 6s
1012 72 1m 25s
1012 112 2m 52s

2012 52 1m 37s
2012 72 2m 42s
2012 112 9m 52s

49

D.3 3D NLM

In this section we present the results of our investigation of the 3D variant of
the NLM filter provided by ZIBAmira. Again different parameter settings were
assessed with regard to the filtering effect on the given dataset (see Tab. 5).
The parameter space explored in this evaluation is smaller than in the previous
tests, since denoising of each dataset can take several minutes. We focused our
efforts on these values that already provided better results in the 2D filtering
approach (Figs. 34 and 35). We also tested several applications of the filter in
consecutive times (Fig. 36).

This variant gives good results in terms of quality, but its computational
performance is a major issue (Tab. 6).

Table 5: Parameter values of the 3D NLM filter used in our tests.

Parameter Value

Filter Non-local means
Direction 3D
Seach window {113, 213, 313}
Neirborhood {53}
Similarity value {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
Adaptativity True

Table 6: Time consumed by a single iteration of ZIBAmira’s 3D NLM on a
GTX TITAN graphics adapter.

Search window Neighborhood Time
size size

113 53 47s
213 53 3m 38s
313 53 45m 52s

50

Figure 34: Results of applying ZIBAmira’s 3D NLM filter with a neighborhood
size of 53, a search window size of 213, and varying similarity values in the range
[0.5, 1.0]. The same conclusions as in the 2D case can be drawn. The higher
the similarity value, the blurrier the result—although in this particular case the
blurriness is only visible with the highest similarity value.

51

Figure 35: Results of applying ZIBAmira’s 3D NLM filter with a neighborhood
size of 53, different search window sizes from the set {113, 213, 313}, and a
similarity value of 1.0. As in the 2D case, significant differences due to parameter
changes cannot be identified. For the larger window sizes, the results look
slightly blurrier and less noisy. However, the increased time to process the
dataset does not compensate for the improvement in quality.

52

Figure 36: Results of applying ZIBAmira’s 3D NLM filter with a neighborhood
size of 53, a search window size of 213, and a similarity value of 1.0. From top to
bottom, each image set shows the result after applying the filter once, twice, and
three times via the same image (i.e., the same slice within the 3D data volume).
The artifacts that were present in the 2D case cannot be observed here, and
the surface of the inner walls (septa) is nearly continuous. We also see that
most of the noise has been removed. The filter interprets some dots or small
islands in the dataset as relevant structures, which are clearly noticeable after
three iterations. However, these structures do not yield a significant problem,
as ZIBAmira provides semi-automatic tools to remove such small islands within
a subsequent segmentation process.

53

E Gaussian kd-tree NLM

We assessed the Gaussian kd-tree NLM using the same approach as with Gaus-
sian smoothing and plain NLM (Tab. 7).

Table 7: Parameter values of the Gaussian kd-tree filter used in our tests.

Parameter Value

Filter Gaussian kd-tree NLM
Direction 3D
Neighborhood 53, 73, 113

PCA output dimensions {3, 5, 7}
Spatial standard deviation {0.5, 0.6, 0.8, 1.0, 5.0, 9.0}
Range standard deviation {0.1, 0.3, 0.5, 0.6, 0.8, 1.0}

Within our investigations we analyzed the effects of the two standard devia-
tion parameters (spatial and range) on the output of the filter (Figs. 37 and 38).

Figure 37: Results of applying a Gaussian kd-tree NLM filter with a neigh-
borhood size of 53, a PCA output dimension of 3, a range standard devia-
tion of 0.1, and different values of the spatial standard deviation from the set
{0.5, 1.0, 5.0, 9.0}. This last parameter has a very strong influence on the results.
A higher spatial standard deviation implies a higher level of blurriness and thus
a higher effect on denoising. Notice how for a value of σs equal or higher than
5.0, most of the noise is nearly gone while the structural information in the
images is kept intact.

54

Figure 38: Results of applying a Gaussian kd-tree 3D NLM filter with a neigh-
borhood size of 53, a PCA output dimension of 3, different values of the range
standard deviation from the set {0.1, 0.3, 0.5, 1.0}, and a spatial standard devia-
tion of 5.0. Higher values of the spatial intensity tend to increase the blurriness
of the result. When the value is high enough, increasing the value even further
has little to no effect. However, for this dataset using high values of σr incurs
in some loss of structural information, so we propose using lower values.

We also kept the standard deviations fixed while varying the neighborhood
size and the PCA output dimensions (Fig. 39). The effects on the performance
for different parameter settings can be observed in Table 8.

55

Table 8: Time consumed by a single iteration of the Gaussian kd-tree approach
for different combinations of parameter values.

Neighborhood PCA output Spatial std. Range std. Time
size dimensions deviation deviation

53 3 1 0.1 32s
53 5 1 0.1 33s
53 7 1 0.1 34s

53 3 5 0.5 42s
53 5 5 0.5 46s
53 7 5 0.5 48s

73 3 1 0.1 1m 18s
73 5 1 0.1 1m 17s
73 7 1 0.1 1m 19s

73 3 5 0.5 1m 31s
73 5 5 0.5 1m 35s
73 7 5 0.5 1m 36s

113 3 1 0.1 13m 33s
113 5 1 0.1 13m 38s
113 7 1 0.1 13m 41s

113 3 5 0.5 13m 55s
113 5 5 0.5 14m 00s
113 7 5 0.5 13m 58s

56

Figure 39: Results of applying a Gaussian kd-tree 3D NLM filter with differ-
ent local neighborhood sizes from the set {53, 73, 113}, different PCA output
dimensions from the set {3, 5, 7}, a range standard deviation value of 0.3, and
a spatial standard deviation of 5.0. For the lowest value of local neighborhood
size, varying the number of output dimensions has barely no effect. By increas-
ing the size of the local neighborhood in combination with the number of output
dimensions, the resulting images get slightly sharper. This is a similar effect to
increasing the size of the local neighborhood in the plain NLM implementation.
Notice that this effect stands out even when the number of output dimensions
obtained from the PCA is kept constant. This means that having just a few
significant components from each local neighborhood (between 3 and 5) is in
this application sufficient. 57

E.1 AM-NLM

The assessment of our GPU implementation of the 3D AM-NLM filter followed
similar steps as for the previous filter. The results of altering the spatial and
range standard deviations with a fixed value of neighborhood size and output
dimensions appear in Figs. 40 and 41, whereas the results for fixed values of the
standard deviations appear in Fig. 42.

Table 9: Parameter values of the AM-NLM filter used in our tests.

Parameter Value

Filter Adaptive manifolds non-local means
Direction 3D
Local neighborhood {53, 73, 113}
PCA output dimensions {3, 5, 7}
Spatial standard deviation {0.5, 1.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0}
Range standard deviation {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0}

Figure 40: Results of applying an AM-NLM filter with a local neighborhood size
of 53, a PCA output dimension of 3, a range standard deviation value of 0.1,
and different values of spatial standard deviation from the set {0.5, 1.0, 5.0, 9.0}.
Not surprisingly, this last parameter has a very strong influence on the results,
as the algorithm still is a variant of the NLM algorithm in the same way as
the Gaussian kd-tree algorithm is. Again, a higher spatial standard deviation
implies more blurriness and less noise.

We also studied the performance of our implementation for different param-
eter values (Tab. 10). The best results are obtained when the number of PCA
output dimensions is set to 3 or 4, as in this case, the implementation is using the
texture processing pipeline of the GPU. Furthermore, using 4 dimensions leads
to slightly better performance than using 3, probably due to a better memory
alignment of the data.

58

Figure 41: Results of applying an AM-NLM filter with a local neighborhood
size of 53, a PCA output dimension of 3, different values of the range standard
deviation from the set {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0}, and a spatial standard de-
viation value of 5.0. The range standard deviation has a noticeable effect for
small values. Once the value is large enough, the result becomes blurrier and
less noisy. However, from this point on, no matter how high this value is chosen,
the filtering result does not significantly change.

Table 10: Time consumed by a single iteration of the AM-NLM filter for different
combinations of parameter values.

Neighborhood PCA output Spatial std. Range std. Time
size dimensions deviation deviation

53 3 1 0.1 9s
53 4 1 0.1 10s
53 5 1 0.1 13s

53 3 5 0.5 9s
53 4 5 0.5 8s
53 5 5 0.5 13s

59

Figure 42: Results of applying an AM-NLM filter with different local neighbor-
hood sizes from the set {53, 73, 113}, different PCA output dimensions from the
set {3, 5, 7}, a range standard deviation value of 0.3, and a spatial standard de-
viation value of 9.0. Although the effect is not as obvious as with the Gaussian
kd-tree approach, it is noticeable that results get sharper with increasing size of
the local neighborhood. The size of the output dimensions, however, does not
seem to exert a significant effect on the results.

60

E.2 k-means clustering

As an example on how good septal surfaces can be segmented from a denoised
dataset, we performed a series of experiments using the k-means clustering
algorithm. One of the results from denoising with AM-NLM was chosen, and
an adaptive histogram equalization (CLAHE) was applied to it. The clustering
filter was then applied to the equalized result (Tab. 11).

Table 11: Parameters to denoise, equalize, and split in clusters that have been
used in our tests.

Parameter Value

Denoising AM-NLM
Local neighborhood size 5× 5× 5
PCA output dimensions 3
Range standard deviation 0.5
Spatial standard deviation 5.0

Equalization CLAHE
Contrast 21

Clustering k-means
Number of iterations {5, 10, 15, 20, 25}
Number of clusters {2, 3, 4, 5, 6, 7, 8, 9, 10}
Patch size {33, 53}

There are several parameters of the clustering filter that can be adjusted,
so we proceeded as in previous experiments. First, the number of iterations
and the patch size was fixed to a high value, under the assumption that the
best result is always obtained the higher the number of iterations and the larger
patch size is (Fig. 43). The next step was to find which patch size gives the best
results (Fig. 44). Finally, the effect of changing the number of iterations was
explored (Fig. 45).

61

Figure 43: Results of applying a k-means clustering filter on a denoised dataset.
The number of iterations is set to 25, the number of clusters is in the range
[2, 10], and the patch size is set to 53. It can be seen that we need at least
four or five clusters to identify the regions that belong to the septa—the higher
the number of clusters, the thinner becomes the septal region. Unfortunately,
the cluster segmenting the septa also contains other regions which obviously
belong to the chamber. In any case, from the experiments we conclude that
eight clusters yield a good compromise.

62

Figure 44: Results of applying a k-means clustering filter on a denoised dataset.
The number of iterations is set to 25, the number of clusters is set to 8, and the
patch size takes values from the set {33, 53}. One can clearly see that a patch
size of 53 yields a better result.

Figure 45: Results of applying a k-means clustering filter on a denoised dataset.
The number of iterations takes values from the set {5, 10, 15, 20, 25}, the number
of clusters is set 8, and the patch size is set to 53. One can see that 20 iterations
seem to be enough to get a reasonable result where the septa is identified with
one of the clusters.

63

References

[1] Adams et al. Gaussian kd-trees for fast high-dimensional filtering Proceed-
ings of ECCV 28(3). 2009.

[2] Buades et al. A review of image denoising algorithms, with a new one. Mul-
tiscale modeling & simulation 4(2):490–530. 2005.

[3] Chan et al. Monte Carlo Non-Local Means: random sampling for large-scale
image filtering. IEEE Transactions on Image Processing 23(8). 2014.

[4] Cunningham et al. A virtual world of paleontology. Trends in Ecology &
Evolution 29(6). 2014.

[5] Chen et al. Real-time edge-aware image processing with bilateral grid. ACM
Transactions on Graphics 26(3). 2007.

[6] Courant and Hilbert. Methods of Mathematical Physics (vol. 1 p.50). Inter-
science Publishers, New York. 1953.

[7] Deledalle et al. Non-local methods with shape-adaptive patches (NLM-SAP)
Journal of Mathematical Imaging and Vision 43(2). 2012.

[8] http://www.drdobbs.com/cpp/logging-in-c/201804215

[9] Ketcham and Carlson. Acquisition, optimization and interpretation of x-ray
computed tomographic imagery: Applications to the geosciences. Computers
and Geosciences 27(4). 2001.

[10] Gastal and Oliveira. Adaptive manifolds for real-time high-dimensional fil-
tering. ACM Transactions on Graphics 31(4). 2012.

[11] Gastal and Oliveira. Shared sampling for real-time alpha matting Computer
Graphics Forum 29(2). 2010.

[12] Manjón et al. Adaptive non-local means denoising of MR images with spa-
tially varying noise levels. Journal of magnetic resonance imaging 31(1).
2010.

[13] Mastin. Adaptive filters for digital image noise smoothing: an evaluation.
Computer Vision, Graphics, and Image Processing 31(1). 1985.

[14] Paris and Durand. A fast approximation of the bilateral filter using a sig-
nal processing approach. Technical Report. Computer Science and Artificial
Intelligence Laboratory. 2006.

[15] Perona and Malik. Space-scale and edge detection using anisotropic diffu-
sion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7).
1990.

[16] http://www.raosoft.com/samplesize.html

64

[17] Sutton. Tomographic techniques for the study of exceptionally preserved
fossils. Proceedings of The Royal Society B, 275. 2008.

[18] Tasdizen. Principal components for non-local means image denoising Pro-
ceedings of International Conference on Image Processing. 2008.

[19] Tomasi and Manduchi. Bilateral filtering of gray and color images. 6th
International Conference on Computer Vision. 1998.

[20] Ukeneder et al. Computed tomography and laser scanning of fossil
cephalopods (Triassic and Cretaceous). Kataloge des Oberösterreichischen
Landesmuseums, Neue Serie 157. 2014.

[21] http://amira.zib.de

65

