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Abstract. Mobile telecommunication systems establish a large number of communication links with a
limited number of available frequencies; reuse of the same or adjacent frequencies on neighboring links
causes interference. The task to find an assignment of frequencies to channels with minimal interference
is the frequency assignment problem. The frequency assignment problem is usually treated as a graph
coloring problem where the number of colors is minimized, but this approach does not model interference
minimization correctly.

We give in this paper a new integer programming formulation of the frequency assignment problem, the
orientation model, and develop a heuristic two-stage method to solve it. The algorithm iteratively solves an
outer and an inner optimization problem. The outer problem decides for each pair of communication links
which link gets the higher frequency and leads to an acyclic subdigraph problem with additional longest
path restrictions. The inner problem to find an optimal assignment respecting an orientation leads to a
min-cost flow problem.

Keywords. Minimum-Cost Flow Problems, Cellular Radio Telephone Systems, Frequency Assignment
Problem, Integer Programming
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1 Introduction

Cellular radio telephone systems broadcast information on a limited number of available frequencies that
serve as (communication) channels. The channels are spaced-out evenly along the electromagnetic spectrum
such that adjacent channels have a constant inter-channel distance. Channels are the physical means
to establish communication links between the mobile stations (shandies) and the antennae in a mobile
telephone system. An abstract communication link is called a carrier; data on this link can be transmitted
on any of the available channels.

A carrier works only inside a region around an antenna, because the signals broadcast by both antenna
and mobile station get weaker and at some point useless as one moves away from the sender. The area of
the whole mobile telephone system is thus subdivided into regions that can be serviced best by individual
antennae, the cells. Each cell provides one or more carriers to service phone calls in its domain.

Now signals broadcast by an antenna or handy do not stop at cell boundaries but extend into neighboring
cells. If a cell and its neighbor use the same channel, the two signals interfere with each other, resulting
in erroneous data transmission or even failure of a carrier. In fact, interference can not only occur if two
carriers in nearby cells use the same channel, but also if they use adjacent channels; this adjacent channel
interference, however, is always less than the first mentioned co-channel interference.

Very large interference can not be accepted by the mobile telephone companies, resulting in a requirement
that certain pairs of carriers must not use the same or adjacent channels. In other words, certain pairs of
carriers have to obey a minimum channel separation of 1 (if co-channel interference is considered too large)
or even 2 (in case of excessive adjacent channel interference). More separations, even larger than 2, are
caused by technological restrictions: co-cell separations apply to channels broadcast on the same antenna,
co-site separations result if several antennae are mounted on a common mast (servicing cells similar to
sectors of a circle), handover separations protect the carrier switching process when a handy leaves one cell
and enters another, and there are more.
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Other interferences may be acceptable, but they diminish the quality of communication in the network.
Quality and costs, however, are the only two factors distinguishing different providers of mobile telephone
systems. So the question is: how can one assign channels to the carriers such that all channel separations
are obeyed and the resulting interference is minimal? This is the frequency assignment problem.

Clearly, this formulation is still vague; for example, what does ‘minimal interference’ mean? ‘Minimal sum
of all interferences’ is a conservative suggestion (in fact we our going to use it), but not the only possible
one. The point here is, however, that the problem in the above form calls for usage of the complete
spectrum of available channels to reduce interference — a concept developed only lately.

The ‘classic approach’ treats the problem as a graph coloring problem, see Metzger [1970]. First, interfer-
ences are classified as unacceptable or negligible using thresholds; unacceptable interferences yield channel
separations, negligible ones are ignored. Looking at the carriers as nodes of a graph, where two nodes are
joined by an edge if they have a channel separation, and at the set of channels as a set of colors, the problem
is to color the graph such that adjacent nodes use colors that are at least as far apart as the separation;
usually, the span of the coloring, the largest minus the smallest color used, is minimized. The reason be-
hind this objective is that ‘shortage of the electromagnetic spectrum makes it necessary that each of these
systems use its frequency channels as efficiently as possible’, see Gamst [1986]. Important results for the
coloring model are the development of fast heuristic algorithms, including adaptive and non-deterministic
priority assignment algorithms, see Box [1978] and Gamst [1988], and simulated annealing approaches like
Duque-Antén, Kunz, and Riiber [1993] or Quellmalz, Knalmann, and Krank [1993], the derivation and
algorithmic use of local lower bounds, see Gamst [1986], and recently exact branch-and-cut approaches like
Aardal and van Hoesel [1995].

Relatively little is known about the interference minimization problem: a first algorithmic result is the
development of an adaptive and non-deterministic algorithm in Plehn [1994].

2 The Frequency Assignment Problem

Let us now state the frequency assignment problem in a mathematical way. Let
G = (V,E)

be a graph,
deNF and 7,pe0,1)F

be vectors with the property
<p,

3l

and

C=1{0,1,....C} CNy

be the set of zero and the first ¢ integers; each node ¢ € V corresponds to a carrier, each edge ij € F
has an associated minimum channel separation d;;, an adjacent channel interference Eij and a co-channel
interference p,; (some of them possibly zero), and C' is the set of available channels. Introducing variables

y €C YVieV

for the channel assigned to carrier i, the frequency assignment problem is

min > Pij + > Ej

lyi—y,;1=0 lyi—yj|=1
i —Yil > dij Vij € E
g yzj/| < Cj Vi] cC (FAP(G,d, p,())
yi > 0 Vi €C
Yi € Z Vi € C;

This formulation is correct, but not an integer linear program because of the non-linear objective function
and the non-linear separation constraints.

Note that the model FAP is carrier oriented and not cell oriented as usually in frequency assignment. The
reasons for this are: first, channel separation data at our partner, the German mobile telephone system
provider , depends on different types of carriers, and second, it is conceptually easier to assign one



channel to each carrier instead of sets of channels to a cell. A disadvantage of this concept is, on the other
hand, that the data is ‘blown up’, because most relations are actually relations between two cells that have
to be stored as relations between each pair of carriers of the two cells in a carrier oriented approach. Note
also that the model is symmetric; for example, there is only one co-channel interference datum p;; for each
pair of carriers ij, although interference is in principle an asymmetric function. It is, however, clear, that
either both ¢ will co-interfere with j and j with ¢ (if and only if both carriers use the same channel) or
none of them; thus we can symmetrize by just adding interference values.

Frequency assignment problems often have additional constraints that do not show up in the model FAP
or more general objective functions. For example, there is usually a set A; C C of eligible channels
associated to each carrier such that y; € A; must hold. Such generalizations can, however, be handled
using simple transformations; we refer the reader to Kaudewitz and Kiirner [1995] for more details on
frequency assignment at and to Borndorfer, Grotschel, and Martin [1995] for information about such
modelling issues.

cell O cariertypell —— co-channel interference
[T 1 channels —— ad-channel interference

Figure 1: Frequency assignment problem.

Figure 1 shows a frequency assignment problem. There are four masts or sites; mounted on each mast
are two or three antennae that service cells similar in shape to sectors of a circle. Each cell provides one
to three carriers (of two different types) to service phone calls in its domain. However, the regions where
signals of the individual antennae can be received overlap, causing co- and adjacent channel interference
of carriers in neighboring cells. There are also channel separations arising from excessive interference and
other technical constraints; the example assumes that co-cell separations are 2 and all other separations
are 1. The problem is to assign channels from the available spectrum of size six to the carriers such that all
separation relations are satisfied and the sum of the interferences is minimal. Figure 1 shows a frequency
assignment. The channels in the spectrum are sorted with respect to ‘darkness’ (white is channel 0, yellow 1,
red 2, green 3, blue 4 and black is 5); the resulting co- and adjacent channels interferences are highlighted.

Our aim in this paper is to discuss a new approach to the frequency assignment problem based on a
two-stage integer programming model. The outer stage consists of an acyclic subdigraph problem with
additional longest path restrictions, the inner stage of a minimum-cost flow problem. These two stages
are alternately optimized. The algorithm is used in a project with the German mobile telephone system




provider . The frequency assignment problems appearing there currently have up to 4000 carriers,
more than 25.000 separations of 1 to 3 and about 50.000 interference relations (note that the corresponding
graph has a density of about 40%!); the available spectrum contains 50 to 75 channels.

3 The Orientation Model

In this section we want to give an integer linear programming formulation for the frequency assignment
problem. Our starting point is the model FAP.

This model makes a very natural choice to represent channel assignments by introducing integer variables
y; (for a different ‘stable set approach’, see Borndorfer, Grotschel, and Martin [1995]). Note however, that
deciding to use these variables is a major design step since the y; are genuinely integer and not binary
variables.

A first property of any model using y-variables is illustrated in Figure 2. Consider for all edges with
non-zero separation the sets

lyj — vil

Yij =1 (yi,y;) €Z%:  y;,y;
Yiy Yj

IV IA IV

dij
¢ VijEE:dij>O
0

of channels assignments to two carriers 7 and j that are feasible with respect to the separation d;;. Figure 2
shows the case d;; = 1 and ¢ = 5. The convex hull

Pij = COHVY;J‘ Vij € E: dij >0

of Y;; contains integer points not in Y;;; in fact, all of these points violate the separation condition. In
Figure 2 we have Y;; = {0,1,2,3,4,5}?\ {(0,0), (1,1), (2,2), (3,3), (4,4), (5,5)} and P; is the region inside
the thick black line. We see that the integer points in P;; \ V;; are {(1,1), (2,2),(3,3), (4,4)}; they form a
‘gap’.

This simple observation has far-reaching consequences, as we will point out now. Let FAP(G, d,p, () be a
frequency assignment problem and Y be the set of its integer solutions. We would like to investigate this
set by means of integer programming techniques, that is, we look at the convex hull

P :=convY

of Y. Since every extreme point of P is a member of Y we can optimize a linear objective over Y by
solving a linear program over P — if we know a description of P in terms of linear inequalities. If we can
not obtain such a complete description, we might, less ambitious, at least try to find a description of a
(relaxed) polytope P’ O P such that
Z(P') = L(P)

(where Z(Q) denotes the set of integral points QNZ" for any polytope @ C R"). Then, Z(P') = Z(P) 2 Y
is an integer linear description of a set of integer points that has only members of Y as extreme points and
we can optimize over Y by applying a branch-and-bound or branch-and-cut algorithm to P’. In Figure 2,
Z(P;) = {0,1,2,3,4,5}%\ {(0,0),(5,5)}. Remember that our current model FAP does not provide an
integer linear formulation because of the absolute values in the separation conditions.

A natural approach to get such a description is to try to write P as the intersection of the polytopes P;;.
It seems to be irrelevant that we get infeasible points in the interior of the polytopes P;; as long as the
vertices are integral — and it is easy to describe each of the individual polytopes P;; by means of linear
inequalities.

Following this idea, however, we get into trouble. Clearly,

Z(P)CZ | () Pyn{0<y<(l}| =2Z(Q)
d;;>0

holds where 1 is the vector having a one in each coordinate. But unfortunately, equality does not hold.
Assuming |(/2| > max;;jcg di;, the point

[¢/2]1
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Figure 2: Dichotomy in y-Solution Space.

which lies in the gaps of the sets Y;; is in Z(Q), but not in Y because it violates every single separation (given
that there is a single non-zero separation). So what? — if, as in the two-dimensional case, Z(Q) = Z(P),
we have reached our (less ambitious) goal and found an integer linear description. Unfortunately this is
not so: Z(Q) always contains the point |¢/2]1 while it is NP-complete to decide whether Z(P) is empty
or not. This is because

Z(P)=0 < Y =0 <= FAP(G,d,p,() has no feasible solution;

but FAP(G, d, p, () becomes a N’P-complete graph coloring problem by ignoring the interferences.

Our conclusion is that it seems to be difficult to describe Z(P) by means of linear inequalities plus integrality
stipulations and we do not know how to write down such an integer linear formulation of the feasible region
of FAP(G,d, p, (), much less of the objective function. So was all this effort for nothing? Of course not!
We can give an integer linear formulation by introducing additional variables.

We observe that the situation depicted in Figure 2 is a dichotomy. Both below and above the ‘gap’ exist
sets of integral points whose convex hulls (the shaded triangles) contain no other integral points. If we
always knew whether we are ‘above the gap’, or, equivalently, whether y; — y; > 0 holds, or ‘below the
gap’, that is, y; — y; < 0 holds, we probably could give an integer linear description! We will show now
how this can be done.

We introduce binary decision variables
Aij S {O, 1} Vije E

with the meaning

1 ify;—yi 20
Ay = )
0 ify; —y; <0.

(Let us assume here and in what follows ¢ < j for an edge ¢j € E to get a convenient notation although
the edges of a graph —strictly speaking— are unordered pairs of vertices.) In other words, A;; is 1 if the
edge ij is oriented ‘upward’ from the lower channel y; to the higher (or equal) channel y; and 0 if the edge
ij is oriented ‘downward’, that is, channel y; is larger than or equal to channel y;; if y; and y; are equal,
A;; can be both zero or one.

To express the objective function, we introduce binary co- and adjacent channel interference variables

Eij,iij S {O, 1} Vij € B




that are

1, ify;—y; =0 - 1, if ly; —y| =1
Eij _ , 1LY; —y and Eij _ 1 |yj Y |
0, else 0, else

(this is slightly incorrect but let us leave it like this for the moment). The variables Z;; are 1 in case of a
co-channel interference and the Z;;s are 1 in case of an adjacent channel interference.

We can now state the frequency assignment problem as an integer linear program.

min PZ+D z
Yi — Yi > dijAyj —¢(1—-Ay) Vije E (1)
—Y;j +Yi > dii(1—Ayj) — CAy Vije B (2)
Yi —Yi+ Zij > Ayj —¢(1—Ay) Vije B (3)
—yityit+ z; 2 (1= Ag5) = CAy; Vije B (4)
Vi — Y +2Zi + 2y > 24y —C(1—Ay) Vij € E (5)
—Y; +yi + 2%z +§ij > 2(1 - Aij) — CAij Vij € B (6)
vi < ¢ Vi eV (7)
Ay <1 Vije E (8)
Zij i <1 Vije & 9)
yi =2 0 Vi €V (10)
Nij,Zij, zij > 0 Vij € E (11)
yi € L vi eV ()
Aij,Zij,Zij € L Vij € E ()

(TIP(G,d, p, ()

Conditions (7), (10), and (12) state that the channel assignment variables have to be chosen from the
spectrum, while conditions (8), (9), (11), and (13) characterize the A orientation variables and the z-
interference variables as binary decision variables. The objective sums up total interference; note that the
coefficients are all non-negative.

Suppose now A;; = 1, that is, j is oriented upward from ¢ to j, and consider inequality (1): it simplifies
to y; — yi > dyi;. Thus, y; and y; have to obey the channel separation; also, y; must in fact be larger than
or equal to y;. Now consider inequality (2): it simplifies to —y; + y; > —( which is redundant because of
the upper bounds on y. The downward case A;; = 0 is symmetric. This time, inequality (1) is redundant,
and inequality (2) reads —y; +y; > d;;. Again y; and y; obey the separation constraint but now y; is less
than or equal to y;. Thus, inequalities (1) and (2) model the channel separations correctly!

Inequalities (3) and (4) deal with co-channel interference in a very similar way. Again, (4) will be trivially
satisfied if A;; = 1 and (3) if A;; = 0; in the first case, (3) becomes y; — y; +Zi; > 1. If y; and y; are
more than 1 channel apart, this inequality is always satisfied no matter what value z;; takes; since we are
minimizing, z;; will be zero if p;; > 0 and doesn’t matter otherwise. If, on the other hand, y; —y; = 0, Zj;
has to be one, indicating a co-channel interference. The case A;; = 0 is similar. So conditions (3) and (4)
set Z correctly.

The remaining inequalities (5) and (6) are for adjacent channel interference. Let us consider the case
A;; = 1 and the non-redundant condition (5): it reads y; — y; + 22;; + z;; > 2. If y; — y; > 2 we can do
without setting any of the interference variables, if y; — y; = 1 we could set Z;;, or Z;;, or both to one but
choosing Z;; is best with respect to the objective, and finally, if y; —y; = 0, we have to set Z;; = 1 because
of (3) and this already fulfills (5).

Thus the interpretation of the interference variables given above was not entirely correct; however, any
optimal solution of TIP can be easily modified to be of this form: if (y, 2) is a solution of TIP(G,d, p, ¢),
then (y, 2’) is also a solution with the same or smaller objective value where

7 = L, ifly; =yl =0 and Z . = Loif ly; —yil =1
7 10, otherwise " 10, otherwise.

We have arrived at a correct integer linear programming formulation of the frequency assignment problem.
Clearly, the projection of this formulation on the space of the y-variables yields an implicit integer linear
description of the set Z(P) that we investigated some paragraphs ago and naturally it is also A/P-complete
to decide whether TIP(G, d, p, () has a solution or not. But the point is that this difficulty is now only
due to the integrality stipulations (12) and (13) while all of the inequalities in the system are quite simple.



In contrast, we were not able to give a similar formulation for Z(P) because here already the inequalities
seem to be complex.

Before we proceed, let us do a couple of easy modifications to the model TIP that will be important later.
A first observation is that there are a lot of superfluous variables in the model that can be fixed to zero:
if we have a distance of 2 or more on some edge ij, there will never be any interference and we can fix
Zij = Zij = 0. We can also fix Z;; = 0 on edges with di; > 1, Z;; = 0 if p;; = 0, and finally Z;; = 0 if
P;; = 0. Second, the upper bounds (9) on the interference variables are irrelevant because with any solution
(y,z,A) of TIP(G,d, p, ) without constraint (9) the point (y, min{z, 1}, A) (with the minimum taken for
each component) is also a solution of TIP(G, d,p, () with the same or smaller cost. So let us remove all
variables that we just fixed to zero and the inequalities (9), too. More precisely, we introduce edge sets

E={ije E:dj=0andp;; >0} and f:{ijEE:dij <1 and p;; > 0}.
E is the set of edges with possible non-zero co-channel interference, E is the set of edges with possible

non-zero adjacent channel interference. After removing all fixed variables and the constraints (9) our model
looks as follows.

min P'Z+D Z
Yi — Yi > dij Ay —¢(1—Ay) Vij e E (1)
—Yj + Yi > di(1—Ay) — (A Vije E (2)
Yi —Yi+ Zij > Ajj —C(1-4y) VijeE  (3)
—Y;j +Yi+ Zij > (1—As5) —CA;; Vij € E (4)
Yi —Yi +2%i + 25 > 20 —C(1—Ay) Vij € E (5)
—yi+ i+ 22 +zi; > 21— Ayy) — (A Vije E  (6)
-y > —(1 (7)
A< (8)
. Az > 0 B (9)
v, Az € ZVXEXEXE (10)
(TIP(G.d, p.(Q))
(We assumed here p,Z € RF and J,% € RE for a simpler notation.)
We can write the model in a more compact form using matrix notation.
min pTZ+P z
Ay+ Bz > d-— DA
-y = —(¢
. Az > 0
y, Az € ZVXEXEXE

We already know that y is the channel assignment and z indicates interference; what about the orientation
variable A? It turns out that A corresponds to an ‘acyclic subdigraph of restricted diameter’.

1 Definition (Diameter of a Digraph) The diameter of a digraph with respect to a vector w of arc
weights is the length of a longest directed path in the digraph with respect to w (in a path, node repetitions
are allowed but not arc repetitions).

2 Definition (Orientation of a Graph) Let G = (V, E) be a graph with V C Ny and A € {0,1}¥. The
A-orientation of G is the digraph

GA) = (V{(i.d) : Ay = 1}) U (Vi{(G.1) : Ay = 0}).
(We assume i < j when writing A;;.)

In the orientation of a graph, edges with A;; = 1 will be oriented upward from ¢ to j, edges with A;; =0
will be oriented downward from j to . With this definition, we can characterize the set of feasible vectors
A for TIP(G, d, p, ().



3 Observation (Feasible Orientations) Let TIP(G,d,p,() be a frequency assignment problem. The
vector A € {0,1}F is feasible for TIP(G,d, p,(¢) if and only if G(A) does not contain a directed cycle of
positive length and is of diameter at most ¢ (both with respect to d).

Proof.
—: Let A be feasible for TIP(G,d,p, (). Then there exists a solution (y,z,A) of TIP(G,d,p,(). The
definition of G(A) implies

(i,7) € A(G(Ai) < y; <y, and ij € E.

Suppose G(AJ contains a directed cycle {(i1,i2), (i2,i3), ..., (ir,i1) } of positive length. Without loss of
generality we can assume y;, < y;,; but then we get the contradiction

Yiy <yi2§"'§yik§yi1'

Suppose G(A; contains a directed path {(il, i2), (12,93); -« -5 (-1, Zk)} of length more that ¢ with respect
to d; but then we get the contradiction

k—1

¢> Yie = Yip_1 T dik—lik Z 2 Y+ Zdi_ﬂj-%—l > Yiy +¢=¢.
j=1

<—: We will iteratively construct a solution (y, z, A) of TIP(G, d, p, (). Let us assume first that G(Tj does
not contain any directed cycle, neither of zero nor of positive length. Then initialize (y, z) as ‘undefined’.
Take a node j all of whose predecessors V((S_(j)) have defined y-values (in the first step there will be a
node whose set of predecessors is empty). Set

y; :=min< 0, min y; +d;;
iev (5~ ()

and iterate until y is completely assigned. Now set

Zij = max{1 — (y; — 4:),0} (i, 7) eA(CW) L ij EE
Zij = max{2 — 2z;; — (y; —v:),0} V(i,j) € A(CW) 1ij € E.

Then (y, z, A) satisfies the separation constraints due to construction of y and the upper bound constraint

because channel 0 is assigned to the first node of each longest path of G (A) and the length of such a path
is at most (; it fulfills the interference constraints due to construction of z. Thus (y, z,A) is a feasible
solution and A feasible for TIP(G, d, p, ().

If A contains directed cycles of length zero we note that all nodes on such a cycle must get the same
frequency. The case can be reduced to the cycle-free case by contracting all directed cycles of length zero;
the details are left to the reader. O

The occurrence of directed cycles of length zero results from the freedom in the choice of A;; if y; = y;;

such edges 7j can always be reoriented in such way that one gets an acyclic orientation.

4 Observation (Feasible Acyclic Digraphs) If (y,z, A) is a solution of TIP(G, d, p, () there is a solu-
tion (y, z, A’) with the same objective value such that G(A’) is acyclic.

Proof. Let (y,z,A) be a feasible solution of TIP(G,d,p,{). Then (y,z,A’) is a feasible solution of
TIP(G,d,p, () with the same objective value where

1, if yi —yi >0
Alji=11, ify;—y;=0and j >
0, otherwise.
O
Observation 4 allows us to restrict the set of feasible orientations of TIP(G, d, p, {) to acyclic ones. We can
do this using transitivity inequalities. Let P = {i1ia, 013, ...,ik—19x} be a path in G and ep = i1, € F be



the transitive edge for this path; without loss of generality we may assume i1 < 7. We can orient this path
in two ways upward from 4y to ix and downward from iy, <_to i1 obtaining d}_rected paths and P with
corresponding settings of orientation variables AT and AP (with AT + AP =1). Then the inequalities

EijeP:AZj:l Aij + ZijeP;A,}j:o(l — Qi) = Aiy, < |P[-1

L= PA)-A., < |P-1
EijeP:AS:l(l — Aj) + Zz’jeP;AEj:o Aij —(1=Ay,) < [P[-1

L= PA)—(1-A.,) < |P|-1

make sure that if P if oriented upward so is ep and that ep will be oriented downward if all edges on
P are oriented downward. Adding the transitivity inequalities to the model TIP(G,d, p, (), we obtain an
equivalent model for the frequency assignment problem where all orientations are acyclic.

min P'Z+D 2
Ay+ Bz > d- DA
-y > —(1
A < 1
y,A,z Z O (ATIP(GvdvpaC))
y A,z € ZVXEXEXE
P(A) - A, < |P|-1 Vep,P € G
P(A) - (1-A.,) < |P|-1 Vep,P € G

We call the model TIP the orientation model and the model ATIP(G,d, p, () the acyclic orientation model
of the frequency assignment problem.

4 Basic Properties of the Orientation Model

4.1 The Acyclic Orientation Polytope

We want to solve the frequency assignment problem using integer programming techniques. Given an
instance TIP(G, d, p, () or ATIP(G,d, p, (), let us denote by

P(G,d,¢)  or  P(G,d(

the convex hull of the set of feasible solutions of TIP(G, d, p, () or ATIP(G,d,p,(); we call both P(G,d,()
and P(G,d, ¢ ) the frequency assignment polyhedron. The frequency assignment can now be stated as a
linear program
minp*x
x € P(G,d,() or P(G,d,¢

— if we knew a description of the frequency assignment polyhedron in terms of inequalities. A first
approximation to this description is the LP-relaxation of the formulation TIP(G, d, p, {) or ATIP(G, d, p, ().
How good is the LP-relaxation? Unfortunately, it is miserable.

5 Observation (LP-relaxation) Let TIP(G,d,p, () or ATIP(G, d,p, () be a frequency assignment prob-
lem with
C Z max dU Z 2.

Then the point
(50, 20, Do) = (0,0,1/21)

is feasible and its objective value is 0.

Proof. If weset A;; = 1/2for allij € E, the right hand side of inequality (1) and (2) becomes d;; /2—(/2, of
inequality (3) and (4) 1/2—¢/2, and (5) and (6) get a right hand side of 1 —(/2. Assuming ¢ > maxd;; > 2,



these right hand sides are negative and make constraints (1)-(6) redundant. The transitivity constraints
in the model ATTIP(G, d, p, () are also fulfilled. Setting y and z to zero, the remaining constraints (7)—(9)
are also satisfied. The objective value of the solution is p™z = p™0 = 0. d

Even worse, if ¢ is much larger than maxd;; like in the frequency assignment problems at , the right
hand sides of inequalities (1)—(6) are very negative at (yo, 20, Ao) and the constraints start to get tight
only short before A gets integral. In other words, the Big-M link between the A and the other variables
in the model is weak. If we want to solve the model TIP using a cutting plane approach, we would thus
have to tighten the LP-relaxation substantially. A first class of inequalities is inherited from the acyclic
subdigraph polytope, see Grotschel and Jiinger [1982]. More precisely, let us denote by

the convex hull of all acyclic orientations (of diameter at most ¢), that is, ITA> is the projection of P on

the space of the orientation variables. ITK is the acyclic orientation polytope associated to the problem
ATIP(G,d,p, ().

6 Observation (Acyclic Subdigraph Inequalities) Each valid inequality a”z < b for the acyclic sub-

digraph polytope of a graph G is also valid for the acyclic orientation polytope P(G,d,( ) for any dis-
tance function d and any maximum diameter (; it is also valid for the frequency assignment problem
ATIP(G,d, p, ().

Proof. Each acyclic orientation is an acyclic subdigraph. |

Acyclic subdigraph inequalities do not take into account that only acyclic subdigraphs of diameter at most ¢
are feasible for the frequency assignment problem and the acyclic subdigraph polytope is thus probably not
a good approximation to the acyclic orientation polytope. However, additional inequalities could provide a
better description and analogously to Observation 6 they are valid for the frequency assignment problem.

7 Observation (Tournament Inequalities) Any inequality that is valid for the acyclic orientation
polytope Pa(G,d, ¢ ) is valid for the frequency assignment polyhedron P(G,d, ¢ ).

It makes thus sense to study the acyclic orientation polytope. Interesting questions are:

e What is an integer linear formulation for the set of acyclic orientations (of diameter at most ¢)?

e We know that it is in general N’P-complete to decide whether the acyclic orientation polytope is
empty or not. But are there reasonable conditions such that we nevertheless can make statements
about the dimension of the acyclic orientation polytope?

e When is a facet of the acyclic subdigraph polytope facet-defining for the acyclic orientation polytope?

e What are additional facets? Can we separate them in polynomial time?

4.2 The Frequency Assignment Problem for Fixed Orientation

Clearly, the inequalities for the acyclic orientation polytope deal only with the orientation variables and we
will need further inequalities for the frequency and the interference variables and inequalities linking the A
and the (y, z) variables to get a good approximation of the frequency assignment polyhedron. Inequalities
involving only the frequency and the interference variables, however, may be not so hard to find; in fact,
for a large class of frequency assignment problems the inequalities in the IP-formulation do already suffice.
Let us denote for each fixed orientation A € Pa the convex hull of the matching assignments (y, z) by

P@’I)(G,d, ¢) :=conv{(y,z) : (y,x,A) € P(G,d,()}.

By definition, we have

Ay+ Bx < d— DA
A _ -y > —(1
Z (P(y,x) (Gv dv C) = Yy > 0
(y,2) € ZV*F
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We saw in the last section that for fixed orientation half of the system Ay + Bx < d — DA is redundant;
let us eliminate all inequalities with negative right hand sides and denote the remaining system by

Any + Baz <da — DaA,

such that
Ay+ Bx < d— DA Apy+ Bax < da — DpAA
—y > -l _ —y > —Cl
y,x > 0 - y,x > 0
(y7x) c 7V *XE (y,x) c 7V *XE

Then it is easy to see that one can drop the integrality requirements if E N E = 0.

8 Theorem Let TIP(G,d,p,() be a frequency assignment problem with £ N E = (. Then the matrix
(Aa, Ba) is totally unimodular for any A € Pa(G,d,¢) and

Apry +Bar < da — DaAA
Ply ) = —y > (1
y,x > 0

Proof. A —as the arc/node-incidence matrix of a digraph— is a totally unimodular network matrix and
so is its submatrix Aan. We will now show that Ba contains only a single 1 per column and is thus a
submatrix of the identity matrix. Given this, the Theorem follows.

Let us look at the interference variables in the system Aay + Bax < da — DaAA. For each edge ij, the co-
and adjacent channel interference variables z;; and Z;; appear in only two rows, namely

Yi —Yi+ Zij > 1 Vij € E (3)
Y —vi+2Z;+2; > 2 VijeE  (5)
if Aij =1 and
—Yj +yi+ Zij > Vije E (4)
—yi+yi+2zZ;+%; > 2 VijeE (6
if A;;=0. If EN E = 0 these simplify to
Yj —Yi+ Zij > vije E (3)
Yi — Yi + gij > 2 Vij € E (5)
if Aj; =1 and simplify to
=Y +yi+ Zij > 1 Vij € E (4)
—Yj + Y +Zy; > 2 VijeE  (6)
if A;; = 0: each interference variable appears only in a single column with a coefficient of 1. O

In the case E N E = () where we can have either co- or adjacent channel interference on an edge but not
both, we know thus a complete description of the polytope P(jz)(G, d,¢). Let us call this case the simple
case in contrast to the mized case. In the mixed case, (Aa, Ba) contains 2-entries and is thus no longer
totally unimodular; in fact it is easy to construct examples where fractional solutions appear.

10 0.6/0.8

O——0—0O

Figure 3: Mixed Interference Case.
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9 Example (Fractional Solution for the Mixed Case) In the example in Figure 3, we have to assign
frequencies to three carriers such that yo < y; < y2. There is a large co-channel interference p,; and small
P1o and Py If we have 2 frequencies available, the best assignment will be y = (0, 1, 1) with an interference
of 0.8. However, the optimal solution of the LP

min 10701 + 0.8312 + 0.6512
-y + W > 0
-y + 0 + Zo1 > 1
-yt Y2 > 0
-y o+ Y2 + Z12 > 1
A 7)) + 2z + Zip > 2
0 < yo,y1,y2 < 2

is (y,2) = (0,0,1,0,1/2,0) with an objective value of 0.4.

But, as we will show now, co-channel interference variables with values of 1/2 are the worst that can
happen.

10 Theorem (Halfintegrality of Interference Variables) Let TIP(G,d,p, () be a frequency assign-
ment problem and A € Pa(G,d,() be a feasible orientation. Then all vertices (yo,z0) of P@z) have

integral components except for the zZ-component which may be halfintegral, that is,

(yo,Z0,%0) € ZV x 1/2-7.F x Z.F.

Proof. (yo,z0) is a vertex of P@ 2) if and only if it is a basic feasible solution of the system

Ary +Baz > da —DaA
-y > _Cﬂ (IA (Gv da C))
y,z > 0.

Let M be a basis for (yo, z0), that is, a set of |V| + |E| + |§| row indices such that (yo,2z0) is the unique
solution of the regular linear equation system

Ax  Ba da — DaAA
-1 v\ _ -
I z 0
I . 0

Consider an adjacent channel interference variable Z;; where ij € f\E (there is no co-channel interference
on the edge ij): there are only two inequalities that contain this variable, namely

Eij >0 and yj—yi—k?ij > 2

(assuming A;; = 1, the other case is analogous). If the non-negativity condition is constraint k in the basis
and the adjacent channel constraint is also in the basis, we can eliminate Z;; from the adjacent channel
interference constraint doing a pivot operation; after the pivot, Z;; occurs only in constraint k. If Z;; = 0
is not in the basis, the adjacent channel constraint must be in; denote this inequality by k in this case. In
both cases, after probably doing a pivot, we obtain a system

A\ B\ d\ — D\A
-1 v\ _ —¢
1 z 0
). 0

that contains only a single 1 in the Z;;-column; clearly, the solution of the system is the same as before. By
deleting row k we get a system that is still regular but does not contain z;; any more. We can solve this
system and then compute Z;; using constraint k. Clearly, if the reduced system has an integral solution,
Z,;; will also turn out to be integral. Applying this technique for all adjacent channel interference variables,
we can assume that our system contains no simple adjacent channel interference variables.

12



The argument that we just used works exactly the same way for co-channel interference variables from
E\ E, so we can assume that we have only mixed interference left.

Let us thus consider the mixed case. There are co- and adjacent channel interference variables z;; and Z;;;
they appear in the four inequalities

yi—yi+ Ziy = 1 (1)
Yi—vit2z+z =2 20 (2)
Zij > 0 (3)

Zij = 0 (4)

(assuming A;; = 1). Suppose Z;; = 0. Then we may assume without loss of generality that inequality (3)
is in the basis. Doing pivots, we eliminate Z;; from all other inequalities in the basis (at most two).
This will not change the solution of the system; dropping (3) from the modified system, we again get a
smaller system, solve it, and use (3) to determine Z;; (which will be zero). The pivots also produced a
simple adjacent channel interference that we can eliminate. So we may assume that all mixed co-channel
interferences are non-zero. Now suppose z;; = 0. Analogously, we can assume (4) to be basic, and eliminate
Z;j and (4) from the system. Now z;; > 0. If (1) is basic, (2) is not, we eliminate Z;; and (1), and determine
from an integral solution of the reduced system z;; = 1 from (1) and Z;; = 0 from (4). However, if (1)
is not basic, (2) is; (2) will then be the only basic constraint containing Z;;. Suppose the reduced system
with deleted (2) yields an integral y; then (2) determines Z;; = 1if y; —y; =0 and Z;; = 1/2if y; —y; = 1.
Since we have analyzed the cases z;; = 0 and z;; = 0, we are left with the case Z;; > 0 and Zz;; > 0. Here,
(1) and (2) must be in the basis while (3) and (4) are not. Deleting rows (1) and (2) from the system, we
obtain again a reduced system. Having solved this, (1) and (2) determine z;; and Z;; — we will analyze
their values in a minute.

Applying the technique just outlined, we reduce the system to the point where there are no more interference
variables. All reductions, however, had no effect on A and maintained integrality of the right hand side;
thus, y will be integral. All simple interference variables are then set to integral values as well as all mixed
interference variables where Z;; = 0; in the case Z;; = 0 either an integral or halfintegral Z;; may result.
Thus we are left with the case of both non-zero mixed interference variables. Here, subtraction of the tight
inequalities (1) and (2) yields z;; +z;; = 1. If y; —y; = 0, Z;; has to be one and Z;; = 0, a contradiction. In
case y; — y; = 1, Z;; is zero, a contradiction again. If y; —y1 > 2, (1) is not tight, which is also impossible.
d

The proof of Theorem 10 gives us also a complete characterization of the feasible bases of the sys-
tem Ia(G,d, (). A little informally speaking, the bases arise from collections of trees plus additional linear
independent inequalities to fix the interference variables. More precisely, but still informal, all feasible
bases will be obtained using the following scheme.

e Select a forest F' C G covering all nodes in G.
e Let T1,..., Tk be the trees of the forest. Select a vertex r(7T;) € 1) for every tree 1.

e Choose inequalities from Ia (G, d, () for the each edge in each tree and the vertices r(7}) as follows:

— For r(T}) choose either y,.(7,) > 0 or y,(1,) < (.

— If ¢ € T} is an edge with no interference, choose the distance inequality for edge ij.

— If ij € T} is an edge with simple interference, choose either the distance or the interference
inequality; in the first case, choose either the interference or the non-negativity constraint to fix
the interference variable (to zero), in the second case, choose the non-negativity constraint for
the interference variable (which will also be zero).

— If ij € T; is an edge with mixed interference, ‘decide’ whether y; —y; (assuming A;; = 1) should
be 0, 1, or 2. In the first case, choose the distance and two additional linearly independent
inequalities from (1)—(4) to fix the interference variables to Z;; = 1 and z;; = 0. In the second
case, choose both interference and the non-negativity constraint z;; > 0 to fix Z;; to 0 and Z;;
to 1. In the third case choose the adjacent channel interference and the two non-negativity
constraints to fix the interference variables to 0.

e Compute y and zp from the resulting system; (y, zr) will be feasible because the paths in the trees
are of length at most ¢, where edges oriented away from r(7;) are counted with weight d;; and edges
oriented toward the root count with weight d;;; mixed interference edges count with 0, &1, or %2,
according to the ‘distance decision’ and the orientation.
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e For all other edges with simple interferences, select —depending on the value of y; — y;— either the
interference or the non-negativity constraint to fix the interference variable. For mixed interferences,
do the same; in the case y; —y; = 1, however, the additional choice to select Z;; = 0 and the adjacent
channel constraint to fix Z;; to 1/2 is also available.

Theorem 8 allows us to solve the frequency assignment problem for fixed orientation A

min prx
Ay+ Bx < d— DA
-y = —(l
y,x > 0

in polynomial time as a linear program — in the simple case. Theorem 10 tells us that this does not work
in the mixed case, but that we are not far from integrality. An interesting question is:

e Can we solve the mixed case also in polynomial time or is this perhaps A/P-hard?

4.3 A Two-Stage Heuristic

We can summarize the results of the last two subsections as follows. The frequency assignment problem
TIP(G,d,p,() seems to be hard to solve, its LP-relaxation is bad and has to be tightened substantially
before we will be able to derive significant lower bounds or good solutions from it. The acyclic orientation
problem alone as well as the frequency assignment problem for fixed orientation seem to be ‘easier’ to solve.
We can exploit this observation to invent a heuristic using a two step approach: we try to determine a good
A and solve the frequency assignment problem for fixed A. From this solution, we try to gain information
how to improve A and iterate until a good solution is found.

Our starting point to make this idea more precise is as follows.

min p'Z+p 2 = min min pTz
Ay+ Bz > d— DA A € PA(G,d, () Ay+ Bz > d— DA

—y > —(1 -y > —(1
A < 1 ¥,z 2 0

y, Az > 0 (y.2) € Z"F

y Az € ZVXEXEXE

=: min f(A)
A € PA(G,d, ()

where f is the solution of the inner minimization problem. But A appears in this inner problem only on
the right hand side and f is all but a linear function. Since a value is put on A in a very indirect way, it
is hard to compare two values of A or to improve A. A possibility to get a linear objective function with
respect to A is as follows.

min fa)y = min min prz
A € PA(G,d,() A € PA(G,d, () Ay+ Bz > d— DA
-y = (1
y,z = 0
(y,2) € Z"™F
> min min pTz
A € PA(G,d,() Ay+ Bz > d— DA (x)
—y > —1 (o)
y,z2 > 0
= min max (d— DA)"z — 1%z
A € Pa(G,d, () A —axf < 0
2B < pT
z,xy > 0
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= min max dTx — ATDTy — {17z,
A € PA(G,d, () xTA—xf
"B

0
b
0

T

AVAVARVAN

T, T¢

We first go to the LP-relaxation of the inner optimization problem; we loose something here, but Theorems 8
and 10 justify this step as acceptable. Dualization then brings A up into a linear objective function

2T DA + terms not depending on A

and our idea is to use DTz as objective function in the outer optimization.

11 Algorithm (Two-Stage Heuristic for the Frequency Assignment Problem)
Input: Frequency Assignment Problem TIP(G,d,p, ()
Output: Solution (A,y, z) for TIP(G,d,p, ()

begin
1:=0;
c; == 0;
do
/* outer optimization */
compute
A; = argmin cI'A ora‘good A;
A € PA(G,d, Q)
/* inner optimization */
compute
(zi,2¢,) == argmax (d — DA)'x — (17,
2"TA—2f < 0
"B < pT
z,xy > 0

and the corresponding dual solution
(Yi, 2i);

i+
/* update of objective */

C; 1= DTl’i;
while want to continue;

output (A;, v, 2);
end

Let us state here that we do not know at present whether Algorithm 11 or a similar approach works; in
fact, the computation of A in the outer minimization is not even completely specified and first numerical
experiments suggest that the procedure in its current form does not converge. Also, it is true that A
appears now linearly in the objective — but not in a linear program, in a min / max problem with quadratic
objective. So questions to consider are:

e Suppose we could compute the optimum A in the outer minimization. Does the algorithm converge?
To the optimum?

e Can we still say something if we compute A with a heuristic?

e What is a good heuristic? This question is subject of the forthcoming Master’s Thesis Haberland
[1995].

e The inner minimization is correct in the simple case. What do we do in the mixed case?

Note also that the inner maximization requires the solution of an LP of large scale: there will be a column
for any interference variable and a row for each distance or interference relation. In the case of with
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50,000 interference relations this results in a 50,000 x 50,000 constraint matrix. In first tests, such LPs
could not be solved within hours of computation time — and after all, we want to iterate this step to get
a heuristic. However, this difficulty can be overcome as we will show in the next section.

5 A Minimum-Cost Flow Approach

We have seen in the last section that the frequency assignment problem for fixed orientation can be solved
in the simple case as a linear program

min pTz (TIPA(G, d, ()
Ary+ Baz > da — DaA
-y > —(1
y,z > 0.

However, the LP may be quite large. But perhaps we can exploit the special structure of the problem by,
for example, making use of the large network matrix AAn? And in fact, as we will show now, the dual of
TIPA(G,d, () is a minimum cost flow problem — only in the simple case, of course.

Let us start by looking at a simple TIPA (G, d, ) in more detail.

min P'Z+D z

(zij) v — Y > dy (i, j) € A(G(A))
(Tij) Y~ vtz > 1 VY(i.j) € A(G(A))
Fij) Y — v 435 > 2 Y(,j) € A(GAY))
(zij) —yj +¥i > dy Y(j,9) € A(GD)
(Tij) —yj+yi+ %y > 1 V(i) € 4(G(A))
(Tij) —vyj +yi +Zy; > 2 V(j,z‘)eZ(G(TS)
(ztj) —y; > —( VYjeVv

y,z > 0

Introducing the dual variables on the left of the inequalities, the dual looks as follows.

max dz + 1"z +21"% — (172
(z+T+7)(67() = (=+T+T) (07() —zy < 0 VjeV (1)
T; < Db VijeE (2)
Ty < Py VijEE (3)
T, Tt > 0 (4)

(MCFA (Gv d7 C))

(67 () denotes the arcs entering node 5, 47 (5) the arcs leaving j). If we interpret x and z; as flow variables,
MCFa (G, d, ) becomes a min-cost flow problem. Let us consider the following example that is illustrated
in Figure 4.

min 0.2Z01 + 0.3Z214 +z + 0.4z + 0.82
(xo1) — Yo + w01 > 0
(To1) — Yo + m + z > 1
(z12) -y + e > 1
(ro3) — o +  y3 > 0
(Toz) — o + Y3 + z > 1
(14) - + =1 )
(ZT14) - + Y4 + Zuu > 2
(724) - Y + > 0
(T24) - Y2 + Y4 + Zaa > 1
(734) — Y3 + W > 0
(T34) - Y3 + ys4 + Zz > 1
Yo, Y1,Y2,Y3,Ya < 1
¥,z > 0.
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Its dual is

max To1 +To3 + 12 + 214 + 2T14 + P24 +T3q —Tor — 0 Ta
— o1 — To1 — To3 — To3 - ot <0
o1 + To1 —Z12— T4 — Ti4 - 21t <0
T12 — To4 — Tay - T2t <0
o3 + To3 — T34 — T34 — 3¢ <0

T14a + T4+ Toa + Toa + Tgs + Taa — T4t <0

Figure 4: Min-Cost Flow Problem.

We have flow along the distance and the interference arcs in G(TS . The first five conditions in (D) state
that there is at least as much flow out of each node in V as into the node; each node in V' can thus act
as a source. In addition to the network G(Ts , there is an additional node ¢ and an arc (4, t) for each node
i € V. t has no flow conservation constraint and no outgoing arcs. Since all nodes in V pass the flow
they receive and possibly create new flow, the whole flow will end up at ¢ which is thus the sink of the
network. All arcs have unlimited capacity except for the interference arcs which have capacity equal to the
interference. Distance arcs (7, j) increase the objective by the distance d;;, co-channel interference arcs by
1 and adjacent channel interference arcs by 2. ( is 1, that is, we have two frequencies.

The best solution for Example 4 is to assign frequency 0 to nodes 0, 1, and 3 and frequency 1 to nodes 2
and 4; this solution gives rise to a total interference of 0.2 4 0.1+ 0.3+ 0.4 = 1.0. Let us now examine how
this solution comes up in the min-cost flow model.

To maximize the objective function, we are looking for a path in the network from some node in V' to the
sink ¢ where we can send flow. To maximize the objective, we want the path to contain as much distance
and interference arcs as possible because these contribute to a positive objective function; at least, these
values have to outweigh the —(-weight on the obligatory final arc to the sink. A good path consists of the

{(O’ ]‘)’ (17 2)’ (274)7 (4’t)}'

We can send 0.1 units of flow on it before T4 reaches its upper bound and get an increase in the objective
from 0 to

01(1+141—-1)=0.2.

Replacing the saturated arc (2,4) in this path by the arc (2, 4) with unlimited capacity, we can send another
0.1 units until (0, 1) reaches its capacity limit of 0.2. Since dog = 0, this will cost us, however, one unit in
the objective: the increase this time is only

01(14+14+0—1)=0.1.
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We could now replace (0,1) with (0,1) and send an unlimited amount of flow on this path, however, this
will not affect the objective function. Note that we have now accounted for the interferences py; and poy.
Another path, however, is

We can send 0.3 units along this path and the objective goes up by
0.3(2—1)=0.3,

which is exactly py,. A last path is

{(0,3),(3,4), (4, 1)}

Sending 0.4 units along this path, we account for pjs:
04(14+1—-1)=0.4.

All other paths do not increase the objective.

Figure 5 shows the primal and dual solutions of Example 4.

Figure 5: Primal and Dual Solution of the Min-Cost Flow Problem.

We can interpret these findings such that interference is ‘caused’ by long paths in G(A;. In our example,
we sent 0.1 units of flow along the path

{(0,1),(1,2),(2,4), (4,1)}.

This path has one distance arc (1,2) contributing 1 to the length, and two co-channel interference arcs,
contributing 1 each. If we assign the same frequency to all nodes on the path, this would cause a violation
of 1 of separation constraints and two times a co-channel interference, that is a total of 3. But we have
¢ 4+ 1 = 2 frequencies available and can thus increase the frequency on the path ¢ = 1 times getting rid of
¢ =1 in the sum of the violation and interferences.

The same holds for the path

{(1,4), (4,)}.

Using frequency 0 on all nodes on this path causes a distance violation of 1 plus 1 adjacent channel
interference, a total of 2 and 2 is exactly the coefficient of Z14 in the objective function; 2 minus ¢ = 1
increases of the frequency on the path leaves 1 unit of adjacent channel interference.

An interesting case is also when (P) has no feasible solution. Then (D) will be unbounded because a path
consisting of distance arcs with unlimited capacity will be found whose length exceeds (.

Although the original motivation for the min-cost flow model was to solve Algorithm 11’s inner minimization
problem in a way more efficient than using linear programming, the interpretation of problem (P)’s dual
variables as a min-cost flow gives rise to a couple of further ideas.

e The min-cost flow model can be combined with any primal heuristic because each frequency assign-

ment gives rise to an orientation via A;; = 1: <= y; > y; or y; = y; and j > ¢. Given this
orientation, the assignment can be reoptimized with respect to A.
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e After solving the min-cost flow problem, we can decompose the flow into its interference causing
paths. A natural idea is to try to break long paths by reorienting arcs in some way. An idea is
to try to identify an arc (¢,7) occurring in ‘many paths’ or with high flow value and take this as
an indication that the orientation from i upward to j is false and should be reversed. (The idea to
reorient arcs is already mentioned in Borndorfer, Grotschel, and Martin [1995], however, the question
how to find good candidates for reorientations remained open.)

e Another point is that the min-cost flow algorithm can potentially be used as a separation algorithm
in a cutting plane approach to the frequency assignment problem TIP(G, d, p, (). Suppose we could
solve acyclic subdigraph problems (plus additional linear constraints) to integral optimality. To be
an orientation, the acyclic digraph has to be of diameter at most . Normally, it is difficult to check
a longest path condition, but here, the min-cost flow problem can identify paths longer than ¢ for us.
Adding an inequality forbidding such a path P like, for example, > . p A, < |P| — 1, we iterate.

Let us close this section with two remarks. The first is that the min-cost flow problem can be easily
transformed to standard textbook form introducing a supersink s supplying all nodes in V' and a return
arc (t, s). In the linear program (D) this amounts to changing the flow conservation constraints to equations
by introducing slack variables. Figure 6 shows the resulting network, D’ shows the transformed LP.

Figure 6: Textbook Min-Cost Flow Problem.

max To1 + To3 + 212 + T14 + 2T14 + T24 + T34 — Tot — 0~ Ta
— Xo1 — To1 — To3 — To3 — Zot + 250 =0
Zo1 + To1 —T12 — T4 — T1a — 1+ 251 =0
Z12 — T2q — T24 — T+ T2 =0
To3 + To3 — T34 — T34 — T3t + Ts3 =0

Tia+ Tia+ Toa + Tog + Tas + Taa — Tat + Taa =0
—X50 — Tl — Ts2 — Ts3 — Tsa + Tys =0 ()
Tot + T + Top + T3¢ + Tay — s =0
To1 <0.2
T14<0.3
Tog < 0.1
To3 < 0.4
<04

0.

T3

=

8
8|
IV

x’ )

The second remark is about a simple transformation that allows to reduce some mixed interferences to
the simple co-channel case. Consider a frequency assignment problem with fixed orientation TIPA (G, d, {)
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with a mixed interference arc (4, j) that satisfies
2D;; < Pij-

We call (4, 5) a mized arc with small adjacent channel interference. The transformation consists in replacing
(i,4) by two arcs with co-channel interference only. We delete (z,7) from G(Tj , introduce an auxiliary
node v;; and two arcs
(i,vij) and  (vij,j)
with
divy; 7= duyj = dij = 0, Py, = Dij and  P,,.; = Dyj — Dij-
Note that p,,.; < P;; — Pij-

Lets call the frequency assignment problem resulting from this transformation TIPA (G, d, ¢)’. An example
of this transformation is shown in Figure 7.

0.2/0.8

hod
N

Figure 7: Mixed Interference with Small Adjacent Channel Interference.

It is easy to see that there is a one to one correspondence between optimal frequency assignments for
TIPA(G,d,¢) and TIPA(G, d,¢)’. Let y be an optimal frequency assignment for P. Then we can construct
an assignment y’ for TIPA(G, d, ¢)" with the same objective value as follow. We set y;, := y, for all k € V.
Now if y} = y}, we set y,,, to y; resulting in a co-channel interference of i‘j on the arcs (¢,v;;) and a co-
channel interference of p,; —Eij on arc (vij, 7). I y;— y; = 1, the best we can do is to set y’vJ =y} resulting
in an interference of Eij' If y; —y. > 2 we can do without any interference. The reverse transformation
is even simpler; if y’ is an optimal assignment for (P’), we just set yi := y}, for all kK € V and get an
assignment with the same objective value.

We can thus deal with mixed interference where the adjacent channel interference is small. Although in the
problems at these form the bulk of mixed interferences, there remains a small rest of about 100 or so
mixed interferences with large adjacent channel interference and the question arises whether it is possible
to invent a similar but more complicated transformation to deal with this case. This, as we will point out
now, is not possible using a ‘local’ transformation. Suppose we could construct a frequency assignment
problem with fixed orientation P(; ;) involving some digraph Dy; j) (containing nodes i and j) with the
following (local) property:

if  is an optimal solution of P(; ;) with objective value f(y), then

Py +M ify;—y; =0
fly) = Eij"_M ify;—yi=1 (L)
0+M ify; —y >2.

(The constant M allows for some constant additional interference caused by the transformation.) If prop-
erty (L) holds, we could replace (i,5) by Dy; ;) and get only a constant shift in the objective.

Let y' and y? be two optimal solutions of P 5y with
v~y =0 and yi—y; =2

suppose they have the additional property
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Figure 8: Mixed Interference with Large Adjacent Channel Interference.

But (L) and (E) together are not possible because f is not convex; a convex combination 1/2y' + 1/2y? of
y! and y? is a member of the convex hull of all feasible assignments but its objective value is less than the
value of the optimal assignment

FQ/2yt +1/20°) = 1/2f(y") + 1/2f(y*) = M +D;;/2 < M + By,

a contradiction. Figure 8 illustrates the case p;; = 0.8 and 57] = 0.6.
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