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1. Introduction 
We consider elliptic variational inequalities of the following form: Given a 
closed subspace V of the Sobolev space H1^), Cl being a bounded polygonal 
domain in Euclidean space IR2, a bounded V-elliptic and symmetric bilinear 
form (•, •) : V x V —• IR, a lower semicontinuous convex functional <f>: V —* IR 
and a continuous linear functional I : V —> IR, a function u € V is sought 
satisfying 

a{u, v - u) + <f>(v) - <f>(u) > l(v - u) , v eV . (1.1) 

Note that (1.1) constitutes the necessary and sufficient optimality condition 
for the minimization problem 

J(u) = inf J(v), (1.2) 

where 
J(u) = iG(ü,U) + ^ ( t ; ) - / ( t ; ) , veV. (1.3) 

It is well known (e.g. [1]) that the preceding assumptions guarantee both the 
existence and the uniqueness of a solution u € V to (1.1), (1.2), respectively. 

In the following we will specialize on two particular cases: The first one is an 
obstacle problem where the functional <j> represents the indicator function of 
a closed convex subset K, C V given by 

K = {v£V\v<iP} (1.4) 

with ij> € L°°(Q,) and < denoting the canonical ordering in L2(Q). In the 
second case we assume the functional <f> to be of the form 

<f>(v) = / $(v(x))dx , v e V , (1.5) 

where ^ : IR —»• IR is the piecewise quadratic function 

$(A) = \ai\
2_ + \a2Xl + s\+ , XeR (1.6) 

with a,- > 0, 1 < i < 2, and s > 0. The variational inequality (1.1) with 
<f> given by (1.5) can be interpreted as the weak formulation of an implicitly 
in time discretized two phase Stefan problem with nominal change of phase 
temperature at zero (see [11, 18]). 

Discretizing (1.1) in space by continuous, piecewise linear finite elements with 
respect to a triangulation of Q, standard numerical schemes for the solution 
of the resulting finite dimensional variational inequality are projected relax­
ation methods in case of an obstacle problem (e.g. [12]) and a modified SOR 
technique in case of the fully discretized Stefan problem [11]. These iterative 
methods suffer from rapidly deteriorating convergence rates when proceeding 
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to more and more refined triangulations which renders them inefficient from 
a numerical point of view. However, this drawback can be overcome by using 
multilevel techniques such as multigrid methods with respect to a hierarchy 
of triangulations. Multigrid approaches to obstacle problems have been de­
veloped by various authors ([5, 13, 16, 23, 24]) while a multigrid solution of 
the two phase Stefan problem has been considered in [18] (see also [17, 19] 
for treatment of coupled systems of Stefan type equations). 

For obstacle type problems an alternative to projected relaxation is to use 
some sort of linearization techniques based on active set strategies (e.g. [13, 
14, 15]). This is an iterative scheme where in each iteration step a set of 
active constraints is prespecified and then an auxiliary linear system has to 
be solved for the computation of the new iterate. Note that the multigrid 
techniques used in [13, 14, 15] consist of outer and inner iterations where the 
outer iteration is an active set strategy and the inner iterations are multigrid 
iterations for the approximate solution of the auxiliary problems. 

Since for the obstacle problems under consideration the coefficient matrices 
of the auxiliary systems are symmetric positive definite, an alternative choice 
for the inner iterations are preconditioned conjugate gradient (peg) methods, 
especially those based on multilevel preconditioners such as Yserentant's hi­
erarchical basis preconditioner [27] and the BPX-preconditioner [4] (see also 
[29] for a comparison). In case of the two phase Stefan problem the use of 
peg can also be facilitated by using some linearization technique as an outer 
iteration. Such approaches have been recently applied in [26] using SSOR as 
a preconditioner and in [6] where different kinds of standard preconditioners 
have been implemented depending on different formulations of the basic gov­
erning equation (source based technique with liquid fraction and enthalpy 
method). While a thorough analysis of the peg techniques has neither been 
performed in [6] nor in [26], the displayed numerical results did not show an 
improvement compared to Elliott's modified SOR and to the corresponding 
eg methods without preconditioning, respectively. A plausible reason for the 
bad performance of the preconditioners used in [6] and [26] seems to us that 
these preconditioners are not adopted to the appearance of a discrete free 
boundary and thus result in an inadequate coupling between the discrete 
liquid and solid region. 

In the following sections we will focus on multilevel preconditioned eg meth­
ods for both types of variational inequalities. In particular, we will show 
that these preconditioners can be derived by only slight modifications of the 
standard multilevel preconditioners as developed for the eg solution of finite 
element discretized elliptic boundary value problems. 
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2. Variational Inequalities of Obstacle Type 

In this section we shall deal with variational inequalities arising from obstacle 
problems where <j> in (1.1) is the indicator function of a closed convex set 
JC CV of type (1.4) and the bilinear form a (•, •) is given by 

r 2 

a(u,v) = Yl aijdiudjvdx (2.1) 

with aij G L°°(Q,) satisfying for almost all x € H 

a) a tj(x) = aji(x) , 1 < i, j < 2 , 

b) ao|£|2 < E L = i « ü ( ^ ^ < « 1 | ^ | 2 ^ e J ? 2 , 0 < a o < a 1 

(2.2) 

Note that in this case (1.1) is equivalent to the computation of a function 
u G K such that 

a(u, v — u) > l(v — u) , v € fC . (2.3) 

For the finite element discretization of (2.3) we assume (Tk)l
k=0 to be a regu­

lar family of nested triangulations of Ö generated by the refinement process 
as described in [2, 3]: Given an initial coarse triangulation TQ, for 1 < k < I 
the triangulation 7^ is a direct refinement of 7fc_i in the sense that a trian­
gle in 7fc either corresponds to a triangle in T^-x or is obtained by regular 
("red") or irregular ("green") refinement of a triangle in Tk-\. In particu­
lar, a refinement of a triangle T € %-\ is called regular, if T is subdivided 
into four congruent triangles by joining the midpoints of the sides while an 
irregular refinement of T means a bisection by connecting one of the ver­
tices with the midpoint of the opposite side. Triangles in % are said to be 
level 0 elements while for 1 < k < I triangles generated by refinement of a 
level k — 1 element are referred to as level k elements. In order to keep the 
interior angles of the triangles bounded away from zero, irregular triangles 
may not be further refined and to guarantee uniqueness of the decomposi­
tion only level k — 1 elements are permitted for refinement in the construction 
of 7jt. We refer to (<Sfc)jt=0 as the nested sequence of finite element spaces 
Sk C V, 0 < k < I, with respect to continuous, piecewise linear finite ele­
ments associated with the triangulation Tk. We denote by A4 = { x l 5 . . . , xnit} 
the set of nodal points of Tk and by <w\ '\_ the associated nodal basis of 

Sk, i.e. w\ (XJ) = Sij,x G Mk- Further, we assume that is a se­

quence of discrete obstacles tpW € Sk, 0 < k < /, approximating the given 
obstacle xp in an appropriate sense. For example, the tfrW's may be chosen 
as the L2-projections of i/> onto Sk or if t/> (= C(f2), as the «S^-interpolates. 
Correspondingly, we denote by tCk = \v 6 Sk\v < V>(fcH the sets of discrete 
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constraints. Then, on levels 0 < k < I the finite element approximation of 
(2.3) amounts to the computation of an element u € K,k satisfying 

a(u, v - u) > l(v - u) , v E fCk . (2.4) 

It is easy to see that the finite dimensional variational inequality (2.4) is 
equivalent to a linear complementarity problem. 

Lemma 2.1 An element u € Kk is a solution to (2.4) if and only if the 
vector Uk G IRn* with components Uk,i = u(x{), x,- € -A/jt, 1 < i < n*, satisfies 

ma.x(Akuk - bk, uk - i>k) = 0 , (2.5) 

where Ak is the (rik,nk) stiffness matrix with entries atj = a\w\ ,Wj ) , 1 < 
hj ^ nk> and bk & IRn* and ipk G IRn* are the vectors with-components 
h,i = l(wik)), i>k,i = 0w(iCf)> Xi zNk, 1 <i <nk. Note that (2.5) has to 
be understood componentwise. 

Proof. Since u € JCk is equivalent to Uk < ifrk, ajid since the choice v = 
u — z, z € Sk, z > 0, arbitrarily given, in (2.4) leads to AkUk < bk, we 
have (uk — i>k)T(Akitk — bk) > 0. On the other hand, v = if)W in (2.4) yields 
(uk — i/>k)T(AkUk —bk) < 0 and thus (uk — tßk)1{AkUk — bk) = 0 which proves 
(2.5). The converse statement is obvious. • 

In the sequel we will concentrate on an outer-inner iteration technique for 
the numerical solution of the level / complementarity problem (2.5). The 
outer iterations are governed by the iterative scheme as presented in [14, 15]: 

Outer iteration: 

Step 1. Choose a startvector u\ ' € IRn'. 

Step 2. Given u\v) G \Rn,,u > 0, compute uj" + 1 ) G IRn' as the solution of the 
linear algebraic system 

i4J",ujW'1) = tf° . (2-6) 
where for i = 1 , . . . ,n/ the entries a,y, 1 < j < nj, of the (TII,TH) 

matrix A, are given by 

a H = f aij, if (A,u\v) - bt)i > (u\u) - r/f,)i ^ ? ^ 
,J \ Sij, otherwise 
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while the components b\, 1 < i < m, of the vector 6* G R are as 
follows 

6W = I kh if (^i«^} ~ M< > («S") - 4>i)i (2.7.b) 
\ i/>/,,-, otherwise . 

Under the assumption (2.2) monotone convergence can be easily deduced 
[14, 15]: 

T h e o r e m 2.2 For arbitrarily given u\°' G IRn' let (u; )^>i be the sequence 
of iterates obtained by the successive solution o/(2.6). Then (u, ),/>i is a 
monotonically decreasing sequence converging to the unique solution o/(2.5). 

In view of (2.7) the computation of the iterate uy ' actually requires the 
solution of a lower dimensional linear algebraic system: We decompose the 
set Mi of nodal points according to jVj = A/j U A/j where 

M1] = {*< e M I 4? = ««» i < i < «»} , 

Note that on levels 0 < k < I we have an analogous decomposition JV^ UA/̂  ' 
where 

Mlß)=ArknAff\ l<n<2. 

Moreover, denoting by jV*., 0 < k < I, the index set Nk = { 1 , . . . ,nj.} we 
have iVfc = AT<1) U iV^2) with iv£M> = {» G iVfc|x,- G -A/"^}, 1 < p < 2. We 
refer to iV£ as the set of active nodal points, since with regard to u ^ + ' = 

the constraints are active in such points. Correspondingly, 
the set .AA1) is said to be the set of inactive nodal points. Obviously, the 
computation of u" reduces to the determination of an n*-vector v\ G IRn', 
n} = #-A/j , with components u/,,- = u\^ , i G JVj \ as the solution of the 
"reduced" algebraic system 

BiV, = c, , (2.8) 

where B\ denotes the symmetric, positive definite (n], n}) matrix with entries 

G iV,(1) , and cj is the nj-vector with components 

Given the linear system (2.8) prescribed by the outer iterate u\ G IRn', the 
inner iterations will be of conjugate gradient type with an appropriate mul­
tilevel preconditioner Hf. 
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I n n e r i t e ra t ion : 

Step 1. Set Vj = («/,{)t-gyv(i) and arbitrarily define p, ' = (pj j1 )i6Ar(i)-

Step 2. Given v} , /J > 0, determine Vj as follows: 

• Solve H,z\ß) = r^\ r,M = c, - B ^ . 

• Compute 

r ( ^ ) ) r r ( M ) / ( z ( , - i ) ) r r ( . - i ) ) „ > ! ? 

^ " l O > A i = 0 , 

rf° = z^ + ßJ^, 

^ + 1 ) = v^ + arpM. 

In the following we will exclusively deal with the construction of the precon-
ditioner Hi. For this purpose we define subspaces <S£ ' of Sk, 0 < A; < /, as 
the linear spaces of all function in Sk vanishing in active nodal points, i.e. 

$W = {v G Sk | v(xi) = 0, x,- G «A/J3)} . 

Obviously, dim«S£ = n\ a n d 

S{
k
x) = span{u;{*) | i G N^} , (2.9) 

but in contrast to (<SA;)^_0, in general the sequence (<S£ )1 = 0 *
s nonnested, 

since the function v G «Sfcjj does not necessarily vanish in active nodal points 

X{ G jVjfc . However, if we consider the hierarchical basis functions w\ , 

i G iVjk , given by 

1 { ^ , i f iGiVJV^i , 1 < J < * 
the subspaces 

$ 1 ) = span{t&}1)|ietfJj
1)} (2.11) 

of dimension dim«S£ ' = n\ form a nested sequence (<S£ )'fc=0. We refer to 
Ik : Si —• 5fc. 0 < A; < /, as the interpolation operators as defined by 
(7jfcu)(x,) = u(x,), x,- G A/fc, and introduce a bilinear form än(-, •) : <Sj x 
«Sj ' —* IR according to 

aii{u,v) = a(I0u,I0v)+ 

+ £ £ ^ ) (Au-7 f c _ 1 u) (x , ) ( / f c t ; - / f c _ 1 ü) (x i )
 ( 2 > 1 2 ) 
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where d\ ' = a(u>,- , w\ '). We further denote by Hi the matrix represen­
tation of a # ( v ) with respect to the hierarchical basis (2.10). Note that 
Hi - (hij)i,j^) i s exphcitly given by 

I«(»r' ,»r) , if.,jejvw 

Then, if 5 / stand for the matrix representation of a(-, •) restricted to S} x 
Si ', the following result is crucial for the performance of the preconditioned 
eg inner iteration: 

Theorem 2.3 There exist positive constants cM, 1 < [i < 2, depending only 
on the shape regularity of the triangles in % and on aM, 1 < \i < 2, from 
(2.2) such that for all u{ = (u/,,),-^^) G \Rf 

ci(/ + l)-2ujHiu{ < ujBiui < c-iujHiui . (2.14) 

Proof. The assertion is a direct consequence of the inequalities 

Ci(l + l )~ 2a#(u,u) < a(u,u) < c2ä#(ti,u), u G S\ , 

which can be shown following the same lines of proof as in [27] for the fi­
nite element discretization of standard second order elliptic boundary value 
problems. • 

Since the inner iteration is in terms of the matrix Bi which is the nodal 
basis representation of a(-, •) restricted to S\ ' x S^ , we need a suitable map 
Si : 5,(1) - • 5,(1) such that (5,u)(xi) .= u(x,), x* € A/",(1), u G <S,(1). For this 
purpose we assume (ui,i)i&N(i) and (uij). N(i) to be the vector representation 

of u G Sll) and Stu G <S,(1), respectively. Further, if x,- G -A/j^VA/ffi, 0 < 
fc < /, we denote by zM(i) G A^-i, 1 < fi < 2, the indices of the neighboring 

nodal points in Afk-i- Then the components u/it-, i G Nj , can be recursively 
computed according to 

u*,,- =• üi,i, ieN^ , , 2 1 5 , 

«M = fiw + KUIAW + ÖIACO) »« e M1,\Jv£ ,
1,1 < fc < / , 

where 

« , • ,-x = I U'.«M(0 ' tf **•(*) e A rfc-i 
( , , M ( , ) 1 0 , otherwise . 



The matrix representation of the map Si given by (2.15) results in a lower 
triangular matrix Si = S® • S^~^ • S™ with S™ = (SW)ij G W,(1) and 

f 1 if t = j 
sV = i if i e ;vf), i = ,•„(,•) € jvffi (2.16) 

, 0 otherwise 

Theorem 2.4 assume that % is fine enough and the coefficients a,j(x) are 
sufficiently regular. Then 

CiufBim < (SiuifBiSim < CtufBiui 

holds with constants C\,C2 independent of I. 

Proof. The proof is based on the fact that the area of a triangle with diam­
eter h is of order h2 and for the reason is restricted to two space dimensions. 
For details we refer to [20]. • 

Hence the matrix 
Hi = SrTHiSfl (2.17) 

is a good preconditioner for Bi and we obtain: 

Theorem 2.5 Let Hi be the (n},n}) matrix defined by (2.17). Then the 
condition number estimate holds true 

K(Hr1,2BiHr1/2)<C(l+l)2 (2.18) 

with a constant C independent /. 

Proof. The assertion is a direct consequence of the Theorems 2.3 and 2.4. 
• 

Remark. Recently, a result similar to the preceding one has been reported 
in the slightly different context of the iterative solution of elliptic boundary 
value problems where after some iterations certain components of the iter­
ates practically do not change any more and thus are kept fixed during the 
subsequent iterations [30]. 

In the unrestricted case Ki = Si the preconditioner Hi exactly corresponds 
to that developed in [27] for the hierarchically preconditioned eg iterative 
solution of second order elliptic boundary value problems. Hence, it is not 
surprising that (2.18) displays the same moderate growth in the number of 
refinement levels. Moreover, in view of (2.13) and (2.16) the implementation 
of the preconditioner can be done inexpensively requiring approximately In} 

9 



floating point operations plus the computational work for the solution of a 
linear system with the (nj, nj) matrix H0. 

Instead of the preconditioner Hi based on the splitting of Si by means of the 
interpolation operators Ik, 0 < k < I, we can alternatively use the so-called 
BPX-preconditioner Hx (see [4, 29]) which relies on a splitting involving the 
Z/2-projections Qk : Si —> Sk given by 

(QfcU, v) = (u, u), v £ Sk, 0 < k <l , 

where (•, •) stands for the standard L2 inner product. For the obstacle prob­

lems under consideration, denoting by r^> € sll) the defect with respect to 

the ju-th iterate u^ € SJ , the action of H^1 on r ^ is given by 

H?rM = (A^y'Qor^ + E E C ^ r H r ^ , « , ^ ) ^ (2.19) 
fc=i,-6iV(i) 

where AQ is the operator associated with the bilinear form a(-, •) restricted 
to «S51' x 5Q . Without going into details, using the BPX-preconditioner Hx 
results in the same moderate growth 0(1 +1)2 of the preconditioned stiffness 
matrix Bi with respect to the number / of refinement levels. However, in 
contrast to the hierarchical basis preconditioner which deteriorates in 3-D 
the condition number estimate for the BPX-preconditioner does not depend 
on the dimension of the underlying problem. Moreover, the computation of 
Hx1!"^' can be done almost as cheaply as in the case of the hierarchical basis 
preconditioner by evaluating the double sum in (2.19) in a recursive manner. 
Finally, we remark that without major difficulties the presented outer-inner 
iteration technique can be built into existing adaptive finite element codes 
like PLTMG [2] or KASKADE [9] provided a reliable local error estimator 
for obstacle problems is at hand. An edge oriented local error estimator for 
such problems has recently been developed in [22] by heuristic arguments 
and successfully applied within a self-adaptive scheme for the solution of 
a special obstacle problem arising in semi-conductor device simulation. In 
a forthcoming paper a theoretical justification of this error estimator will 
be given along with a detailed discussion of the algorithmic aspects of the 
complete code for both unilateral and bilateral obstacle type problems. 
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3. Variational Inequalities Arising from two 
Phase Stefan Problems 
The two phase Stefan problem is a moving boundary problem describing 
the temporal and spatial temperature distribution Q(x,t), (x,t) G Q := 
Q x (0, T), of a heat conducting substance undergoing a change of phase at 
a certain change of phase temperature Oc which we assume to be zero. In 
its fixed domain formulation the problem can be described by the degenerate 
parabolic pde 

^H(u)-Au = fmQ (3.1) 

where it = K(Q) = /0 K(T)(1T is the generalized temperature, H{u) = 
E(K~xu) the generalized enthalpy with E = a + s, a = f0 C(T)(1T, de­
noting the standard enthalpy, and / stands for source/sink terms (c,« and 
s are the volumetric heat capacity, thermal conductivity and latent energy 
content, respectively). Of course (3.1) has to be completed by prescribing 
initial and boundary values, and a solution has to be understood in an ap­
propriate weak sense (for details including existence and uniqueness results 
we refer to [21]). The fixed domain formulation has the advantage that the 
free boundary £ = {(x,i) € Q\u(x,t) = 0} can be computed a posteriori and 
that it allows the occurrence of so-called mushy regions, i.e. subdomains 
of constant change of phase temperature having positive measure. In the 
following the physical data c, K and s are supposed to be piecewise constant, 
i.e. 

c(0) = c„, K ( 0 ) = Kß, 5 ( 0 ) = a„ for ( - 1 ) " 6 < 0, 1 < n < 2 , 

with 0 < C\ < C2, 0 < K\ < /c2 and 0 = S\ < S2 = s. 

Given a partition {t0 = 0 < t\ < ... < tM = T} of the time interval 
[0,T], we assume üT"1-1 € H(u(-,im-i)) to be known and then discretize 
(3.1) implicitly in time by the backward Euler scheme with respect to the 
subinterval [tm-i,tm]. In its weak formulation the semidiscretized problem 
can then be written as a variational inequality of the form (1.1) where u € 
V C H1^) is an approximation to u(-,2m), a(-, •) and / are given by 

a(u, v) = Tm Vu • Vvdx, u, v € V, rm = tm — tTO_x , (3.2) 

/(«) = f(Tmfm + Hm-1)vdx, veV,fm = f(-,tm) (3.3) 
Jci 

and the functional <j> is defined by (1.5), (1.6) with aß = cM//cM, 1 < \i < 2 
(for details see e.g. [11, 18]). 
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As in the preceding section we consider a family (Tk)l
k=0 of triangulations of 

Cl but this time we assume the family to be quasiuniform, i.e. 

tix7TlH < diam(T) < r/22- '#, T G % (3.4) 

with constants 0 < r\\ <r\-i and H > 0. We further assume the time step 
size rm to be chosen such that the temporal and spatial discretizations are 
coupled by 

4"'/i2 < rm < 4-xtf2 . (3.5) 

As is Section 2 we denote by (<Sfe)fc=0 the nested sequence of finite element 
spaces Sk C V, 0 < k < /, generated by continuous, piecewise linear finite 
elements with respect to 7*, by A/jt = { z j , . . . ,znjfe} and Nk = {l,. . . ,rifc} 
the set of nodal points and its related index set, respectively, and by w} , 
I < i < njk, the standard nodal basis functions. The usual finite element 
approach is marred by the fact that the computation of <£(t>), v G Sk, would 
require to determine in each triangle T € Tk where v changes sign. Since 
this is impracticable from a computational point of view, we replace the 
convex integrand in (1.5) by its Sk -interpolate, i.e., we approximate <f> by the 
functional <j>k : Sk —> R given by 

M») = X I area (T) X *(«(*?)), « € Sk (3.6) 
Terk i=\ 

where xf, 1 < z < 3, are the vertices of the triangle T 6 Tk. Then the 
level k finite element discretization of (1.1) amounts to the computation of a 
function u G Sk satisfying 

Tma(u, v - u) + <j)k{v) - <j)k(u) > l(v -u), v eSk . (3.7) 

We denote by Ak the (n&, rife) stiffness matrix associated with a(-, •) on Sk x5fc, 
by Tk the (rik, rik) diagonal matrix with entries 

7 ^ = | E a r e a ( r ) , I < i < rife , 

and by bk G iT1* the vector with components 6fc,,- = l(w\k^), I < i < Nk. 
Then, if 3 $ represents the subgradient of the convex function $ , the varia­
tional inequality (3.7) is equivalent to the algebraic inclusion 

Tk\bk - TmAkuk) G a$(tifc) (3.8) 

which has to be understood componentwise. By a well known argument from 
convex analysis [10] the inclusion (3.8) is equivalent to 

Uk^d^{T^{bk-TmAkUk)) (3.9) 
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where $* stands for the Fenchel conjugate of $. Since in the present case the 
subgradient d$* of the Fenchel conjugate is the continuous, piecewise linear 
function 

( djl(\-8) , A > s 
d$*(\) = l 0 , \€[0,s] (3.10) 

I of1 A , A < 0 , 
the inclusion (3.9) reduces to a nonlinear algebraic system which can be 
written as 

Fk{uk) := uk - d^T^ih - rmAkuk)) = 0 . (3.11) 

It has been shown in [18] that Fk is a continuous, surjective M-function which 
implies that (3.11) possesses a unique solution u*k G IRn*. 
In the sequel we will solve (3.11) on level / by an outer-inner iteration where 
the outer iteration is of generalized Newton type 

Ji(ttl
M)(ttjH'1) - uj">) = F^uW v > 0 , (3.12) 

with J/(«j ) £ dFi(u}'), dFi{u\ ) being the generalized Jacobian of the 
locally Lipschitzian function Fi in the sense of Clark [7] (see [18] for details). 

Outer iteration: 

Step 1 Choose an appropriate startvector u\ . 

Step 2 Given u} , v > 0, choose J\(tt| ) G dFi(uf') and compute u\u ' as 
the solution to (3.12). 

Only for the purpose to simplify notations, in the sequel we suppose that the 
solution uj G Si of (3.11) satisfies the discrete nondegeneracy condition 

u*. = 0 <& ö $ ( « y G (0,s), 1 < t < n, . (3.13) 

Then there exists a neighborhood U(u*) such that for all uj G U(u*) the 
Jacobian dFi(vi) is single-valued with elements (3F/(t>j))y, 1 < j < n/, 
given by 

Sa, 0 < (&,-rmA,t;,)i/7iP<s • (3-14) 

. Sij + <hXTmaal~if?, (bi - TmA{vi)i/^P > 0 

We assume u, G U{u*) and decompose the set Mi of nodal points by Mi = 
Uj=i^/M) where 

Mi{1) = {xt G jV,|(6, - a u f W < 0 } , 

JV?a) = {*,- G ^|(&, - TnAvWih® > s} , (3.15) 

M[3) = {*.- G JV,|0 < (bi - TnAiU^hV < S) , 
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and we set 
jV/W = A T f c f l ^ , 1 < /x < 3, 0 < k < I . 

Further, for 0 < k < I we define n ^ = #-A/rjfc
M\ 1 < A* < 3, and we denote 

by N^ = {i e Nk\xi € M^}, 1 < /i < 3, the corresponding index sets. 
Then, if we order the nodal points in a blockwise manner according to the 
decomposition (3.15), in view of (3.14) the linear system (3.12) can be written 
as the following 3 x 3 block system 

T u + a 1
1 r m A u ax

lTmAX2 ax
xrmA^ 

a2
lrmAx2 r 2 2 + a2

XTmA22 a2 rmA2z 

o o r3 3 

Z\ C\ 

Z-2. = C2 

. Z 3 . . C3 . 

(3.16) 

where z\ = (zx,z2,zz)T = u\ ' — u} and c\ — (ci ,c2 ,c3)T with 

cM = - ( r ^ t ^ ) ) , , 1 < \i < 2, c3 = - ( r , u M ) . (3.17) 

Since Zz = — (u, )3 , we may eliminate the unknowns corresponding to nodal 
points Xi € thus reducing (3.16) to a 2 x 2 block system. Although the 
associated 2 x 2 block coefficient matrix is not symmetric, a simple multipli­
cation with the block diagonal matrix dihg(aflIllli)

2
ß=l results in the following 

2 x 2 block system with symmetric, positive definite block coefficient matrix 

5 , 2 , = 
ail1!! + rmAn rmAX2 

0-2^22 + TmA22 TmA-x2 

Z\ 

Z2 C2 
= Cl 

where 
C/x = a^ - rmAM3(u}'/,)3, 1 < M < 2 {»h 

(3.18) 

(3.19) 

The inner iterations for the solution of (3.12) will be of preconditioned con­
jugate gradient type applied to (3.18) using Hi = diag(ff/1M)^_1 as a precon-
ditioner where Hm are appropriate preconditioners for the diagonal blocks 
ijßp — fljil up ~r TuApni 1 ^ fi ^ 2. 

Inner iterations: 

Step 1 Set z\ ' = 0 and arbitrarily define p\~ '. 

Step 2 Given z, , fi > 0, determine zf+1' as follows: 

t Solve Hiv\ß) = r ( " \ r[M) = c, - £,Z, ( / J ) . 
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• Compute 

_ { {v^fr^liv^fr^^ > 1 

aß = {vM)TrW/(pM)TBlpM, 

z \ ^ =, »W + ^ W . 

R e m a r k s . If Hßß = J?MM, 1 < p < 2, the inner iteration corresponds to 
the generalized eg method in [8]. 

In case A.12 ^ 0 the inner iteration is closely related to a domain decompo­
sition technique, namely an additive Schwarz iteration with minimal overlap 
of the subregions ft,, C ft, 1 < \L < 2, given by ftM = UigAr^) supp w\ , 
1 < P < 2. 
The rest of this section is devoted to the construction of appropriate hier­
archical preconditioners Hßß for Bßß. Reminding the fact that (3.18) stems 
from the discretization of a parabolic problem with the time step size rm 

being related to the triangulations in space by (3.5), we follow Yserentant's 
approach in [28] and actually work with a hierarchy (Tk)l

k=kmin where km-m is 
the smallest integer between 0 and / — 1 such that 

4-(fc+i)minÄ2 < T m < 4-*mi»#2 ( 3 > 2 0 ) 

For Hi € {1,2} we denote by /x2 the complementary index /i2 = {1,2}\{^!}. 
Then, for A^n < k < I we define finite element spaces 5^ ' and S[-' according 
to 

S{
k
ß) = {ve Sk\vixi) = 0, xt € Mi* [jMi% 1 < Mi < 2 . (3.21) 

Note that TmAßß is the matrix representation of Tma(-, •) restricted to S} x 
5, and that a^T^ is the matrix representation of (?$/(•) on S i , 1 < fi < 2. 
We further define hierarchical basis functions w\ , i € Nk , fcmin < k < I, 
1 < M < 2 , by 

tu 
{li) _ j ^ , ifietfj*!. 

min 

t^P , if t e N^NJll Kün + 1 < j < k , 

we set 
5 ^ = span{u>jM)|z € J V ^ } 1 < p < 2 , (3.22) 

and we denote by S/ , 1 < H < 2, the matrix representations of the maps 
S\ : 5/ —» 5/ being defined in the same way as in the previous section. 
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Following [28] we introduce bilinear forms OHMM(-, •) on Sj x 5; , 1 < p < 2, 
by 

atfw,(u,u) = 4-*™»#2 X) ^ . « ( ^ • ) ^ - i . w ( a ; i ) + 

"mm 

+ rm ^ 5 3 (7fcu - 7Jk_1u)(x,-)(7fcU - i*_iv)(s,-) , 

and we refer to H^, 1 < /i < 2, as the diagonal matrixes representing these 
bilinear forms with respect to the hierarchical basis functions. Setting 

H„ = (SP)-THßll{SP)-1 1 < V- < 2 , (3-23) 

we can show: 

T h e o r e m 3.1 There exist positive constants cßV, 1 < fi,v < 2, depending 
only on a lower bound for the interior angles of the triangles in To and on 
the constants r)ß in (3.4) and aß) 1 < p. < 2, such that 

(H^B^H;^) < cjc,2(l -kmia + l)2l<(i<2, (3.24) 

Proof. The condition number estimates (3.24) are direct consequences of 
the inequalities 

(/ - kmhv + l)2CiäffMM(u,u) < d$i(v) + Tma{v,v) < cao/rw(v,v), v € S,(,i) , 

which can be verified in much the same way as in [28]. 
Although the discretization of the two phase Stefan problem (3.1) is based on 
a fixed domain approach, the splitting B\ = D\ — C\ of the 2 x 2 block matrix 
B\ in its block diagonal part D\ and its block off-diagonal part — C\ has 
the flavor of a front tracking technique, since the diagonal blocks B^, 1 < 
fj. < 2, correspond to the discretization of the heat equation in the solid 
region Hi and liquid region H2, respectively. The preceding result tells us 
that Hi = diag (Hßß) x is a good preconditioner for D\ = diag(5MM)^=1. On 
the other hand, the efficiency of the preconditioned conjugate gradient type 
inner iteration does not only depend on K(HJ" DiHf ' ) but also on the 
algebraic properties of 

#r1/2c,tfr1/2 = 0 TmHn1/2A12H„l/2 

' m - " 2 2 • r l 1 2 J - I l l 

As shown in [8] good performance of the peg method can be expected if the 
off-diagonal blocks either have eigenvalues of small magnitude or are of small 
rank. In our situation the latter case does apply: 

16 



We denote by Al} ' ' respectively A/} ' ' the set of all nodal points x,- respec­
tively x,- € , having a level / neighboring nodal point in Aff ' respectively 
Af{1]. Then, if we set nf1,2) = #JV,(1,2), n{2,1) = #-A/"/2,1), both ofF-diagonal 
blocks are of rank r\ = min(n| ' \n\ ' '). The actual size of 77 depends on 
the number n\ ' of nodal points x,- € A/} being located on the discrete free 
boundaries or within a discrete mushy region. The ideal situation would be 
when the nodal points in completely separate the discrete liquid from 
the discrete solid region in which case r/ = 0. For example, if the continuous 
problem exhibits a mushy region separating both phases, we can expect this 
situation for sufficiently large /. On the other hand, the worst scenario would 
be n\ ' = 0 which implies r\ = 0{hjl) and thus results in an exponential 
growth ö(2~l) of r/ with respect to the refinement levels. However, this 
situation is unlikely to occur even if there is no mushy region and the con­
tinuous free boundaries are one-dimensional manifolds. In this case, under 
very moderate regularity assumptions the discrete free boundaries approxi­
mate the continuous ones, and we can expect decreasing ratios n / n , ' with 
increasing /. The quantitative behavior of rj with respect to the number / of 
refinement levels is a function of the actual shape of the free boundaries and 
thus problem dependent. 
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