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Abstract

In multiscale models of heterogeneous catalysis, one crucial point is the solution

of a Markovian master equation describing the stochastic reaction kinetics. This

usually is too high-dimensional to be solved with standard numerical techniques

and one has to rely on sampling approaches based on the kinetic Monte Carlo

method. In this study we break the curse of dimensionality for the direct solu-

tion of the Markovian master equation by exploiting the Tensor Train Format

for this purpose. The performance of the approach is demonstrated on a first

principles based, reduced model for the CO oxidation on the RuO2(110) sur-

face. We investigate the complexity for increasing system size and for various

reaction conditions. The advantage over the stochastic simulation approach is

illustrated by a problem with increased stiffness.

Keywords: heterogeneous catalysis, master equation, kinetic Monte Carlo,

tensor decompositions, tensor train format, alternating linear scheme
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1. Introduction

The world’s growing demand for more efficient energy and materials explo-

ration or sustainable energy conversion challenges current chemical processing.
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Particularly, the field of heterogeneous catalysis is a key technology and exam-

ples, where heterogeneous catalysis plays or is expected to play an important5

role, range from the artificial photo-synthesis [1] to the more classic automotive

exhaust gas cleaning [2]. New catalyst materials need to be developed to meet

these challenges. A desirable rational design based on a microscopic under-

standing of the surface chemistry would allow for a more systematic and faster

progress into this direction [3]. A central aspect is an understanding of the in-10

terplay of the elementary surface reactions making up the catalytic cycle. The

prevalent approach to model this interplay is phenomenological microkinetics

[4], where a set of rate equations is fitted to experimental, mostly macrokinetic

data. Because of the short-comings of this approach with respect to the inter-

pretability in microscopic terms, novel strategies have been established during15

the last years, which build the reactivity model from bottom up [5, 6]. That is

the models are based on (sub-)nanoscale observations and first-principles (i. e.

parameter free) simulations. In the end, one arrives at a continuous time, dis-

crete state Markov jump model on the lattice of adsorption sites on the catalyst

surface. In these models each jump corresponds to the execution of a particular20

reaction event changing the occupation of a set of particular sites.

In practice, the state space of these models is very high-dimensional and the

corresponding master equation cannot be solved by classical numerical methods

due to the curse of dimensionality, i.e. the number of unknowns in the master

equation grows exponentially with the dimension. The simplest approach to25

that problem is the Mean-Field Approximation (MFA), which yields the clas-

sical rate equations. While this set of ordinary differential equations (ODEs)

can effectively be solved by implicit time stepping schemes, the physical ap-

proximation introduces an uncontrollable error and might lead to qualitatively

wrong findings [7, 8]. The only way to achieve numerical (i.e. tunable) accu-30

racy for these problems and to circumvent the curse of dimensionality is the

use of kinetic Monte Carlo (kMC, also termed stochastic simulation) methods

[9, 10, 11]. The methods simulate trajectories of the stochastic process and the

targeted expected values, such as average surface coverage and reactivity, are
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then estimated by statistical averaging. The drawback of these methods are a35

generally slow convergence, the need of multiple realizations or long simulations

for stationary problems to ensure sufficient sampling. Further, they severely

suffer from stiff problems and the case when rare events are important, which

is less problematic for the rate equation based approach. Thus, there is a need

for methods, which can overcome the correlation problem of the MFA on the40

one hand and the stiffness problem of the sampling approach on the other hand,

while maintaining the good scaling with dimensionality of both approaches. At-

tempts into that direction are generalized phenomenological approaches, where

the MFA is lifted and additional ODEs for the key spatial correlation are pro-

posed, based on a different closure scheme than the MFA [12, 13]. Problems45

arise for the identification of the key correlations and the possibly huge number

of these.

Because of the limitations of the aforementioned approaches, we follow a

different route and try to numerically approximate the solution of the master

equation directly. As already stated, this makes it impossible to use standard50

linear algebra routines, in our showcase below we deal with up to nearly 1050

unknowns. The idea is to exploit that the probability distribution is a high or-

der tensor, where the individual entries are not completely random but have a

certain structure, for instance we expect that the correlation decays for distant

lattice sites. For such tensors, a number of low parametric representations have55

been developed during the last years, the so-called low rank approximations [14],

such as the Tensor Train Format (TT-format) [15, 16, 17], which we will employ

in this study. The appealing feature of this method is that every tensor can be

arbitrarily closely approximated by just increasing the rank, i.e. the parameter

space. In every linear sub-problem resulting from the time discretization, we60

thus approximate the probability distribution with such a representation and

increase the rank if necessary. In the context of stochastic processes, the per-

formance of the low-rank approaches has been studied for the Chemical Master

Equations (CMEs) for well mixed systems [18, 19, 20] or stochastic queuing

problems [21, 22]. However, such approaches have not been tested for models65
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describing heterogeneous catalysis.

As a prototypical showcase, we consider the reduced version of the estab-

lished model for the CO oxidation at RuO2(110) [5], which is a popular fruit-fly

system in the theoretical study of heterogeneous catalysis [13, 23, 24]. Still, it is

derived fully from first-principles and reproduces experimental findings [25, 26]70

reasonably well. As it is a rather common feature for such models, the problem

is very stiff and shows strong correlation [8].

The paper is organized as follows. In Section 2 we give a short introduction

of the Markovian modeling of surface reactions and detail the employed model.

In Section 3 we explain the Tensor Train format and derive an expression of75

the master equation with help of tensor products. We close the section by

giving a brief overview on how to compute the stationary and time dependent

distributions using the Alternating Linear Scheme (ALS) [27]. In Section 4,

we demonstrate the capabilities of the approach by testing the scaling of the

computational complexity with increasing dimensionality and benchmark its80

results against kinetic Monte Carlo simulations for varying CO partial pressure

above the surface. Finally, we compare both approaches for their performance

when artificially increasing the stiffness of the problem. Section 5 summarizes

our findings and we provide our concluding remarks.

2. Markovian Master Equation85

2.1. General Description

On the time scale of molecular motion, chemical reactions are rare transitions

from one meta-stable basin to another. Due to rapid motion within each basin,

the system has most likely forgotten from which meta-stable state it came from,

before the next transition takes place. Thus, the coarse-grained dynamics, only

considering the sequence of meta-stable states, can be modeled as Markov jump

processes. The probability distribution P (X, t) for being in the state X at time

t then obeys a Markovian Master Equation (MME) [28]

∂

∂t
P (X, t) =

∑

Y

W (X|Y )P (Y, t)−
∑

Y

W (Y |X)P (X, t), (1)

4



where W (Y |X) is the transition rate (in units of frequency) to go from state

X to state Y . For heterogeneous catalysis, the meta-stable states can often be

mapped on the lattice of adsorption sites, where molecules can bind. If we have

N different kind of adsorbates S1, . . . , SN and d adsorptions sites, the state can90

be identified by a vector X = (x1, x2, ..., xd) ∈ {1, . . . , N}d. Here xν denotes

the current occupation of site ν ∈ {1, . . . , d}, i.e. which species is adsorbed

on this site. Of course, there are in principle (Nd)2 different entries in the

transition matrix W (Y |X). This number is significantly lowered as I) reaction

events are local, i.e. an event will only be affected and change the occupations95

in the vicinity of a particular site, II) the typically considered surfaces have a

translational invariance with respect to a shift by a surface unit cell. So while

there might be different kinds of adsorptions sites, these will be arranged as

a repeating pattern on the surface. So the number of distinct W (Y |X) will

be normally very small compared to the size of the state space. The values100

of the transition rates for reactions events which differ only by a symmetry

operation will be called rate constants in the following. The transition rates

depend parametrically on the local reaction conditions, e.g. partial pressures

in the gas phase and temperature. Usually, we are interested in the limit of

very large lattices, as the typical lattice spacing is very small (a few ångström)105

compared to the size of the catalyst. Therefore, periodic boundary will be

employed to mimic an infinite system.

BecauseX is an integer vector with entries xν ∈ {1, . . . , N}, the state space is
finite and the probability distribution can be regarded as a tensorPt ∈ RN×...×N

(d times). The number of elements of a tensor grows exponentially with the

order d, i.e. O(Nd). Due to this so called curse of dimensionality, storing

a d-dimensional tensor and calculating on it may be infeasible for growing d.

Therefore, we require special representations of tensors, and, for the problem

presented next, we expect the TT-format to perform particularly well. For the

later reformulation of the master equation in the TT-format, we rewrite the
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MME,

∂

∂t
P (X, t) =

M∑

µ=1

aµ(X − ξµ)P (X − ξµ, t)− aµ(X)P (X, t). (2)

Here, the sum runs now over allM = O(Nd) allowed reactions events R1, . . . ,RM .

We denote the net changes in the state vector X caused by a single firing of Rµ

by the vector ξµ ∈ Zd. The so-called reaction propensity aµ is given by

aµ(X) = W (X + ξµ|X). (3)

Note that aµ is only non-zero, if X and X + ξµ are both in {1, . . . , N}d and X

complies with the requirements that Rµ may fire. Hence, formula 2 contains all

possible states from which X can be reached and all states that can be reached110

from X by a single firing of one of the elementary reaction events.

On this abstract level, formula 2 has a same structure as the CME [29]. Still

the differences are notable. Despite that here we have no closed formula for

the propensities, the state coordinates xν further do not represent numbers of

molecules, instead they denote the current occupation of the sites. Increasing115

the system size does not correspond to an increment of N but to an increment

of the dimensionality d, and the large scale limit cannot be obtained by the

classical system size expansion [28]. The advantage is that we work spatially

resolved and corresponding spatial correlation drops out as a simulation result,

differently to CMEs where this information must enter the expression for the120

propensities.

2.2. Reduced model for the CO Oxidation at RuO2

In this paper, we consider the established microkinetic model for the CO

oxidation at RuO2(110) by Reuter and Scheffler [5]. The full model lives on a

rectangular lattice with alternating columns of so-called bridge sites (br) and125

coordinatively unsaturated sites (cus). In figure 1a a top view of the surface is

shown. Figure 1b displays its lattice representation, where bridge sites are un-

derlayed in blue and cus sites in red. Each site may be in three different states
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(1 = empty, 2 = O-covered, 3 = CO-covered). The possible events are uni-

molecular adsorption/desorption of CO on either br or cus, dissociative oxygen130

adsorption on two neighboring sites of any kind and the corresponding reverse

processes, diffusion of adsorbed CO/O to a neighboring site, and the formation

of gaseous CO2 from adsorbed CO and O on neighboring sites. There are no

lateral interactions between different sites at the surface and each elementary

reaction event changes only the occupation of one site ν or of two neighboring135

active sites ν and ν̃. In other words, the corresponding propensities depend only

on the occupation of one or two sites. Details on how the transition rates enter-

ing this model have been estimated from first-principles using density-functional

can be found in ref. [5].

(a) (b) (c)

Figure 1: (a) Top view of the RuO2(110) surface showing the two prominent adsorption sites,

bridge sites between the ruthenium atoms in blue and cus sites on the ruthenium atoms in

red. (b) 2D lattice model of the coarse-grained surface composed of alternating rows of bridge

and cus sites as used in refs. [5, 8]. (c) 1D lattice model completely composed of cus sites.

It has been found that the chemical kinetics predominantly take place only on140

the cus sites [8, 30]. We therefore restrict to a reduced model, where all reaction

involving bridge sites are omitted. We have compared this reduced model with

the full one and found both to agree quantitatively for the very most of the

considered reaction conditions. Only in very narrow window we observed small

deviations, which never are qualitatively different. With the bridge sites turned145

off, the reduced model consists of non-communicating columns of cus-sites, thus

the problem becomes one-dimensional. In practice, we consider a ring of d cus

sites. Table 1 summarizes the elementary reactions of the reduced model and

7



the specific values for the rate constants for the gas phase conditions employed in

this study, which are identical to those employed in ref. [8]. In detail, these are a150

fixed O2 pressure of pO2
= 1 atm, fixed temperature T = 600 K, and varying CO

pressure pCO ∈ [10−4, 102] atm. As the rate of CO adsorption depends linearly

on the CO partial pressure, this range corresponds to kAd
CO ∈ [104, 1010] s−1.

Adsorption

RAd
O2

: ∅ν + ∅ν̃ → Oν +Oν̃ , kAd
O2

= 9.7 · 107s−1

RAd
CO : ∅ν → COν , kAd

CO = 104 − 1010s−1

Desorption

RDe
O2

: Oν +Oν̃ → ∅ν + ∅ν̃ , kDe
O2

= 2.8 · 101s−1

RDe
CO : COν → ∅ν , kDe

CO = 9.2 · 106s−1

RDe
CO2

: COν +Oν̃ → ∅ν + ∅ν̃ , kDe
CO2

= 1.7 · 105s−1

Diffusion

RDiff
O : Oν + ∅ν̃ → ∅ν +Oν̃ , kDiff

O = 0.5s−1

RDiff
CO : COν + ∅ν̃ → ∅ν +COν̃ , kDiff

CO = 6.6 · 10−2s−1

Table 1: Elementary reaction steps on the cus sites together with their corresponding rate

constants, see ref. [5] for details. The reactions are defined on two neighboring sites ν and ν̃,

except for adsorption and desorption of CO, these reactions are defined only on site ν.

3. Tensor Train Format

3.1. Definition and Notation155

Tensors are multidimensional generalizations of matrices represented by ar-

rays T ∈ Rn1×...×nd , where nk ∈ N\{0} for k = 1, . . . , d. The different dimen-

sions nk of the array are called modes and the total number of modes d is the

order of the tensor. If we want to clarify that all possible entries of a mode are

selected we use colons, for example the notation

(T )x1,:,x3,:,x5,...,xd
(4)

defines a matrix T̃ ∈ Rn2×n4 where (T̃ )ij = (T )x1,i,x3,j,x5,...,xd
.
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In order to break the curse of dimensionality, we will rely on low parametric

representations of tensors. For further details on tensor decompositions and

operations we refer to ref. [31].

A tensor T ∈ Rn1×...×nd of order d is called a rank-one-tensor, if it can be

written as the outer product of d vectors, i.e.,

T = T (1) ⊗ . . .⊗ T (d), (5)

where T (i) ∈ Rni for i = 1, . . . , d. Using the above definition, the concept of160

tensor decompositions was already introduced in 1927 by Hitchcock [32], who

presented the idea expressing a tensor as the sum of a finite number of rank-

one-tensors. This polyadic or canonical decomposition [33] is outlined in the

following definition.

Definition 1. A tensor T ∈ Rn1×...×nd is said to be in canonical format, if

T =
r∑

k=1

T
(1)
k ⊗ . . .⊗ T

(d)
k

⇔

(T )x1,...,xd
=

r∑

k=1

(
T

(1)
k

)
x1

· . . . ·
(
T

(d)
k

)
xd

,

(6)

with T
(l)
k ∈ Rnl for k = 1, . . . , r and l = 1, . . . , d, where r is called the rank of165

the decomposition.

With help of the canonical format we can reduce the storage consumption

of an order d tensor which now can be estimated as O(r · n · d), where n ∈ N is

the maximum of all mode sizes. This means that we do not have to deal with

an exponential dependence on the order d anymore. Anyway, algorithms for the170

computation of best approximations as we need them to find solutions of master

equations are not robust, since canonical tensors with bounded rank r do not

form a manifold and the optimization problems are ill-posed [34]. Thus, we have

to use different formats in order to apply time-stepping schemes or eigenvalue

solvers to the master equation 2. A promising candidate is the TT-format which175

was developed by Oseledets and Tyrtyshnikov in 2009, see refs. [15, 16].

9



Definition 2. A tensor T ∈ Rn1×...×nd is said to be in the TT-format, if

T =

r0∑

k0=1

· · ·
rd∑

kd=1

(T (1))k0,:,k1
⊗ . . .⊗ (T (d))kd−1,:,kd

⇔

(T )x1,...,xd
= (T (1)):,x1,: · . . . · (T (d)):,xd,:,

(7)

where T (i) ∈ Rri−1×ni×ri , i = 1, . . . , d, are called the TT-cores and the numbers

ri are called the TT-ranks. It is r0 = rd = 1.

Above, we draw on the notation mentioned in eq. 4. The TT-ranks deter-

mine the storage consumption of a tensor train and have a strong influence on180

the possible complexity, i.e. the capability of representing a given tensor as a

tensor train. In physics community the above format is known as Matrix Prod-

uct State (MPS) representation introduced as the ground state of the AKLT

model in 1987 [35].

Operators T involved in the presented approach can be seen as multilevel

square matrices with pairs of modes, i.e. T ∈ R(n1×n1)×...×(nd×nd). Comparable

to eq. 7, T is in the TT-format if

T =

r0∑

i0=1

· · ·
rd∑

id=1

(T(1))i0,:,:,i1 ⊗ . . .⊗ (T(d))id−1,:,:,id

⇔

(T)x1,y1,...,xd,yd
= (T(1)):,x1,y1,: · . . . · (T(d))]:,xd,yd,:.

(8)

The storage consumption of the TT-format is estimated as O(r2 · n · d) for185

eq. 7 and O(r2 · n2 · d) for eq. 8, where n is the maximum mode size and r

the maximum TT-rank. Another important property is the ensured existence

of a best approximation with bounded TT-ranks [36, 37]. Hence, that format is

stable in the sense that we can compute quasi-optimal approximations [16, 38].

For a better understanding, it is advantageous to visualize the TT-cores as

2-dimensional arrays containing vectors (or matrices in case of an operator) as
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elements: 


(
T (k)

)
1,:,1

· · ·
(
T (k)

)
1,:,rk

...
...

(
T (k)

)
rk−1,:,1

· · ·
(
T (k)

)
rk−1,:,rk




. (9)

We then utilize the following notation for a TT-decomposition.

T =
[ (

T (1)
)
1,:,1

· · ·
(
T (1)

)
1,:,r1

]
⊗




(
T (2)

)
1,:,1

· · ·
(
T (2)

)
1,:,r2

...
...

(
T (2)

)
r1,:,1

· · ·
(
T (2)

)
r1,:,r2


⊗ . . .

. . .⊗




(
T (d−1)

)
1,:,1

· · ·
(
T (d−1)

)
1,:,rd−1

...
...

(
T (d−1)

)
rd−2,:,1

· · ·
(
T (d−1)

)
rd−2,:,rd−1


⊗




(
T (d)

)
1,:,1

...
(
T (d)

)
rd−1,:,1


 .

(10)

One can see that the above operation is a generalization of the matrix multipli-190

cation, where the matrices contain vectors as elements instead of scalar values.

Just like multiplying two matrices, we compute the outer products of the ac-

cording elements and then summarize over the columns and rows, respectively.

Later, we will make use of the notation in eq. 10 to give a compact expression

of the considered operator for our model.195

3.2. TT-Representation of the MME

Let M be the number of all reaction events involving one or two sites. For a

state X = (x1, . . . , xd) ∈ {1, 2, 3}d each propensity aµ, µ = 1, . . . ,M , as defined

in eq. 3 is decomposable in a product of functions:

aµ(X) = a(1)µ (x1) · . . . · a(d)µ (xd). (11)

This is the case for classical CMEs, see ref. [9]. But eq. 11 also holds for the

considered CO oxidation problem and thus we can write the propensities aµ as

rank-one-tensors aµ ∈ R3×...×3 such that

aµ(X) = (aµ)x1,...,xd
= (a(1)µ )x1

· . . . · (a(d)µ )xd
(12)
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with a
(i)
µ ∈ R3 for i = 1, . . . , d. Equation 12 implies that aµ = a

(1)
µ ⊗ . . .⊗ a

(d)
µ .

Furthermore, we can express each propensity function according to an reaction

event between two neighboring sites ν and ν + 1 as

aµ = kµ · (e⊗ . . .⊗ e⊗ v ⊗ ṽ ⊗ e⊗ . . .⊗ e) , (13)

where v corresponds to site ν, ṽ to site ν+1 and e = (1, 1, 1)T . The constant kµ

is the rate constant of reaction Rµ. Table 2 gives an overview on the components

v and ṽ.

Adsorption

O2 : v = (1, 0, 0)T, ṽ = (1, 0, 0)T , CO : v = (1, 0, 0)T, ṽ = (1, 1, 1)T

Desorption

O2 : v = (0, 1, 0)T, ṽ = (0, 1, 0)T , CO : v = (0, 0, 1)T, ṽ = (1, 1, 1)T

CO2 : v = (0, 0, 1)T, ṽ = (0, 1, 0)T or v = (0, 1, 0)T, ṽ = (0, 0, 1)T

Diffusion

O : v = (0, 1, 0)T, ṽ = (1, 0, 0)T or v = (1, 0, 0)T, ṽ = (0, 1, 0)T

CO : v = (0, 0, 1)T, ṽ = (1, 0, 0)T or v = (1, 0, 0)T, ṽ = (0, 0, 1)T

Table 2: Components of propensity tensors aµ, µ = 1, . . . ,M . Each of the associated reactions

Rµ corresponds to one of the reactions given in Table 1.

We also associate the probabilities P (X, t), X = (x1, . . . , xd), with a tensor,

i.e. we utilize a tensor P(t) ∈ R3×...×3 that is defined by

(P(t))x1,...,xd
= P (X, t). (14)

Assuming P(t) to be a rank-one-tensor, see eq. 5, leads to the well-known rate200

equation expressions of chemical kinetics. For the CO oxidation at RuO2(110)

these equations have been described in ref. [7].

For µ = 1, . . . ,M and ν = 1, . . . , d, S(k) denotes a shift matrix in R3×3,

which is given by (S(k))i,j := δj−i,k, where δj−i,k represents the Kronecker

delta. S(0) denotes the identity matrix.205

Definition 3. The multidimensional shift operators Sµ and S0 are defined as

Sµ = S(−ξµ(1))⊗ . . .⊗ S(−ξµ(d)) (15)

12



and

I = S0 = S(0)⊗ . . .⊗ S(0). (16)

With help of the definitions above, we can give a more convenient counterpart

of eq. 2:

∂

∂t
P(t) =

(
M∑

µ=1

(Sµ − I) · diag(aµ)
)

·P(t), (17)

where diag(aµ) denotes the outer product of matrices containing the entries of

a
(1)
µ , . . . ,a

(d)
µ as diagonals, i.e.

diag(aµ) = diag(a(1)µ )⊗ . . .⊗ diag(a(d)µ ), (18)

for µ = 1, . . . ,M . A proof that this notation leads back to the master equation

given in eq. 2 can be found in the appendix (A).

Henceforth, we will write the right hand side of eq. 17 as LP(t), where L

denotes the linear operator defined as

L =

M∑

µ=1

(Sµ − I) · diag(aµ). (19)

Using formula 19, we could directly give an exact canonical decomposition of

the operator of the master equation 2, but we need the operator to be in the TT-

format. Instead of converting the operator directly into the TT-format, we look

for a systematic TT-decomposition of L in order to keep the ranks small. Using

the notation introduced in eq. 9 and eq. 10, and exploiting the translational

symmetry, we come to the following representation for the operators of the 1D

model:

L =
[
A B I B

]
⊗




I 0 0 0

C 0 0 0

A B I 0

0 0 0 J



⊗ . . .⊗




I 0 0 0

C 0 0 0

A B I 0

0 0 0 J



⊗




I

C

A

C



, (20)

with core elements A ∈ R1×3×3×1, B ∈ R1×3×3×7, C ∈ R7×3×3×1, I ∈ R1×3×3×1,

and J ∈ R7×3×3×7. An exact description for the core elements in eq. 20 is given

in the appendix (B).210
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3.3. Computing Stationary Distributions

After we have transformed the master equation into the TT-format, we now

want to present ways how to compute stationary and time dependent distri-

butions. Finding the stationary distribution corresponds to setting the time

derivative in the master equation to zero and solving the resulting linear prob-

lem. However, this is degenerate as the trivial solution always solves it. But we

can reformulate the problem as an eigenvalue problem

(I+ L)P = P, (21)

assuming that there exists a unique tensor P ∈ R3×...×3 which satisfies eq. 21

and ‖P‖1 = 1. If we target on time dependent problems, we have to introduce

a suitable discretization. As te MME is stiff, implicit discretizations are best

choice. Simpliest is the implicit Euler method, which, for a linear ordinary

differential equation as the MME, requires to solve linear systems in the form

of

(I− τL)Pk+1 = Pk, (22)

where τ ∈ R+ denotes the step size. It is Pk ∈ R3×...×3 for k = 0, . . . , s−1 with

s ∈ N the number of steps. We will use this method also to determine stationary

distributions. As we are then not interested in a high temporal accuracy, the

step size τ will be used to control the condition of the linear systems 22. As a

truncation criterion in the iterative solution, we will employ the residual error

Err1(k) =
‖(I− τL)Pk −Pk−1‖2

‖Pk−1‖2
(23)

If we need a higher order in accuracy, we will also apply the implicit trapezoidal

rule for transient processes. The linear systems in each iteration step then

become (
I− τ

2
L
)
Pk+1 =

(
I+

τ

2
L
)
Pk, (24)

and we use the truncation criterion

Err2(k) =

∥∥(I− τ
2L
)
Pk −

(
I+ τ

2L
)
Pk−1

∥∥
2∥∥(I+ τ

2L
)
Pk−1

∥∥
2

(25)
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In order to obtain the solutions of eqs. 21, 22 and 24, we apply the Alternating

Linear Scheme (ALS) [27]. The ALS as well as the modified version MALS are

closely related to the Density Matrix Renormalization Group (DMRG), which

is a numerical variational technique used in quantum physics [39]. The main215

idea of the ALS is to start with a tensor in TT-format as initial guess and fix

all TT-cores except the first. We then solve a lower dimensional linear system

or a lower dimensional eigenvalue problem, respectively, to optimize that core.

Subsequently, we fix all cores from the previous iterations and proceed to the

next core. After an optimized core is computed, a QR decomposition is applied220

to a certain unfolding of the core. The folding of the orthonormal part builds

then the new core and the non-orthonormal part is shifted to the next core

which is optimized in the next step of the ALS. This procedure is consecutively

performed in both directions of the TT-cores and is repeated several times until

desired accuracy is reached.225

Even though only locally convergence has been proven [40] and the ALS was

particularly developed for linear systems with symmetric positive definite oper-

ators on the left hand side, we observed highly accurate approximations of the

solutions for the non-symmetric problems 21, 22 and 24. However, the above

mentioned properties for the ALS might explain why we could not employ one230

large time step in the Euler discretization for obtaining the stationary distribu-

tion, when the problem becomes dominated by the non-symmetric operator L.

For other studies dealing with non-symmetric systems we refer to refs. [41], [42]

and [43].

4. Results235

As in the preceding work [8], we focus on a set of gas-phase conditions, which

are representative for so-called in situ experiments, i. e. close to the operation

conditions for a catalyst in a realistic scenario. These conditions are defined by

a fixed O2 pressure pO2
= 1 atm, fixed temperature T = 600K, and varying CO

pressure, 10−4 atm ≤ pCO ≤ 102 atm.240
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The central objective of heterogeneous catalysis, is the stationary behavior

of the catalyst. Therefore, our experiments in Sections 4.1 and 4.2 focus on

computing the stationary distribution. In Section 4.3 we consider the transient

behavior and demonstrate the advantage of the TT-approach for stiff systems.

For computing stationary distributions, as one option we use formulation 21245

and apply the ALS as an eigensolver. If we employ the time propagation schemes

for this purpose and no approximation of the stationary distribution is obtained

before, we chose a homogeneous surface as initial state, i.e. P0 = ei ⊗ . . .⊗ ei,

where ei is the ith vector of the standard basis of R3. We set the initial guess

of the ALS for the first occurring linear system in TT-format to an uniformly250

distributed tensor. Subsequently, the computed state after time step τ is used

as initial guess for determining the next probability distribution.

For benchmarking, we compare the results from the TT approximation with

kinetic Monte Carlo simulations, when applicable. For these, we employ the

kmos package [11], which implements the Variable Step Size Method [10] and an255

O(1) update rule per time steps. In other words, the implemented methodology

is linear in system size (i.e. the dimension d) for estimating expected values, as

the number of time steps needed to simulate a certain time interval increases

linearly with the system size.

All experiments with the TT-format, were performed on a Windows 7 64-bit260

machine with 16 GB RAM and an Intel Core i5-4200U processor with a clock

speed of 1.6 GHz and a cache size of 3 MB. The algorithms were implemented

in MATLAB R2013b using a compound of cell arrays and multidimensional

matrices for tensors in the TT-format.

4.1. Scaling with system size265

When dealing with high dimensional problems, a very important aspect is

how does the computational costs behave for increasing dimensionality. We

examine this dependence by increasing the number of sites and measuring the

CPU time needed to approximate the stationary distribution for pCO = 1 atm

(kAd
CO = 108s−1), by applying the implicit Euler method. We start with a fully270
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O-covered surface and a uniform tensor train with rank 10 as initial guess,

which turned out to be sufficient for calculating the stationary distributions

for orders d up to 100. That is, the largest linear system we consider has

3100 ≈ 1048 unknowns, which is far beyond the capabilities of current and future

supercomputers using classical methods. We compute 20 steps, starting with275

a step size of 10−10 and doubling the step size after each step. The residual

errors given in eq. 23 of all linear systems is smaller than 0.1, which implies a

sufficient accuracy of every solution computed by the ALS. The derivatives of

the last distributions for each value of d are bounded by 1 indicating that the

obtained distribution is close to the stationary state since
∑

Y W (X|Y )P (Y, t) ≈280

∑
Y W (Y |X)P (X, t) for all X ∈ {1, 2, 3}d, see eq. 1. Figure 2 shows the CPU

times for the entire computations and the average time needed for solving one

linear equation system given in the TT-format.

CPU time

20 40 60 80 100
0

25

50

75

100

d

(a)

Time per LES

20 40 60 80 100
0

0.5

1

1.5

2

d

(b)

Figure 2: (a) CPU time in seconds for computing the stationary distribution over order d. (b)

Average time in seconds for solving one linear equation system over d. Note that the CPU

time also includes the computation of the errors 23.

The computational time for one linear equation system increases linearly

with the number of sites, see Figure 2b. This reflects in the CPU time for the285

whole problem 2a. So we achieve desirable linear scaling with dimensionality,

i.e. probably the best one can achieve without imposing symmetry, even with

Monte Carlo methods. With the computational effort of the ALS only depending

linearly on the the number of cores [27] and the fact that the same low rank suits
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for all dimensions, this leads to the linear dependence. So the TT-format is able290

to effectively encode the spatial correlation for the considered one-dimensional

problem. Or, in other words, it encodes the physical intuition that, from a

certain size on, a twice as large system is simply the “sum” of two smaller

systems.

4.2. Varying the CO Pressure295

The central quantities describing the efficiency of the catalyst are the so-

called turn-over frequencies (TOF), which measure how often a reaction is exe-

cuted per unit time and unit surface (usually per site). For the model at hand,

the TOF for the CO +O reaction is given by

TOF =
kDe
CO2

d

∑

ν∈{1,...,d}

∑

ν̃∈{ν−1,ν+1}
P (CO on ν & O on ν̃), (26)

where P (CO on ν & O on ν̃) denotes the probability to find a CO molecule on

site ν and an oxygen atom on site ν̃ Of course, the TOF is sensitively dependent

on how many CO molecules and oxygen atoms are adsorbed on the surface.

Therefore the coverages, i.e. the average number of adsorbates of a certain kind

divided by the total number of sites, are of high interest, too. For the considered

translational invariant problem, the coverages are simply given by

{ P (∅ on ν), P (O on ν), P (CO on ν) } (27)

Both, the TOF and the coverages, depend on the reaction conditions. We

therefore repeat the study from ref. [8], i.e. we vary the CO partial pressure

from 10−4 atm to 102 atm, and keep temperature and oxygen pressure fixed to

600K and 1 atm, respectively. We compare the results with kMC simulations

time averaged over 109 steps after the simulations have been relaxed to steady300

state. For both methods, we choose a chain with 20 sites.
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Figure 3: (a) Mean coverage of the cus sites over CO pressure pCO. Blue: empty, green:

O-covered, orange: CO-covered. (b) Turn-over frequency of the catalyst over pCO in . Blue

line: TOF obtained with kMC, black circles: values computed with tensor train approach

Figures 3a and 3b show an area plot of the coverage and the TOF over the CO

pressure interval, respectively. As in the literature, we find three characteristic

regimes: An almost fully O-covered surface at low CO pressures, an almost

fully CO-covered surface at high CO pressure and an intermediate pressure305

regime where both species exist with non-vanishing probabilities. The fraction

of empty sites is always small with at most 1.2% between the O-poisoned and

CO-poisoned regions. The TOF increases for growing pCO until it reaches its

maximum at around 5 atm. As to be expected from the literature [8], the peak

of the TOF is located in the intermediate regime, were both reactants for this310

reaction are available on the surface in appreciable amount. Comparing the

TOF obtained by kMC (blue line) and the tensor train approach (black circles),

we see an almost perfect agreement. To our knowledge, there exist no other

probability based method proposed so far, which is able to produce such an

accuracy while keeping the computational effort tractable (compare e.g. refs315

[13, 24]).
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Figure 4: (a) TT-ranks used for computing the stationary distribution over pCO. (b) CPU time

in seconds needed for computation. Used methods are depicted by the different background

shadings. White: treatment as eigenvalue problem, dark gray: application of implicit Euler

method to the master equation, light gray: combination of both methods.

For several of the chosen parameter values it is possible to obtain approx-

imations of the steady state with satisfying accuracy by applying the ALS to

the eigenvalue problem and then normalizing the result, so that all entries sum

up to 1. In case that method does not lead to a tensor sufficiently close to320

the stationary distribution, we simulate the system by employing the implicit

Euler method to the differential equation 17 using the tensor train computed by

the ALS eigensolver as initial state and doubling the step size after each time

step. If even that combination fails, we fall back to applying the implicit Euler

method with an empty surface as initial state and a experimentally determined325

set of step sizes. Figure 4a display the TT-ranks used for computation of the

stationary distributions and the methods which were applied. Figure 4b shows

the corresponding CPU times needed for the computation. For CO pressures

below 1 atm, where we treat the task of finding the stationary distribution as

an eigenvalue problem, the TT-ranks as well as the CPU times are comparably330

small. Also for the remaining CO pressure values outside the intermediate re-

gion we can compute the approximations of the steady states in short time using

the eigenvalue problem approximation according to eq. 21 as initial condition

for the implicit Euler method as given in eq. 22. On the one hand, combining

an eigenvalue problem and the implicit Euler method leads to more accurate335
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results, on the other hand, it enables us to keep the computational times small

in comparison to the calculations in the intermediate regime where the prefixing

of an eigenvalue problem yields to no advantage. Overall, Figure 4 shows that

the TT-ranks and CPU times increase as pCO gets closer to the intermediate

regime. Viewed algebraically, the full tensor of the stationary distribution is340

dense since the probabilities of a large amount of surface arrangements do not

vanish. Thus, the tensor ranks of a TT-approximation have to be increased in

order to catch the complexity of the probability distribution and to achieve ac-

curate approximations. In contrast to that, tensor trains of rank 4 are sufficient

to reproduce the stationary distributions for the smallest values of pCO since the345

probability at these points is concentrated in a rather small number of possible

surface configurations.
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Figure 5: Values of the correlation function C̃ for distances l = 2, . . . , 10 over exponents γ

with pCO = 10γ atm.

To rationalize these findings, we investigate the correlation lengths of the

cus sites for the different values of the CO pressure. We quantify these by

calculating the measure of total spatial correlation

C(l) =
1

9

3∑

i=1

3∑

j=1

|P (x1 = i & x1+l = j)− P (x1 = i)P (x1+l = j)| , (28)

for distances l ∈ {1, . . . , 10} and then normalizing it by defining C̃(l) = C(l)/C(1).

Comparing Figure 5 with Figure 4, we see that there is a close connection be-

tween the computational effort for calculating the stationary distribution and350

the correlation length in the considered pressure interval. If the correlation
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length is negligibly small, we are able to keep the TT-ranks and computational

time at a small level. For values of the CO pressure where the calculation of

the steady states is more expensive, also the correlation length increases. This

fact leads us to the conclusion that, if the dynamics of sites which are further355

away correlate, we need higher TT-ranks for the approximations such that the

tensor product approach provides accurate results with help of the methods 21,

22 and the implementation of the ALS.

4.3. Increasing the Oxygen Desorption Rate

So far, we have demonstrated that for the one-dimensional problem we are360

considering in this study the tensor train approach shows a comparable perfor-

mance to kMC. We now want to demonstrate its advantage over kMC, when

dealing with stiff problems. In a kMC simulation, stiffness has a negative effect,

if there is a number of processes which are very fast and get executed again and

again. Then the system will get stuck fluctuating between only small number of365

states and sufficient sampling of the state space will only be possible with a very

high number of Monte Carlo steps. Or, equivalently, these states are very short

lived and reaching a certain final time will require also an increasing number of

step if stiffness is increased.

For this we consider the case with pCO set to 10−4 atm. Under these con-370

ditions, the surface is almost fully O-covered, and the dominant processes are

oxygen ad- and desorption. As the desorption has a very low rate constant, stiff-

ness in the above sense is increased for larger kDe
O2

. We therefore multiply the

original parameter kDe
O2

by constants λ between 1 and 106, compute the solution

up to 1 second and compare the CPU time for this time-dependent problem375

between kMC and the TT-approach. We consider 10 sites and start with an

empty surface and step size τ = 10e, e = −11. After each 10 steps we increase

the exponent e by 1 such that we compute 110 steps with step sizes from 10−11

to 10−1. This time we repeat the ALS three times for each linear system. On

the first time intervals the trapezoidal rule is applied, after 40 steps we switch to380

the implicit Euler method in order to approach the stationary distribution since
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it leads to more adequate results for larger step sizes. We choose the TT-ranks

such that we can keep the relative errors of both methods below 10%, i.e. the

error of the trapezoidal rule given in eq. 25 and the error of the implicit Euler

method given in eq. 23 should stay below 0.1. When the implicit Euler reaches385

the best approximation PSTAT of the stationary state before the algorithm is

finished, the relative error increases naturally since the iterates almost do not

alter anymore. Then we require that the derivative of the current distribution

is small enough, that is, after at most 110 steps all derivatives LPSTAT satisfy

‖LPSTAT‖2 ≤ 1.390
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Figure 6: (a) TT-ranks used for computing the stationary distribution. (b) Relative CPU time

needed for computation using kMC and TT-aproach. (c) Euclidian norm of the numerical

solution.

Figures 6a and 6b show the TT-ranks and the CPU times over λ. For better

clarity, we show relative CPU times, i.e. we normalize with the CPU times
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for the case λ = 1. We see that the relative computational time of the kMC

approach increases linearly with lambda. In contrast to that, the TT approach

shows only a very small dependence on the stiffness parameter λ in terms of395

performance. This is mostly because we have to increase the TT-ranks for

larger λ. The rise of the TT-ranks originates in the system’s dynamics altering

with growing λ which is recognizable in Figure 6c where the euclidian norms

of the numerical solutions over time t ≤ 1 s are shown. As one can see by the

norm of the final distribution for λ = 1, the solution converges to an almost400

single state, i.e. the probability distribution in concentrated in the state of

an fully O-covered surface. Due to the higher desorption rates, oxygen atoms

dwell for shorter times letting the probability distribution spread over various

surface configurations. For the cases where the fast processes do not alter the

probability distribution, we expect no impact on the CPU time, for instance405

equilibrated pairs of forward and backward processes multiplied by the same

factor, where the terms containing λ would cancel in the master equation.

5. Conclusion and Outlook

We have investigated the benefit of tensor trains to solve the master equa-

tions appearing in the correlated dynamics at catalytic surfaces on the example410

of a reduced microkinetic model for the CO oxidation at RuO2. For this model,

we derived an exact tensor decomposition of the operator and described how

to compute stationary and time dependent distributions using a formulation as

an eigenvalue problem or applying implicit time propagation schemes and the

Alternating Linear Scheme.415

We demonstrated that linear complexity in the system’s dimensionality can

be achieved. Benchmarking with highly accurate kinetic Monte Carlo simula-

tions, we showed that the approach provides numerical accuracy over a large

range of input parameters for the model. The approach showed superior behav-

ior above kinetic Monte Carlo for a sequence problems with increasing stiffness,420

where its computational complexity grew at much lower rate.
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However, at the current state of research, it is non-trivial to derive a TT-

decomposition for a given reaction network. Experimenting with various step

sizes for the implicit methods, it became apparent that the convergence of the

ALS highly depends on the time step. Reasons for the effect of ALS failing to425

solve a linear system at first attempt may be the stiffness of the surface model,

and thereby bad conditioning of the linear system for large time steps, as well as

the fact that the requirements of the ALS are not complied, i.e. the considered

operators are non-symmetric.

The tensor trains based approaches to Markov processes are a promising430

route for the treatment of catalytic surface kinetics. The here presented one-

dimensional example was a first step into this direction. Future research will

include the implementation of refined step size adaption schemes and the exten-

sion of the approach for two-dimensional problems. Other promising directions

are improvement/development of tensor structured solvers for non-symmetric435

operators and corresponding preconditioners.
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Appendix A

Theorem. For any X = (x1, . . . , xd)
T ∈ {1, 2, 3}d, we have

(
∂

∂t
P(t)

)

x1,...,xd

=
∂

∂t
P (X, t).

Proof. Following the definition of the multiplication, we can write

(
∂

∂t
P(t)

)

x1,...,xd

=

((
M∑

µ=1

(Sµ − S0) · diag(aµ)
)

·P(t)

)

x1,...,xd

as

M∑

µ=1

n1∑

i1=1

. . .

nd∑

id=1

((Sµ − S0) · diag(aµ))x1,i1,...,xd,id
· (P(t))i1,...,id .

Furthermore, it is

((Sµ − S0) · diag(aµ))x1,i1,...,xd,id

=

n1∑

j1=1

. . .

nd∑

jd=1

(Sµ)x1,j1,...,xd,jd
· (diag(aµ))j1,i1,...,jd,id

−
n1∑

j1=1

. . .

nd∑

jd=1

(S0)x1,j1,...,xd,jd
· (diag(aµ))j1,i1,...,jd,id .

Considering the definition of the shift operators, this becomes

(diag(aµ))x1−ξµ(1),i1,...,xd−ξµ(d),id
− (diag(aµ))x1,i1,...,xd,id

.

Just as aµ(X) and P (X, t) are set to zero if X /∈ {1, 2, 3}d, see section 2, we set

(diag(aµ))x1−ξµ(1),i1,...,xd−ξµ(d),id
= 0 if xk−ξµ(k) /∈ {1, 2, 3} for a k ∈ {1, . . . , d}.

The same we do for (P(t))x1−ξµ(1),...,xd−ξµ(d)
. Due to the construction of diag(aµ),

we then get

(
∂

∂t
P(t)

)

x1,...,xd

=
M∑

µ=1

aµ(X − ξµ)P (X − ξµ, t)− aµ(X)P (X, t) =
∂

∂t
P (X, t).
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Appendix B

Elementary matrices:

L =




−kAd
CO 0 kDe

CO

0 0 0

kAd
CO 0 −kDe

CO



, M(1) =




1 0 0

0 0 0

0 0 0



,

M(2) =




0 1 0

0 0 0

0 0 0



, M(3) =




0 0 1

0 0 0

0 0 0



,

M(4) =




0 0 0

1 0 0

0 0 0



, M(5) =




0 0 0

0 1 0

0 0 0



,

M(6) =




0 0 0

0 0 0

1 0 0



, M(7) =




0 0 0

0 0 0

0 0 1



,

N(1) = −




kAd
CO2

0 0

0 kDiff
O 0

0 0 kDiff
CO



, N(2) =




0 kDe
O2

kDe
CO2

kDiff
O 0 0

0 0 0



,

N(3) =




0 kDe
CO2

0

0 0 0

kDiff
CO 0 0



, N(4) =




0 kDiff
O 0

kAd
O2

0 0

0 0 0



,

N(5) = −




kDiff
O 0 0

0 kDe
O2

0

0 0 kDe
CO2



, N(6) =




0 0 kDiff
CO

0 0 0

0 0 0



,

N(7) = −




kDiff
CO 0 0

0 kDe
CO2

0

0 0 0



, Id =




1 0 0

0 1 0

0 0 1




TT-cores:585

A = [L] , B =
[
M(1), . . . ,M(7)

]
, C =




N(1)

.

.

.

N(7)


 , I = [Id] , J =




Id

. . .

Id



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