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FINDING DOMINANT STRUCTURES OF NONREVERSIBLE
MARKOV PROCESSES∗

NATAŠA DJURDJEVAC CONRAD†§ , MARCUS WEBER†¶, AND CHRISTOF SCHÜTTE†‡∥

Abstract. Finding metastable sets as dominant structures of Markov processes has been shown
to be especially useful in modeling interesting slow dynamics of various real world complex processes.
Furthermore, coarse graining of such processes based on their dominant structures leads to better
understanding and dimension reduction of observed systems. However, in many cases, e.g. for
nonreversible Markov processes, dominant structures are often not formed by metastable sets but
by important cycles or mixture of both. This paper aims at understanding and identifying these
different types of dominant structures for reversible as well as nonreversible ergodic Markov processes.
Our algorithmic approach generalizes spectral based methods for reversible process by using Schur
decomposition techniques which can tackle also nonreversible cases. We illustrate the mathematical
construction of our new approach by numerical experiments.

Key words. nonreversible Markov processes, metastable sets, cycle decomposition, Schur de-
composition
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1. Introduction. Many complex processes in physics, chemistry, geo- and ma-
terial sciences but also in the social sciences can be modelled by stochastic Markov
processes. Mostly these processes exhibit on continuous and often high dimensional
state spaces, and a rich hierarchy of temporal and spatial scales. Whenever one is
not interested in full resolution of all scales, one aims at coarse graining the Markov
process model in a way that still allows for an accurate description of the scales of
interest while everything else is considered only collectively. In recent years it has
been shown that under appropriate conditions coarse graining leads to Markov mod-
els on discrete (often even finite) state spaces. Well known examples are Markov State
Models (MSMs) in molecular dynamics [23, 35, 34], kinetic Monte Carlo models in
catalysis [38, 37] or biochemical reaction networks [36], or complex network modules
in the social or biological sciences [18, 21, 29, 22].

Such Markov models can be used to find dominant structures of the underlying
complex process. For example, Markov State Model (MSM) building in molecular
dynamics (MD) allows for finding the dominant metastable sets of the underlying MD
process [31, 34, 30] and through it a better understanding of biomolecular function, for
reversible processes [7, 25, 35, 15, 16] as well as nonreversible ones [39]. In contrast, in
catalytic processes the dominant structures are no longer formed by metastable sets
but by important process cycles [19]; finding the dominant cycles of a kinetic Monte
Carlo model allows for understanding the catalytic activity.

Stochastic processes are best understood in equilibrium where the process must
necessarily be (1) time-homogeneous and (2) reversible. In other words, the evolution
of the process must (1) not be driven by an external effect that changes with time and
(2) be invariant or statistically indistinguishable under time reversal. MSM building,
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for one example, is understood to a high degree as long as the underlying process is
in equilibrium; the spectral approaches to the algorithmic identification of metastable
sets for reversible Markov chains is well-developed. For another example, module
finding and clustering of complex networks are much better understood for undirected
networks (were the associated random walk is time-homogeneous and reversible) than
for directed networks where dominant cycles can take over the role of metastable
sets. What is needed is an algorithmic approach that allows to identify dominant
structures (metastable sets, dominant cycles, and mixtures of both) of Markov models
for reversible as well as nonreversible processes.

The present article is presenting such an algorithmic approach. This approach is
built to identify dominant structures of nonequilibrium steady state (NESS) Markov
processes. The distinction between reversible and NESS processes is understood as
follows: In a NESS process there still is a steady state, given by an invariant measure
µ of the process wrt. which the process is ergodic. Provided the process is distributed
according to µ at time t = 0, let pτ (A, B) denote the probability to start at t = 0
from A and find the process in B at time t = τ . Then reversibility means pτ (A, B) =
pτ (B, A), and for a NESS process this identity is violated in some cases such that
there is an effective probability flow pτ (A,B) − pτ (B, A) ̸= 0 between some regions
(sets of states) A and B in state space.

Markov models of NESS processes still have the property that the probability flow
must be divergent-free [20], i.e., for any region A, the total flow into A must equal the
total flow out of A. Therefore the flow must be decomposable into elementary cycles
[2]. Many authors have picked up the idea that these elementary cycles encode im-
portant information about NESS processes [14, 13]. However, an efficient algorithmic
approach that seamlessly combines the cycle decomposition idea with identification
of dominant structures (metastable sets and/or dominant cycles) is still missing. We
will present such an approach for nonreversible ergodic processes; this will be achieved
by answering two main questions:

(Q1) What happens when we break the symmetry of a reversible process by per-
turbing it into a NESS process, or, more precisely, what kind of perturbation
can turn a process in equilibrium with dominant metastable sets into a NESS
process with dominant cycles (that perhaps coexist with metastable sets)?

(Q2) The reversible case can be tackled with spectral approaches that are based
on well-known and efficient numerical linear algebra schemes. Is there a way
to use similarly efficient linear algebra numerics for tackling the nonreversible
case, too?

The article is composed as follows: In Sec. 2 we shortly review the spectral approach
to finding metastable sets for reversible Markov models. Next, in Sec. 3 we present
the stochastic cycle decomposition of probability flows for Markov chains. Then, in
Sec. 4, we discuss question (Q1) from above and show what kind of symmetry breaking
is required to perturb a reversible chain into a NESS process with dominant cycles.
Finally, in Sec. 5, we answer question (Q2) and present an algorithmic approach
based on Schur decomposition techniques that allows for finding metastable sets as
well as dominant cycles, and in Sec. 6 we discuss the performance of this algorithm
in application to some numerical examples.

2. Spectral approach to finding metastable sets. In all of the following
we consider an irreducible and aperiodic Markov chain of the finite state space S =
{1, . . . , n} that is given by the transition matrix P . In addition we assume that
the associated invariant measure µ is positive everywhere. Then, µ is the unique
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normalized (
∑

i µi = 1) left eigenvector of P for eigenvalue λ = 1 while the right
eigenvector simply is given by e = (1, . . . , 1)T ∈ Rn. Let D denote the diagonal
matrix with Dii = µi, and let us define the weighted scalar product

⟨u, v⟩ = u∗Dv.

The probability flow associated with the process is given by the flow matrix

F = DP,

i.e., the (steady state) probability flow from state i to j is Fij = µiPij . If F is
not symmetric we have a NESS process since then there are state i, j ∈ S so that
Fij ̸= Fji.

Reversible processes. If the process is reversible the detailed balance condition,

µiPij = µjPji, ∀i, j ∈ S (2.1)

is satisfied, i.e., it holds DP = PT D. Then the flow matrix F is symmetric, F = FT ,
i.e., the flows between every pair of states are balanced so that there is no effective
flow. Moreover, the transition matrix P is symmetric wrt. the scalar product ⟨·, ·⟩.
As a consequence P is diagonalizable,

P = QΛQ−1 = QΛQT D,

with a diagonal matrix Λ containing the real-valued eigenvalues of P and a ⟨·, ·⟩-
orthonormal matrix Q such that

QT DQ = Id.

Thus, the eigenvalues of P can be ordered 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1 with
eigenvectors u1 = e, u2, . . . , un that form the columns of Q and thus are orthonormal
wrt. ⟨·, ·⟩.

Metastable sets and spectral approach. Here we will refer to approaches which are
oriented towards a relation between spectral properties of the transition matrix P and
a partitioning of a state space S into metastable sets of this process [34]. That is, we
will consider m < n sets, such that

Mi ∩ Mj = ∅, i ̸= j and ∪m
i=1 Mj ⊆ S. (2.2)

Sets M1, . . . , Mm are called metastable sets, if the process remains for a long period
of time inside of Mi, i = 1, . . . , m before it exits quickly to another metastable set.
The best possible partition of the state space in metastable sets has to maximize the
joint metastability

D(M1, . . . ,Mm) =
m∑

i=1

p(Mi, Mi),

where p(Mi,Mi) is the residence probability in set Mi. For reversible processes, it is
known [3, 4, 34, 33, 11] that if the decomposition into metastable sets M1, . . . , Mm,
m < n exists, then the spectrum of P has m dominant eigenvalues 1 = λ1 ≤ λ2 ≤
. . . ≤ λm and for the rest of the spectrum it follows [33, 34] that

{λm+1, ..., λn} ⊂ Br(0) ⊂ C, r < λm.
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In turn, the existence of m dominant eigenvalues guarantees the existence of a metastable
decomposition into m sets with high joint metastability. In this case, the eigenvectors
u1 = e, u2, . . . , um corresponding to the m dominant eigenvalues, contain information
on the location of the metastable sets [3, 34, 11]. The following theorem establishes the
relation between a given decomposition into metastable sets and spectral properties
of the transition matrix P :

Theorem 2.1 ([12]). The joint metastability of an arbitrary full decomposition
M1, . . . ,Mm of the state space is bounded from below and above by

λ1 + δ2
2λ2 + . . . + δ2

mλm + c ≤ D(M1, . . . , Mm) ≤ λ1 + λ2 + . . . + λm, (2.3)

where c = λm+1

(
1 − δ2

2 + . . . + 1 − δ2
m

)
and δj is the error of the ⟨·, ·⟩-orthogonal

projection of the eigenvector uj onto the space spanned by the characteristic functions
D = span{1M1 , . . . ,1Mm} of the sets,

δj = ∥Q⊥uj∥, j = 2, . . . ,m. (2.4)

Following this and similar connections between metastable sets of reversible pro-
cesses and the dominant spectrum of P , many different methods for finding dominant
metastable sets have been developed [8, 32, 24, 29], while comparable approaches
for NESS processes are almost totally missing with just a very few limited excep-
tions like [39, 1] and [34], Sec. 5.3. One of these methods for the reversible case,
PCCA [8], directly takes the dominant eigenvectors as input and computes an almost
optimal metastable decomposition; however this approach suffers from the problem
that in many cases there are transition states that do not really belong to one of the
metastable states but somehow support the transitions between them.

Eigenvector-based PCCA+. Instead of identifying m < n metastable sets, in [9] it
was proposed to linearly transform the m dominant eigenvectors u1 = e, u2, . . . , um of
the transition matrix P into a set of nonnegative, linearly independent membership
vectors ξ1, . . . , ξm ∈ [0, 1]n. In [34], Thm. 13, the above Theorem 2.1 has been
generalized to this case.

These membership vectors form the columns of a membership matrix χ ∈ [0, 1]n×m.
Each entry χij denotes the degree of membership of state i = 1, . . . , n, with regard
to the metastable cluster j = 1, . . . ,m (we use the phrase metastable cluster instead
of metastable set in order to distinguish between the two concepts). The matrix χ
is row stochastic. There are many possible linear transformations from the eigenvec-
tors to a feasible set of membership vectors. The algorithm PCCA+ is a constrained
optimization approach for finding the best feasible linear transformation [40, 28].
If Q̂ denotes the n × m-submatrix of Q consisting of the dominant eigenvectors of
P , then χ = Q̂A is the linear relation between χ and Q̂ with the optimal, regular
m × m-transformation matrix A. A straight forward optimization criterion would be
to maximize the metastability of the membership vectors, which is in the spirit of
Theorem 2.1. With the linear combination idea the projection error in equation (2.4)
vanishes because ξi and ui span the same space, see also [40, 10]. According to [27],
however, a further possible optimization criterion for A is to aim at “crisp” member-
ship vectors ξi. The membership vectors ξi should be as orthogonal as possible with
regard to ⟨·, ·⟩. In this case, the convex objective function that has to be maximized
is the trace of a row-stochastic stiffness matrix S = S(χ),

Sij(χ) =
⟨ξi, ξj⟩
⟨ξi,1⟩ , ξi = ith row of χ
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so that PCCA+ solves the constrained optimization problem

max
A∈Rm×m

trace
(
S(Q̂A)

)
, s.t. χ = Q̂A ≥ 0 and

∑

j

χij = 1.

3. Cycle decomposition. In order to arrive at a cycle decompositions of the
probability flow F we follow [14, 13] and [2, 1]:

First, we generalize the notion of edge flows to cycle flows, where we define cycles
in the following way: A k-cycle γ on S is defined as an ordered sequence (up to
cyclic permutations) of k connected states, γ = (i1, i2, . . . , ik) with Pij ,ij+1

> 0 and
Pik,i1 > 0 with length |γ| = k. Cycles that do not have self-intersections are called
simple cycles. The set of all simple cycles is denoted by C.

Second, we call a collection C+ ⊂ C of cycles γ with real positive weights w(γ) a
flow decomposition iff for every edge (i, j) ∈ S2 we have

Fij =
∑

γ⊃(i,j)

w(γ), (3.1)

where we write γ ⊃ (i, j) if the edge (i, j) is in γ.
Third, and last, we consider the stochastic definition of weights introduced in

[14, 13]. Let (Xk)1≤k≤T be a realization of the Markov chain under consideration.
We say that the process (Xk)1≤k≤T passes through a cycle γ if it passes through all
edges of a cycle γ in the correct order, but not necessarily consecutively meaning that
excursions through one or more full new cycles are allowed. Let Nγ

T be the number
of times (Xk)1≤k≤T passes through a cycle γ up to time T . The limit

w(γ) := lim
T→∞

Nγ
T

T
(3.2)

exists almost surely [13] because of the assumed ergodicity, and allows to establish the
unique cycle decomposition (C+, w). We will refer to w(γ) as an importance weight
for the cycle γ. As a consequence of (3.1) we have

F =
∑

γ∈C+

w(γ)Cγ , (3.3)

where Cγ denotes the permutation matrix associated with the cycle.
If the process is reversible, F is symmetric because of the detailed balance condi-

tion. If not, then its anti-symmetric part

FA =
1

2
(F − FT )

does not vanish, i.e. FA ̸= 0. When we denote the reversed cycle of the cycle γ by
Rγ then CRγ = CT

γ and

FA =
1

2

∑

γ∈C

(
w(γ) − w(Rγ)

)
Cγ .

This implies that in the reversible case the cycle γ and the associated reversed cy-
cle γR have the same weights, w(γ) = w(γR), while this is not always the case for
nonreversible processes.
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Dominant cycles. In the most extreme case of nonreversibility the cycle decom-
position is dominated by a single cycle. For example, take n = 3, cycle γ = (1, 2, 3),
and

P =
1

1 + 2ϵ




ϵ 1 ϵ
ϵ ϵ 1
1 ϵ ϵ


 .

Then, the invariant measure is constant so that F = P = Cγ + O(ϵ). That is, the
cycle γ is the only one with significant weight. We will call such a process almost
cyclic and the cycle γ dominant.

The eigenvalues of the above 3 × 3 matrix are λ1 = 1, λ2 = ei2π/3 + O(ϵ) and
λ3 = e−i2π/3 +O(ϵ), i.e., they almost lie on the unit circle in the complex plane, close
to the zeros of z3 = 1.

4. Perturbing reversible Markov chains. Based on what we have seen until
here we understand there is a deep relation between dominant metastable sets and
real-valued eigenvalues close to λ = 1, as well as another deep relation between dom-
inant cycles and complex-valued eigenvalues close to the unit circle in the complex
plane. In this section we will try to understand how the situation of a reversible
process with dominant metastable sets can be perturbed into a nonreversible, almost
cyclic situation. To this end, we will investigate how the real-valued eigenvalues of a
reversible process can be driven into the complex plane away from the real line.

Let P again denote the transition matrix of an ergodic reversible process with
real-valued eigenvalues λj and eigenvectors uj as introduced above and consider the
perturbation

Pϵ = P + ϵL

of P with a generator matrix L that has non-negative off-diagonal entries and satisfies
∑

j

Lij = 0,

for all states i ∈ S.

4.1. Perturbation of eigenvalues. Under the above conditions, the eigenval-
ues and eigenvectors of Pϵ satisfy the asymptotic expansion

λϵ
j = λj + ϵηj + O(ϵ2)

uϵ
j = ũj + ϵvj + O(ϵ2), (4.1)

where ũj = uj if λj is a simple eigenvalue. If λj is degenerate, say m-fold, then the

associated eigenspace Ej is m-dimensional and ũ
(1)
j , . . . , ũ

(n)
j form an orthonormal

basis of Ej such that the spectral perturbation is smooth in ϵ.
Insertion into the eigenproblem and comparison of all terms in linear order in ϵ

yields

Pvj + Lũj = λjvj + ηj ũj . (4.2)

Simple eigenvalue λj. In this case, multiplication of (4.2) from the left with uj

and utilization of the reversibility of P yield

ηj = ⟨uj , Luj⟩,
which shows that the perturbation results in a shift of the eigenvalue along the real
line.
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Degenerate eigenvalue λj. Let us assume that λj is two-fold (i.e. λj = λj+1), and
that the two associated eigenvectors are uj and uj+1. Then

ũ
(i)
j = ci,1uj + ci,2uj+1

with appropriate coefficients ci,j , i, j = 1, 2 such that |ci,1|2 + |ci,2|2 = 1 for i = 1, 2.
This time, multiplication of (4.2) for i = 1, 2 from the left with uj and uj+1 and
utilization of the reversibility of P yields two sets of conditions,

c1,1⟨uj , Luj⟩ + c1,2⟨uj , Luj+1⟩ = ηjc1,1

c1,1⟨uj+1, Luj⟩ + c1,2⟨uj+1, Luj+1⟩ = ηjc1,2

c2,1⟨uj , Luj⟩ + c2,2⟨uj , Luj+1⟩ = ηjc2,1

c2,1⟨uj+1, Luj⟩ + c2,2⟨uj+1, Luj+1⟩ = ηjc2,2,

with suitable ηj . As a consequence the first order perturbations ηj are given by the
eigenvalues of the matrix

L̂ =

(
⟨uj , Luj⟩ ⟨uj , Luj+1⟩

⟨uj+1, Luj⟩ ⟨uj+1, Luj+1⟩

)
.

That is, the two eigenvalues η+
j and η−

j of L̂ control the perturbation of the
two-fold eigenvalue λj : If they are identical the eigenvalue remains two-fold (to first
order). If η+

j ̸= η−
j the eigenvalue is split into two simple eigenvalues which satisfies

to first order

λϵ,±
j = λj + ϵη±

j . (4.3)

Complex or real eigenvalues?. The two eigenvalues η+
j ̸= η−

j are either both real-
valued or come as a complex conjugated pair, and thus the perturbation either leads
to a split along the real line or into the complex plane away from the real line. We
have

η±
j =

1

2
(L̂11 + L̂22) ±

(1

4
(L̂11 − L̂22)

2 + L̂12L̂21

)1/2

.

Thus, the perturbation drives the two-fold real eigenvalue into the complex plane iff

1

4
(L̂11 − L̂22)

2 < −L̂12L̂21. (4.4)

Now let us consider the anti-symmetric part L̂A = (L̂ − L̂T )/2 of L̂,

L̂A =
1

2

(
0 δ

−δ 0

)
,

with δ = L̂12 − L̂21 that measures the degree of deviation from symmetry of L̂. In
terms of this asymmetry, condition (4.4) can be rewritten as

δ2 = (L̂12 − L̂21)
2 >

1

2
(L̂11 − L̂22)

2 + L̂2
12 + L̂2

21. (4.5)

Thus, the perturbation drives the two-fold real eigenvalue into the complex plane iff
the deviation from symmetry of L̂ is strong enough.

Based on conditions (4.4) or (4.5) one can now check which kind of perturbation
matrix L will drive a double eigenvector of the unperturbed, reversible transition
matrix P into the complex plane. In the appendix we show that perturbations of a
single entry (1-cycle) of P or of a 2-cycle can never lead to this kind of perturbation.
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4.2. Illustrating example. Let us consider the reversible transition matrix

P =




0.8566 0.1195 0.0239
0.0566 0.9195 0.0239
0.0566 0.1195 0.8239


 ,

with eigenvalues 1 = λ1 and λ2 = λ3 = 0.8.
First, we study what happens if we perturb P using the 2-cycle γ = (1, 2), that

is we set

L1 = σ1




−1 1 0
1 −1 0
0 0 0


 = σ(Cγ − Iγ), σ1 = 0.1242,

where Iγ denotes the diagonal matrix with 1 on the diagonal for all states that are
involved in the cycle γ and zeros on all other diagonal entries.

Then, P̂ϵ = P + ϵL1 is still diagonalizable with real-valued eigenvalues 1 = λ1,
λ2 = 0.8, and

λ3





< 0.8 if ϵ > 0
= 0.8 if ϵ = 0
> 0.8 if ϵ < 0

as long as P̂ϵ is stochastic.
Next, we perturb P along the 3-cycle Γ = (1, 2, 3),

L2 = σ2(CΓ − IΓ), σ2 = 0.4119,

then Pϵ = P + ϵL2 has the spectrum shown in Fig. 4.1 which clearly shows that
starting from ϵ = 0 (for which P̃ϵ = P has a double eigenvalue 0.8) the second and
third eigenvalues develop imaginary parts and are driven into the complex plane for
ϵ > 0. In this case the first order perturbation result (4.3) for the two-fold eigenvalue
λ = 0.8 can be checked by computing L̂ and its eigenvalues η±. In this case, the result
0.8 + ϵη± is graphically indistinguishable from the second and third eigenvalues of Pϵ

in ϵ ∈ [0, 1].

Figure 4.1. Spectrum of Pϵ = P + ϵL2 for ϵ ∈ [0, 1].
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4.3. Perturbation of probability flow. The perturbed flow matrix is given by
Fϵ = DϵPϵ, where Dϵ denotes the diagonal matrix with entries given by the invariant
measure µϵ of Pϵ.

The stochastic cycle decomposition of F ϵ reads

F ϵ =
∑

γ

wϵ(γ)Cγ .

Its antisymmetric part F ϵ
A satisfies

F ϵ
A = ϵ(NP − PT N + DL − LT D) + O(ϵ2),

if we use the asymptotic expansion of Dϵ, Dϵ = D + ϵN + O(ϵ2).
With Q̂ denoting the n × 2-matrix that has the two eigenvectors uj and uj+1

associated with the double eigenvalue of P as its columns we have

L̂ = Q̂T DLQ̂,

and (up to first order in ϵ)

Aϵ = Q̂T F ϵ
AQ̂T =

ϵ

2
(L̂ − L̂T ) = ϵL̂A =

ϵ

2

(
0 δ

−δ 0

)
. (4.6)

This can be seen from

Aϵ =
ϵ

2

(
Q̂T (NP − PT N)Q̂ + Q̂T (DL − LT D)Q̂

)
+ O(ϵ2)

=
ϵ

2

(
Q̂T (NP − PT N)Q̂ + 2L̂A

)
+ O(ϵ2),

where we can use PQ̂ = λQ̂ and Q̂T PT = λQ̂T to show that the term containing
NP − PT N vanishes.

Interpretation. Together with (4.5) equation (4.6) shows, that the perturbation
drives the two-fold real eigenvalue into the complex plane iff the deviation from sym-
metry of the perturbed flow matrix is strong enough.

4.4. Perturbation of the Schur decomposition. The real-valued Schur de-
composition is an alternative to the spectral decomposition if Pϵ is no longer reversible.
Let P again be reversible with a double eigenvalue λ while the rest of the eigenval-
ues are simple. Then, the Schur decomposition (Xϵ, Rϵ) of the transition matrix
Pϵ = P + ϵL has the form

PϵXϵ = XϵRϵ, s.t. XT
ϵ DϵXϵ = Id, (4.7)

so that the columns of Xϵ form an ⟨·, ·⟩-orthonormal basis (as the eigenvectors did for
reversible Pϵ) and where Rϵ has the following form

Rϵ =

(
Bϵ Uϵ

0 Λ̃ϵ

)
. (4.8)

Bϵ denotes the 2×2-block that belongs to the two-dimensional subspace that originates
from the two-dimensional eigenspace of λ = λj at ϵ = 0, and Λ̃ϵ is the diagonal matrix
that contains the rest of the eigenvalues of Pϵ (where we assume that ϵ is kept small
enough such that only λ is perturbed into the complex plane and all other eigenvalues
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stay real-valued and simple), and Uϵ denotes all the remaining entries in the upper
triangular part of Rϵ (but not the ones contained in Bϵ).

For ϵ = 0 the Schur decomposition of Pϵ = P simply is identical to the spectral
decomposition discussed above.

In general, the eigenvalues of Pϵ and Rϵ are identical. Therefore the upper block,
Bϵ, of Rϵ will encode whether the perturbation L forces a pair of eigenvalues into the
complex plane. This is indeed true as the following results shows.

Theorem 4.1. Up to first order in ϵ the upper 2 × 2 block of the Schur form
Rϵ of Pϵ is given by λId2×2 + ϵL̂s where L̂s denotes the Schur form of L̂ (and thus
has the same eigenvalues). Thus, the Schur form L̂s of the projection of L to the
eigenspace of a double eigenvalue of the reversible matrix P is sufficient to see whether
the perturbation leads to a complex conjugated pair of eigenvalues.

Proof:. First we consider the asymptotic expansion of Rϵ that is given by

Rϵ = Λ + ϵR + O(ϵ2)

Xϵ = X0 + ϵY + O(ϵ2),

where Λ is diagonal with λ on the first two diagonal entries and then the rest of the
eigenvalues of P in the order of Λ̃0.

If we put the asymptotic expansion into PϵXϵ = XϵRϵ we get in first order of ϵ
that

PY + LX0 = Y Λ + X0R, (4.9)

Since the columns of X0 form a basis, there is a coefficient matrix A such that

Y = X0A.

Inserting this into (4.9) and using PX0 = X0Λ yields

X0ΛA + LX0 = X0AΛ + X0R,

from which by multiplication with XT
0 D from the left we get

ΛA + Ls = AΛ + R, with Ls = XT
0 DLX0.

Written in terms of the entries Akl of A this reads

Akl(Λkk − Λll) = Rkl − Ls,kl. (4.10)

First we consider k, l ∈ {1, 2}. Then Λkk = Λll = λ and thus we get

Rkl = Ls,kl, k, l ∈ {1, 2}.

Next, we denote the first two columns of X0 by X̂0 such that the upper 2 × 2 block
of Ls can be written

L̂s = X̂T
0 DLX̂0,

and we get that the upper 2 × 2 block Bϵ of Rϵ has the asymptotic form

Bϵ = λId2×2 + ϵL̂s + O(ϵ2). (4.11)

X̂0 spans the same subspace as Q̂ so that L̂s is the Schur form of L̂ (and thus has the
same eigenvalues).

Now we consider the indices k = l > 2 in (4.10) we get Rkk = Ls,kk and thus

Λ̃ϵ,kk = λk + ϵuT
k DLuk + O(ϵ2), (4.12)

where uk denotes the kth column, k = 3, 4, . . ., of X0 which is identical to the eigen-
vector of P associated with the eigenvalue λk.
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Result. The Schur decomposition offers an alternative to the spectral decompo-
sition since the Schur basis Xϵ is identical to the eigenvector basis for all simple
eigenvalues while the two basis-vectors related to the 2×2 diagonal block form a real-
valued basis of the two-dimensional eigenspace that is associated with the complex-
conjugated pair of eigenvalues.

5. Schur decomposition and dominant structures. Our aim: The large
state space S with |S| = n ≫ 1 states has to be decomposed into a smaller number
m ≪ n of clusters of states that belong to dominant structures of the chain. One well-
known example is the partitioning of S into metastable sets or metastable clusters
described in Section 2 above. The idea of this article is to cluster states of S not (only)
according to their metastabilty, but to cluster them according to a common transition
pattern. We will re-use the idea of PCCA+, i.e., the decomposition of S is done by
using membership vectors ξ1, . . . , ξm ∈ [0, 1]n instead of sets. However, instead of just
aiming at metastable clusters we will be aiming at identifying the dominant cycles
as well. In analogy to the case of eigenvector-based PCCA+ for reversible processes,
dominant structures will be defined by utilizing the dominant Schur vectors X̂ ∈ Rn×m

of the transition matrix P instead of the eigenvectors. According to the PCCA+ idea,
we will aim at a linear combination of these vectors and define a membership matrix
χ = X̂A ∈ [0, 1]n×m. As in eigenvector-based PCCA+, the optimization criterion
is to maximize the crispness of χ. We will show in the following that this type of
objective function preserves the nonreversibility of the flow.

Projected Markov process. The real Schur decomposition of a general nonre-
versible ergodic transition matrix P has the form PX = XR with XT DX = Id.
If we take an m × m-submatrix R̂ ∈ Rm×n of R consisting of the top left part of R
and not splitting a 2 × 2-block of R, then

PX̂ = X̂R̂

and X̂T DX̂ = Id holds, where X̂ consists of the first m columns of X. These vectors
will be denoted as the dominant Schur vectors X̂. The PCCA+ idea is to find a
matrix A such that the membership vectors are given by the columns of χ = X̂A.
According to [17, 34], the projected transition matrix P̂ is then defined as

P̂ = (χT Dχ)−1(χT DPχ) = A−1R̂A.

By this equation, it holds that

P̂A−1 = A−1R̂.

Thus, P̂ has a Schur decomposition with the real Schur matrix R̂. The corresponding
Schur vectors stem from an orthonormalization of the column vectors of A−1. In this
way, the dominant part R̂ of the Schur matrix R of P becomes the Schur matrix of
the projected transition matrix P̂ , see also [43].

Sorting the Schur values. A real Schur decomposition is not unique. The reason
is, that the diagonal elements (and 2 × 2-blocks) of the Schur matrix R can be sorted
in different ways, leading to different Schur vectors X. How to sort these values?
When interested in finding dominant structures then the projected transition matrix
P̂ should be close to a {0, 1}-transition matrix, i.e., up to small perturbations the
process has a dominant (almost deterministic) flow. Finding dominant cycles and
metastabilities, therefore, implies that P̂ should be close to a permutation matrix.
Permutation matrices, however, have eigenvalues on the unit circle. Since the Schur
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values of the projected matrix coincide with the Schur values of the selected invariant
subspace of P , the Schur values of P should be sorted according to their distance to the
unit circle. They should be sorted with decreasing absolute value of the corresponding
eigenvalues of P . Brandts [6] has formulated a software code for sorting the Schur
decomposition accordingly.

Dominant structures and cyles. In this section, we are interested in the non-
reversibility of the projected flow. There are in principle two possibilities. First,
the projection might hide the non-reversibility of the original flow, because it only
regards the flow between the clusters not within the clusters. Second, the projection
can inherit the non-reversibility of the flow by leading to a transition matrix P̂ which
is close to a (non-unit) permutation matrix. If one analyzes P̂ as an “independent”
transition matrix, the previous sections have shown that the non-reversibility of a
transition matrix P̂ is connected to the non-symmetry of the diagonal blocks of its
Schur matrix R̂. The low-dimensional matrix P̂ , however, stems from a clustering
on a large state space. The question remains whether the non-symmetry of R̂ is also
connected to the non-reversibility of the projected flow. We will see that aiming at
such a direct relation, implies to use the “crispness” objective function by Roeblitz
for the PCCA+ algorithm.

Non-reversibility of the projected flow. The flow F is projected to the clusters
χ = X̂A of the PCCA+ algorithm. The non-reversibility of the projected flow is
expressed by the matrix χT (F−FT )χ. A weighted Frobenius norm r = ∥D̂−1/2χT (F−
FT )χD̂−1/2∥F of this matrix is used in order to quantify the non-reversibility r. In
this norm, D̂ = diag(χT µ) is the diagonal matrix of the projected invariant measure
µ of P . With these preparations, the following equations hold

r = ∥D̂−1/2χT (F − FT )χD̂−1/2∥F

= ∥D̂−1/2AT (X̂T FX̂ − X̂T FT X̂)AD̂−1/2∥F

= ∥D̂−1/2AT (R̂ − R̂T )AD̂−1/2∥F

=

√
2

∑

i<j

|R̂ij − R̂ji|2 · ∥M (i) × M (j)∥2
2, (5.1)

where M (i) denotes the i-th row of M = AD̂−1/2. In (5.1), each element-wise non-
symmetry |R̂ij −R̂ji|2 is weighted with the squared Euclidean norm of a cross product
∥M (i) × M (j)∥2

2. By this term, the quality of the clustering enters this equation.
What is the size of these weights? As explained in Section 2, PCCA+ can be used
to maximize the orthogonality of the membership functions ξi with regard to the
weighted inner product ⟨·, ·⟩. The row stochastic mass matrix S = D̂−1χT Dχ =
D̂−1AT A should be as close as possible to a unit matrix. If S would be a unit matrix
S = Id, then Id = D̂−1AT A and, thus, Id = D̂−1/2AT AD̂−1/2. In this case, the
matrix D̂−1/2AT would be orthogonal, which means that the rows of M would form
an orthonormal basis. All the cross products would be identical ∥M (i) × M (j)∥2

2 = 1.
Thus, if we take the crispness function as the optimization criterion for PCCA+,
we aim at the following: The non-reversibility of the flow should equal the non-
symmetry of the reduced Schur matrix R̂. In that sense, taking Schur vectors for
PCCA+ preserves the non-reversibility of the flow.

6. Numerical Examples.
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6.1. From metastable sets to dominant cycles in a nutshell. We consider
the rate matrix

R =




−2.0010 0.2773 0.7667 0.9432 0.0138
0.1309 −2.9073 0.7523 1.5372 0.4868
0.0162 0.0336 −0.0740 0.0026 0.0217
0.0281 0.0970 0.0036 −0.1399 0.0111
0.0004 0.0328 0.0328 0.0118 −0.0779




,

which has a double eigenvalue λ̂ = −0.1:

λ = 0, −0.1, −0.1, −2, −3.

Next we define P = exp(tR) with t = 1 which leads to

P =




0.1437 0.0401 0.3494 0.4344 0.0323
0.0189 0.0740 0.2585 0.4861 0.1625
0.0074 0.0115 0.9385 0.0184 0.0242
0.0130 0.0307 0.0261 0.9094 0.0209
0.0010 0.0109 0.0365 0.0223 0.9292




,

with eigenvalues

λ = 1, 0.9048, 0.9048, 0.1353, 0.0498,

where λ = exp(λ̂) = 0.9048 also is a double eigenvalue.
In order to perturb the double eigenvalue λ into the complex plane we consider

the single cycle perturbation

L = σ(Cγ − Iγ), γ = (3, 4, 5), σ = 0.9,

and set

Pϵ = P + ϵL.

One finds

L̂ =

(
−1.270 0.724
−0.833 −1.497

)
,

such that −L̂12L̂21 = 0.604 and (L̂11 − L̂22)
2/4 = 0.005 so that the perturbation will

lead into the complex plane. Fig. 6.1 shows the eigenvalues of Pϵ in their dependence
on ϵ. We see that the perturbation is well approximated by the first order result (4.3).

We observe that for ϵ = 0 the process is reversible with three metastable sets
(and three real-valued eigenvalues close to λ = 1), while for ϵ = 1 it shows strongly
irreversible, cyclic behavior with dominant cycle (3, 4, 5). Due to this the kinetics
of the process changes: If we start with a probability distribution u0 = (0, 0, 1, 0, 0)
that locates the process solely in state 3 at k = 0, then the evolution of this initial
distribution under the process,

uϵ(k) = P k
ϵ u0,

leads to an evolution of the probability uϵ
3 to be in state 3 as shown in Fig. 6.2.

For ϵ = 0 we observe the slow exponential decay that we expect in the presence of
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Figure 6.1. Spectrum of Pϵ for ϵ ∈ [0, 1] in the unit circle of the complex plane (real- versus
imaginary values). Circles: Eigenvalues of Pϵ. Stars: First order perturbation of eigenvalues of Pϵ.

Figure 6.2. Evolution of the probability to be in state 3 under P0 = P (u0
3; blue stars) and

P1 = P + L (u1
3; red circles) versus the step number k.

metastable sets for a reversible process, while for ϵ = 1 we see the slowly damped
oscillatory behavior that is characteristic for dominant cycles. In both cases the
invariant measure of State 3 is reached for k → ∞.

The change of dominant structures from three metastable sets (for ϵ = 0) to a
dominant cycle (3, 4, 5) (for ϵ = 1) can be observed by following the changing cycle
weights (3.2) for increasing ϵ, under Pϵ = P + ϵL, as shown in Figure 6.3. For
the reversible process, i.e., transition matrix P = P0, metastability of sets M1 =
{3}, M2 = {4} and M3 = {5} (which are 1−cycles) can be seen from the high entries
on the diagonal of P . As ϵ is increasing, the weights of these sets decrease towards 0
as their metastability decreases. On the other hand, the weight of a cycle γ = (3, 4, 5)
increases, and γ is becoming a dominant cycle for ϵ = 1. The perturbation L does
not influence other structures in our system, leaving the weights of all other cycles
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almost constant for different values of ϵ.
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Figure 6.3. Evolution of cycle weights under Pϵ = P + ϵL: weight w(γ) of the cycle (3, 4, 5)
in red, weight of a 1−cycle (3) in green, weight of a 1−cycle (4) in cyan, weight of a 1−cycle (5) in
pink, sum of weights of all other cycles in blue.

Consider now the projection P̂ of the transition matrices P by Schur-based
PCCA+ with m = 3 clusters. In this case we will sort the Schur matrix R according
to Section 5, i.e., according to the absolute value of the corresponding eigenvalues.
The objective function for an optimal linear transform from the corresponding leading
three Schur vectors X̂ to the 5 × 3-membership matrix χ is given by the crispness
criterion. The reduced 3 × 3-Schur matrix R̂ comprises of (at most) one 2 × 2-block
with R̂32, R̂23 ̸= 0 quantifying the non-symmetry of R̂. As explained in Section 5,
this non-symmetry |R̂23 − R̂32|2 quantifies also the non-reversibility of the projected
flow. In order to measure the relation between the non-symmetry of R̂ and the non-
reversibility of the projected flow, the term |R̂23 − R̂32|2 has to be weighted with a
cross product ∥M (2) × M (3)∥2

2. This weight and the optimal value of the objective
function of PCCA+ are shown in Fig. 6.4. One clearly can see that the weight
correlates well with the optimal value of the objective function, which can be 1 at
maximum.

For extreme values ϵ ≈ 0 or ϵ ≈ 1, the clustering of PCCA+ nearly takes the
maximally possible value, i.e., the three clusters of the system are well-separated
from each other. In all cases the clustering identifies the states {3, 4, 5} to be the
centers of the clusters and {1, 2} to belong to these clusters with a varying degree
of membership. For ϵ ≈ 0, the clusters are metastable clusters of Pϵ. For ϵ ≈ 1,
the clusters form a dominant cycle of Pϵ. For in between ϵ-values the matrix P̂ϵ is a
mixture between a unit matrix (metastability) and a permutation matrix (cycle). For
the extreme ϵ values the matrix P̂ϵ is close to a {0, 1}-stochastic matrix, such that
their rows have a small entropy, see also Fig. 6.5. Schur-based PCCA+ preserves the
non-reversibility (dominant cyclic structure) of the flow.

6.2. Langevin Dynamics. For this illustrative example we perform a low-
friction Langevin dynamics simulation of a double-well potential [26]:

ṙ = p, ṗ = −∇r V (r) − γ p + σ Ẇt, (6.1)
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Figure 6.4. The optimal value of the PCCA+ objective function trace(S) is plotted against ϵ
(crosses). The weight ∥M(2) × M(3)∥2

2 is plotted using circles and correlates well with the objective.

Figure 6.5. The maximum entropy of the rows of the projected transition matrix P̂ϵ pf Pϵ

as a function of ϵ. Zero entropy corresponds to a {0, 1}-stochastic matrix, i.e., to a deterministic

process. Thus, the matrix P̂ϵ is close to the unit or to a permutation matrix in our example for the
low-entropy case (extreme ϵ-values). High entropy values indicate a mixture between a metastable
and an almost cyclic system (in between ϵ-values).

where r is the vector of the Euclidean coordinates of all atoms in the molecular
system, p the vector of associated momenta, V (r) = (r2 − 1)2 the interaction energy
and −∇rV (r) the vector of all inter-atom interaction forces. Fext = σẆt is the
external forcing given by a 3N -dimensional Brownian motion Wt and we set the
friction constant γ = 0.2. The Langevin process (Yt) is not reversible and the typical
transition from the vicinity of one of the wells across the energy barrier at r = 0
towards the other well will look as follows: First the trajectory will orbit the initial
well for some period of time before it crosses the barrier and starts to orbit the target
well until it finally hits the close vicinity around the respective energy minimum.

The two-dimensional state space [−1.8, 1.8]× [−1.8, 1.8] has been discretized into
342 boxes Bi of size ∆r = 0.2 and ∆p = 0.2. The transition probabilities have been
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computed using M = 100 simulated trajectories of length τ = 0.25 [5, 34]. Note that
τ = 0.25 is very small compared to the expected transition time (which is larger than
100 here) and still shorter than the period of the periodic orbits of the system. The
result is a 342 × 342-transition matrix

Pij =
mij

M
,

where mij is the number of trajectories starting in Bi and ending up in Bj .
The invariant distribution D = diag(µ) of this matrix is used for the computation

of the Schur decomposition sorted according to the absolute value of the corresponding
eigenvalues. In order to include all real eigenvalues of P close to λ1 = 1, we have to
take m = 9. Thus, we used PCCA+ to compute the membership matrix χ based
on the 342 × 9-matrix X̂ of dominant Schur vectors and determined the projected
transition matrix P̂ between the clusters.

Figure 6.6. The 9-by-9-transition matrix P̂ between the clusters of the Langevin process. P̂ is
not diagonally dominant but displays metastable as well as cyclic structures.

The resulting P̂ is shown in Fig. 6.6 and has the following interpretation. Clusters
No. 1, 4, and 6 are metastable clusters. In order to visualize these clusters, we plot
the 18 × 19 = 342 discretization boxes using a color according to the entries of the
columns (1,4, and 6) of the membership matrix χ, see Fig. 6.7.

Figure 6.7. Membership values according to cluster no. 1 (left), 4 (middle) and 6 (right).
These clusters are metastable clusters of the system. Blue color means low membership value and
yellow high membership value. Cluster no. 1 is the “rapidly-mixing” high-energy cluster. The
clusters no. 4 and no.6 are the low-energy clusters at the basins of the double-well potential and at
low absolute momentum value.
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The other clusters belong to dominant cycles. The cycles can be extracted from
the matrix P̂ shown in Fig. 6.6. One cycle is 2 → 3 → 8 → 2, the other cycle is
5 → 9 → 7 → 5. In Fig. 6.8, one of these cycles is visualized. The other cycle is
symmetric to one shown.

Figure 6.8. From left to right: Visualization of the clusters no. 2, 3, and 8. These clusters
represent a dominant cycle of the Langevin dynamics inside the left basin of the double-well potential.

7. Conclusion. We discussed the problem of finding dominant structures of
ergodic Markov processes. Correct identification of dominant structures is very im-
portant for accurate description and complete understanding of observed processes.
However, most existing methods focus mainly on reversible processes and identifica-
tion of their metastable sets, as these parts of the state space often capture most
interesting dynamics. However, in the case of nonreversible processes the analysis of
dominant structures has to regard metastable sets as well as dominant cycles.

In this paper, we presented a comprehensive approach for finding dominant struc-
tures of Markov models for both reversible and nonreversible processes. This theory
can be seen as an extension of spectral methods for identification of metastable sets
of reversible processes, to the more general cases. It uses the stochastic cycle decom-
position for distinguishing between different types of transition patterns and allows
uncovering structures additional to metastable sets in more detail than existing ap-
proaches. We show that the additional information about cycles is essential for un-
derstanding nonreversible nature of the process, which we can then systematically de-
scribe by Schur decompositions. To demonstrate the effectiveness of our new method,
we applied it to analyzing Langevin dynamics, where we successfully identified both
metastable sets and cycles as dominant structures of this process, i.e. we identified
metastable sets representing high and low-energy clusters as well as dominant cycles
corresponding to the periodic behavior around the basins of attractions.

While our theory gives a rather complete picture of different dominant structures
in Markov models, the dependance of cyclic behavior of the process on the choice of
the lag time τ should not be neglected. In order to capture cyclic behavior for all
important lag times, one is interested in analyzing the infinitesimal generator L of
the process. Although our theory can be directly applied to processes given by the
infinitesimal generator L, for many realistic models an infinitesimal generator does
not exist, e.g. molecular dynamics [42, 41]. This problem needs further investigation
and will be the topic for future research.
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8. Appendix. In the following it is shown that a perturbation of a 1- or 2-
cycle of a reversible transition matrix with a double eigenvalue can never drive this
eigenvalue into the complex plane.

Perturbation of a single entry of P .. If only the entry (q, r), q ̸= r, of P is
perturbed we have

Lkj = σδkq(δjr − δjq),

where σ is the strength of the perturbation. Let the q-th entry of uj be a, b the r-th
entry of uj , and α the r-th entry of uj+1, and β the r-th entry of uj+1. Then

L̂ = σµq

(
(b − a)a (β − α)a
(b − a)α (β − α)β

)
.

Then condition (4.4) reads

(
(b − a)a + (β − α)α

)2

< 0,

which can never be satisfied. Thus, the perturbation of a single entry of P can never
move a double eigenvalue into the complex plane.

Perturbation of a 2-cycle.. When the perturbation is just affecting the 2-cycle
γ = (k, l) we have

Lij = σ





1 (i, j) = (k, l) or (i, j) = (l, k)
−1 (i, j) = (k, k) or (i, j) = (l, l)
0 otherwise

.

Then

⟨u, Lv⟩ = uT DLv = σ
(
µkuk(vl − vk) + µlul(vk − vl)

)
= σ(µkuk − µlul)(vl − vk),

Denoting uj = u and uj+1 = v we thus get

L̂12L̂21 = σ2(µkuk − µlul)(vl − vk)(µkvk − µlvl)(ul − uk)

and

(L̂11 − L̂22) = σ
(
(µkuk − µlul)(ul − uk) − (µkvk − µlvl)(vl − vk)

)

so that

1

4
(L̂11 − L̂22)

2 + L̂12L̂21 =
1

4
(L̂11 + L̂22)

2 > 0

and thus condition (4.4) can never be satisfied. Thus, the perturbation of a 2-cycle
can never move a double eigenvalue into the complex plane.

REFERENCES

19



[1] R. Banisch and N. Djurdjevac Conrad. Cycle-flow-based module detection in directed recurrence
networks. EPL (Europhysics Letters), 108(6):68008, 2014.

[2] R. Banisch, N. Djurdjevac Conrad, and Ch. Schuette. Reactive flows and unproductive cycles
for random walks on complex networks. The European Physical Journal Special Topics,
pages 1–19, 2015.

[3] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability and low lying spectra in
reversible Markov chains. Comm. Math. Phys., 228:219–255, 2002.

[4] A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes II. Precise
asymptotics for small eigenvalues. J. Eur. Math. Soc., 7:69–99, 2002.
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