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ABSTRACT

Rigorous optical simulations of 3-dimensional nano-photonic structures are an important tool in the analysis
and optimization of scattering properties of nano-photonic devices or parameter reconstruction. To construct
geometrically accurate models of complex structured nano-photonic devices the finite element method (FEM)
is ideally suited due to its flexibility in the geometrical modeling and superior convergence properties. Reduced
order models such as the reduced basis method (RBM) allow to construct self-adaptive, error-controlled, very
low dimensional approximations for input-output relationships which can be evaluated orders of magnitude
faster than the full model. This is advantageous in applications requiring the solution of Maxwell’s equations
for multiple parameters or a single parameter but in real time. We present a reduced basis method for 3D
Maxwell’s equations based on the finite element method which allows variations of geometric as well as material
and frequency parameters. We demonstrate accuracy and efficiency of the method for a light scattering problem
exhibiting a resonance in the electric field.

Keywords: finite element method, rigorous optical modeling, photonic crystals, reduced basis method, reduced
order models, electromagnetic field solver

1. INTRODUCTION AND PROBLEM SETTING

Optical simulations of nano-photonic structures with complex geometries are important in the analysis of their
scattering properties. In applications ranging from optimization of structures to scatter or absorb light efficiently
to reconstruction of geometrical features from measurements high accuracy solutions of Maxwell’s equations are
used. The finite element method is ideally suited to construct geometrically accurate models of complex struc-
tured nano-photonic devices and to compute high accuracy solutions of the time-harmonic vectorial Maxwell’s
equations in 3D.1 It can outperform other rigorous electromagnetic field solvers if the accuracy demands are
high.2 However, for some applications like optical critical dimension metrology, the solution of Maxwell’s equa-
tions is required for multiple parameters or in real time.3 Reduced order models such as the reduced basis method
(RBM) allow to construct self-adaptive, error-controlled, very low dimensional approximations for input-output
relationships which can be evaluated orders of magnitude faster than the full model.4–7

In the following, we investigate a self-adaptive, error-controlled reduced basis method6 based on the finite
element solver JCMsuite8 suited for the construction of reduced order models for nonlinear output functionals
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and parameter dependencies. The underlying finite element solver has been previously applied to a variety
of applications in different fields.9–14 Here we discuss a reduced order model for a two-dimensional array of
nano-holes exhibiting photonic bands. This structure has been investigated before both experimentally and
numerically.15 We revisit the problem using a reduced basis for the illumination parameter (wavelength and
angle of incidence). We perform a convergence analysis and demonstrate accuracy of the obtained results.

We demonstrate the accuracies that can be reached by the reduced model for the illumination parameters in
case of a high-quality resonance in the electric field.

This paper is structured as follows: The background of the numerical methods is presented in Sections 2
and 3. The reduced basis method is applied to an example exhibiting resonances in Section 4. Details of the
photonic crystal example are presented first, followed by a detailed discussion of the reduced basis construction,
the online evaluation and the various error sources in the approximation.

2. FINITE ELEMENT METHOD

In the following we briefly summarize the main idea of the finite element method (FEM).1,16 This section serves
as a motiviation for the reduced basis method presented hereafter. Light scattering off nano-structures with a
monochromatic light source in frequency domain is governed by the linear Maxwell’s equation. These can be
reformulated to form the following, single second order curl-curl equation for the electric field E

∇× µ−1∇×E − ω2εE = iωj. (1)

with the permeability and permittivity tensors µ and ε. ω is the frequency of the time-harmonic field and the
electric current density j models electromagnetic sources within the computational domain Ω. The exterior
Ωext = R3 \Ω is infinite and hosts incoming electric fields which act as sources in the interior Ω. A transparent
boundary condition has to be applied at the boundary Γ . The perfectly matched layer method (PML) is used
in our solver.

The finite element discretization is based on the variational formulation of (1). This is derived by multipli-
cation with a vector valued test function ϕ and subsequent integration over R3 resulting in∫

R3

∇× ϕµ−1∇×E − ω2ϕεE = iω

∫
R3

ϕj (2)

which is abbreviated in the following as a(ϕ,E) with the right hand side f(ϕ).

As the choice of ϕ is arbitrary we demand (2) to hold for any ϕ and choose H(curl, Ω) as the proper function
space for E and ϕ. The weak formulation of (1) now reads: Find E ∈ H(curl, Ω) such that:

a(ϕ,E) = f(ϕ) ∀ϕ ∈ H(curl, Ω). (3)

The space H(curl, Ω) is infinite. For a numerical solution of (3) we restrict the solution space to a finite
dimensional subspace Vh ⊂ H(curl, Ω) with dimVh = N < ∞. It is sufficient to demand (3) to hold for a basis

{ϕ1, . . . , ϕN} of Vh. Every element E =
∑N
i=1 αiϕi of Vh can be expanded in this basis. Hence (3) in Vh is

equivalent to the linear system
N∑
i=1

a(ϕj , ϕi)αi = f(ϕj) j = 1, . . . , N (4)

The choice is of Vh determines the structure of the matrix A = (a(ϕj , ϕi))
N
i,j=1. Ideally, this matrix is sparse

allowing to compute the coefficients αi with an efficient LU decomposition.

The choice of basis functions of Vh determines the structure of A. Basis or ansatz functions with only a
local support yields the desired sparsity of A. The idea of a finite element discretization is to decompose the
computational domain Ω into simple geometrical patches or elements such as tetrahedrons, prisms or bricks. To
this resulting spatial discretization called mesh we associate a positive scalar h describing the spatial resolution
of the patches. The ansatz functions are then chosen as polynomials of order p or less over the patches. The



order p does not have to be chosen identical on all patches or in all spatial directions of a patch but can be
adapted to the chosen spatial resolution. It can be lowered in regions where the spatial resolution is high and
increased where it is low.

This yields the hp finite element method17 which yields very accurate results of (3). By increasing the mesh
density h or the polynomial order p the total number of unknowns N is increased resulting in a more accurate
solution but at the same time the numerical complexity to solve the linear system (4) is increased as well. A
problem adapted balancing of h and p yields usually the best results in terms of computational complexity.

3. REDUCED BASIS METHOD

The reduced basis method (RBM)4–6,18 is one of the most widely used model order reduction methods.3,19 It
offers a way to construct error controlled approximations to input-output relationships. Here, input refers
to a specific configuration of parameters µ ∈ Rd whereas the output usually refers to an output quantity
s(µ) = s(E(µ)) derived from a solution E of a parameter dependent partial differential equation. The RBM and
FEM exhibit many similarities such as the Galerkin projection. Whereas the finite element solution is based on
polynomial ansatz functions with local support, the reduced basis solution is a superposition of globally defined
fields. The resulting linear system is thus small and dense instead of the high-dimensional, sparse system we
obtain for the finite element discretization.

We consider parameterized electromagnetic scattering problems where the parameter µmay describe geometry
and material variations or properties of the illumination. For any given parameter we may solve (3) with a finite
element discretization with N degrees of freedom and compute the output of interests e.g. the Fourier transform
of the electric field or the electric field enery contained within a subdomain of Ω. We refer to such a solution
as a truth solution. The computation of truth solutions {E(µ) |µ = µ1, µ2 . . . } becomes quickly infeasible if
the number of parameter configurations considered is large. The purpose of the reduced basis approximation

Figure 1: Solution manifold M (red) with snapshots and RB approximation(blue)

is to provide a low-dimensional approximation to the high dimensional problem (3) for all parameters µ ∈ D.
We assume the manifold of all solutions M = {E(µ) is a solution to (3) |µ ∈ D} to be approximated by a low
dimensional subspace XN of dimension N . A schematic of the solution manifold (red) is depicted in Figure 1
together with an approximation (blue) using three snapshots indicated as crosses. The idea of this method is now
closely related to the finite element method presented in the previous section. Instead of searching the solution
to the parameter dependent PDE in the high dimensional finite element space Vh (where oftentimes N > 106)
we restrict the space to a very low dimensional (usually of dimension N = O(10)) reduced basis space XN , i.e.
we solve the reduced problem:

For µ ∈ D find EN ∈ XN such that:

a(ϕ,EN ;µ) = f(ϕ;µ) ∀ϕ ∈ XN . (5)

The obvious choice is to choose N linearly independent truth solutions to span XN . We call these snapshots
and Φ = {φi}Ni=1 where spanΦ = span{E(µi) |E(µi) is a truth solution for µi, i = 1, . . . , N} a reduced basis.



3.1 Offline-online decomposition

Key in the efficient computation is an online-offline decomposition where all numerical operations involving the
number of degrees of freedom N of the underlying finite element solution are executed in the offline phase. In the
subsequent online phase during the actual application only a very low dimensional system has to be assembled
and solved for every parameter configuration. The solution E(µ) =

∑N
i=1 αiφi can be expanded in the reduced

basis Φ and entered into (5). The resulting linear system

N∑
i=1

αia(φj , φi;µ) = f(ϕj ;µ) j = 1, . . . , N (6)

is a of dimension N but depends on µ. If the sesquilinear form a(·, ·) and the linear form f(·) are affine in the

parameter, i.e. a(φ, ξ;µ) =
∑Q
q=1 θq(µ)aq(φ, ξ) and f(φ;µ) =

∑Q
q=1 θq(µ)fq(φ), assembly and solution of (6) only

depends on N and Q but not on N . The N -dependent matrices (Aq)i,j = aq(φi, φj) and vectors (fq)i = fq(φi)
can be precomputed. Most parameterizations of the electromagnetic scattering problem do not exhibit an affine
expansion in the parameter. For these situations the empiricial interpolation method was developed20,21 and
successfully applied to a number of applications.22,23

We call the construction phase in which N truth solutions are computed to span XN and the matrices Aq

and vectors fq are computed the offline phase. The N -independent second step of assembling and solving (6) for
a given µ is called the online phase. Similar to the reduced matrices Aq a linear or quadratic output of interest
can be projected onto XN to achieve an evaluation of the reduced quantity s(EN (µ)) independent of N .

3.2 Basis construction

The choice ofXN influences the quality of the reduced approximation. Ideally we want to chooseXN optimally. In
general this is not possible a priori. Building XN self-adaptively from optimally placed snapshots and estimating
and controlling the approximation error over D yields a sequence of reduced basis spaces XN which contains
the maximal available information about M for any N . The optimization problem for the snapshot placement
is solved with a so-called Greedy selection of the worst resolved parameter location within a finite dimensional
training set Dtrain ⊂ D. This requires rigorous a posteriori error estimators to assess the approximation error.
These are available for the electromagnetic scattering problem and usually based on the dual norm of the
residuum.6,18

4. REDUCED BASIS METHOD FOR PROBLEMS WITH RESONANCE
PHENOMENA

The reduced basis method relies on the assumption that the solution manifold can be approximated well by
snapshot solutions. In case of a structure exhibiting resonant behaviour the field solution changes drastically
with small variations of a parameter. In the following we build a reduced basis for such a model and present the
reduced model as well as the limits of the method for this example.

4.1 Optical model of a 2D photonic crystal made of silicon

Photonic crystals are periodic structures that inhibit propagation of electromagnetic waves of frequencies within
a specific frequency band called photonic band gap. Repeating material patterns are introduced through (nano-)
structuring of materials for example in gratings.24 Hexagonal arrays of holes in a high-index material are among
the most frequently investigated structures. They give rise to pronounced photonic band gaps and are envisioned
to be used in a variety of applications such as solar cell light management or upconversion as well as optical
sensing.

In a previous study we investigated the absorption properties and the excitation of high-intensity near-fields
within periodic, conical nanoholes of a silicon slab.15 The optical model presented here is identical to our
previous investigations.15 The unit cell of the structure is shown in Figure 2 in real space, in k-space and as
volume meshes. The cell has a pitch of 600 nm and the conical hole has a sidewall angle of 17 °. The diameter
of the hole is 385 nm at the centre of the 390 nm thick slab. The unit cell is split into four subdomains: the



(a)

(b)
(c) (d)

Figure 2: Schematic of the unit cell of the hexagonal nanohole array with 600 nm pitch in real space (a) and
k-space (b). The high-symmetry points of the irreducible Brillouin zone (grey) are marked. (b) The silicon slab
(orange) sits on a glass substrate (gray) and is 390 nm thick. (c) The conical hole (blue) is centered in the unit
cell with a sidewall angle of 17° and has a diameter of of 385 nm at the center of the slab. An air layer (100 nm
thick, not shown) completes the cell. In ±z directions transparent boundary conditions are applied.

silicon slab, the hole, the glass substrate and the air layer of 100 nm thickness above the array. In ±Z directions
transparent boundary conditions are applied, i.e. the air and glass domains are extended via PML-layers. The
p-polarized illumination from the upper half-space is varied in wavelength λ and incidence angle θ along the
Γ -K-direction. The refractive index of silicon25 is dispersive but real-valued in the investigated wavelength range
and nair = 1, nglass = 1.53 are kept constant. The FEM discretization with fourth-order elements and accurate
PML-settings yields a system with N = 249 540 unknowns.

Previously we computed near-field enhancements as an increased electromagnetic field energy density in and
100nm above the hole normalized by the same quantity for the incident field in free space. The resonance bands
depicted in Figure 3 for p-polarized illumination from the upper half-space tilted along the Γ −K direction were
also observed in experimental reflection measurements and good agreement between experimental and numerical
results was found.15 The photonic crystal exhibits several distinct resonances corresponding to resonance modes
of the photonic crystal with high quality factors in both polarizations which strongly depend on the wavelength
and incidence angle of the illumination.

4.2 Reduced basis construction

We construct a reduced basis for the illumination parameters λ and θ in the parameter domain D = [1200 nm,
1280 nm] × [14°, 20°]. The reduced model is built for the electric field energy density integration to compute
field enhancements in the four subdomains of the array. Note that this is a quadratic output quantity and we
will often shorten it to density integration.

The training set Dtrain used for the various Greedy searches is chosen to be quite dense to adequately resolve
all features within D. It initially comprises 101×21 sampling points in an equidistant grid along λ and θ axis.

The EIM approximation is executed using a tolerance of εEIM = 1 · 10−7. For the empirical interpolation of
the system matrix QA = 3 snapshots are required leading to an estimated error of δAEIM = 7.45 · 10−12 over the
training set Dtrain. Using the same training set, we find requirements of Qb = 8 and QPP = 2 for the empirical
interpolation of the source terms and the quadratic post processes. The resulting approximation errors over
Dtrain are δbEIM = 9.42 · 10−8 and δEIM = 7.24 · 10−13 respectively.

In the offline phase 30 snapshots are computed to build the reduced basis for the parameter space D =
[1200 nm, 1280 nm] × [14°, 20°]. Figure 4b depicts the location of the chosen snapshots (crosses) in the parameter
domain. The colour coding indicates the sequence in which the snapshots were chosen (dark to light markers).
The first snapshot is chosen in the center of the parameter domain and the subsequent snapshots are determined
by the Greedy algorithm. The choice of snapshot locations follows the boundaries of D. This is in line with other
publications where similar observations were made.7 The first selected snapshots cover the extreme positions
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Figure 3: Simulated field enhancement pattern of the nanohole array on logarithmic scale. The field enhancement
is measured in the hole and 100 nm above the array and normalized with the field energy of a plane wave in
the respective volume. The incident wave is p-polarized and tilted along the Γ −K direction. The white line
marks the cut shown in b). The rectangle marks the limits of the parameter domain of the reduced order model
discussed in this section.
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Figure 4: (a): Error estimates with increasing reduced basis dimension in a semi-logarithmic plot. The residual
error estimate (black line) is normalized with the estimate for N = 1. The error estimate for the DensityInte-
gration (blue line) uses the L∞-norm. (b): Snapshot positions in parameter space are marked as crosses. They
are superimposed on a gray-scale logarithmic plot of the field enhancement. The colour of the marker indicates
the sequence of snapshot selection from darker to lighter colours. The first snapshot chosen is the center of
the parameter domain. Most snapshots are located at the boundaries of the parameter domain. A cluster of
snapshots lies along the resonance band at approximately 1250 nm.



(1200, 14) and (1280, 20). Along the resonance band we find 6 snapshots in total with the first 3 snapshots
chosen in iterations 5-7.

The reduced basis offline phase choses the snapshots according to a Greedy strategy depending on the error
estimate for the worst-resolved parameter in the training set. Hence the estimated error generally decreases with
increasing Greedy iterations. In Figure 4a the error estimates with increasing reduced basis dimension is shown
in a semi-logarithmic plot. The black line shows the normalized residual error estimate for increasing reduced
basis dimension N . The maximum of the error estimate in the first Greedy iteration is used as a normalization
factor. The error first increases to a maximum of 1 · 102 at N = 6 before dropping to a level of 1× 10−2 at
N = 8. Subsequently we observe exponential convergence of this error estimate up to a level of 3.59 · 10−9.
The increase is caused by the resonance band traversing the parameter domain at ≈ 1250 nm. As this area is
poorly approximated by the first snapshots, the error estimate increases momentarily, leading to the maximum
in Figure 4a. The dashed blue graph for the DensityIntegration depict the estimated error in the L∞-norm. The
graph exhibits an exponential reduction of the error over the training set up to approximately 2 · 10−6.

4.3 Online evaluation of the reduced basis

In the online phase the reduced basis allows to evaluate the reduced order models in milliseconds instead of
around 4 minutes a truth solution with FEM requires. Due to limited computational capacities, the field pattern
in Figure 3 is computed on a coarse, equidistant cartesian grid with 381×81 points. Within the parameter
domain of interest D lie only 33×7 values. As the resonance width of 1.5 nm is close to the distance between
two grid points it is unlikely to judge its maximum enhancement correctly.

(a) (b) (c)

Figure 5: Field enhancements computed by evaluation of the Reduced Basis in the vicinity of the resonance
wavelength as surface plots (top row) and logarithmically scaled contour plots (bottom row). The columns
correspond to using 4 snapshots (a), 5 snapshots (b) and 11 snapshots (c).

The reduced basis allows to evaluate the field enhancement over D much faster and with increased resolution
in parameter space. We focus the evaluation to the vicinity of the resonance band between 1248 nm and 1251 nm
and use 101×21 sampling points arranged in an equidistant grid. The evaluation of the reduced basis with the
full dimension takes 205.62 s for the sampling set of 2021 evaluation points. The majority of the time is spent
generating the input for the solver in Matlab (105 s). Subsequently, each evaluation takes on average 358.4 ms
on a single core for the full reduced basis dimension. This includes inversion of the reduced system, the post
processing and writing of output files. The speed up factor compared to the truth approximation is about 2300
for this example.



In Figure 5 the results of three evaluations using different numbers of snapshots are shown as surface plots on
the top and as contour plots with logarithmic scaling on the bottom. In the first column (a) the reduced basis is
evaluated using 4 snapshots. The field enhancement pattern is poorly recovered as none of the employed snapshot
lies on or near the resonance band (cf. discussion of recognition of the resonance in the error estimate above
and Figure 4b). The error contour indicates large deviations along the resonance band. As the fifth selected
snapshot lies on the resonance band, the field enhancement with 5 snapshots in the second column (b) is much
better. The error contour still indicates deviations along the band. The resonance is correctly approximated in
the third column (c) with 11 snapshots.

4.4 Error analysis

The error of reduced basis approximation can be understood and measured in different ways. In most applications
the error in the output quantities is of particular interest but also the error in field solution itself might be
of interest. We thus compare the reduced basis approximation and two sets of reference solutions for two
randomly chosen parameter ensemble Ξ1,2 ⊂ Dtrain of 500 parameters. Figure 8 shows the distribution of the
parameter locations in Ξ1 as crosses. For these parameters µ ∈ Ξ1 we solve the full FEM problem without any
approximation. Note that these reference solutions are not solutions of the truth approximation which includes
the empirical interpolation approximation of the system matrix and right-hand sides. We compute a second set
of reference solutions over the parameter ensemble Ξ2 ⊂ Dtrain, Ξ1 6= Ξ2 as solutions of the truth approximation
including the empirical interpolation for the system matrix and right-hand side.
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Figure 6: Relative error in the quadratic density integration output quantity over the reduced basis dimension
measured in the L∞ norm. There is one plot per subdomain which is indicated in the upper right corner of each
axis. The depicted errors are the maximal error (red dashed line) and the mean error (blue dashed line) over the
set Ξ1. The reference solutions fulfill the truth approximation without (left column) and with (right column)
empirical interpolation.

Quantity of interest We compare the output quantity to the reference solutions by measuring the relative
errors. In Figure 6 the relative errors over Ξ1 (left column) and Ξ2 (right column) are depicted for two quadratic



quantities, the density integration of the electric field energy density in the silicon and hole subdomains. Each
plot shows the maximum error over Ξi (red) and the mean error (blue). Both quantities exhibit an identical
convergence trend as do the omitted quantities of the remaining subdomains.

For the full FEM reference solutions shown in the left column an initial plateau of the error is followed by
a steep decrease of the error before a stagnation sets in at N = 15. The maximum errors saturate at 1 · 10−3

with the mean slightly lower. The stagnation is readily explained: The reference solutions used for comparison
is not identical to the solution approximated by the reduced basis. The reference solution used for comparison
here does not include the empirical interpolation error. Hence we cannot expect convergence of these quantities
beyond the accuracy of the solution itself. At the resonances we are close to or at this accuracy limit.

The reference solutions with the empirical interpolation included are the truth solutions approximated by the
reduced basis itself. The error in the output quantities for these references are depicted in the right column. We
observe a convergence behaviour almost identical to the previous case up to N = 10. Here, the maximal error
decreases even beyond N = 15 and finally saturates at 1 · 10−4. The error mean is almost an order of magnitude
smaller. The saturation can be attributed to the empirical interpolation error introduced in the approximation
of the quadratic post process and not to the convergence of the field solution itself as in the previous case. This
is demonstrated in Figure 7.

Field solution The output functionals are continuous functions of the field solution. Hence we do not expect
a fundamentally different result in studying the approximation error of the field solution. In Figure 7 the
convergence of the mean and maximum of the error in the H(curl,Ω) norm is shown as well as the relation
between the reduced basis error estimate and the H(curl,Ω)-error. The mean and maximum of the error over Ξ2

have identical trends and fit those of the output quantities in Figure 6. The errors initially are constant before
dropping 6 orders of magnitude at N = 7. The errors decrease exponentially beyond N = 21 up to a level of at
most 2.09 · 10−8 with a mean of 5.14 · 10−10. The drop of the error coincides with the inclusion of snapshots in
the resonance band into the reduced basis (compare Figure 4b). Once these have been included in the basis, the
errors are orders of magnitude smaller.
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Figure 7: Maximum and mean error of Ξ2 ⊂ DN
train in H(curl,Ω) norm over the reduced basis dimension (left)

and estimated reduced basis error over the error in H(curl,Ω) norm (right). The maximal and mean error
decrease with increased reduced basis dimension. The estimated and actual error are highly correlated.

The scatter plot relating estimated error and H(curl,Ω) error demonstrates the good performance of the error
estimate. The correlation coefficient ρ > 0.96 indicates a high correlation. The errors are correctly approximated
by the residual error estimate over the complete range of 15 orders of magnitude. The resonance structure of
the field solution accounts for the outliers in the bulges of the distribution. Due to the resonance, the H(curl,Ω)
norm of the reference solutions differs greatly over the parameter domain. The statistics in Table 1 show this in



Table 1: Statistics of the H(curl,Ω) norm of the reference solutions over Ξ1

mean min max median standard deviation
89.28 15.24 8840.50 17.37 525.48

detail. In relation to the norm of the solution, the approximations are orders of magnitude better than indicated
by maximum of the absolute error shown here.

Inf-sup constant estimation The residual error estimate used here does neither account for the empirical
interpolation error nor the inf-sup constant β. As demonstrated, neglecting the empirical interpolation error is
problematic at high accuracies. Neglecting the estimation of the inf-sup constant prevents the use of the term
certified in the context of our reduced basis implementation, but comes at greatly reduced computational costs.
In this example the inf-sup-constant varies between 0.18 and 0.50. The distribution of β over D shown in Figure
8 exhibits a band structure where β is constant over large areas. This naturally follows from the frequency
selective behaviour of the structure. The histogram in the same Figure shows the clustering around 0.19 and
0.23.
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Empirical interpolation error The error introduced by the affine expansion of the bilinear form with the
empirical interpolation method is measured and controlled in the L∞ norm. We investigate two errors related
to the empirical interpolation approximation for a set Ξ2 ⊂ D of 500 parameters. In the discretized system the



(a) Error ∆1 (logarithmic scale) (b) Error ∆2 (logarithmic scale)

(c) Error δ1 (logarithmic scale) (d) Error δ2 (logarithmic scale)

(e) Histogram of log10(∆1) (f) Histogram of log10(∆2)

Figure 9: (a)-(d): Scatter plots of the empirical interpolation error ∆1,2 (absolute) and δ1,2 (relative) for the set
Ξ2 ⊂ D (see text for definitions). The positions of the EIM snapshots for the matrix (diamonds) and right-hand
sides (squares) are marked blue. (e)-(f): Histograms of log10(∆1) and log10(∆2).



matrix A is approximated by Aeim and the right hand side b by beim. We compare the solutions

x = A−1b,
xeim = A−1eimbeim,

x̃ = A−1beim.

This motivates the definition of the following absolute errors

∆1 = ‖x− xeim‖H(curl,Ω),

∆2 = ‖x̃− xeim‖H(curl,Ω)

and similarly relative errors

δ1 =
∆1

‖xeim‖H(curl,Ω)
,

δ2 =
∆2

‖xeim‖H(curl,Ω)
.

The computed errors over Ξ2 are shown in Figure 9 on logarithmic scales as scatter plots together with
histograms. ∆1 (Figure 9a) exhibits its maximal values along the resonance band. We find values larger than
1 · 10−5 for ∆1 in this region with a maximum of 0.0024. However, the relative error δ1 at this parameter location
is only 2.75 · 10−7. Similarly, we observe δ1 (Figure 9c) to be at most 4.28 · 10−7 with a mean of ≈ 1 · 10−7.
The histogram Figure 9e confirms values of ∆1 > 1 · 10−5 to be the exception (23 out of 500 data points). The
median of log10(∆1) −6.02 is close to the mean of −6.16.

The distribution of ∆2 over Ξ2 in Figure 9b differs distinctly from the distribution of ∆1 (Figure 9a). A
band along the central wavelength is well resolved for all incidence angles. Similarly, at the boundaries the error
is minimal. Overall, we observe ∆2 to smaller than 2.62 · 10−8. The relative error distribution in (Figure 9d) is
almost identical, albeit with error levels four magnitudes smaller. The median and mean of log10(∆2) in Figure
9f are ≈ −12.

In Figures 9a-d the positions of the EIM snapshots for the matrix and right-hand sides are marked as blue
diamonds and squares. Their locations coincide with minima of both ∆1 and ∆2. Best observed in the relative
errors δ1 and δ2 is the structure of the errors. Along the lines connecting the central snapshot and the snapshots
on the boundaries in parameter space, the error is lowest. For the errors ∆1, δ2 we observe an anisotropy in the
error along the wavelengths of the snapshots employed for the matrices. This is of little surprise, as this error
measures the deviations in the inverse of A and Aeim acting on beim, as

∆2 = ‖x̃− xeim‖H(curl,Ω) = ‖A−1beim −A−1eimbeim‖H(curl,Ω)

= ‖(A−1 −A−1eim)beim‖H(curl,Ω).

As in this study the incidence angle and wavelength have been varied, the parameter dependency of the matrices
are not as pronounced as the right-hand side dependency. This can be observed here in the different magnitudes
of the errors ∆1 and ∆2.

We conclude that the relative errors introduced by the empirical interpolation approximation of the matrix
and right-hand side are satisfyingly controlled. However, in the vicinity of the resonance band where the condition
of the matrix is worse these errors might be substantial in absolute terms.

5. CONCLUSION

A reduced basis method based on the hp-finite element method for the electromagnetic scattering problem for
general parameter dependencies has been presented. Construction, evaluation and accuracy of the reduced basis
approximation have been discussed in detail for a photonic crystal structure made of silicon with a parameterized
illumination source. The method allows to compute online solutions in milliseconds even in the presence of
resonances. The accuracy of the approximation is reduced at the resonance positions and a lower empirical
interpolation tolerance setting might improve the accuracy in future applications.



ACKNOWLEDGMENTS

The results were obtained at the Berlin Joint Lab for Optical Simulations for Energy Research (BerOSE) of
Helmholtz-Zentrum Berlin für Materialien und Energie, Zuse Institute Berlin and Freie Universität Berlin. Fur-
ther we acknowledge support by the Einstein Foundation Berlin through ECMath within subprojects SE6 and
OT5.

REFERENCES

[1] Monk, P., [Finite Element Methods for Maxwell’s Equations ], Numerical Mathematics and Scientific Com-
putation, Clarendon Press (2003).
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