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Adaptive telecommunication network
operation with a limited number of

reconfigurations

Frank Pfeuffer∗ Axel Werner∗

July 10, 2015

Rising traffic in telecommunication networks lead to rising energy costs
for the network operators. Meanwhile, increased flexibility of the networking
hardware may help to realize load-adaptive operation of the networks to cut
operation costs. To meet network operators’ concerns over stability, we pro-
pose to switch network configurations only a limited number of times per day.
We present a method for the integrated computation of optimal switching
times and network configurations by alternating solution of a mixed-integer
program and computation of a constrained shortest cycle in a certain graph.
The algorithm can act as a framework to be adapted and applied to suitable
problems of different origin.

1 Introduction

Due to a forecasted increase in data traffic, telecommunication network op-
erators are faced with rising operation costs, of which energy consumption is
one of the main contributing factors. Conventionally, networks are operated
statically, even though the traffic volumes change considerably over the day.
The emergence of flexible hardware operation modes (sleep mode, flexible
bit-rate) enables immediate adaptation of capacities to actual network loads
and saves resources during low-demand times. As long as such flexible net-
works are not yet an established technology, network operators likely prefer
to choose from a limited number of thoroughly tested configurations for em-
ployment at carefully chosen time points instead of freely and incessantly
reconfiguring the network.

∗Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany, {pfeuffer,werner}@zib.de
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Some efforts to reduce energy-consumption through load-adaptiveness have
been taken recently, see, e.g., [2] and the references therein. While it is of-
ten assumed that networks can be reconfigured freely, the need to consider
constraints on the dynamism of the applied network configurations has also
been recognized by some: In [1], a partitioning of the time horizon into in-
tervals in which the network should not be reconfigured is part of the input
for computing energy-minimal network configurations. A model based on
random graph theory and a simple traffic profile for a day is used in [3] to
choose a limited number of reconfiguration time points and to estimate the
optimal power consumption between reconfigurations. Here, we address the
problem of finding such reconfiguration time points and network configura-
tions, optimal w.r.t. energy consumption, simultaneously by an integrated
approach.

More precisely, the problem addressed is the following: Given a demand
vector for each time point in a finite time period [0, τmax[ and a minimum
time τwait to wait between reconfigurations of the network, find at most N
(N ≤ τmax

τwait ) disjoint time intervals [τi, τi+1[ with duration ∆(τi, τi+1) ≥ τwait

partitioning [0, τmax[, as well as associated network configurations with power
consumption P (τi, τi+1) that are able to route all demands within the time
interval [τi, τi+1[ such that total energy consumption is minimized:

Eopt := min
n≤N

τ0<···<τn−1
τn=τ0

∑
0≤i<n

P (τi, τi+1) ∆(τi, τi+1). (1)

In the following we consider the discretized problem with time points τi
chosen from the set T := [0, τmax[ ∩ g Z, with time granularity g ∈ R+. We
also use an extended notation of intervals and interval lengths suitable for
the periodic setting: For τ ≥ τ ′ define

[τ, τ ′[ := [0, τ ′[ ∪ [τ, τmax[ and ∆(τ, τ ′) :=

{
τ ′ − τ if τ < τ ′,

τ ′ − τ + τmax if τ ≥ τ ′.

In Section 2 we explain how to compute the minimal power consumption
P (τ, τ ′) of the network for a time interval [τ, τ ′[ and in Section 3 we use
the power consumption values to obtain optimal time points for switching
the network to minimize energy consumption. In Section 4 we describe an
approach to compute time points and power consumption simultaneously and
present results from computations using the method.

2 Optimization of network configurations

Although our approach will also work with other models, we briefly state
the network configuration model we use: a network design problem for an
IP-over-WDM core network with capacity modules for IP routers and optical
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channels. Let V be the set of IP router sites, L a set of possible IP links,
and (dk(τ̂))k∈K the demand vector at time τ̂ ∈ [τ, τ ′[ ∩ g Z. The IP layer is
modeled as ∑

`∈L
(fk` − f̄k` ) = δki ∀i ∈ V, k ∈ K,∑

k∈K
dk(τ̂) (fk` + f̄k` ) ≤ t` ∀` ∈ L, τ̂ ∈ [τ, τ ′[ ∩ g Z, (2)

where δki = 1 if i is the source of demand k ∈ K, −1 if it is the target, and
0 otherwise. The variables fk` , f̄

k
` ∈ Z+ indicate the IP flow and t` ∈ R+ the

maximum traffic on IP link ` ∈ L within the time interval [τ, τ ′[. Let E be
a set of possible optical links, P a set of paths through E on which optical
channels can be established, and Np a set of possible modulations for optical
channels on path p. Cn denotes the capacity of module n and Wn its spectral
width. Then the optical layer is modeled by∑

p∈P`,n∈Np

Cn yp,n ≥ t` ∀` ∈ L and
∑

p∈Pe,n∈Np

Wn yp,n = ze ∀e ∈ E,

where we denote by P` the set of paths in P having the same end points as `
and by Pe the set of paths in P using edge e. The variables yp,n ∈ Z+ count
the number of modules of type n used on path p and ze ∈ Z+ the consumed
spectral width on optical link e. Let Mi be a set of IP router modules for site
i ∈ V , Ym the number of line cards provided by module m, Ai the number
of line cards at i connecting the non-core network parts, and S the spectrum
available on one fiber. The IP hardware and fibers are then modeled as∑

m∈Mi

Ym xi,m ≥
∑

p∈Pi,n∈Np

yp,n +Ai ∀i ∈ V and S ζe ≥ ze ∀e ∈ E,

where we denote the set of paths in P with one end point in i by Pi. The
variables xi,m ∈ {0, 1} indicate the IP router module used, and variables
ζe ∈ Z+ indicate the number of fibers used on optical link e. We minimize
total power consumption of the used hardware:

P (τ, τ ′) = min
∑

i∈V,m∈Mi

Em xi,m +
∑

p∈P,n∈Np

En yp,n +
∑
e∈E

Ee ζe, (3)

where Em, En, and Ee denote the power consumption of the corresponding
modules m, n and link e, respectively. Computing P (τ, τ ′) then amounts to
solving a mixed-integer program (MIP).

The following helpful property is a consequence of Eq. (2):

[τ, τ ′[ ⊆ [τ̄ , τ̄ ′[ implies P (τ, τ ′) ≤ P (τ̄ , τ̄ ′), (4)
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since the optimization problem for computing P (τ̄ , τ̄ ′) relaxes the problem
for computing P (τ, τ ′). We also remark that

P (τ, τ ′) ≥ 0 ∀τ, τ ′ ∈ T, (5)

since the coefficients in the objective are power consumption values, which
are non-negative.

3 Optimization of time intervals

We assume in this section that the power consumption of an optimal network
configuration for the time interval [τ, τ ′[, P (τ, τ ′), is known for all τ, τ ′ ∈ T .
We construct a directed graph G = (V,A) with node set V = T and arc set
A = {(τ, τ ′) ∈ T × T : ∆(τ, τ ′) ≥ τwait}, and we define arc weights

wP : (τ, τ ′) 7→ P (τ, τ ′) ∆(τ, τ ′).

Next, we relate energy-optimal partitions of the time horizon T to cycles
in this graph, i.e., to sequences (τ0, τ1, . . . , τn) of at least two nodes where
consecutive nodes are connected by an arc, (τi, τi+1) ∈ A for i = 0, . . . , n−1,
and which is closed, τn = τ0.

Theorem 1. There is an N -hop constrained shortest cycle in (G,wP ) that
corresponds to a set of time points that is energy optimal in the sense of (1).

Proof. Since time intervals correspond to arcs in G the correspondence be-
tween sets of time points as limits of intervals covering T and cycles is obvious.
Clearly, for an N -hop constrained shortest cycle C = (τ0, τ1, . . . , τn−1, τn)
with n ≤ N to induce a partition (and not just a cover) of T , it has to satisfy
|{i : τi ≥ τi+1}| = 1. Assume that |{i : τi ≥ τi+1}| ≥ 2. Then

n−1∑
i=0

∆(τi, τi+1) = |{i : τi ≥ τi+1}| τmax ≥ 2 τmax

implies that ∆(τj , τj+1) ≥ 2
n τ

max ≥ 2 τwait for some j; by periodic shift of
the order of the arcs in C and of the demands we can w.l.o.g. assume that
j = 0, τ0 = 0 and consequently τ1 ≥ 2 τwait.

Let ı̂ < n − 1 be the smallest index such that τı̂ ≥ τı̂+1. Define τ̄ :=
min{τı̂+1, b1

2 τ1c} and the cycle C ′ := (τ̄ , τ1, . . . , τı̂, τ̄) with ı̂ + 1 < n hops.
The cycle C ′ only uses arcs of C except for (τ̄ , τ1) and (τı̂, τ̄); the definition
of τ̄ makes sure that ∆(τ̄ , τ1) ≥ τwait and ∆(τı̂, τ̄) ≥ τwait, and thus all arcs
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of C ′ lie in G. For the weight of the new cycle holds

wP (C ′) = wP (τ̄ , τ1) +
ı̂−1∑
i=1

wP (τi, τi+1) + wP (τı̂, τ̄)

≤ wP (τ0, τ1) +
ı̂−1∑
i=1

wP (τi, τi+1) + wP (τı̂, τı̂+1)

≤
n−1∑
i=0

wP (τi, τi+1)

= wP (C)

since [τ̄ , τ1[ ⊆ [τ0, τ1[ and [τı̂, τ̄ [ ⊆ [τı̂, τı̂+1[ imply, with the help of Eq. (4),
wP (τ̄ , τ1) ≤ wP (τ0, τ1) and wP (τı̂, τ̄) ≤ wP (τı̂, τı̂+1), and since by Eq. (5)
wP (τi, τi+1) ≥ 0 for all i with ı̂+ 1 ≤ i < n.

Thus, we have verified that C ′ uses only arcs of G, that it has less hops as
C and therefore also satisfies the N -hop constraint, and that it is at most as
long as C. Finally, the construction makes sure that only one arc (τ, τ ′) on
C ′ has τ ′ ≥ τ such that C ′ corresponds to a partition of T .

4 Integrated optimization approach

To obtain all arc weights wP (τ, τ ′) of G, we would have to solve |A| = O(|T |2)
NP-hard network design problems. To avoid this, we need some mechanism
to distinguish relevant edges from those that are not needed in an optimal
solution or for proving its optimality. To this end, let L and U be lower and
upper bounds of P : L(τ, τ ′) ≤ P (τ, τ ′) ≤ U(τ, τ ′) for all τ, τ ′ ∈ T . Then wL
and wU can be defined analogous to wP in Section 3 as

wL : (τ, τ ′) 7→ L(τ, τ ′) ∆(τ, τ ′) and wU : (τ, τ ′) 7→ U(τ, τ ′) ∆(τ, τ ′).

For the sake of brevity we call an N -hop constrained shortest cycle with
respect to wP an N -hop P -shortest cycle (analogous for L and U). For
an N -hop L-shortest cycle CL and an N -hop U -shortest cycle CU , together
with an N -hop P -shortest cycle, which achieves the optimum Eopt in (1) by
Theorem 1, we have

wL(CL) ≤ wL(CP ) ≤ wP (CP ) = Eopt (6)

and

Eopt = wP (CP ) ≤ wP (CU ) ≤ wU (CU ). (7)

Proposition 2. An N -hop L-shortest cycle gives a lower bound on Eopt and,
analogously, an N -hop U -shortest cycle gives an upper bound on Eopt.
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This justifies Algorithm 1 for simultaneously finding time intervals and
network configurations solving (1) up to a relative target gap ε. It maintains
upper and lower bounds for wP on the arcs of G together with the N -hop
U -shortest and L-shortest cycles. The algorithm successively improves up
to the target gap ε the upper and lower bounds on arcs that belong to the
shortest cycles. If the weights of the shortest cycles with respect to the
updated bounds have a gap below ε, the algorithm returns the upper bound
cycle; the time intervals corresponding to the cycle are optimal up to ε.

Algorithm 1 Integrated optimization of intervals and configurations

Input: number of configurations N , relative target gap ε, arc set A, data necessary to
compute P (τ, τ ′) for all (τ, τ ′) ∈ A (see Section 2)
Output: at most N time intervals and configurations

1: for all (τ, τ ′) ∈ A do
2: U(τ, τ ′) := generic upper bound on P (τ, τ ′), e.g., from a heuristic
3: x(τ, τ ′) := the network configuration realizing U(τ, τ ′)
4: L(τ, τ ′) := generic lower bound on P (τ, τ ′), e.g., from LP relaxation
5: end for
6: loop
7: CU := N -hop U -shortest cycle
8: CL := N -hop L-shortest cycle
9: if the relative gap between lengths of CU and CL is below ε then

10: return CU , x(τ, τ ′) for all (τ, τ ′) ∈ CU
11: end if
12: Choose a pivot element (τ, τ ′) ∈ CU ∪ CL
13: Improve U(τ, τ ′), L(τ, τ ′) for (τ, τ ′) up to relative gap ε

(e.g., by using an integer programming solver)
and let x(τ, τ ′) be the network configuration realizing U(τ, τ ′)

14: end loop

4.1 Implementation details and improvements

Algorithm 1 is formulated rather generically and several issues are subject to
further, more precise specification. The critical subtasks are the initialization
and improvement of the bounds. Every upper or lower bound on an arc
(τ, τ ′), implies an upper or lower bound, respectively, on other arcs as well
due to Eq. (4):

Proposition 3. A lower bound for P (τ, τ ′) is also a lower bound for P (τ̄ , τ̄ ′)
for all [τ̄ , τ̄ ′[ ⊇ [τ, τ ′[. An upper bound for P (τ, τ ′) is also an upper bound
for P (τ̄ , τ̄ ′) for all [τ̄ , τ̄ ′[ ⊆ [τ, τ ′[.

In other words, in the partially ordered set build from the arc set A
and ordered by the set inclusion relation of the associated time intervals,

6



lower bounds propagate from minimal towards maximal elements while up-
per bounds propagate from maximal towards minimal elements.

Initialization. Due to Proposition 3, for obtaining lower bounds on all arcs,
it is sufficient to initialize lower bounds on arcs whose corresponding time in-
terval does not contain the time interval of any other arc (minimal elements).
Analogously, for upper bounds on all arcs, initialization is sufficient for those
arcs whose time interval is not contained in the time interval of any another
arc (maximal elements). Likewise, the improvement of the bounds on one
arc may allow to update the bounds on other arcs, which helps to avoid to
explicitly compute bounds on some arcs.

In our implementation we obtain initial upper and lower bounds on an arc
by solving the root node of the associated mixed-integer program (3) with
a start solution computed by a shortest path heuristic. In a first step, only
the arcs whose associated time intervals are minimal w.r.t. set inclusion are
initialized this way. By propagation, this implicitly initializes lower bounds
on all arcs, but upper bounds only on these minimal arcs. In fact, it may
yet be impossible for the algorithm to find an initial N -hop U -shortest cycle
CU with finite weight assuming arcs with uninitialized upper bounds have
the trivial upper bound +∞. To avoid this situation, we have to make sure
a cycle with finite U -weight exists. This can be done by simply solving the
root node (with heuristic start solution) on the arc corresponding to the
whole time horizon, which naturally contains the time intervals of all other
arcs and implies upper bounds there. The disadvantage is that all cycles C
end up with the same weight wU (C) = U(τ, τ ′) ∆(τ, τ ′), which results in a
completely arbitrary initial choice of CU .

We choose a different procedure, which is inspired by the observation that
power consumption P (τ, τ ′) roughly depends (affinely) linear on the demand
sum of the component-wise maximum demand vector over the time period
[τ, τ ′[, see Fig. 1. Thus, we first compute the N -hop shortest cycle Cd with
respect to the edge weights

wd(τ, τ
′) =

∑
k∈K

max
τ̂∈[τ,τ ′[

dk(τ̂),

which are trivial to obtain, and then solve the root node (with heuristic start
solution) on each arc of the cycle Cd.

Choice of pivot elements. A further decision is the choice of the pivot
element in Step 12 of Algorithm 1. We consider the following criteria to
determine priorities for the time intervals in CU ∪ CL:

1. whether (τ, τ ′) ∈ CL;

2. whether the associated mixed-integer program’s root node has not yet
been solved on (τ, τ ′);
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Figure 1: Power consumption P (τ, τ ′) as a function of the demand sum of the maxi-
mum traffic demand vector wd(τ, τ

′) for various time intervals [τ, τ ′[ in the two
networks abilene (gray) and geant eu15 (black)

3. whether the relative gap

γ(τ, τ ′) :=
U(τ, τ ′)− L(τ, τ ′)

U(τ, τ ′)

between upper and lower bound on (τ, τ ′) is above ε;

4. and the magnitude of the relative gap γ(τ, τ ′) itself.

Let λ(τ, τ ′), ρ(τ, τ ′), α(τ, τ ′) ∈ {0, 1} indicate with a 1 whether Criterion 1,
2, and 3, respectively, hold true. This defines a priority vector

π(τ, τ ′) := (λ(τ, τ ′), ρ(τ, τ ′), α(τ, τ ′), γ(τ, τ ′));

we choose the arc with lexicographically largest π-vector as our pivot element.
This prioritizes improving the lower bound cycle CL and the global lower
bound wL(CL), while first improving the gap on arcs whose initial bounds
came from propagation from another arc and then on the remaining arcs
with high gap. To improve the bounds on arcs with yet unsolved root node
we solve the root node, otherwise we use a mixed-integer programming solver
to improve the bounds up to the target gap ε.

Early termination of solvers. While the algorithm is improving bounds, it
becomes apparent that more and more arcs do not have to be considered fur-
ther, because they either have bounds of satisfactory quality or their bounds
indicate that they have become obsolete. More precisely, an arc (τ, τ ′) be-
comes obsolete if the N -hop L-shortest cycle C through this arc has a weight
above the cutoff value (1− ε)wU (CU ). An arc can already become obsolete
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while a mixed-integer programming solver is improving the bounds on it,
since changing the bounds affects the weights of C and CU . In this case the
solver can be terminated early to save some solver time, in particular during
the final iterations of the algorithm.

Computation of cycles. In each iteration, Algorithm 1 needs to compute
N -hop constrained shortest cycles with respect to wL and wU . Note that
because of Eq. (5) we can assume that the arc weights wL and wU are non-
negative. Therefore, computing the cycles can be done in polynomial time by
the following procedure: First, compute (N − 1)-hop shortest paths between
all pairs of nodes with a suitable algorithm, as in [6, Ch. 3, Sec. 12], for
instance. Then, for each node pair (τ, τ ′) add the additional arc (τ ′, τ) to the
(N − 1)-hop shortest path from τ to τ ′ and thus form cycles. Finally, choose
the shortest of these cycles. This procedure completes within O(|T |3 logN)
steps.

4.2 Computational Results

For computational studies on practical instances, we adopted two exemplary
networks from SNDlib [7], abilene (12 nodes) and geant, which we trans-
formed into a 15-node version geant eu15. For both networks, measured
demand curves are available, which were averaged to yield day curves with
1 h or 1⁄2 h granularity and scaled to match the capacities of today’s hardware.
Technical data on network devices, such as link length restrictions and power
consumption, were taken from [4, 5].

Solutions for these instances with N = 1, . . . , 6 and a waiting time of
4 hours as well as the maximum number of configurations allowed by the
demand granularity (N = 24 or N = 48) were computed, optimal up to a
target gap of ε = 1% for abilene and ε = 2% for geant eu15. Table 1
lists for each instance the number of arcs in the corresponding graph G, the
number of arcs for which initial lower and upper bounds were computed by
solving only the branch-and-bound root node of the network design problem,
the number of arcs for which the network design problem was solved aiming
at the target gap, the number of arcs on which the solution process was
terminated before reaching the target gap, the total time spent by the MIP
solver1, and the energy consumption of the computed solution.

The results show that by employing Algorithm 1, the computationally ex-
pensive network design problems have to be solved up to the target gap for
only a small fraction of all arcs of G, maximally for about 2 % in the cases
whereN ≤ 6 and still less than 4 % when unlimited reconfiguration is allowed.
For a number of these arcs, the solver could be terminated before the target

1The MIP solver used was CPLEX 12.6; all computations were carried out on Ubuntu 14.04 Linux
systems using Intel Xeon E3-1245 3.4GHz quad-core CPUs, 32GB of memory.
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geant eu15 1 – 1 1 0 98 s 21.1 MW
granularity: 1 h 2 4 h 28 1 0 1705 s 17.1 MW
# arcs: 409 3 4 h 36 2 0 1740 s 16.4 MW
target gap: 2 % 4 4 h 35 4 0 5196 s 15.7 MW

5 4 h 33 5 0 5644 s 15.3 MW
6 4 h 24 4 0 11420 s 15.2 MW

24 – 24 14 1 9497 s 14.1 MW

geant eu15 1 – 1 1 0 5385 s 20.7 MW
granularity: 1⁄2 h 2 4 h 62 2 1 10664 s 16.5 MW
# arcs: 1585 3 4 h 91 12 7 39643 s 15.9 MW
target gap: 2 % 4 4 h 59 4 0 26744 s 15.1 MW

5 4 h 59 5 0 16624 s 14.8 MW
6 4 h 49 5 1 10053 s 14.7 MW

48 – 48 35 1 25566 s 13.5 MW

abilene 1 – 1 1 0 3137 s 28.4 MW
granularity: 1 h 2 4 h 99 7 4 3593 s 26.6 MW
# arcs: 409 3 4 h 64 8 3 1903 s 25.6 MW
target gap: 1 % 4 4 h 47 5 2 958 s 24.9 MW

5 4 h 32 6 1 1167 s 24.5 MW
6 4 h 31 8 1 1612 s 24.5 MW

24 – 24 13 1 999 s 22.7 MW

abilene 1 – 1 1 0 2479 s 25.9 MW
granularity: 1⁄2 h 2 4 h 264 29 21 20631 s 24.5 MW
# arcs: 1585 3 4 h 131 21 11 13257 s 23.5 MW
target gap: 1 % 4 4 h 130 33 17 8652 s 23.1 MW

5 4 h 90 22 7 7195 s 22.8 MW
6 4 h 81 23 2 8492 s 22.8 MW

48 – 48 38 1 2881 s 20.7 MW

Table 1: Computational results for four instances and different maximum number of
configurations N , and minimum time to wait between reconfigurations τwait:
the number of arcs on which initial upper and lower bounds were computed,
the number of arcs on which the network design problem was solved aiming at
the target gap, the number of arcs on which the latter was terminated before
the target gap was reached, the total time spent by the MIP solver, and the
optimized energy consumption
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 T

Figure 2: Computational effort to solve the various subproblems in the graph G for net-
work abilene (granularity 1 h, 6 configurations, waiting time 4 h, target gap
1 %); broader arcs indicate longer solution times for the respective subprob-
lems, red arcs indicate subproblems that were solved up to large gap, green
arcs such with gaps near or below the target gap ε, shaded arcs represent sub-
problems that need not be considered at all; the final upper bound cycle is
marked by dots, the final lower bound cycle by circles

gap was reached due to the arc becoming obsolete while the solver was im-
proving the bounds; this is particularly true for the abilene instances, where
about one third of the solver runs were terminated early. The less expensive
computation of lower and upper bounds by heuristics and LP relaxations
was necessary for maximally 9 % of all arcs for the geant eu15 network and
up to 25 % of all arcs for abilene. As for the total computation time, no
clear trend can be derived. It is obvious, however, that refining the granular-
ity results in substantially higher computation times. For the slightly larger
geant eu15 network, the algorithm consumes more time on average than for
abilene, even though aiming at a higher target gap.

Figure 2 visualizes the effort spent on solving the individual problems
associated with different arcs of the graph G for a typical run. During the
total running time of 1612 s, less than 10 % of all arcs in the graph had to
be touched and the time for solving the respective subproblem exceeded one
minute only for five arcs. For a number of arcs, a solution with large gap
(drawn in red), mostly from solving only the root node, was sufficient to
obtain an overall near-optimal solution.

Figure 3 shows the power consumption of the optimal solutions (w.r.t.
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Figure 3: Traffic demands (shaded) and total power consumption over time for static
network (dashed) and at most 6 reconfigurations with a waiting time of 4 h
(solid); abilene (left) and geant eu15 (right)

target gap) for N = 6 for abilene and geant eu15 with 1⁄2 h granularity, as
well as the traffic curves in these networks. Compared to the total energy
consumption of a static network over the day, dynamic reconfiguration allows
for considerable energy savings, given by the difference of the integrals of the
dashed and solid lines. For abilene this amounts to savings of about 12 %
and for geant eu15 of about 29 %. Table 1 lists the energy consumption
of all considered instances. With increasing number of configurations N
the energy savings increase, where the biggest increase in savings happens
already for small N . Comparing the fully dynamic networks (N = 24 or
N = 48) to those with the highest possible number of configurations with
a 4 hour waiting time (N = 6), it turns out that the benefit of having to
obey no waiting times amounts to about 5–8 percentage points of additional
savings.

5 Outlook

In Algorithm 1, the specific nature of the optimization problems providing
the values P (τ, τ ′) is more or less irrelevant. Hence the algorithm can be
applied not only in network design, but also for other subproblems that
satisfy certain conditions. More precisely, Theorem 1 and Algorithm 1 are
applicable for all problems, for which the total objective is expressible as the
sum of the objectives of the subproblems and these objectives satisfy the
conditions in Eqs. (4) and (5).

To generalize this even further, assume the overall objective can be ex-
pressed as

min
n≤N

τ0<···<τn−1
τn=τ0

Φ(τ0, . . . , τn)
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for a function Φ : T≤N+1 → R, where T≤N+1 is the set of all n-tuples, with
n ≤ N + 1, of time points in T . If we define the length of a cycle by its value
under Φ then Theorem 1 holds, provided that the following monotonicity
condition is satisfied for all (τ0, . . . , τn), (τ ′0, . . . , τ

′
n′) ∈ T≤N+1 with n ≤ n′:

τ0 ≥ τ ′0, τ1 = τ ′1, . . . , τn−1 = τ ′n−1, τn ≤ τ ′n
=⇒ Φ(τ1, . . . , τn) ≤ Φ(τ ′1, . . . , τ

′
n′). (8)

For the objective considered in this paper,

Φ(τ0, . . . , τn) :=
n−1∑
i=0

P (τi, τi+1) ∆(τi, τi+1),

Condition (8) is satisfied due to Eqs. (4) and (5).
Another setting in which Algorithm 1 can be applied, originates from the

context of network fault tolerance. Assume that we want to design a net-
work configuration schedule with a limited number of reconfigurations and
minimum waiting times between these that minimizes the probability of a
network failure. Suppose that with each network configuration there is asso-
ciated a normalized failure probability, which represents the probability that
a failure occurs in said configuration within a unit time interval of duration 1.
For a given time period [τ, τ ′[, let p(τ, τ ′) be the minimal normalized failure
probability of all network configurations that are able to route all demands in
[τ, τ ′[. Then the total failure probability of a schedule over the time horizon
is

Φ(τ0, . . . , τn) := 1−
n−1∏
i=0

(1− p(τi, τi+1))∆(τi,τi+1)

where we assume that failure probabilities for different configurations and
intervals are independent. Since a configuration for a time interval [τ̄ , τ̄ ′[
is also able to route the demands of any contained time interval [τ, τ ′[ ⊆
[τ̄ , τ̄ ′[, we have p(τ, τ ′) ≤ p(τ̄ , τ̄ ′). Hence, Φ again satisfies the monotonicity
condition (8).

Other objectives that would satisfy the necessary condition might be of
interest, such as bottleneck problems minimizing the value of Φ(τ0, . . . , τn) =
maxn−1

i=0 v(τi, τi+1) for some suitable function v. Objectives like these may
arise in multilayer network design when the number of hops of logical links
in the physical network or the number of used lightpaths on optical links
should be minimized.

Algorithm 1 provides a framework for computing an optimal collection
of solutions to the subproblem considered, and as such it can be extended
with all kinds of heuristics and efficient methods to compute lower bounds
and (close-to) optimal solutions for the problem at hand. Additionally, the
proposed procedure for choosing the pivot arc (τ, τ ′) in Step 12 is only one
possibility; various other strategies for this step are devisable. Such improve-
ments might speed up the general algorithm considerably.
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