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G-PCCA: Spectral Clustering for Non-reversible

Markov Chains

Marcus Weber∗and Konstantin Fackeldey†,
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Abstract Spectral clustering methods are based on solving eigenvalue prob-
lems for the identification of clusters, e.g., the identification of metastable sub-
sets of a Markov chain. Usually, real-valued eigenvectors are mandatory for
this type of algorithms. The Perron Cluster Analysis (PCCA+) is a well-known
spectral clustering method of Markov chains. It is applicable for reversible
Markov chains, because reversibility implies a real-valued spectrum. We extend
this spectral clustering method also to non-reversible Markov chains and give
some illustrative examples. The main idea is to replace the eigenvalue problem
by a real-valued Schur decomposition. By this extension, non-reversible Markov
chains can be analyzed. Furthermore, the chains need not have a positive sta-
tionary distribution. And additionally to metastabilities, dominant cycles and
sinks can be identified, too.
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1 Introduction

The analysis of Markov chains is used to figure out the transition behavior
in many fields of applications, ranging from the analysis of disease evolution in
clinical data to molecular simulation. These data can be interpreted as elements
of a a typically large space.

More precisely, {Xi, i ∈ N} is a sequence of random variables with values
xi in the finite state space Γ = {1, . . . , N}. A large number N of states makes
it difficult to reveal the general transition behavior of the chain. Clustering
aims at a reduction of the number of states n � N by still describing the un-
derlying stochastic process correctly. Under the assumption that the stochastic
process possesses metastable set, which are subsets in the state space, where
the system or stochastic process spends much time before switching to a dif-
ferent metastability, the clustering is used to identify the rapidly mixing parts
and separate them from each other. In this context spectral clustering meth-
ods have celebrated quite great success [MLKCW03, Shu03, WL07, VLKG03,
LBDD01, DHFS00, DW05], however besides the assumption of metastability,
it has to be assumed that the underlying Markov chain is reversible, i.e., the
transition matrix has a real-valued spectrum. Reversibility means that revers-
ing the stochastic process leads to the same transition behavior. This property
allows for a clustering in terms of metastable sets.

The authors of [FMSV07] proposed - and further developed by [Tif11] - to
replace the eigenvalue problem by a singular value decomposition. Moreover,
in [Jac10] it is claimed that the singular vectors do not have the relevant sign
structure to identify the metastable states, thus it is not preserving the dynam-
ical structure of the Markov chain. Nevertheless this method has been applied
in [TBHY13] however in the context of identifying the collective variables.

In [Fil91] the eigenvalue bounds of the mixing rates for reversible Markov
chains have been extended to non- reversible chains by reversiblizing the non-
reversible matrix. Based on this clustering methods for non-reversible processes
[RM07, HMS04] but also other approaches [Jac10, SS14] have been developed.

In this article we propose a novel clustering method (G-PCCA) aiming at
grouping states of a Markov chain by their transition behavior by replacing the
eigenvalue decomposition with a Schur decomposition. It turns out that this
novel method offers a powerful analysis of the Markov chain which also includes
the identification of coherent subsets and the freedom of regarding an arbitrary
initial distribution of states. Thus this novel method covers a broader class of
applications by including non reversible Markov chains. Since this method is a
generalization of PCCA+ towards non-reversible processes it is named G-PCCA
(Generalized-Perron Cluster Cluster Analysis).

2 Markov chains and clustering

A finite autonomous Markov chain is given by a sequence X0, X1, . . . of random
variables Xk, k = 0, 1, 2, .... Since the set of all states is finite, a transition
probability matrix (Pij)i,j=1,...,N can be given by

Pij = P(Xk+1 = j;Xk = i) i, j ∈ {1, . . . , N}, k ∈ N
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where P denotes the conditional probabilities for reaching state j in 1 step of
the Markov chain, if the process has started in i. Obviously this matrix is
non-negative and stochastic, i.e.

Pij ≥ 0 ∀i, j
N∑
j=1

Pij = 1 ∀j.

Let us furthermore denote the initial probabilities by ηi = P(X0 = i), such that
the vector η = (η1, ..., ηN ) is the initial distribution.

The transition matrix P (k) of the kth step then meets the semi group prop-
erty given by

P (k) = (P (1))k = P k. (1)

Equation (1) is also named “markovianity”1. For the Markov chain represented
by P , we aim at a clustering, i.e. to find a projection of a Markov chain from a
high number of states N to a low number of clusters n.

The Markov chain between the N represented by an (N × N)-transition
matrix P is, thus, replaced by a (n × n)-matrix PC providing the transition
behavior between the n clusters.

A clustering can also be interpreted as a projection G(P ) of the matrix P
onto n clusters. However, in order to guarantee that this projection is suitable,
it should also meet (1),i.e.

(G(P ))k = G(P k). (2)

In general, the projection of a Markov chain is not markovian (cp Fig 1)
and thus the stochastic process induced by the n×n transition matrix between
the clusters is in general not a Markov process. Markovianity of the projection

Figure 1: A Markov chain (red) with N states is projected to a chain (green)
with n clusters. While there exists a transition matrix for the Markov chain,
the projected chain is not markovian.

1This is a consequence of the Chapman Kolmogorov equation.
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G(P ) can be guaranteed, if the projection meets

• invariant subspace condition: there exists a matrix X ∈ RN×n (for a
suitable choice of n) which meets

PX = XΛ (3)

for Λ ∈ Rn×n

• orthogonaility relation
XTDηX = In×n, (4)

where Dη = diag(η1, ..., ηN ) and Λ ∈ Rn×n, i.e. the X are spanning an n
dimensional invariant subspace of P .

In other words: Conditions (3) and (4) of a projection G are sufficient for (2).
We remark, that a singular valued decomposition of P does not meet (3)

and consequently a Galerkin projection leads to a projection error [SS14, Chap-
ter 5.2]. In the next section we show how the orthogonality relation and the
invariant subspace condition is realized for reversible Markov chains.

2.1 Reversible Markov Chains

If we assume an irreducible, aperiodic and reversible Markov chain then it has
an unique vector π = (π1, ...., πN )T such that

πTP = πT and

N∑
i=1

πi = 1,

where π is an invariant distribution or equilibrium distribution. If one takes
π as initial distribution, then the chain is stationary. We denote by Dπ =
diag(π1, ..., πN ) the matrix with the invariant distribution on its diagonal. For
stationary Markov chains the detailed balance condition given by

πiPij = πjPji (5)

is a necessary and sufficient characterization of reversibility in terms of transi-
tion probabilities and equilibrium distribution. In this special case, (3) is the
eigenvalue equation of P , where Λ is the diagonal matrix of the real eigenvalues
near the Perron root λ1 = 1 and X are the corresponding real eigenvectors.
Since the eigenvalues are real, they can be arranged in an descending order
(1 = λ1 ≥ λ2 ≥ λ3 . . .). The orthogonality relation is only assured, if the initial
distribution equals the equilibrium distribution, i.e., η = π in (4). The relation
between eigenvalues of P close to 1 and metastable stets of the Markov chain has
been used by several authors in the past [Sch99, DHFS00, DW05, Web06, SS14].

The projection problem (G(P ))k 6= G(P k) has been discussed for the case of
reversible Markov chains: In [Web06] this problem has been solved by looking at
the Markov chain as a sequence of distributions instead of a sequence of states
[Web02, DW05, Web06]. If η ∈ Rn is a probability distribution at a certain
step of the chain, then η̂ = PT η denotes the probability distribution of states
at the next step of the Markov chain. How does projection and propagation of
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distributions commute? This problem is solved by a subspace projection, such
that the projection error vanishes. The projection from N states to n clusters
can be expressed by a membership matrix C. The non-negative entries Cij of
this matrix denote, how probable (or how intensive) the state i of the Markov
chain belongs to the cluster j of the projection. The row-sum of this matrix is
1. One part of solving the projection problem is: The membership matrix is
constructed via PCCA+, i.e., C = XA is a linear combination of the leading
eigenvectors of P , where X ∈ RN×n is the matrix of the n leading eigenvec-
tors and A ∈ Rn×n is the non-singular transformation matrix computed (as a
solution of an optimization problem) by PCCA+ [Web06, DW05]. PCCA+ is
a well-established method for clustering metastable, reversible Markov chains.
This method uses the dominant eigenvalues of the corresponding transition ma-
trix. These eigenvalues are real (because of the reversibility of P ) and they are
close to the Perron root λ = 1 . The Perron root is algebraically and geomet-
rically simple, if the matrix is irreducible and the Markov chain is aperiodic.
If η is an initial distribution of states, then ηc = CT η ∈ Rn is its projection
onto the clusters (thus the projection matrix is Πf = CT = ATXT ). In the re-
versible case, the irreducible and aperiodic matrix is projected via the following
equation:

Pc = (CTDπC)−1(CTDπPC), (6)

where Dπ ∈ RN×N denotes the diagonal matrix constructed by the entries of
the vector π ∈ RN , being the invariant density of P . Note that in the case of a
reversible Markov chain, the left eigenvectors of P are then given by

Y = DπX,

such that the projection (6) clearly meets the orthogonality relation (4). Beyond
that, orthonormality holds via Y TX = XTDπX = I , where I ∈ Rn×n is the
unit matrix. We emphasize, that in this setting, the reversibility of the Markov
chain implies the orthogonality relation. By assuming that the starting distri-
bution is a linear combination of the left eigenvectors of P , i.e.,η = Y α , where
α ∈ Rn is the vector of linear coefficients of this combination the projection also
meets the invariance condition (3). By the previous equations we get

ATα = ATXTDπXα = CTY α = CT η = ηc.

We can thus define Πb = DπXA
−T as the back projection, such that η = Πbηc =

DπXA
−T ηc and α = XT η. We are then in a position to prove the following

Lemma 1. The propagation of the projected distributions commutes with the
projection of the propagated distributions, i.e.

Πb(PTc )kΠfη = (PT )kη.

Proof: Let the number of steps be given by k ∈ N , then

Πb(PTc )kΠfη = DπXA
−T [(CTPTDπC)(CTDπC)−1]kATXT η

= DπXA
−T [(ATXTPTDπXA)(ATXTDπXA)−1]kATXT η

= DπXA
−T [(ATΛA)−T ]kATXT η

= DπXΛkXT η = DπXΛkα = (PT )kDπXα

= (PT )kη,
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where in Λ ∈ Rn×n is the diagonal matrix of the the dominant real eigenvalues.
�
Lemma 1 shows that for the distributions propagated via PT , the projected
distributions are propagated via PTc (without error). Since the projection ηc =
CT η is a non-negative vector with entry sum 1, it can be interpreted as a
distribution on the n clusters. Calculations [Web11] also show, that Pc has
the row-sum 1 and, thus, can be understood as the transition matrix of the
corresponding projected Markov chain.

Summing up, Lemma 1 shows, that the choice a projection which meets the
invariance condition (3) and orthogonality relation (4) leads to a commuting
diagram (Fig. 1). In this subspace projection, the initial distribution of the
system is given by a linear combination of the left eigenvectors of P . The
projected distribution ηc = CT η is propagated by a matrix PTc , which can be
computed according to (6). The diagram commutes, if the membership matrix
C = XA is a linear combination of the right eigenvectors of P .

2.2 Non-reversible Markov chains

In the foregoing section the orthogonality relation in the context of eigenvectors
was realized by assuming that the underlying process is reversible. In fact
Lemma 1 is only true if the underlying process is reversible. By resigning the
reversibility of the underlying Markov chain, an interpretation of a transition
matrix in terms of unconditional transition probabilities is not possible since
then the eigenvectors do not meet the invariance condition (3) and the subspace
condition (4) in general.

Moreover for non reversible processes, the spectrum of its corresponging
transition matrix is in general not real but complex.

We thus take advantage of a Schur decomposition. Let therefore X̃ be n
Schur vectors of P̃ = D0.5

η PD−0.5
η , then we have

P̃ X̃ = X̃Λ

⇐⇒ D0.5
η PD−0.5

η X̃ = X̃Λ

⇐⇒ PD−0.5
η X̃ = D−0.5X̃Λ

⇐⇒ PX = XΛ, X = D−0.5
η X̃.

We have thus shown, that a Schur decompostion meets the invariant subspace
condition (3) and the orthogonality condition (4). As a consequence, the pro-
jection

G(P ) = (CTDηC)−1(CTDηPC)

with Schur vectors X meets (2), to show this, we have the following

Theorem 1. Let G(P ) = (CTDηC)−1(CTDηPC), where X are the Schur
vectors according to (7) and C = XA and Dη be some initial distribution of the
Markov chain, then

(G(P ))k = G(P k).
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Proof:

G(P ) = (CTDηC)−1(CTDηPC)
= (ATXTDηXA)−1(ATXTDηPXA)
= (ATXTDηXA)−1(ATXTDηXΛA)
= (ATA)−1(ATΛA)
= A−1ΛA,

such that G(P ) meets the desired criterion:

(G(P ))k = (A−1ΛA)k = A−1ΛkA = G(P k).

�

Remark 2.1. Note that the Markov chain in Theorem 1 does neither need to
be aperiodic nor irreducible. Moreover - in contrast to the reversible case - the
initial distribution η does not have to be the stationary distribution. Theorem 1
may also be interpreted as commutativity between propagation in time (k steps)
and discretization G, which is a desired property for long term predictions.

In the real Schur decomposition the matrix Λ is an upper triangle matrix
with possibly 2 × 2-blocks on its diagonal. The remaining problem is, that an
arrangement of the Schur decomposition in descending order (of eigenvalues) is
no longer possible. In [Bra02] it has been proposed to arrange the Schur-values
according to a absolute distance to a given target value z. For the reversible case
z = 1 should be chosen, to guarantee that PC is close to unit matrix allowing for
a clustering into metastable states (the eigenvalues of PC correspond to these
selected values).

For the non reversible case, however, we can apply another method by ar-
ranging the Schur-values according to the distance from the unit circle. In this
case PC has eigenvalues close to the unit circle and, thus, similar to a permuta-
tion matrix, which can be seen as a clustering of states in the sense of coherent
sets [FPG14]. This feature of G-PCCA is shown in the section of illustrative
examples below.

2.3 G-PCCA

So far we have not yet explained how to obtain the matrix A. In the framework
of G-PCCA, this step is identical to PCCA+ [Web06, DW05]. The problem
of finding the matrix A can be converted to an optimization problem. More
precisely, G-PCCA finds a transformation matrixAmapping the column vectors
of Schur vectors X, spanning the invariant subspace, to the basis C = XA
used for the projection G(P ). Finding an optimal n × n-basis transformation
matrix A is the aim of this algorithm. As input the matrix X of the invariant
subspace is needed. The output of G-PCCA is the above mentioned matrix of
membership vectors C. The column vectors of both matrices, X and C, span
the same subspace. Thus, G-PCCA provides an invariant subspace projection of
P , such that the subspace spanning vectors C have an interpretation in terms of
membership vectors. To do so, the matrix C has to meet the following properties
explaining the simplex structure of C:
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•
∑nC

J=1 CiJ = 1 (partition of unity)

• CiJ ≥ 0 ∀i ∈ {1, ..., n} (positivity)

• C = XA, A non-singular, (invariance).

These condition imply the feasible set of transformations A. The selection of A
is realized by a convex maximization problem [DW05].

3 Examples

In this section we investigate two types of examples. These examples will show,
that G-PCCA is indeed a powerful generalization of PCCA+. Instead of com-
puting a projected Markov chain of a reversible metastable processes, it can
be used to rigorously analyze non-reversible chains or in order to find transient
states which have a common target set of states.

3.1 Illustrative metastability example

In the first example, we analyze the following transition network in Figure 2.
The corresponding transition matrix has one real eigenvalue (λ1 = 1) and 8

Figure 2: Transition network with three metastable states, but with a directed,
non-reversible transition pattern.

complex eigenvalues. Out of these, the two eigenvalues with the highest real
absolute value are λ2,3 = 0.9483 ± 0.0279i. These values are close to λ1 = 1
and indicate in total three metastabilities. Analyzing this network via PCCA+
is impossible. If we make it reversible before applying PCCA+, we spoil the
directed structure of the network, see Fig. 3.

In contrast to that, G-PCCA can directly be applied to the Schur vectors of
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Figure 3: Applying PCCA+ to the network in Fig. 2 after making it reversible.
The figure shows the membership χ of the 9 states to the three clusters (colored
curves). One can see that state 3 belongs to the “green” and “red” cluster with
the same grade of membership, although, the directed graph has only direct
transitions from the “blue” to the “red” cluster.

the system. We assume an equal initial distribution. Then, Λ is given by

Λ =

1.0000 0 0
0 0.9483 0.0279
0 −0.0279 0.9483

 ,

which corresponds to the eigenvalue analysis. After taking a proper linear com-
bination of the leading Schur vectors, the result of G-PCCA clearly shows the
different grades of membership that reflect the directed structure of the network,
see Fig. 4.

3.2 Add-on of G-PCCA compared to PCCA+

In order to illustrate which kind of results are to be expected by G-PCCA, we
construct a random matrix. b). First, three 10-by-10 random matrices A1, A2,
and A3 are constructed using the Matlab-routine [MAT10] “rand(10,10)”. An-
other 10-by-10 zero matrix Z is constructed such that “C=[[Z, A1,Z];[Z,Z,A2];[A3,
Z,Z]];”. After adding a random matrix with entries between 0 and 0.1 to C,
the rows of this matrix are rescaled such that the resulting matrix P is stochas-
tic. In Fig. 5 this transition matrix is depicted with its clearly visible block
structure.

According to theory, any positive initial distribution η is possible. We will
chose a random initial distribution. The rescaled matrix used for a Schur de-
composition is given by P̃ = D0.5

η PD−0.5
η . This matrix has a partial real Schur
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Figure 4: Applying G-PCCA directly to the network in Fig. 2. The figure
shows the membership χ of the 9 states to the three cluster. One can see that,
e.g., state 3 belongs to the “green” and “red” cluster with a different grade of
membership, as we expect it from the directed graph.

decomposition of the form P̃ X̃ = X̃Λ with a non-diagonal matrix Λ. In our
realization:

Λ =

1.0000 −0.0267 −0.0928
0 −0.3884 −0.6836
0 0.6426 −0.3884

 .

Besides the diagonal element “1” (Perron root) there is a 2-by-2-block on the
diagonal of Λ, which belongs to a complex eigenvalue pair −0.3884 ± 0.6628i
near the unit circle. The absolute values of these three eigenvalues are well
separated from the other absolute values. The matrix of rescaled Schur vectors
used for G-PCCA is constructed by X = D−0.5

η X̃. Note , that the first column
vector of X is constant, each element is “1”. This is a necessary condition for
the G-PCCA algorithm. Using this matrix for G-PCCA provides a 30-by-3-
membership matrix C = XA. The three columns of this matrix are plotted in
Fig. 6. They correspond to the three different clusters of states which have a
similar transition pattern. This transition pattern is revealed by computing

PC =

 0.0417 0.8543 0.1041
0.0993 0.0591 0.8416
0.8416 0.0762 0.0823

 ,

where the highest entries are marked. This matrix can be interpreted as the
transition matrix between the three clusters of states. Note, that this matrix is
not diagonal dominant.
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Figure 5: A realization of a 30-by-30-transition matrix b). Gray scale of the
entries from white to black.

4 Conclusions

The Galerkin projection of a Markov operator P onto a coarse grained matrix
PC has to be chosen with care, since in general the markovianity is not pre-
served, which is necessary to map the correct dynamics. We showed, that each
projection, which meets the invariant subspace condition (3) and the orthogo-
nality relation (4) preserves markovianity. The novel method G-PCCA is also
capable to treat non-reversible Markov chains, by using a Schur decomposition.

Acknowledgment. The work of Marcus Weber has been done for the DFG
Collaborative Research Center 765.
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