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Timetabling and Passenger Routing in Public

Transport§

Ralf Borndörfer∗ Heide Hoppmann∗ Marika Karbstein∗

Abstract

The task of timetabling is to schedule the trips in a public trans-
port system by determining periodic arrival and departure times at
every station. The goal is to provide a service that is both attractive
for passengers and can be operated economically. To date, timetable
optimization is generally done with respect to fixed passenger routes,
i.e., it is assumed that passengers do not respond to changes in the
timetable. This is unrealistic and ignores potentially valuable degrees
of freedom. We investigate in this paper periodic timetabling models
with integrated passenger routing. We propose several models that
differ in the allowed passenger paths and the objectives. We compare
these models theoretically and report on computations on real-world
instances for the city of Wuppertal.

1 Introduction

The strategic planning process in public transport is usually subdivided into
consecutive planning steps of network design, line planning, and timetabling.
In each of these planning steps there are two main objectives, namely, min-
imization of operation costs and minimization of passenger discomfort. The
latter objective is usually measured in terms of quantities such as travel time,
number of transfers, or transfer time, that depend on travel choices, whose
forecast in turn requires a consideration of human behavior. This is clearly
just as difficult as it is important. The integration of passenger behavior into
network design, line planning, and timetabling models is therefore a major
challenge in public transit optimization. First approaches have been made
in the area of line planning: Integrated line planning and passenger routing
models have been proposed by Schöbel and Scholl (2006), Borndörfer et al
(2007), and Borndörfer and Karbstein (2012), the last reference reports also
on successful computations.

§Supported by the Einstein Center for Mathematics Berlin (ECMath) and the Research
Center Matheon “Mathematics for key technologies”, project B-MI3.
∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany;

Email borndoerfer@zib.de, hoppmann@zib.de, karbstein@zib.de

1



Timetable optimization has mostly been studied with respect to a fixed
passenger routing based on path lengths in the network, see, e. g., Liebchen
(2006), Lindner (2000), and Nachtigall (1998). Passengers, however, usu-
ally choose their routes depending on the timetable. This topic has been
taken up only recently. For aperiodic timetabling, Schmidt (2012) studies
the complexity of integrating passenger routings. She develops an exact so-
lution approach for the case where the first and last train of each passenger
path are fixed, see also Schmidt and Schöbel (2014). The only approaches
to integrated passenger routing and periodic timetabling that we are aware
of are the Master theses of Kinder (2008), Lübbe (2009), and Siebert (2011).
Kinder investigates a heuristic approach that is based on a time-expanded
event-activity network. Iteratively computing timetables and rerouting the
passengers, the method converges towards a local optimum. Lübbe proposes
an integrated quadratic model and linearizes it to obtain an integer linear
programming model. His computations indicate a potential for travel time
improvements but he could only deal with very small instances. Siebert
provides worst case error analyses and compares an integrated integer pro-
gramming model with an iterated approach.

The aim of this paper is to investigate the impact of routing decisions
on timetable optimization in analogy to the work of Pfetsch and Borndörfer
(2006) for the line planning case. To this purpose, we propose an integer
programming approach to the integrated timetabling and passenger routing
problem. We compare the differences between arbitrary passenger routings
and passenger routings on shortest paths w.r.t. the network. Like most
passenger-oriented models, these approaches minimize the total travel time
for all passengers in the sense of a system optimum. This can lead to timeta-
bles in which the average travel time for all passengers is small, while some
passengers are heavily disadvantaged. We therefore propose to consider also
the maximum travel time. We test our models on real-world instances for
the city of Wuppertal.

2 Periodic Timetabling with Fixed Passenger
Routing

Most models in the literature for the periodic timetable problem are based
on the periodic event scheduling problem (PESP) developed by Serafini and
Ukovich (1989). We consider the following extended version. We are given
a directed graph N = (V,A), the event-activity network. The nodes V are
called events and represent arrivals and departures of lines at their stations,
i.e., V = Varr ∪ Vdep. The arcs A ⊆ V × V are called activities and model
driving between stations, waiting at stations, and possible transfers between
lines at stations, i.e., A = Adrive ∪ Adwell ∪ Atrans. Further, we are given
lower and upper time bounds `a, ua ∈ Q≥0, respectively, for the duration

2



of activity a ∈ A. Passengers can start and end their trips in Vdep and
Varr, respectively. The passenger demand is given in terms of an origin-
destination matrix (OD-matrix) (dst) ∈ Q≥0 specifying for each pair (s, t) ∈
Vdep × Varr the number of passengers that want to travel from s to t. Let
D = {(s, t) ∈ Vdep × Varr : dst > 0} be the set of all OD-pairs and for an
OD-pair (s, t) let Pst be the set of (s, t)-paths in N and P :=

⋃
(s,t)∈D Pst

be the set of all passenger paths.
A periodic timetable π : V → R determines arrival and departure times

at all arrival and departure nodes, respectively, that are assumed to repeat
periodically w.r.t. to a period time T ∈ R≥0. Given x ∈ R, we define the
modulo operator by [x]T := min{x + zT : x + zT ≥ 0, z ∈ Z}. We call a
timetable feasible if the periodic interval constraints

[πw − πv − `a]T ∈ [0, ua − `a] ∀ a = (v, w) ∈ A

are satisfied. We assume w.l.o.g. that `a < T and ua − `a < T for all a ∈ A.
Let P ′st ⊆ Pst and P ′ :=

⋃
(s,t)∈D P ′st ⊆ P be subsets of passenger paths

that model routing restrictions. For a feasible timetable π, the time duration
of activity a ∈ A is given by xa := `a+[πw−πv−`a]T , and the time duration
or travel time of a passenger path p ∈ P ′ is xp :=

∑
a∈p xa. If yp passengers

travel on path p ∈ P ′, the total travel time of all passengers is
∑

p∈P ′ xpyp.
The goal is to find a feasible timetable such that the total travel time,
assuming passengers travel on shortest paths in P ′, is minimized.

Introducing timetable variables πv for the timing of event v, xa for the
duration of activity a, and passenger variables yp for the number of passen-
gers that travel on path p ∈ P, we can state the following mixed-integer
non-linear program with congruence relations for the integrated passenger
routing and timetabling problem:

(PTT) min
∑

(s,t)∈D

∑
p∈P ′st

∑
a∈p

dst xa yp

s.t. [πw − πv − `a]T ≤ ua − `a ∀ a = (v, w) ∈ A (1)

[πw − πv − `a]T + `a = xa ∀ a = (v, w) ∈ A (2)∑
p∈P ′st

yp = 1 ∀ (s, t) ∈ D (3)

πv ≥ 0 ∀ v ∈ V (4)

yp ≥ 0 ∀ p ∈ P ′. (5)

The model (PTT) minimizes the total passenger travel time. Constraints (1)
guarantee a feasible timetable. Constraints (3) enforce the passenger flow.

We remark that conditions (1) and (2) can be formulated in terms of
linear constraints, using additional integer periodic offset variables for each
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activity, see, e.g., Liebchen (2006). An alternative linearization, which we
use for our computations in Section 5, is obtained by transforming the
event-activity network into a time-expanded event-activity network, see,
e.g., Kinder (2008).

2.1 Timetabling Models

We derive variants of (PTT) by specifying the set of passenger paths and
including capacity constraints.

We obtain a shortest path routing model (SPR) by setting P ′ := P, i.e.,
the passengers travel along the shortest path w.r.t. travel times induced by
the timetable. In the lower-bound routing model (LBR), on the other hand,
P ′ contains for each (s, t) ∈ D only the shortest path w.r.t. the lower bounds

of the activities. That is P ′st := arg min
{∑

a∈p `a : p ∈ Pst
}

.

To derive capacitated versions of these models, we include a capacity
κa ∈ Q≥0 for each activity a ∈ A and require that the passenger flow does
not exceed it by adding the following constraints:∑

(s,t)∈D

∑
p∈P ′st:a∈p

dst yp ≤ κa ∀ a ∈ A. (6)

The capacitated multi-path routing model (κ-MPR) is obtained by setting
P ′ := P and including the capacity constraints (6). For the capacitated
unsplittable path routing model (κ-UPR) we also set P ′ := P and include
the capacity constraints (6). Additionally, we require yp ∈ {0, 1} for all
p ∈ P, that is, all passengers corresponding to an OD-pair (s, t) ∈ D have
to travel on the same (s, t)-path.

3 Minimizing the Total Travel Time

In this section, we investigate the influence of routing restrictions on the
travel time minimum and, later, study the impact of an alternative objective.

We use the following further notation. Denote by v(M ; I) the optimal
objective value of a model M ∈ {SPR,LBR, κ-MPR, κ-UPR} and an in-
stance I. We denote by

gap(M1,M2) := sup
I

v(M1; I)

v(M2; I)

the gap between the optimal objective values of the models M1 and M2,
where the supremum is taken over all instances I. The definitions of the
models imply immediately for any instance I:

gap(LBR, SPR) ≥ 1 ⇔ v(SPR; I) ≤ v(LBR; I) (7)

gap(κ-UPR, κ-MPR) ≥ 1 ⇔ v(κ-MPR; I) ≤ v(κ-UPR; I).
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s 2 3 4 2n+ 1 t

ε ε εε ε ε ε ε

T T T

· · · · · ·

T
ε := T−1

2n+1

Figure 1: Instance for Theorem 1.

We show in the following that there are instances such that the inequal-
ities (7) are strict and that, indeed, the gap can be arbitrarily large.
Theorem 1. gap(LBR,SPR) =∞.

Proof. Consider the directed graph D in Figure 1. D has 2n+ 2 nodes and
2n+ 1 +n+ 1 = 3n+ 2 arcs, n ∈ N. Based on D we construct a timetabling
instance I by associating the nodes with stations and the arcs with driving
activities of lines (to be defined in a minute); arcs corresponding to transfer
and dwell activities are omitted in Figure 1.

We define activity times as follows. For all transfer activities, the lower
time bound is zero and the upper time bound is T ∈ N. The lower and
the upper time bound of all line dwell activities at each station is zero.
For each line driving activity the lower time bound equals the upper time
bound. Hence, this timetable problem reduces to determining for each line
the departure time at its first station and to routing the passengers.

We associate n+ 2 lines with the arcs of D. There is one line from s to
t (dotted arc) with a driving time of T and no intermediate stations. There
is a second line (solid arcs) from s to t with 2n intermediate stations. The
driving time between the stops of this line is alternatingly ε := T−1

2n+1 and T .
Between every two stations, for which the driving time of the second line is
T , there is another line with a driving time of only ε (dashed arcs). There
is only one passenger that wants to travel from s to t.

First consider model (LBR). In any solution of (LBR), the passenger is
routed along the unique shortest (s, t)-path with respect to the driving time
and transfer times of zero. This path uses all upper arcs with a driving time
of ε and would have a total length of (2n+ 1)ε = T − 1, if the transfer times
at all stations would be zero. However, there is no feasible timetable for this
instance such that the transfer time at every station in this path is zero. In
particular, in any solution of (LBR), the transfer times at stations 2 and 3
sum up to

T − ε
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Figure 2: Instance for Theorem 2. All arcs in this graph have a capacity of
k.

as for every following pair of stations along this path. Hence, the travel time
for this path is in total T − 1 + n(T − ε) and v(LBR; I) = T − 1 + n(T − ε).
In an optimal solution to (SPR) the passenger travels on the bottom line
with a travel time of T for any timetable and, hence, v(SPR; I) = T . We
can conclude that

v(LBR; I)

v(SPR; I)
=
T − 1 + n(T − ε)

T

= n+
(T − 1)(1− n

2n+1)

T
−→
n→∞

∞,

which proves the claim.

Theorem 2. gap(κ-UPR, κ-MPR) =∞.

Proof. Consider the directed graph D in Figure 2. Similar to the proof
of Theorem 1, we construct a timetabling instance I based on D. This
instance contains 2k+ 2 lines, k ∈ N. 2k lines are represented by the dotted
arcs {(s0, si)}1≤i≤k and {(wi, t)}1≤i≤k. Then there is one line (dashed arcs)
starting in s1 and ending in wk and the last line (solid arcs) is from v1
to vk. Again, the time bounds for all dwell activities are zero, the lower
bound for transfer activities is zero, and for all driving activities the lower
time bound equals the upper time bound. In particular, the duration of all
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driving activities is ε > 0 except for the activity corresponding to the arc
(vk−1, vk) that has a duration of 2ε. All transfer and dwell activities have
infinite capacity. All driving activities have a capacity of k. We set the
passenger demand to dsi,t = 1 for each 1 ≤ i ≤ k − 1, and we set ds0,t = k;
all other demands are set to zero.

First consider problem (κ-UPR). For any timetable, the passengers that
want to go from si to t travel along paths that must start with the arc
(si, vi), for all 1 ≤ i ≤ k − 1. Then, these arcs have only k − 1 capacity left
and cannot be used any more by the k passengers that want to go from s0
to t. These passengers have to travel via the path (s0, sk, vk, wk, t) since it
is the only (s0, t)-path with sufficient capacity that is left. These passengers
block the arc (vk, wk), such that all passengers that want to go from si to t,
1 ≤ i ≤ k − 1, must transfer at some node vi, 1 ≤ i ≤ k − 1 (different from
vk). The dashed and the solid line are constructed in such a way that the
sum of the transfer times at nodes vk−1 and vk is at least T − ε. Moreover,
the transfer times at nodes vi, 1 ≤ i ≤ k − 1, are all identical. Hence, there
is a minimum total transfer time of all passengers of at least (k− 1)(T − ε),
while the minimum total driving time is at least (k − 1)3ε + k · 4ε. If the
passengers from si to t travel along the paths (si, vi, wi, t), these values can
indeed be achieved by synchronizing the dashed and the dotted lines at node
vk, namely, the solid line can depart at v1 at time 0 and the dashed line can
depart at s1 also at 0. Hence, the minimum total travel time (achieved for
this timetable) is

v(κ-UPR; I) = (k − 1)3ε+ k · 4ε+ (k − 1)(T − ε)
= 6kε− 2ε+ kT − T.

In an optimal solution to (κ-MPR), the passengers from s0 to t can split and
travel along k−1 paths via vi, 1 ≤ i ≤ k−1. The transfer time in an optimal
timetable for these passenger paths at vi can be zero for all 1 ≤ i ≤ k (the
solid line can depart at v1 at time ε and the dashed line can depart at s1 at
time 0). The minimum total travel time for all passengers is therefore

v(κ-MPR; I) = (k − 1)3ε+ k · 4ε = 7kε− 3ε.

We set ε := 1
k and can conclude that

v(κ-UPR; I)

v(κ-MPR; I)
=

6kε− 2ε+ kT − T
7kε− 3ε

=
6− 2

k + kT − T
7− 3

k

−→
k→∞

∞.

This finishes the proof.

4 Minimizing the Maximum Travel Time

In this section we consider an alternative objective function, namely to min-
imize the maximum travel time among all passengers. To this purpose, we
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introduce an additional model variant. The min-max travel time shortest
path routing model (SPRmax) is obtained from SPR by adding a variable
τmax ∈ R, representing the maximum weighted travel time among all OD-
pairs, and a corresponding constraint∑

p∈P ′st

∑
a∈p

dst xa yp ≤ τmax ∀ (s, t) ∈ D

and by changing the objective function to

min τmax.

For a problem M ∈ {SPR, SPRmax} and an instance I let opt(M ; I) be the
set of time duration variables x and passenger variables y that give rise to
an optimal solution. Then we denote by

τmax(M ; I) := max

 ∑
p∈Pst

∑
a∈p

dst x
∗
a y
∗
p : (s, t) ∈ D, (x∗, y∗) ∈ opt(M ; I)


the maximum weighted travel time among all OD-pairs in any optimal so-
lution and by

τ total(M ; I) := max

 ∑
(s,t)∈D

∑
p∈Pst

∑
a∈p

dst x
∗
a y
∗
p : (x∗, y∗) ∈ opt(M ; I)


the maximum total weighted travel time of all passengers induced by the
timetable in any optimal solution to M for instance I. Note that by defini-
tion

v(SPRmax; I) = τmax(SPRmax; I)

v(SPR; I) = τ total(SPR; I)

τmax(SPRmax; I) ≤ τmax(SPR; I)

τ total(SPR; I) ≤ τ total(SPRmax; I)

holds for every instance I. We denote by

gapmax(SPR, SPRmax) := sup
I

τmax(SPR; I)

τmax(SPRmax; I)

the gap between the maximum weighted travel time among all OD-pairs in
any optimal solution of the models SPR and SPRmax, respectively, and by

gaptotal(SPRmax,SPR) := sup
I

τ total(SPRmax; I)

τ total(SPR; I)
,

the gap between the maximum total weighted travel travel time in any opti-
mal solution of the models SPRmax and SPR, respectively. The supremum
is taken over all instances I.
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Theorem 3. gapmax(SPR,SPRmax) =∞.

Proof. Consider the directed graph D in Figure 3. D has 3k nodes and
4k − 2 arcs, k ∈ N. Based on D we construct a timetabling instance I as
follows. Again, we set the upper and lower bounds on the duration for all
activities such that this timetabling problem reduces to determining for each
line the departure time at its first station and to routing the passengers (fixed
durations for all driving activities, zero duration for all dwell activities). We
associate two lines with the arcs of D. There is one line (dashed arcs) from
s1 to vk with a driving time of ε = T+1

k , T ∈ N, on each driving activity.
The second line (solid arcs) starts in v1 and ends in tk. The duration for
each driving activity of this line equals ε except for the second last arc from
tk−1 to vk that has a driving time of T . We set the passenger demand for
each OD-pair (si, ti), 1 ≤ i ≤ k, to one; all other demands are set to zero.

For each OD-pair (si, ti) ∈ D, 1 ≤ i ≤ k, there exists only a single path
from si to ti via the node vi. Hence, the driving time for each OD-pair is
2ε for any timetable. The dashed and the solid line are constructed in such
a way that the transfer times at nodes vi, 1 ≤ i ≤ k − 1, are all identical.
Moreover, if the two lines are synchronized at node vk, then the transfer
times at nodes vi, 1 ≤ i ≤ k− 1, are all equal to ε. This would yield a total
transfer time of (k−1)ε = T − T+1

k +1. If a timetable synchronizes the lines
at the nodes vi, 1 ≤ i ≤ k− 1, on the other hand, the transfer time at node
vk is T − ε = T − T+1

k .
First consider problem (SPR). In an optimal solution, the departure

time of the dashed line in s1 is 0 and the solid line departs in v1 at ε, such
that the two lines are synchronized at the nodes vi, 1 ≤ i ≤ k − 1. The
resulting transfer time for the pair (sk, tk) at vk equals T − ε. Hence, this
OD-pair yields the maximum travel time of T + ε among all OD-pairs for
this timetable.

In an optimal solution to problem (SPRmax), the lines are synchronized
at node vk by setting the departure time of the dashed line at s1 to 0 and
the departure time of the solid line at v1 to 2 ε. The resulting transfer time
for each OD-pair (si, ti) at vi with 1 ≤ i ≤ k− 1 is ε and for the pair (sk, tk)
the transfer time at vk is zero. The travel time for all OD-pairs (si, ti) with
1 ≤ i ≤ k− 1 is 3 ε, which gives the maximum travel time. We can conclude
that

τmax(SPR; I)

τmax(SPRmax; I)
=
T + ε

3ε
=
T + T+1

k

3T+1
k

=
(k + 1)T + 1

3T
−→
k→∞

∞,

which proves the claim.

Note that the total travel time of the (SPR) solution is τ total(SPR; I) =
(k− 1)2ε+T − ε = 3T + 2− 3T+1

k and the total travel time of the (SPRmax)
solution is τ total(SPRmax; I) = (k − 1)3ε+ 2ε = 3T + 3− T+1

k .
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Figure 3: Instance for Theorem 3.

Theorem 4. gaptotal(SPRmax, SPR) =∞.

Proof. Consider the directed graph D in Figure 4. D has 3k nodes and
4k − 2 arcs, k ∈ N. Based on D we construct a timetabling instance I as
follows. We associate 2 lines with the arcs of D. There is one line (dashed
arcs) from s1 to tk with a driving time of ε = 1

k on each arc except the
second last arc with a driving time of 2ε. The second line (solid arcs) starts
in v1 and ends in vk. The driving time for each arc of this line equals ε. We
set the passenger demand for each OD-pair (si, ti), 1 ≤ i ≤ k, to one and
zero otherwise.

For each OD-pair (si, ti) ∈ D, there exists only a single path from si
to ti via the node vi. And for each line activity in I the lower time bound
equals the upper time bound and the dwell time equals zero at every station.
Hence, both (SPR) and (SPRmax) reduce to determining for both lines the
departure time at the first station. Again, both lines are constructed in such
a way that the transfer times at nodes vi, 1 ≤ i ≤ k − 1, are all identical.
And the transfer times at the nodes vk−1 and vk sum up to at least T − ε.

First consider problem (SPRmax). In an optimal solution, the dashed
line departs at s1 at 0 and the solid line departs at v1 at T+ε

2 . The resulting
transfer time for each OD-pair (si, ti) at vi is T−ε

2 . Hence, the total travel
time for this timetable is 2kε+ k T−ε2 = 1

2(3kε+ kT ).
In an optimal solution to (SPR), the departure time of the dashed line

at s1 is 0 and the solid line departs at v1 at ε. The resulting transfer time
for each OD-pair (si, ti), 1 ≤ i ≤ k− 1, at vi is zero and the transfer time at
vk equals T − ε for the pair (sk, tk). The total travel time for all passenger
is therefore 2kε+ T − ε.

We can conclude that

τ total(SPRmax; I)

τ total(SPR; I)
=

3kε+ kT

2(2k ε+ T − ε)
=

3 + k T

4 + 2T − 2
k

−→
k→∞

∞.

This finishes the proof.
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Figure 4: Instance for Theorem 4.

We finally give a Lemma that shows that there exists no instance such
that the gap of the maximum weighted total travel time and the gap of the
maximum weighted travel time among all passengers can both be arbitrar-
ily large since they bound each other. Furthermore, the following lemma
implies, that both gaps are bounded by the number of OD-pairs.
Lemma 5. Let k := |D| = |{(s, t) ∈ Vdep × Varr : dst > 0}| be the number of
OD-pairs, then we have for every instance I ∈ {SPR,SPRmax}

τ total(SPRmax; I)

τ total(SPR; I)
≤ kτ

max(SPRmax; I)

τmax(SPR; I)
≤ k

and
τmax(SPR; I)

τmax(SPRmax; I)
≤ k τ total(SPR; I)

τ total(SPRmax; I)
≤ k.

Proof. Let (x′, y′) ∈ arg max τ total(SPRmax; I) be an optimal solution of in-
stance I for problem SPRmax yielding the maximum total weighted travel
time and (x′′, y′′) ∈ arg max τmax(SPRmax; I) be an optimal solution yielding
the maximum weighted travel time, i.e., by definition we have

τ total(SPRmax; I) =
∑

(s,t)∈D

∑
p∈Pst

∑
a∈p

dst x
′
a y
′
p

and for an OD-pair (s′′, t′′) ∈ D

τmax(SPRmax; I) =
∑

p∈Ps′′t′′

∑
a∈p

ds′′t′′ x
′′
a y
′′
p .

Since (x′, y′) and (x′′, y′′) give both rise to an optimal solution of (SPRmax; I),
there exists an OD-pair (s′, t′) ∈ D such that∑

p∈Ps′′t′′

∑
a∈p

ds′′t′′ x
′′
a y
′′
p =

∑
p∈Ps′t′

∑
a∈p

ds′t′ x
′
a y
′
p.
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Hence, we get

τ total(SPRmax; I) =
∑

(s,t)∈D

∑
p∈Pst

∑
a∈p

dst x
′
a y
′
p

≤
∑

(s,t)∈D

∑
p∈Ps′t′

∑
a∈p

ds′t′ x
′
a y
′
p

= k
∑

p∈Ps′t′

∑
a∈p

ds′t′ x
′
a y
′
p

= k
∑

p∈Ps′′t′′

∑
a∈p

ds′′t′′ x
′′
a y
′′
p

= k τmax(SPRmax; I).

Similarly, we can argue τ total(SPR; I) ≥ τmax(SPR; I) and conclude

τ total(SPRmax; I)

τ total(SPR; I)
≤ k τmax(SPRmax; I)

τ total(SPR; I)

≤ kτ
max(SPRmax; I)

τmax(SPR; I)
.

5 Computations

The aim of this section is to also give some computational evidence that
routing decisions do indeed have a significant impact on timetabling. To
this purpose, we compare the solution of an integrated timetabling and
shortest path routing model (SPR) with a fixed passenger routing resulting
from a real-world reference timetable.

We consider a scenario from a cooperation with the public transit com-
pany of Wuppertal, the Wuppertaler Stadtwerke (WSW), which is operating
the famous cableway line “Schwebebahn”. The data represents the periodic
timetable of the core network of the public transport system of Wuppertal
for the year 2013. The network has 158 station nodes, 229 OD-nodes, and
460 directed arcs. There are 71 lines: 67 bus lines, three city train lines,
and the cableway line. The lines are operated at different frequencies; their
period times are 10, 15, 20, 30, or 60 minutes. The data also contains the
connections to the regional railway system, such that we can take these
important transfers into account. After some preprocessing, the data con-
tains 45 254 OD-pairs with a positive demand (we remove all OD-pairs for
which the shortest connection for any timetable does not contain a trans-
fer). Furthermore, we assume that each transfer has a lower time bound of
2 minutes.
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For the computations, we use a time-expanded version of our integer
programming model (SPR) that integrates a passenger routing. It works
roughly as follows. We introduce for each line a binary variable representing
the departure time at its first station. The passengers are represented by a
path-flow in a time expanded network, in which they can travel freely. In the
fixed routing case the demand of each OD-pair is sent along some shortest
path w.r.t. a given reference timetable, namely, the WSW timetable of 2013
(WSW2013). The objective is to minimize the total weighted travel time.
The core network of Wuppertal gives rise to a time-expanded event-activity
network with 86 386 events and 431 604 activities. There are 3 990 binary line
variables modeling the timetable. The passenger path-flow variables are dy-
namically added with a column generation algorithm, solving shortest path
pricing problems. Our code is based on the constraint integer programming
framework SCIP version 3.1.0 using Cplex 12.6 as an LP-solver. All compu-
tations were done on an Intel(R) Xeon(R) CPU E3-1245, 3.4 GHz computer
(in 64 bit mode) with 8 MB cache, running Linux and 32 GB of memory.
We set the time limit to 12 hours.

The WSW2013 reference timetable results in a total weighted travel
time of 2 630 211.97 minutes and a total weighted transfer waiting time of
171 985.41 minutes. Fixing this routing and optimizing a classical PESP
model, we could not find a timetable that improves the total weighted
travel time. With the integrated timetabling and passenger routing model
(SPR), however, we found a timetable that yields a total weighted travel time
of 2 597 571.95 minutes and a total weighted transfer waiting time of only
131 456.07 minutes. This corresponds to an improvement of 1.24% in travel
time and 23.57% in transfer waiting time. While the first improvement is
marginal, the latter is substantial, in particular, since transfer waiting time
is known to be perceived beyond proportion by passengers. The solution
still has an optimality gap of 12%. Figure 5 illustrates the worsening and
the improvement of the travel time for each OD-pair when comparing the
passenger routings arising from the reference timetable and an integrated
timetable and passenger routing optimization. The figure shows that for the
integrated solution the number of OD pairs where the travel time decreases
is much larger than the number of OD pairs where the travel time increases
compared to the reference solution.

6 Conclusion

In this paper we investigated the influence of different passenger routing
variants on timetable optimization. We showed that the best timetable
for a fixed or lower bound routing can yield total travel times that are
arbitrarily larger than an optimal timetable, i.e., a timetable optimized w.r.t.
an integrated passenger routing. If we do not consider capacity constraints
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Figure 5: Heat maps comparing differences in travel times between timeta-
bles computed with different passenger routing models. The axes of both
diagrams correspond to the OD-nodes. The color of a point represents the
difference in the travel time for the corresponding OD-pair between the best
passenger routing for WSW2013 reference timetable and the result of an
integrated timetable and passenger routing optimization. Left: The red-
der a dot the better is the travel time for the timetable computed with the
fixed routing. Left: The greener a dot the better is the travel time for the
timetable computed with the shortest path routing.

then all passengers can be assumed to use the same shortest path. If line
capacities have to be fulfilled we showed that the total travel times can be
reduced if the passengers of one OD pair are allowed to split their travel
routes. Finally, we showed that the maximum travel time of a timetable
minimizing the total travel time is bounded by the number of OD pairs times
the maximum total travel time of a timetable that minimizes the maximum
total travel time. We implemented a time expanded model similar to the one
of Kinder (2008) to compute a timetable with integrated passenger routing.
First computational experience for data from the city of Wuppertal indicates
that the total transfer waiting time can be substantially reduced by around
24% in comparison to a real-world reference solution.
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Schöbel A, Scholl S (2006) Line Planning with Minimal Traveling Time.
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